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The enantioselective synthesis of S-stereogenic sulfinamides has garnered

considerable attention due to their structural and physicochemical properties.
However, catalytic asymmetric synthesis of sulfinamides still remains daunting
challenges, impeding their broad application in drug discovery and develop-
ment. Here, we present an approach for the synthesis of S-stereogenic sulfi-
namides through peptide-mimic phosphonium salt-catalyzed asymmetric
skeletal reorganization of simple prochiral and/or racemic sulfoximines. This
methodology allows for the facile access to a diverse array of substituted
sulfinamides with excellent enantioselectivities, accommodating various sub-
stituent patterns through desymmetrization or parallel kinetic resolution
process. Mechanistic experiments, coupled with density functional theory
calculations, clarify a stepwise pathway involving ring-opening and ring-
closing processes, with the ring-opening step identified as crucial for achieving
stereoselective control. Given the prevalence of S-stereogenic centers in
pharmaceuticals, we anticipate that this protocol will enhance the efficient and
precise synthesis of relevant chiral molecules and their analogs, thereby con-

tributing to advancements in drug discovery.

Over the past century, innovations of catalytic asymmetric synthesis
have rapidly expanded the realm of accessible chiral chemical entities
for pharmaceutical research'>. Despite some impressive advances
have been achieved, the breadth and depth of chiral skeletal diversi-
fication in discovery and development of new drugs are still con-
strained due to the unsolved problems in particularly important
catalytic asymmetric transformations®. In this scenario, a conspicuous
example is that the sporadic occurrence of catalytic protocols towards
chiral sulfinamides, a class of stereogenic-at-S(IV) scaffolds, which is
thus difficult to fulfill the demands of systematically biological
screening (Fig. 1a)"™. To date, the most conventional and widely
employed approach for synthesizing chiral sulfinamides primarily
relies on using chiral starting materials ™" or employing stoichiometric

amounts of chiral auxiliaries’®”. Furthermore, catalytic strategies
involve kinetic resolution enabled by enzyme’ or transition metal®® and
asymmetric oxidation'. As such, a reliable and efficient method that
will enable the construction of structurally and stereochemically
diverse sulfinamide targets to meet diversified demands®* from
multiple disciplines is highly desirable and urgently required.
Organocatalytic asymmetric reduction of hexavalent sulfoximines
to sulfinamides represents an attractive and direct solution towards
above target-specific synthesis. However, despite the considerable
research efforts that have been focused on this area, compared to the
well-established and widely-applied transformations of sulfinamides to
sulfoximines, the concurrent S=0 and S=N bonds in sulfoximine
skeletons typically pose an inherent chemoselectivity challenge for
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transformation of sulfoximines to sulfinamides in a catalytic enantioselective
manner. ¢ This work: PPS-catalyzed enantioselective skeletal reorganization of
sulfoximines for unified access to chiral sulfinamides.

such reduction process, let along the challenging ambiguous stereo-
control, and thus no successful example has been developed so far
(Fig. 1b, left)*. Of note, such type of reduction process was pioneered
almost 30 years ago by Mock**, Gais® and Pyne?, respectively via a
skeletal reorganization strategy. However, their approaches had lim-
ited substrate scope and yielded moderate chemical yields. Despite the
intriguing mechanism and high atom-economy”*® associated with
skeletal reorganization, it is surprising that a catalytic asymmetric
version of this reaction has not been realized to date. The major
challenges encountered in such asymmetric skeletal reorganizations
not only lie in the high barrier in the S-C bond cleavage, which gen-
erally necessitates expensive transition-metal catalysts together with
high reaction temperatures, undoubtedly limiting its broad applica-
tion and functional group tolerance”, but also come from the for-
midable stereo-differentiation in the indistinguishable S-, O-, and
N-nucleophilic centers of the in situ generated sulfinamide anions* ¢,
In addition, such process towards the target products might proceed
with unpopular desulfurization reaction®.

Recognizing the notable obstacles presented in the aforemen-
tioned protocol, and to unlock the synthetic and biological potential of
yet underutilized sulfinamide scaffolds, we sought to realize the cat-
alytic enantioselective skeletal reorganization of achiral sulfoximines,
thus producing the important chiral sulfinamide scaffolds. If success-
ful, this proposed approach would establish a versatile molecular
platform for the synthesis of libraries containing enantioenriched
sulfinamide compounds, and potentially, for the generation of value-
added downstream products (Fig. 1b, right)””’ . Inspired by our

recent disclosure of peptide-mimic phosphonium salt (PPS) catalysts
and their wide applications in asymmetric synthesis***, we antici-
pated that the enhanced ion-pairing induction and multiple hydrogen-
bonding interaction of PPS catalyst system could potentially provide
synergistic activation for promoting this transformation reaction
bearing much less reactivity of substrates. Furthermore, this class of
conformationally flexible and highly structural tunable catalysts might
be also suitable candidates for addressing the major stereo-control
challenge of such enantioselective skeletal reorganization reaction.

Herein, we disclose a PPS-catalyzed enantioselective skeletal
reorganization of sulfoximines, guiding the precise and highly efficient
construction of optically pure S-stereogenic sulfinamides (Fig. 1c).
Crucially, the use of PPS catalysts bypass both the transition-metal
catalysts and the previous high reaction temperatures required by the
in-situ generation of conjugated diene-tethered sulfinamide inter-
mediates, in which the existence of conjugation element may ensure
an effective thermodynamic driving force for the initial enantioselec-
tive S-C bond cleavage. Moreover, this protocol employing prochiral
and/or racemic cyclic sulfoximines as starting reagents and harnessing
one-pot operations with cascade process leads to a broad range of
enantioenriched cyclic sulfinamides with an assortment of functional
groups in high yields with excellent enantioselectivities.

Results

Reaction development

Given the aforementioned challenges, we initiated our investiga-
tions by testing the skeletal reorganization of prochiral cyclic
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Fig. 2 | Development of asymmetric skeletal reorganization reaction.
a Preliminary experiments. b Control experiments. rac-PO = Me,P*Ph,I. Reactions
were conducted by using different N-protected sulfoximines (0.1 mmol) in the
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presence of racemic catalyst PO/P2 (20 mol%), KOH (2.0 equiv.) in toluene (2.5 ml)
at r.t. The isolated yields were given.

sulfoximine Al with a free NH unit as a benchmark reaction in the
presence of a racemic PPS catalyst P2 (Fig. 2a). However, no for-
mation of the desired sulfinamide was observed, which might be
attributed to the NH-involving hydrogen transfer process. Thus, we
prepared a series of N-protected cyclic sulfoximines and tested the
validity of our hypothesis. Encouragingly, the use of the naphthyl
protecting group could afford the desired skeletal reorganization
product with a nearly quantitative yield, while the other N-protected
sulfoximines A2-A4 suffered from the instability problem. Control
experiments uncovered that the nature of ion-pairing and
H-bonding effects appeared to play a pivotal role in realizing this
reaction, wherein the lack of H-bonding donors (Fig. 2b, entry 1),
let alone the lack of PPS catalysts (Fig. 2b, entry 3), would result in a
sluggish reaction under otherwise identical conditions. Additionally,
the loss of reactivity without the base also indicated an ionic reaction
pathway (Fig. 2b, entry 4).

Encouraged by the preliminary success, we turned our attention
to the sought-after catalytic enantioselective skeletal reorganization of
prochiral cyclic sulfoximines. As shown in Fig. 3a, initial extensive
evaluation of chiral PPS catalysts revealed that the (L, L)-dipeptide-
based phosphonium salt catalyst (P1) led to inspiring enantioinduc-
tion, albeit with a decrease in the reactivity. Exchanging the methyl
substituent of the P(V) atom to a benzyl group could enhance the
reactivity. As such, further skeleton optimization of PPS catalysts was
performed, wherein L-tert-Leu-L-tert-Leu-derived phosphonium salt P4
furnished the product1in 92% yield with 28% e.e. In view of the density
functional theory (DFT) calculated electrostatic potential (ESP) of
chiral PPS cationic catalyst P8 (Fig. 3c), we speculated that multiple
hydrogen-bonding donors with an improved electropositive region
could offer better recognition of the transition state structures. Thus,
the substituent effects of the active P(V)-center were investigated, and
surprisingly, catalyst P8 led to a significant increase in enantioselec-
tivity (82% e.e.). Then, the catalyst P8 was used for further screening of
other parameters (see the Supplementary Tables 3-8 for details).
Remarkably, an obvious increase in enantioselectivity (i.e. 95% e.e.)
coupled with a satisfactory yield was observed while lowering the
reaction temperature to —40 °C, even under a very low catalyst loading
of 5mol% (Fig. 3b).

Reaction scope
With the optimal catalyst and other reaction conditions in hand, the
substrate scope of this catalytic asymmetric skeletal reorganization

was systematically explored. As shown in Fig. 4, a variety of sym-
metric cyclic sulfoximines with aryl substitutions on the alkene
moiety were firstly prepared and subjected to this transformation.
Obviously, both electron-donating and electron-withdrawing groups
at different positions (i.e. para-, meta- or ortho-position) were tol-
erated well, affording the corresponding products (1-9) in good to
excellent yields (70-99%) with good enantioselectivities (90-96%).
Likewise, disubstituted substrates(A14-A16) were also suitable for
this transformation. To further expand the generality of this proto-
col, other orthogonal N-protecting groups were examined. Good
functional group compatibility was, in most cases, observed with
tolerance of a series of sterically and electronically differentiated
aromatics and heteroaromatics (A17-A43). Besides, a decrease in
stereocontrol of sulfinamides 19 and 25 indicated the importance of
steric hindrance of the aromatic ring bonded to nitrogen atom at the
ortho-position. Of note, this reaction could be scalable without any
loss of efficiency (eg. 1 and 17). Additionally, the absolute config-
urations of 12, 16 and 20 were determined by X-ray diffraction
analysis and those of other products were assigned by analogy.
Remarkably, beyond symmetric cyclic sulfoximines, this catalytic
system was also effective for non-symmetric counterparts. For
example, the racemic sulfoximines bearing different aryl groups on
the C=C moiety could be engaged to this skeletal reorganization
reaction, simultaneously yielding two classes of expected enan-
tioenriched products (such as 40/41 and 42/43), absolute config-
urations of which were confirmed by X-ray crystallographic analysis.
This sophisticated parallel kinetic resolution** emphasized the
practicability of this construction strategy towards chiral sulfina-
mide compounds.

Synthetic applications

To investigate the versatility of this catalytic system, we subse-
quently examined its application in the late-stage functionalization
of complex skeletons. To our delight, all of the elaborate sulfox-
imines derived from bioactive molecules or material building blocks,
such as Gemfibrozil, Stearic acid, Linoleic acid etc., could serve as
effective substrates, furnishing the corresponding skeletal reorga-
nization products (44-47) in good yields with excellent enantios-
electivities (Fig. 5a). Furthermore, a wide variety of powerful
synthetic transformations of the resulting chiral sulfinamides were
also demonstrated. For instance, the sulfinamide 1 could be readily
converted into sulfonimidamide 48 and sulfonamide 49 by simple
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Fig. 3 | Reaction optimization. a Catalyst screening. b Effects of other reaction
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6 hours. “The reaction was stirred for 24 h. °P8 (5 mol%) was used and the reaction
was stirred for 4 days. The isolated yields were given. All the e.e. values were
determined by HPLC analysis.

amination and oxidation. Of note, an unexpected desulfurized aro-
matization occurred towards the facile assembly of the pyrrole
skeleton 50 under the transition metal catalytic condition (Fig. 5b,
left). Another interesting and important application would be the
expedient installation of various types of functionalities via a series
of cross-coupling (i.e. Miyaura borylation, Buchwald-Hartwig cou-
pling and Suzuki coupling) of brominated chiral sulfinamides,
affording the corresponding products (51-53) without any loss of
enantiopurity (Fig. 5b, right). Notably, the vulnerable nature of the S
—-N bond in sulfinamides rendered them versatile building blocks for
further elaborations towards chiral sulfoxide compounds (54-58),
many of which have been previously deemed as synthetically chal-
lenging (Fig. 5b, bottom)**%, Notably, though a striking steric-
hindrance for better asymmetric induction has been demanded, the
challenging N-alkyl-substituted sulfoximine also gave access to the
corresponding skeletal reorganization product in 85% isolated yield
with 80% e.e. and 10:1 d.r. via one-pot operation, employing an
improved phosphonium salt catalyst (Fig. 5¢).

Mechanistic investigations
To shed light on this underlying reaction mechanism, a series of kinetic
and spectroscopic studies were performed. Our initial interest was
focused on the identification of the key intermediate in this organoca-
talytic skeletal reorganization of sulfoximines. Thus, a time-course study
for this reaction process with substrate A5 was conducted (Fig. 6a). The
kinetic profile indicated the presence of a short-lived enantioenriched
species, which was confirmed as the conjugated diene-tethered sulfi-
namide B. Additionally, we performed several elaborate control
experiments. As shown in Fig. 6b, such chiral specie B could be
smoothly converted into the desired chiral product 1 without erosion of
enantioselectivity, irrespective of harnessing either chiral catalyst P8 or
racemic catalyst P2. Based on these results, we suggested an enantio-
selective ring-opening and subsequent ring-closing step-wise pathway
towards the facile access to these chiral sulfinamide products.
Subsequently, we turned our interest in stereochemical probing
to the significant ring-opening step. The nonlinear effect experiment
between chiral catalyst P8 and product 1 was firstly conducted
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¢ Approach to N-alkyl sulfinamide via one-pot operation.
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(Fig. 6¢), and at last a linear relationship was observed, which
uncovered a monomeric catalytic mode in the stereo-determining
step, in correspondence with the Job Plot analysis of the 'H NMR
titration experiments (see the Supplementary Figs. 16-18 for
details). Further kinetic studies also illustrated that the overall
reaction is the first order relationship with the catalyst P8 (Fig. 6d).
Then, to investigate the nature of multiple weak-bonding activa-
tions, the methylated phosphonium salts P8-1 and P8-2 were pre-
pared and subjected to the standard reaction (Fig. 6e). As a result,

both of the reactivity and enantioselectivity suffered from a dra-
matical decline, thus indicating the indispensability of H-bonding
interactions in the asymmetric induction.

To provide further molecular-level insight into this process, DFT
calculations were carried out to understand the reaction pathway
and the origin of stereoselectivity by employing Gaussian 09 pro-
gram package (see the Supplementary Information for more
details)*. As shown in Fig. 7, the catalyst cation P8 firstly interacted
with the oxygen atom of the deprotonated substrate via dual

Nature Communications | (2024)15:4348



Article

https://doi.org/10.1038/s41467-024-48727-x

AG (kcal mol™)

%Y

IR

+
2 \
\//\/ (|) / -1 Y /
S-path N= S/\ NS, [ g |
7 7 Ph p—Ph
> Z
Ph
IM-B1-S IM-B2-S IM-B3-S IM-B4-S
o o
12.1
(12.1) o N
TS1-S 0, N >_N \ .
1 }—N\ H  Phy + %\O \H PhZJ
PR o Mg \K p ?\ I~
W ~7 S
TS1-R % Il — 5=
’ . N=s— : N )
(10.4) % 7 - ..o/ Ph
" &
“.". — _ - Ph _
(2.1) K TS1-S TS2-S
IM-B1-s ,°” % (2.3)
—_ . 4 —_—
. \ (-1.9) LT
B IM-B3-S S TSR
IM-B1-R B e ©8) W
©0) % AN
W B — N
IM-B3-R o
x (-3.8) s . IM-B4-S
— It P — e * (-12.2)
2 / o el O
o | K N
\ o '\ IM-B4-R
O>g)j\N\ : \ ¢17.5) ot + (A
>—N\ Ho phyl \ IMB2-R . }’N\ Ph, (-15.6)
d Hog g o o .
I IM-B2-S e \\s<\
L N=S >N "
%/ ‘:}*Ph (-19.8) =)
TS1-R TS2-R
o] o]
N I N N N Y +
N Ph, \
o g o Heo 6 H-g
==l - ‘S/ - \\S
= ,_.s / A -
%/ Q‘Ph N \—Ph \\Lph 6 N
Ph
IM-B1-R IM-B2-R IM-B3-R IM-B4-R
—0 O O O
A4 A4 A4
C-S bond cleavage (ring-opening) Single bond rotation ‘N"-selective addition (ring-closing)

Fig. 7 | Energy profiles for enantioselective skeletal reorganization reaction under phosphonium salt catalyst P8 system. All the structures were calculated at the

MO06-2X-D3/6-311 G(d, p)(SMD, toluene)// M06-2X/6-31 G(d)(SMD, toluene) theoretical level, employing Gaussian 09 program package

H-bonding interactions, forming the intermediates IM-B1-R and IM

B1-S, alternatively. The NH---O(S) distances in IM-B1-R were 1.96 and

1.86 A, which were slightly shorter than those in IM-B1-S (2.10 and

opening process, affording IM-B2-R and IM-B2-S via transition

calculated, which was highly consistent with the experimental
results (Fig. 6) and reasonably illustrated that the

“N”-selective ring-

closing might be a stereospecific process to form the product with

1.87 A). Accordingly, IM-B1-R was more stable than IM-B1-S by R-configuration eventually. In the view point of energy, the ring
2.1kcal mol™. Then, IM-BI-R and IM-B1-S underwent the ring

states TS1-R and TSI1-S, respectively. Due to significant repulsion
between ortho-CH; group in the Bn unit of catalyst and the Ph group
of sulfoximine substrate, as well as unfavorable steric effect between
the two t-Bu groups and the naphthyl group, the relative Gibbs free
energy (AG) of TS1-R was lower than that of TS1-S by 1.7 kcal mol™.
Next, IM-B2-R and IM-B2-S underwent C-S single bond rotation,
followed by ring-closing process to construct the C-N bonds in the
IM-B4-R and IM-B4-S. This step could occur easily, with the AG” as
low as 4.6 and 4.2 kcal mol™, respectively. Otherwise, the energy
profile for transformation of conjugated diene-tethered anion to
sulfinamide anion along R-path without catalyst has also been

opening of the sulfoximine was the key step of stereocontrol with
the AAG of 1.7 kcal mol™. The theoretical stereoselectivity was pre-
dicted to be 94% e.e. at 233K, which was close to experimental
observation (95% e.e.)

Discussion

In summary, we have successfully developed the catalytic enantiose-
lective skeletal reorganization of sulfoximines, facilitating the creation
of enantioenriched sulfinamides featuring a S-stereocenter. Amid this
process, peptide-mimic phosphonium salts, which serve as multi-

functional weak-bonding catalysts to not only activate C-S bonds but
also afford efficient asymmetric induction, are crucial for this formal

metal-free reduction. Remarkably, leveraging the versatility of this
Nature Communications | (2024)15:4348
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class of cyclic sulfinamides, this current methodology could provide a
powerful platform to allow access to a wide variety of sought-after
stereogenic-at-sulfur scaffolds, such as chiral sulfonimidamides and
sulfoxides etc. We anticipate that this general and efficient method for
the synthesis of enantioenriched sulfinamide compounds would open
up an avenue for related drug discovery and development.

Methods

Procedure for the synthesis of chiral sulfinamides 1-47
Sulfoximines A (0.1 mmol), KOH (0.2 mmol, 2.0 equiv.) and catalyst P8
(0.01 mmol, 10 mol%) were added to a dried reaction tube with a
magnetic stirring bar under air, followed by the addition of precooling
toluene (1.0 mL). The reaction mixture was stirred at —40 °C until
completion determined by TLC. Then, the reaction mixture was
directly purified by column chromatography on silica gel (petroleum
ether/ethyl acetate = 5:1) to afford the desired products.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Crystallographic data for the structures reported in this article have
been deposited at the Cambridge Crystallographic Data Centre, under
deposition numbers CCDC 2115196 (P6), CCDC 2235143 (12), CCDC
2210348 (16), CCDC 2213077 (20), CCDC 2262526 (41), CCDC 2265808
(42) and CCDC 2244448 (48). Copies of the data can be obtained free
of charge via https://www.ccdc.cam.ac.uk/structures/. All information
relating to initial studies, optimization studies, experimental proce-
dures, mechanistic studies, DFT calculations, high-performance liquid
chromatography spectra, NMR spectra, high-resolution mass spec-
trometry and optical rotation data are available in Supplementary
Information. All other data are present and available from the corre-
sponding authors upon request. Source data are provided with
this paper.
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