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Multiregional transcriptomics identifies
congruent consensus subtypes with
prognostic value beyond tumor
heterogeneity of colorectal cancer

Jonas Langerud1,2, Ina A. Eilertsen1, SeyedH.Moosavi1, SolveigM. K. Klokkerud1,2,
Henrik M. Reims3, Ingeborg F. Backe1,4, Merete Hektoen1, Ole H. Sjo4,
Marine Jeanmougin1, Sabine Tejpar 5, Arild Nesbakken2,4,
Ragnhild A. Lothe 1,2 & Anita Sveen 1,2

Intra-tumor heterogeneity compromises the clinical value of transcriptomic
classifications of colorectal cancer. We investigated the prognostic effect of
transcriptomic heterogeneity and the potential for classifications less vulner-
able to heterogeneity in a single-hospital series of 1093 tumor samples from
692 patients, including multiregional samples from 98 primary tumors and 35
primary-metastasis sets. We show that intra-tumor heterogeneity of the con-
sensus molecular subtypes (CMS) is frequent and has poor-prognostic asso-
ciations independently of tumor microenvironment markers. Multiregional
transcriptomics uncover cancer cell-intrinsic and low-heterogeneity signals
that recapitulate the intrinsic CMSs proposed by single-cell sequencing. Fur-
ther subclassification identifies congruent CMSs that explain a larger propor-
tion of variation in patient survival than intra-tumor heterogeneity. Plasticity is
indicated by discordant intrinsic phenotypes of matched primary and meta-
static tumors. We conclude that multiregional sampling reconciles the prog-
nostic power of tumor classifications from single-cell and bulk transcriptomics
in the context of intra-tumor heterogeneity, and phenotypic plasticity chal-
lenges the reconciliation of primary and metastatic subtypes.

Tumor heterogeneity is a main cause of cancer progression and
treatment failure1,2. Most solid tumors consist of multiple subclones
with different genomic profiles,metastatic potentials and responses to
treatment. Colorectal cancers (CRCs) commonly have polyclonal
invasion, and genomic heterogeneity of the primary tumor is asso-
ciatedwith frequentmetastasis and apoor patient survival3,4. However,
not all tumor subclones have an impact on cancer evolution5. Clonal

selection operates on cellular phenotypes, not genotypes, and het-
erogeneity appears to be decoupled at the genomic and tran-
scriptomic levels in CRC6. In fact, it has been proposed that most
genomic intra-tumor variation of CRCs has no major phenotypic
consequences6. This emphasizes the importance of phenotypic
plasticity7, but the clinical relevance of intra-tumor heterogeneity is
less well studied on the transcriptomic level in CRC.
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CRC transcriptomes represent a collection of the four consensus
molecular subtypes (CMS)8. This classification reflects tumor pheno-
types and morphologies, and is associated with patient survival and
drug sensitivities9–11. It is generally accepted that the CMS framework
provides a useful starting point for further transcriptomic investiga-
tions of primaryCRCs.However, the classificationwasdeveloped from
single bulk tissue samples of individual tumors and is vulnerable to
intra-tumor heterogeneity, possibly to the point where tumors contain
a mixture of all CMS classes at different proportions10,12. This com-
promises the biomarker value and the predictive power of CMS for
clinical endpoints13. Single-cell RNA sequencing has illustrated that the
diverse cell types of the tumor microenvironment contribute strongly
to bulk tumor transcriptomes, as well as to intra-tumor heterogeneity
and the definition of tumor subtypes14–16. Indeed, both the classifica-
tion accuracy and the prognostic value of CMS are confounded by the
tumor microenvironment12,13,17. Cancer cell-intrinsic expression signals
are also shaped by the microenvironment15, but might be less vulner-
able to tumor heterogeneity18. Additional classification frameworks
such as the CRC intrinsic subtypes (CRIS) and the two intrinsic CMS
(iCMS) classes adhere to this rationale19,20, but the potentially added
clinical value of a cancer cell-intrinsic approach has yet to be defined.
In this context, phenotypic plasticity during metastasis andmetastatic
heterogeneity of the classifications are likely to be relevant, as
demonstrated with the original CMS21.

Single-cell transcriptomics is a powerful technology for mapping
of tumor heterogeneity. However, the high costs and technical and
biological variation associated with single-cell analyses are challenges
that currently limit the application to larger tumor series and the
integration of datasets22.Wehypothesized thatbulk transcriptomicsof
multiple distinct regions of each tumor is a complementary approach
in this setting, and that multiregional sampling can balance the needs
to capture intra-tumor and inter-tumor variation. This has previously
been used to illustrate intra-tumor heterogeneity and sampling bias in
CRC, although in a limited number of tumors (up to 25)6,23,24. Here, we
analyze multiregional and single samples of primary tumors and liver
metastases (n = 1093 samples from 692 patients) and show that intra-
tumor heterogeneity of CMS is associated with poor survival in
patients with locoregional CRC. We further show potential for tran-
scriptomic classifications less vulnerable to tumor heterogeneity,
based on cancer cell-intrinsic signals with uniform expression across
tumor regions. This approach recapitulates the iCMS from single-cell
sequencing, and enables further substratification into a congruent
CMS framework with prognostic value in the context of intra-tumor
heterogeneity. We also show plasticity of intrinsic subtypes between
patient-matched primary tumors and liver metastases, and conclude
that classifications of primary and metastatic CRCs are challenging to
reconcile.

Results
Transcriptomic intra-tumorheterogeneity amongmultiregional
samples
To get an initial overview of transcriptomic intra-tumor heterogeneity
in CRC, we compared CMS classifications among 2–4 multiregional
samples from each of 98 primary tumors (n = 286 samples; Fig. 1a,
Supplementary Data 1 and Supplementary Fig. 1). Intra-tumor CMS
heterogeneity was found in 40% (seven tumors were undetermined
due to unclassified samples) and reflected general transcriptomic
heterogeneity, estimated as the maximum Euclidean distance of
principal components (PC) 1–3 between any pair of samples per tumor
(Fig. 1b). The level of heterogeneity increased with the number of
samples per tumor (p = 2 × 10−4 by Kruskal–Wallis test; Supplementary
Fig. 2b). Both CMS3 and CMS4 were enriched with heterogeneous
tumors (Fig. 1c). CMS4 was most heterogeneous andmixed with other
subtypes in 84% (n = 26 of 31 tumors with at least one CMS4 sample).
The most common CMS combinations were CMS2/4 (n = 19, 49% of

heterogeneous tumors) and CMS1/3 (n = 8, 21%), with CMS4 and CMS3
as the minor components, respectively. Combinations of CMS3/4
(n = 3, 8%) and CMS1/2 (n = 2, 5%) were rare. Histological cryosections
of multiregional samples from three selected tumors showed mor-
phological differences according to CMS heterogeneity (Supplemen-
tary Fig. 2c–e).

Microsatellite instability (MSI) status and KRAS/NRAS/BRAFV600E

mutation status were concordant among all multiregional samples
from each tumor with CMS heterogeneity (Fig. 1a). MSI and BRAFV600E

mutations were strongly enriched among tumors with a major CMS1
component (MSI: 79%, odds ratio [OR] 55.6, 95% confidence interval
[CI] 13.6–303.0, p = 9 × 10−13; BRAFV600E: 82%, OR 69.0, 95% CI
16.2–394.4, p = 9 × 10−14), and not similarly frequent in CMS1-minor
tumors (25% of the four tumors with <50% CMS1 samples). KRAS/NRAS
mutations were most frequent in CMS3 tumors (major or minor)
without a CMS1 component (88% of the 16 tumors, OR 17.3, 95% CI
1.7–308.7, p =0.005).

Transcriptomic heterogeneity primarily driven by stromal
infiltration
Gene set enrichment analysis of a custom collection of gene sets
relevant for CRC (n = 54) showed strong enrichment with
mesenchymal-like and stromal features in tumors with heterogeneous
compared to homogeneous CMS classifications (Fig. 1d and Supple-
mentary Data 2). Results were similar in subgroup analyses of each of
the CMS1-3 classes separately (Supplementary Fig. 3a and Supple-
mentary Data 3). Similar results were also found by enrichment testing
of differentially expressed genes between homogeneous and hetero-
geneous tumors among biological processes in the Gene Ontology
database (Supplementary Fig. 4 and Supplementary Data 4). Sample-
wise estimates of the abundance of cancer-associated fibroblasts were
higher in heterogeneous tumors, but there was no difference in the
abundance of cytotoxic lymphocytes (Supplementary Fig. 5 and Sup-
plementary Data 5). This highlighted the tumor stroma as a key com-
ponent of intra-tumor transcriptomic heterogeneity, consistent with
the frequent heterogeneity of CMS4.

In contrast, homogeneous tumors had strongest enrichment with
signatures of cell cycle progression and regulation, aswell aswithMYC
targets (Fig. 1d and Supplementary Fig. 3a). This was consistent with
the large proportion of homogeneous tumors classified as CMS2
(48%). Notably, tumors homogeneous for CMS1 or CMS3 had no sig-
nificant enrichments compared to heterogeneous tumors of the cor-
responding subtype, although signals were strongest for immune and
metabolic processes, respectively (Supplementary Data 3). The unex-
pected subset of tumors homogeneous for CMS4 (n = 5 microsatellite
stable [MSS] tumors not exposed to treatment prior to sampling, two
with BRAFV600E or KRAS mutation) were enriched with signatures of
extracellular matrix organization, the top of colonic crypts and
inflammatory response (Supplementary Fig. 3a). The signature ofMYC
targets was depleted in homogeneous versus heterogeneous CMS4
tumors. This was due to high MYC target scores in a subset of tumors
with a major CMS2 component, and indicated CMS2 admixture also in
the samples classified as CMS4 (Supplementary Fig. 3b). Signatures of
mesenchymal-like traits and stromal infiltration were high in
CMS4 samples from both heterogeneous and homogenous tumors.

Independent prognostic impact of intra-tumor CMS
heterogeneity
Intra-tumor CMS heterogeneity was not associated with any clin-
icopathological parameters (Supplementary Data 5) or 5-year relapse-
free survival (RFS) in the multiregional sample set (p = 0.7 from Cox
proportional hazards analysis; p =0.6 from corresponding analysis of
general transcriptomic heterogeneity as a continuous variable). To
extend the analyses to a larger patient series, we performed compu-
tational modeling of intra-tumor CMS heterogeneity in single, bulk
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tissue samples from another 418 primary CRCs (Supplementary
Data 1). The approach is illustrated in Supplementary Fig. 6 and was
based on enrichment scores of template gene sets of each CMS class in
each sample. The template gene sets were identified from differential
gene expression analysis of each CMS class versus the rest, and the
enrichment scores were estimated with the R package singscore25

(further details in “Methods”). Tumors with significant enrichments
(p < 0.05) for more than one CMS class were considered hetero-
geneous, and the CMS class with the strongest enrichment was con-
sidered the major subtype. The major subtype of each tumor was
largely concordant with assignments from the original random forest
CMSclassifier8, with an overall accuracy of 83% (Cohen’s κ =0.72 and
0.75 for tumors analyzed on Human Transcriptome 2.0 and Human
Exon 1.0 ST arrays, respectively; Supplementary Fig. 7). The majority
(88%) of discordances were due tomore frequent CMS2 classifications
with the enrichment analyses.CMSheterogeneitywas identified in 30%
of the tumors. This was less frequent than the heterogeneity observed
among multiregional samples (OR 0.58, 95% CI 0.36–0.96, p =0.03),
and can likely be attributed to a combination of limited analytical
discriminatory power (the accuracy for calling CMS heterogeneity in
tumors with multiregional samples was 72%; Supplementary Fig. 8a)
and the indication that heterogeneity increased with the number of
samples analyzed per tumor (Supplementary Fig. 2b). The distribution
of the most common CMS combinations was similar between the
multiregional and single-sample tumor series, apart from a more

frequent combination of CMS3 with CMS1 in favor of CMS2 among
multiregional samples (Supplementary Fig. 8b), possibly related to the
enrichment with MSI tumors in this series (Supplementary Data 1).

Analysis of the combined tumor series confirmed that intra-tumor
CMS heterogeneity was associated with a high abundance of cancer-
associated fibroblasts, but not with any clinicopathological parameter,
except for frequent CMS heterogeneity among male patients (Sup-
plementary Data 5). Survival analysis of patients treated by complete
resection of stage I–III CRC and with determined CMS heterogeneity
status (n = 387) showed a lower 5-year RFS rate with heterogeneous
(62.3%, 95% CI 54.2–71.5%) compared to homogeneous tumors (75.8%,
95% CI 70.7–81.2%; Fig. 2a). Results were similar when excluding
patients with stage I tumors from the analysis (Supplementary Fig. 9a).
CMS heterogeneity retained prognostic value in a multivariable Cox
proportional hazards model of all clinicopathological and molecular
parameters, and was the only molecular marker with a significant
prognostic association (hazard ratio, HR 1.5, 95% CI 1.0–2.2, p = 0.05;
SupplementaryData 6). Notably, CMSheterogeneity explained a larger
proportion of variation in 5-year RFS (11%) than cancer-associated
fibroblasts (5%; Fig. 2b and Supplementary Fig. 9b).

A stratified analysis of CMS heterogeneity according to the poor-
prognostic CMS4 class (CMS4 versus CMS1-3) indicated that hetero-
geneous tumors with a CMS4 component (major or minor) were
associated with the worst prognosis (Fig. 2c and Supplementary
Fig. 9a). Heterogeneous tumorswithoutCMS4 (different combinations
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of CMS1-3) had non-significant associations to worse survival relative
to homogenous tumors.

Uniform intra-tumor activity of MSI-related and oncogenic
processes
The five CRIS classes derived from cancer cell-intrinsic expression
signals19 showed a similar frequency of intra-tumor heterogeneity
amongmultiregional samples as CMS (43%, p = 0.5 from Fisher’s exact
test compared to CMS; Supplementary Data 7), although there was no
significant overlapof tumorswith heterogeneity according toCMSand
CRIS (OR 2.0, 95% CI 0.7–5.4, p = 0.2; Supplementary Fig. 10). This
indicated heterogeneity also within the epithelial cell compartment of
CRCs and/or a stromal influence on the CRIS classification. To further
investigate the basis for transcriptomic heterogeneity, we categorized
protein-coding genes into three groups according to an intra-tumor
heterogeneity score (ITH-score) representing intra-tumor relative to
inter-tumor expression variation in the multiregional sample set
(Fig. 3a, Supplementary Figs. 11 and 12, and Supplementary
Data 8 and 9). The distribution of the ITH-scores was asymmetrical,
with a heavy right-sided tail indicating a small subset of geneswith high

intra-tumor heterogeneity (ITH-high: 5% of genes). PC1 of tumor
samples from principal components analysis (PCA) based on these
ITH-high genes was most strongly correlated to single-sample enrich-
ment scores of gene sets related to stromal and mesenchymal-like
features (Fig. 3b). Similar gene set resultswereobserved for PC1 of ITH-
intermediate genes (48% of genes; Supplementary Fig. 13), supporting
that the majority of gene expression variation can be attributed to
the stromal tumor component. In contrast, ITH-low genes (48%) were
in a similar analysis associated with cancer cell-intrinsic features. PC1
of tumors basedon ITH-lowgeneswas strongly correlated toMSS/MSI-
like signatures only, while PC2 was correlated to signatures of the
cell cycle and proliferation (Fig. 3b). Notably, ITH-low genes showed
less frequent gene set correlations with PC1 than PC2, while the
opposite was observed for ITH-high and ITH-intermediate genes (OR
0.5, 95% CI 0.2–0.9, p =0.02 comparing ITH-low and ITH-high genes;
Fig. 3c). This suggested that genes with uniform expression across
tumor regions (ITH-low) provided a more subtle tumor characteriza-
tion based on the intrinsic features of cancer cells, compared
to the dominating contribution from ITH-high genes and the tumor
stroma.
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The distribution of ITH-scores among scorable genes in each
signature supported the results from correlation analyses, showing
low ITH-scores of most MSI/MSS and cell cycle-related genes relative
to epithelial-mesenchymal transition genes (Fig. 3d). Notably, genes
involved in hedgehog signaling showed a near bimodal distribution of
ITH-scores, and this likely accounted for the correlation of this sig-
nature with both PC1 of ITH-high genes and PC2 of ITH-low genes.
Genes of WNT/β-catenin signaling and several stem cell signatures
were predominantly ITH-low, but a small subset of genes in the LGR5
and EPHB2 cancer stem cell signatures had high scores, which

contributed to the correlation of these signatures with PC1 of ITH-
high genes.

Cancer-critical genes, defined by the Cancer Gene Census, were
underrepresented in the ITH-high category (OR 0.3, 95% CI 0.03–1.0,
p =0.05; Supplementary Data 9). ITH-low cancer-critical genes were
enriched in several pathways involved in CRC tumorigenesis, such as
genomic instability (chromosomal and MSI), WNT signaling and
the TP53 network (Fig. 3a and Supplementary Fig. 14). ITH-high or
ITH-intermediate cancer-critical genes showed no significant enrich-
ments in a similar overrepresentation test of the Wikipathway cancer
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collection, suggesting that malignancy processes are not prone to
intra-tumor heterogeneity on the transcriptomic level.

The ITH-scores were evaluated in a public single-cell RNA
sequencing dataset of paired samples from the tumor core and border
regions of six primary CRCs15. This confirmed that ITH-high genes had
a higher expression variation among cells from paired samples than
ITH-low genes (p < 1 × 10−10 fromWelch’s t-test; Supplementary Fig. 15).

Evolution of ITH-low subtypes in primary-metastasis
comparisons
ITH-low genes retained expression variation among tumors in the
multiregional sample set, and had higher inter-tumor expression ran-
ges (10–90thpercentiles) than ITH-high (95%CI of themeandifference
0.56–0.59) or ITH-intermediate genes (95% CI 0.29–0.33; p < 1 × 10−15

from Welch’s t-tests; Fig. 3a). To investigate the potential for tran-
scriptomic classifications less prone to intra-tumor heterogeneity, we
therefore performed subtype discovery by non-negative matrix fac-
torization (NMF) of tumors based on the ITH-low genes. NMF across
the full sample set (n = 704 samples from 516 primary tumors) at a
predefined rank of k = 2 clusters resulted in subtypes (denoted k2) that
were largely concordant with the two iCMS classes previously derived
from single-cell RNA sequencing of the malignant epithelial

compartment of CRCs20 (classification accuracy 90%, Cohen’s κ =0.80;
Fig. 4a). Subtype characteristics based on gene set enrichments were
also highly similar between iCMS and k2, and both frameworks were
primarily distinguished by MSI/MSS-like characteristics and immune
signatures (Supplementary Fig. 16). Both iCMS and k2 provided largely
concordant intra-tumor classifications of multiregional primary tumor
samples (82% and 99%, respectively; Fig. 4b). Collectively, this sug-
gested that an average of three multiregional samples from each
tumor could recapitulate the cancer cell-intrinsic subtypes fromsingle-
cell sequencing.

CRC liver metastases (n = 304 tumor samples from 179 patients)
also showed concordant classifications between iCMS and the ITH-
low k2 clusters (accuracy 83%, Cohen’s κ = 0.66; Fig. 4a). The sub-
type distributions were similar among primary tumors and metas-
tases in both frameworks (iCMS: p = 0.8 and k2: p = 0.2 from
Pearson’s chi-squared tests). Principal components analysis based
on ITH-low genes or iCMS template genes showed no apparent
distinctions according to tumor site (colorectum versus liver; Sup-
plementary Fig. 17), supporting that also ITH-low genes primarily
have cancer cell-intrinsic expression and that both classifications are
directly applicable to metastatic tumors. However, the frequency of
intra-patient subtype heterogeneity among metastatic lesions
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between iCMS and the k2 clusters identified based on ITH-low genes among pri-
mary colorectal tumors and liver metastases. The sample overlap between classes
in iCMSandk2 is indicated relative to the total number per subtype. Sourcedata are
provided as a Source Data file. b Proportion of primary tumors with homogeneous
and heterogeneous intra-tumor classifications of multiregional samples
(n = 286 samples) according to the indicated frameworks (k2 and k4 are based on
the ITH-low genes). Proportion of patients with inter-metastatic heterogeneity
among liver lesions (2–7 distinct lesions per patient, total n = 143 metastases)
according to iCMS and the k2 clusters is plotted to the right. Source data are
provided as a Source Data file. c iCMS classifications of matched primary tumors

and liver metastases from 35 patients (n = 179 samples). Each column represents
one patient. For primary tumors, each square represents one multiregional sample
numbered with lower case t. For liver metastases, each square represents one
tumor numbered with upper case T and separated by consecutive resections, and
diagonal lines indicate multiregional samples. Indicated for each patient is the
platform used for gene expression analysis, diagnosis with synchronous versus
metachronousmetastases and exposure to chemotherapy prior to sampling. cCMS
congruent consensus molecular subtypes, CRIS colorectal cancer intrinsic sub-
types, iCMS intrinsic consensus molecular subtypes, ITH intra-tumor hetero-
geneity, k2 and k4 factorization ranks 2 and 4 from non-negative matrix
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(n = 2–7 lesions from each of 47 patients) was higher than intra-
tumor heterogeneity of the primary tumor (iCMS: Χ2 = 6.7, p = 0.008
and k2: Χ2 = 35.6, p = 3 × 10−9, both with one degree of freedom;
Fig. 4b). Furthermore, comparisons of patient-matched primary
tumors and liver metastases (n = 179 samples from 35 patients) also
showed evidence of phenotypic plasticity. Using iCMS for illustra-
tion, only 59% of evaluable patients had fully concordant classifica-
tions (17 of 29 patients, six were not evaluable due to unclassified
samples; Fig. 4c). Subtype switching between all or a majority of
primary-metastasis samples was observed in eight patients (28%).
This occurred predominantly from iCMS2 primary tumors to iCMS3
liver metastases (six of eight patients, 75%). There was no significant
association between subtype switching and use of different analysis
platforms (RNA sequencing versus Human Transcriptome 2.0 array:
Χ2 = 0.90, p = 0.6), the numbers of samples/tumors per patient
(p = 0.5 from Wilcoxon’s test), diagnosis with synchronous versus
metachronous metastases (p > 0.9 from Pearson’s chi-squared test),
or exposure to chemotherapy prior to sampling (p = 0.9).

Prognostic value of congruent CMS classification based on ITH-
low genes
Subtype discovery based on ITH-low genes was tested with different
sets of samples and ITH-score thresholds to evaluate a possible impact
on classification results (Supplementary Figs. 18–21; details in “Meth-
ods”). NMF at k = 4 or k = 5 were identified as the best sample cluster-
ings, but k5 included two clusters with similar characteristics, and k4
was therefore used for further analyses of the complete primary tumor
series. This ITH-low classification approach indicated potential for an
intrinsic classification with a higher resolution than the two-state iCMS
framework. The k4 clusters ranged in size from 10% to 53% of samples
and subdivided each of the k2 clusters, most prominently the cluster
corresponding to iCMS3 (Fig. 5a, b; the iCMS framework was similarly
split, Supplementary Fig. 22). The iCMS3-corresponding cluster was
split into one cluster with strong immune signals and one with high
expression of genes encoding extracellular matrix remodeling pro-
teins (FN1 and SPP126), while the largest and remaining cluster had high
relative expression of genes involved in maintenance of the secretory
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intestinal stem cell niche (for example, REG4, TFF1, FCGBP and
AGR227–30; analyzing ITH-low genes only; Supplementary Fig. 23).

The k4 clusters were not independent of the original CMS
(Χ2 = 589, nine degrees of freedom, p < 3 × 10−16), and 67% of samples
showed concordant classifications with CMS (classification accuracy
68%, Cohen’s κ =0.52; Fig. 5b). The strongest discordance was found
for the cluster corresponding to theoriginalCMS3, and this clusterwas
split between CMS1 and CMS3. Samples with discordant classifications
were located near the class boundaries inPCA (Supplementary Fig. 24).
Gene set enrichment analyses further demonstrated that each of the
four sample clusters defined by ITH-low genes had similar character-
istics to the corresponding CMS class (Supplementary Fig. 25), and the
k4 clusters were therefore termed congruent CMS (cCMS). The largest
difference was enrichment with several signatures in cCMS1 and
cCMS2 that in the original CMS classification were characteristic of
CMS2 only, such as MYC targets and cell cycle signatures. This can
likely be attributed to heterogeneity of the subtypes, tumors, or
samples, and cCMS1 and cCMS2 samples that were not of the corre-
sponding original CMS class were more frequently from tumors with
CMS heterogeneity (Supplementary Fig. 25). Intra-tumor classification
concordances of multiregional samples were higher for cCMS (77% of
tumors) than for the original CMS (53%, OR 2.4, 95% CI 1.3–4.8) and
CRIS frameworks (45%, OR 3.1, 95% CI 1.6–6.2; Fig. 4b), indicating
stronger robustness to intra-tumor heterogeneity.

Genomic markers (MSI and BRAFV600E) and tumor micro-
environment markers (cancer-associated fibroblasts and cytotoxic
lymphocytes) showed similar subtype associations in the cCMS and
original CMS frameworks, with the exception that KRAS mutations
were not skewed among cCMS classes (Supplementary Data 10).
Consistent with the strong enrichment for MSI-like characteristics
among ITH-low genes, MSI status was strongly skewed according to
cCMS (Χ2 = 174, three degrees of freedom, p < 3 × 10−16) and enriched
in both cCMS1 and cCMS3 (OR 14.7, p < 3 × 10−16 and OR 2.9,
p = 4 × 10−5, respectively; Fig. 5c). However, repeated subtype dis-
covery ofMSS tumors only (based on ITH-low genes; Supplementary
Fig. 18) largely recapitulated the cCMS classification (accuracy 90%,
Cohen’s κ = 0.82; Supplementary Fig. 26), indicating that the tran-
scriptomic MSI-like features of the ITH-low genes extended beyond
the genomic phenotype.

Clinicopathological associations were also similar between the
cCMS and original CMS frameworks, although patient age at diagnosis
was skewed according to cCMS (older age with cCMS1 and younger
with cCMS4: OR 4.5, p = 1 × 10−4; Supplementary Data 10). Survival
analyses of patients with concordant intra-tumor classifications (no
subtyping heterogeneity among multiregional samples) showed that
cCMS had strong associations to 5-year RFS in stage I–III CRC (n = 398
patients; Fig. 5d). Higher and lower RFS rates were observed with
cCMS1 and cCMS4 tumors, respectively, relative to each of the other
subtypes. These prognostic associations were consistent with cCMS1
consisting primarily of an immune-active subset of iCMS3 tumors, and
cCMS4 of iCMS3 tumors (but also a proportion of iCMS2) with active
extracellular matrix remodeling, which can promote immune sup-
pression and metastasis15,26,31 (Supplementary Figs. 22 and 23). Results
were similar with 5-year overall survival as the endpoint, and when
excluding patients with stage I tumors (Supplementary Fig. 27). The
cCMS framework retained prognostic value when added to the mul-
tivariable survival model shown in Fig. 2b (Table 1 and Supplementary
Data 11), and explained a larger proportion of variation in 5-year RFS
(21%) than CMS heterogeneity (9%) and any other molecular variable
(Fig. 5e). Notably, the original CMS classes had no prognostic value in
this subset of patients (Supplementary Fig. 28).

ITH-low classifications of external primary tumor series
Subtype discovery based on the ITH-low genes was also performed in
twoexternal datasets for validationpurposes (SupplementaryData 12).

As in the in-house series, NMF clustering of tumors in GSE39582
(n = 566)32 at a predefined rank of k = 2 was concordant with iCMS
classification (accuracy 89%, Cohen’s κ = 0.77; Fig. 6a). NMF at k = 4
failed to distinguish tumors with immune and stromal infiltration
(Supplementary Fig. 29a, b), but clustering at k = 5 identified subtypes
with highly similar characteristics to the k5 clusters in the in-house
series (Fig. 6b and Supplementary Fig. 19b, c). The two clusters fromk5
that corresponded to the original CMS2 showed no clear distinctions
in the custom gene set collection for either tumor series (Fig. 6d and
Supplementary Fig. 20). However, the consistency of the two clusters
in both tumor series supported a potential for subclassification of the
large CMS2 group, and pathway enrichment testing of differentially
expressed genes between the clusters in the KEGG pathway database
indicated separation based on signatures of bacterial and viral infec-
tion, the cell cycle, and several oncogenic or tumor suppressor sig-
naling pathways (Supplementary Fig. 29c). The k5 clusters also had
prognostic associations among stage I–III cancers in the
GSE39582 series and identified a subset of mesenchymal-like tumors
associated with a low 5-year RFS rate (Fig. 6e). This subtype (denoted
NMF4) had only partial overlap with the original CMS4 (Fig. 6b) and
improved the prognostic stratification of tumors relative to the origi-
nal CMS classification (Supplementary Fig. 29d). The CMS1-
corresponding cluster (denoted NMF1) had a higher 5-year RFS rate
than the other subtypes among stage III cancers, but not among stage
II (Supplementary Fig. 29e).

Clustering of tumors in The Cancer Genome Atlas series (TCGA;
n = 573)33 based on ITH-low genes at k = 2 segregated a small subset of
exclusively MSS tumors (9%), and showed little correspondence with
iCMS (Supplementary Fig. 30a). Clustering at k = 5 failed to distinguish
tumors with immune and stromal infiltration (Supplementary
Fig. 30b), similarly to the k4 clusters in GSE39582, and a higher fac-
torization rank was therefore used. Clustering at k = 6 identified sub-
types that showed a similar degree of overlap with the original CMS
classification (accuracy 58% and Cohen’s κ =0.41) as the k5 clusters in
both the in-house and GSE39582 series (in-house: accuracy 63% and
Cohen’s κ =0.44; GSE39582: accuracy 67% and Cohen’s κ =0.52;
Fig. 6b, c and Supplementary Fig. 19c). The k6 clusters in TCGA
included two CMS2-corresponding clusters (termed NMF2 and
NMF2.5) and two CMS3-corresponding clusters (termed NMF3 and
NMF3.5; Fig. 6d). Notably, merging of the two CMS2-corresponding
clusters (NMF2 and NMF2.5) versus the rest (NMF1, NMF3, NMF3.5,
NMF4) provided a two-state classification concordant with iCMS
(accuracy 85% and Cohen’s κ =0.69; Fig. 6b). Furthermore, compar-
isons of the two CMS2-corresponding clusters by pathway enrichment
analyses of differentially expressed genes showed several of the same
distinctions in TCGA as in the in-house andGSE39582 series, providing
further support for the subclassification of CMS2 based on char-
acteristics such as bacterial or viral infections (Fig. 6f). The two CMS3-
corresponding clusters in TCGA (NMF3 and NMF3.5) were primarily
distinguished based onMSI status and signatures of the bottom versus
top of colonic crypts (Fig. 6c, d). Collectively, these validation analyses
suggested that the ITH-low genes distinguished tumors in indepen-
dent series according to the same biological and clinicopathological
characteristics, although with a varying number of sample clusters
(factorization ranks).

Discussion
Multiregional tumor transcriptomics represents a feasible approach to
balance the needs to capture both intra-tumor and inter-tumor gene
expression variation. We analyzed a large series of multiregional
samples from primary CRCs and used this to distinguish hetero-
geneous and uniform expression features across tumor regions, while
retaining information of tumor subtypes (that is, variation across
tumors). Three bulk samples per tumor could recapitulate cancer cell-
intrinsic expression patterns and subtypes that were less vulnerable to
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intra-tumor heterogeneity. While single-cell RNA sequencing was
needed to initially delineate these patterns and define the iCMS
classification20, this study showed potential to expand on the knowl-
edge and suggested a further substratification of ITH-low intrinsic
subtypes. This resulted in a split predominantly of the subtype corre-
sponding to iCMS3. However, the split was not primarily defined by
MSI status, as proposed with the refined IMF (intrinsic-microsatellite-
fibrosis) classification20. The ITH-low subtypes rather converged on
having the same discriminatory biological features as the original
CMS8, although it has previously been shown that the original CMS
classifier is depleted of genes with uniform expression among tumor
glands6. Nonetheless, the convergence is consistent with the assump-
tion that the tumor microenvironment is at least partly shaped by
malignant epithelial cells and that the tumor epithelium can recapi-
tulate the CMS classification16. This was also the premise for the suc-
cessful classification of diverse pre-clinical model systems according
to CMS34,35. Overall, this supports that CMS-related features provide a
bona fide phenotypic stratification of CRCs, but the precise cellular
interactions defining the subtypes with a rich microenvironment
component are still to be uncovered. Spatial transcriptomics has
potential to delineate such interactions, as recently shown with the
detailed description of the interaction networks of immune and
malignant cells according toMSI status of the tumors36. In this context,

the congruent subtypes proposed in this study canbeconsidered as an
alternative CMS classification that is based on cancer cell-intrinsic
template genes and therefore less vulnerable to intra-tumor hetero-
geneity. However, this interpretation does not fully account for the
stronger prognostic power of the congruent subtypes.

In contrast to the original CMS classification, the congruent CMS
classes provided substantial prognostic value beyond both intra-
tumorheterogeneity and the tumormicroenvironment components in
patients with locoregional cancer. However, the two prognostic sub-
types (cCMS1 and cCMS4) constitutedonly one-fourth of the tumors in
total. Both prognostic subtypes were dominated by tumors corre-
sponding to iCMS3, but included only approximately half of all iCMS3
tumors. This is largely consistent with the original publication showing
that the binary iCMS classification is not prognostic20. A poor patient
survival was found with fibrotic iCMS3 tumors only, and this subtype
constituted ~30% of iCMS3 tumors and 14% in total. Notably, the pro-
posed cCMS classification additionally identified a subset of mostly
iCMS3 tumors with a favorable prognostic association, independently
of MSI status. This further supports that substratification of iCMS is
needed in the evaluation of patient prognosis, and the proposed cCMS
might reconcile the single-cell-derived iCMS and the original bulk
transcriptomics-derived CMS for this purpose. Application of cCMS to
additional tumors is not dependent onmultiregional sampling and can

Table 1 | Multivariable survival analysis of clinicopathological and molecular features in patients with stage I-III CRC

Variable Patientsa Five-year relapse-free survivalb

n (%) HR [95% CI] p-value cox.zph p-value

Total 398 (100) 0.2

Sex Female 204 (51) Reference 0.2

Male 194 (49) 1.5 [1.0-2.2] 0.05

Age (continuous) 398 (100) 1.0 [1.0-1.1] 0.0007 0.009

Tumor location Right 176 (44) Reference 1.0

Left 125 (31) 0.9 [0.6-1.5] 0.7

Rectum 97 (24) 1.0 [0.6-1.7] 0.9

TNM stage I 95 (24) Reference 0.4

II 176 (44) 1.2 [0.7-2.2] 0.5

III 127 (32) 2.1 [1.1-3.9] 0.02

Adjuvant
chemotherapy

No 327 (82) Reference 0.4

Yes 64 (16) 1.2 [0.6-2.2] 0.7

Unknown 7 (2) 2.4 [0.7-8.1] 0.1

MSI status MSS 320 (80) Reference 0.6

MSI 78 (20) 0.8 [0.3-1.7] 0.5

KRAS status Wild-type 258 (65) Reference 0.06

Mutation 140 (35) 1.1 [0.7-1.8] 0.6

BRAFV600E status Wild-type 328 (82) Reference 0.4

Mutation 70 (18) 2.6 [1.3-5.3] 0.01

CTL-score (continuous) 398 (100) 1.2 [0.5-3.2] 0.7 0.6

CAF-score (continuous) 398 (100) 1.1 [0.8-1.5] 0.7 1.0

CMS
heterogeneity

Homogeneous 257 (65) Reference 0.5

Heterogeneous 115 (29) 1.6 [1.1-2.4] 0.03

Undetermined 26 (7) 2.2 [1.0-4.7] 0.05

cCMS cCMS1 70 (18) Reference 0.5

cCMS2 224 (55) 3.7 [1.6-8.7] 0.002

cCMS3 76 (19) 2.3 [1.0-5.2] 0.04

cCMS4 28 (7) 4.3 [1.6-11.3] 0.003

CAF cancer-associated fibroblasts, CMS consensus molecular subtypes, cCMS congruent consensus molecular subtypes, CTL cytotoxic lymphocytes,MSI microsatellite instability,MSS micro-
satellite stable, TNM tumor-node-metastasis.
aExcluding patients with synchronous tumors, heterogeneous cCMS classification, pre-surgical chemoradiation and residual tumor status 1 or 2.
bHazard ratios (HR) and 95%confidence intervals (CI) are from amultivariable Cox proportional hazardsmodel,p values are two-sided and fromWald tests, and cox.zphp values are from tests of the
proportional hazards assumption. Statistically significant p values are highlighted in bold. Results were similar in a stratified analysis according to the variable breaking the proportional hazards
assumption (patient age; Supplementary Data 11).
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be done based on the ITH-low genes, as illustrated in two external
primary tumor series. However, different factorization ranks were
needed to identify corresponding subtypes in the different series, and
the optimal number of ITH-low subtypes remains inconclusive. It is not
clear whether this inconsistency is related to technical variation from
use of different gene expression platforms or to biological differences
among the series. Nonetheless, subtypes with similar gene expression
characteristics to the four cCMS classes were found in both external
series, and a potential for subclassification of the large and hetero-
geneous group of CMS2-corresponding tumors based on character-
istics such as bacterial or viral infections was supported in all the series

analyzed. This subclassification is also consistent with a microbiome-
dependent subtype proposed in a previous study37. Additional trans-
lational studies are needed to consolidate the ITH-low classification,
support the prognostic value and explore additional clinical relevance,
for example, by associations with drug sensitivities.

Our work also showed prognostic relevance of intra-tumor het-
erogeneity. These results are highly similar to a previous study based
on computational deconvolution of intra-tumor CMS heterogeneity in
single samples of stage III colon cancers38, and supported a poor
prognosis with a minor CMS4 component in particular. Notably, the
CMS combinations frequently observed by multiregional sampling, or
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estimated by computational enrichments, were similar to results from
single-cell sequencing of a smaller tumor series15. Nonetheless, tumors
analyzed by the largest number of multiregional samples were fre-
quently scored as heterogeneous, and it is likely that CMS hetero-
geneity is underestimated in studies based on bulk transcriptomics.
Even small tumor subclones can have clinical relevancewith respect to
development of resistance during treatment39, but we cannot con-
clude on the lower limit of what can be considered prognostically
relevant transcriptomic heterogeneity, or on the number of samples
needed to detect this. According to the “big bang” model of CRC
development, invasive cancers have spatially intermixed subclones on
the genomic level40. This supports the potential to capture hetero-
geneity with a small number of samples, although a potential caveat is
that such clonal intermixing is not necessarily reflected on the tran-
scriptomic and phenotypic levels.

Transcriptomic subtypesbasedoncancer cell-intrinsic signals have
the presumed advantage of being applicable to both primary and
metastatic tumors, without the need to adapt the classification
approach. This was supported by PCA based on the ITH-low genes
detected in this study and on the iCMS template genes, both showing
intermingling of primary tumors and liver metastasis, which is in con-
trast to results based on unselected genes41. In further support of the
appropriatenessof intrinsic classifications formetastatic tumors,wedid
not observe any subtype depletions or shift in the distribution of iCMS
classes between primary tumors and liver metastases. This was unex-
pected based on the strong depletion of the original CMS1 and CMS3
classes among metastases21, which would suggest a depletion also of
iCMS3. Nonetheless, subtype switching of iCMS between matched pri-
mary andmetastatic tumors was observed in almost a third of patients.
This was noteworthy in particular since iCMS is only a two-state classi-
fication. Switches of cancer cell-intrinsic classes can be due to either
clonal evolution or transition of differentiation states. Clonal evolution
and selection of the minor clone is a possible explanation based on the
non-exclusivity of iCMS classes among cells in each primary tumor20.
However, phenotypic plasticity and cellular differentiation and ded-
ifferentiation might be an essential trait for cancer metastasis42. The
dynamic cellular states observed inmodels of CRCmetastasis43 openup
the possibility for cells to even transition between iCMS classes during
metastasis and to eventually end up in their original iCMS in established
metastatic tumors. According to this view, the heterogeneity is
dependent on the timing of sampling and would therefore be under-
estimated in our study. The most frequently observed switch from
iCMS2 primary tumors to iCMS3 liver metastases is consistent with
dedifferentiation from an LGR5-positive stem cell20, although our study
was not sufficiently powered to confirm this predilection. Nonetheless,
the profound phenotypic plasticity observed in at least a subset of
patients challenges thepotential reconciliationof subtyping schemesof
primary and metastatic tumors, also of the congruent CMS proposed
here. This supports the need for a de novo classification of metastases
based on their in situ cellular states41.

In conclusion, we describe transcriptomic features with prog-
nostic value independently of the tumormicroenvironment and in the
context of intra-tumor heterogeneity of CRC. Multiregional tran-
scriptomics captured cancer cell-intrinsic features with low intra-
tumor heterogeneity, and identified congruent CMS classes that
appeared to reconcile the prognostic potential of current classifica-
tions derived from single-cell and bulk transcriptomics. However,
evidence of phenotypic plasticity during metastasis, even with a two-
state cancer cell-intrinsic classification, indicated that reconciliation of
primary and metastatic subtyping frameworks is challenging.

Methods
Patient material
The study has been approved by the Regional Committee for Medical
and Health Research Ethics, South Eastern Norway (REC numbers
1.2005.1629 and 2010/1805). All patients provided written informed
consent, and the study was conducted in accordance with the
Declaration of Helsinki. All patients were treated according to national
standard guidelines. Patient sex was assigned as registered in the
medical records at Oslo University Hospital, Norway, and was not
considered in the study design.

A total of 1093 fresh frozen primary tumor and liver metastasis
samples from 692 patients treated surgically for primary and/or
metastatic CRC at Oslo University Hospital were analyzed for gene
expression in the study. Samples were taken from surgical specimens
at the operating theater and prior to pathological examination. Two to
four multiregional samples (mean of 2.9) were taken from spatially
distinct areas of each of 98 primary tumors from 96 patients treated in
2015 and 2016 (n = 286 samples; Supplementary Data 1). Tumors with
multiregional sampling had a diameter of at least 15mm (median dia-
meter of 40mm, 95% CI 35–40), and multiple samples were not taken
unless clearly spatially separated. There was no association between
tumor size and the number of sampled regions from each tumor
(p = 0.4 by Kruskal–Wallis test; Supplementary Fig. 2a). RNA and DNA
were extracted using the Qiagen AllPrep DNA/RNA/miRNA Universal
Kit or DNA/RNA Mini Kit in accordance with the manufacturer’s pro-
tocol (Qiagen GmbH, Hilden, Germany). Cryosections of selected
samples were stained with hematoxylin and eosin and evaluated for
histologic tumor grade according to the WHO classification (5th
edition)44, aswell asmorphological patterns previously associatedwith
an image-based CMS classification10.

Molecular data from single primary tumor samples of an addi-
tional 418 patients treated between 2005 and 2013 have previously
been published (Supplementary Data 1)9. Liver metastasis samples
(n = 338) were collected from 191 patients treated by hepatic resection
between 2013 and 2018, and molecular data have previously been
published for the majority (n = 280 samples from 1–7 liver lesions of
each of 171 patients)41. Patient-matched sets of primary tumor and
metastasis samples were available from 35 patients (total
n = 179 samples). The primary tumor from 22 of these patients

Fig. 6 | Classification of external primary tumor series based on ITH-low genes.
Alluvial diagrams of classification concordances (a) between iCMS and the ITH-low
k2 clusters among tumors in theGSE39582 series, (b) the ITH-lowk2 and k5 clusters
and the original CMS inGSE39582 (top), aswell as the iCMS, ITH-low k6 andoriginal
CMS in TCGA (bottom). The sample overlap is indicated relative to the total
number per subtype. Source data are provided as a Source Data file. c Pie charts of
the proportion of tumors in each of the ITH-low k5 and k6 clusters in GSE39582 and
TCGA, respectively, bar charts of the proportion of MSI tumors in each cluster, and
(d) heat maps of p values from gene set enrichment analyses (log10-scale; red:
positive; blue: negative).Gene setswere from the customcollection and selected to
include the same as in the corresponding analysis of the in-house tumor series
(Supplementary Fig. 20). Source data are provided as a Source Data file. e Five-year
relapse-free survival according to the ITH-low k5 clusters in patients with stage I–III
CRC in GSE39582. Hazard ratios (HR) and 95% confidence intervals (CI) are from

Cox proportional hazards analyses and p values are two-sided and fromWald tests.
The two-sided log-rank p value across subtypes is also given. f Common pathway
enrichments in the KEGG database of differentially expressed genes between the
two CMS2-corresponding subtypes (NMF2 and NMF2.5) from ITH-low k5 clustering
of the in-house and GSE39582 series, and ITH-low k6 clustering of the TCGA series.
The eight pathways with highest max enrichment score among the common
pathways of the top-50 most significantly enriched in each tumor series were
selected for plotting. Dot sizes indicate the significance level (Benjamini–Hochberg
adjusted p value on log10-scale). Source data are provided as a Source Data file.
cCMS congruent consensus molecular subtypes, EMT epithelial-mesenchymal
transition, iCMS intrinsic consensus molecular subtypes, ITH intra-tumor hetero-
geneity, k2 and k4 factorization ranks 2 and 4 from NMF, MSI microsatellite
instability,MSSmicrosatellite stable, NMFnon-negativematrix factorization, TCGA
The Cancer Genome Atlas.
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(n = 51 samples) were included for longitudinal comparisons only and
not otherwise analyzed in the study. Twenty-one (60%) of the patients
with primary-metastasis samples had synchronous metastatic disease
(liver metastases diagnosed within 6 months of the primary tumor),
and 14 (40%) had metachronous metastases. Eighteen (51%) received
neoadjuvant chemotherapy for the sampled metastases, eight (23%)
had previously received chemotherapy for primary and/or metastatic
CRC, and nine (26%) were chemonaive at the time of sampling.

Processed gene expression data and metadata of two external
primary tumor series were downloaded from the SAGE Bionetworks
Synapse platform (https://www.synapse.org/#!Synapse:syn2634724)
and used for validation analyses. This included 566 tumors from the
GSE39582 series and 573 tumors from TCGA (Supplementary
Data 12)32,33. Processed single-cell RNA sequencing data and metadata
for totally 17,678 cells from 12 paired samples of the tumor core and
tumor border regions of each of six primary CRCs were downloaded
from NCBI’s Gene Expression Omnibus (GEO) with accession number
GSE14473515.

MSI and mutation analyses
MSI status of the multiregional primary tumor series was determined
by PCR-based analyses of mononucleotide repeat markers using the
Promega MSI Analysis System in accordance with the manufacturer’s
protocol (Promega, Madison, WI, USA). Mutational hotspots in KRAS
and NRAS exons 2–4, as well as BRAF exon 15 (including codon 600)
were analyzed by Sanger sequencing using the Cycle Sequencing Kit
and 3730 DNA Analyzer (Applied Biosystems, Waltham, MA, USA) as
previously described45. One randomly selected sample per tumor and
all samples from tumors with discordant CMS classifications were
analyzed (n = 158 samples).

Tumor content has been confirmed in the multiregional samples
by deep sequencing of a custompanel of twenty genes, usingmatched
normal colonic mucosa samples as reference. Homogenous somatic
single nucleotide variants or short insertion or deletions in APC, TP53,
KRAS,NRAS, BRAF, PIK3CA and/or FBXW7 (samemutation present in all
samples per tumor) were found in all tumors except one that was not
scored, all with a mutant allele fraction above 5% (the data and addi-
tional details will be published elsewhere).

Gene expression profiling and data processing
All in-house tumor samples have been analyzed for gene expression on
high-resolution platforms (n = 1093; Supplementary Fig. 1). Multi-
regional primary tumor samples were analyzed on Affymetrix Human
Transcriptome2.0 arrays (HTA), using 100 ngof total RNAas input and
following the manufacturer’s protocol (Thermo Fisher Scientific,
Waltham, MA, USA). The extended single-sample primary tumor set
has previously been analyzed onHTA (n = 217) or Affymetrix GeneChip
Human Exon 1.0 ST arrays (HuEx; n = 201)9. Patient-matched primary-
metastasis samples were analyzed on HTA (n = 23 patients and
116 samples) or by total RNA sequencing (n = 12 patients and 63 sam-
ples). The remaining liver metastases samples have been analyzed on
HTA arrays41. RNA sequencing was performed in 2 × 101 base-pair
paired-end mode on the Illumina HiSeq 4000 platform (Illumina, San
Diego, CA, USA) at theOslo University Hospital Genomics Core Facility
to amediandepth of 52.6 × 106 uniquelymapped read pairs per sample
(10–90th percentile 40.5 × 106–71.6 × 106). Sample preparation was
performed with ribosomal RNA depletion using the Ribo-Zero Gold
rRNA removal kit and sequence library generation with the TruSeq
Stranded Total RNA Library Prep Gold kit (Illumina).

Raw intensity data CEL-files from microarray experiments were
processed in five separate datasets (multiregional primary tumor
samples, primary single-sample HTA, primary single-sample HuEx, all
liver metastasis samples, all patient-matched primary-metastasis
samples; Supplementary Fig. 1) according to the robust multi-array
average approach46 using the function justRMA in the R package affy

(v1.64.0)47 and custom CDF files from Brainarray (hta20hsgenco-
degcdf_23.0.0 and huex10sthsgencodegcdf_23.0.0). A batch effect
from different lot numbers of the GeneChip™WT Plus Reagent Kit was
corrected among multiregional primary tumor samples with ComBat
in the R package sva (v.3.36.0)48 using default parameters. Gene
annotations were retrieved from GENCODE using the gencode.-
v29.annotation.gtf file. Only protein-coding genes were retained and
genes on the Y chromosome were excluded. Entrez IDs were obtained
using the R package org.Hs.eg.db (v.3.10.0) and gene symbols were
updated with checkGeneSymbols in HGNChelper (v.0.8.1).

Raw RNA sequencing reads were processed in a bioinformatics
pipeline implemented with Snakemake (v.6.6.1) and using Python
(v.3.9.5), Java (v.11.0.2) and PyYAML (v.5.4.1). The pipeline has pre-
viously been described and included adapter trimming with Trimmo-
matic (v.0.38), read alignment to the human reference genome
GRCh38.p13 (v.41) using STAR (v.2.7.6a) with 2-pass mapping and the
feature annotation file gencode.v41.annotation.gtf, quantification of
reads mapping to protein-coding genes using the HTseq-count tool
(v.2.0.2), and normalization of gene expression levels by estimation of
transcripts per million (TPM) for non-overlapping exonic gene
lengths49. The TPM values were log2-transformed after adding a
pseudocount of 1.

Gene expression classification and enrichment analyses
Tumor samples were classified according to CMS with the R package
CMSclassifier (v.1.0.0)8 and using the function classifyCMS.RF with a
custom posterior probability threshold of 0.4. The threshold was
adjusted in the multiregional primary tumor set to lower the number
of unclassified samples while retaining proportionality in the number
of tumors with homogeneous and heterogeneous CMS classifications
(Supplementary Fig. 31). CRIS classifications were assigned with the
function cris_classifier in the R package CRISclassifier (v.1.0.0)19, using
the inverse of log2-transformed gene expression data and default
parameters (false discovery rate [FDR] <0.2). iCMS classification was
performed using the approach and gene template described in the
original publication20. Gene expression matrices on log2-scale were
normalized to z-scores using ematAdjust and classified with the near-
est template prediction approach using the function ntp and an FDR-
threshold <0.05 in the R package CMScaller (v.2.0.1)34.

Differential gene expression analyses were performed with limma
as implemented in the function subDEG in CMScaller and with p value
adjustment by the Benjamini–Hochberg procedure. Tumor-infiltrating
cancer-associated fibroblasts and cytotoxic lymphocytes were esti-
mated using the R package MCPcounter (v.1.2.0)50 on a combined and
batch corrected gene expression dataset of all primary tumor samples
(n = 704). Gene set enrichment analyses were performed with the R
package topGO (v.2.38.1) using fisher statistics and the weight01
algorithm, as well as with the WEB-based Gene SeT AnaLysis Toolkit
(WebGestalt)51 using default settings, over-representation analysis in
the Wikipathway cancer database, FDR<0.05 and the complete list of
protein-coding genes as reference. Sample group comparisons were
performed with the subCamera function in CMScaller on a custom
gene set collection relevant for CRC (n = 54; Supplementary Data 2)
and with FDR adjustment of p values according to the
Benjamini–Hochberg procedure. One random sample from each
tumor in the multiregional sample set was selected for comparisons
according to CMS heterogeneity (the analysis was repeated across all
multiregional samples and showed highly similar results; Supplemen-
tary Data 2). Single-sample enrichment scores were estimated with
gene set variation analysis using the gsva function in R package GSVA
(v.1.34.0)52.

Intra-tumor transcriptomic heterogeneity
For tumorswithmultiregional samples, intra-tumor heterogeneity was
evaluated as discordant sample classifications within subtyping
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frameworks (the subtype representing ≥50% of samples per tumorwas
considered the major component) and by general transcriptomic
heterogeneity. The latter was estimated as the maximum Euclidean
distance of PC1–PC3 for any pair of samples from each tumor.

For primary tumors with single samples, intra-tumor CMS het-
erogeneity was estimated based on enrichment scores for each CMS
class (the approach is illustrated in Supplementary Fig. 6). The single-
sample HTA and HuEx datasets were analyzed separately. First, tem-
plate gene sets for each of the four CMS classes were identified by
differential gene expression analyses comparing tumors in each class
with the rest using limma (Benjamini–Hochberg adjusted p value <
0.001 and log2 fold change > |1.0|; Supplementary Data 13 and 14).
Second, enrichment scores for each CMS-specific template gene set in
each sample were obtained using the gsva function in the R package
GSVA for up-regulated genes only, and with the functions simpleScore
and rankGenes in the R package singscore (v.1.6.0)25 for up- and down-
regulated genes combined. The CMS enrichment scores were eval-
uated in a similar analysis of the multiregional sample set, and the
strongest correlations to the posterior probabilities from the original
random forest CMSclassifierwere found for the singscore enrichments
(Spearman’s ρ > 0.8; Supplementary Fig. 32). Singscore also provided
functions to evaluate statistical significance (generateNull and getP-
vals) and was selected for further analyses. Single-sample tumors were
considered unclassified if none of the four CMS enrichment scores
were significant, and classified with intra-tumor CMS heterogeneity if
more than one was significant (p < 0.05). The approach was further
evaluated in themultiregional sample set using theCMS template gene
sets derived fromsingle-sample tumors analyzedon the sameplatform
(HTA). The major subtype of each multiregional sample was largely
concordant with assignments from the original random forest
CMSclassifier with an overall accuracy of 85% (Cohen’s κ = 0.77), and
the majority (84%) of misclassified samples were from heterogeneous
tumors (Supplementary Fig. 8a). The accuracy of computational intra-
tumor CMSheterogeneity classifications (at least one sample classified
as heterogeneous per tumor) was 72% relative to the spatially resolved
analysis of multiregional samples (sensitivity of 73% and specifi-
city of 68%).

Gene-wise intra-tumor heterogeneity
Intra-tumor heterogeneity of the expression level of each protein-
coding gene (n = 18,823)was estimated in themultiregional sample set
using a previously published method53. In brief, a linear mixed effects
modelwasfitted for each gene across all samples fromall tumorsusing
the function lmer in the R package lme4 (v.1.1-29)54 andwith “tumor” as
the random effect. Intra-class correlation coefficients (ICCs) were cal-
culated for each model (gene) using the function icc in the R package
performance (v.0.10.4)55:

ICC=
σ2
i

σ2
i +σ

2
ϵ

ð1Þ

Here, σ2
i is the random effects variance, that is, the variance

explained by the grouping structure (tumor) and σ2
ϵ is the residual

variance. An ITH-score for each gene was calculated as:

ITHgene = 1� ICCgene ð2Þ

Genes with low expression variation across the dataset (10–90th
percentile range<1;n = 15,585 genes)were considerednon-informative
and filtered out, retaining 3238 genes (17.2%) for analyses (Supple-
mentary Fig. 11 and Supplementary Data 8). Genes were categorized
according to the ITH-score using the previously published thresholds
in four categories53, or custom thresholds in the three categories ITH-
low, ITH-intermediate and ITH-high (Supplementary Fig. 12 and Sup-
plementary Data 9). The two different thresholds to score ITH-low

genes were compared in gene set enrichment analyses and showed
largely concordant results (Supplementary Fig. 33). The custom
threshold retained the largest number of ITH-low genes and was used
for further analyses.

Tumor classification based on ITH-low genes
Subtype discovery based on ITH-low genes was performed by the NMF
approach implemented in the R package NMF (v.0.23.0)56 using the
function nmf with the brunet method57, predefined ranks 2–10 and
nrun = 100 on the inverse of log2-transformed gene expression data.
The cluster number (k) preceding the first, large drop in the silhouette
width and cophenetic score was selected as the optimal number of
clusters. To evaluate a potential impact of the use of different gene
expression platforms and the inclusion of multiregional samples for a
subset of tumors, NMF was run both for the complete primary tumor
sample set (n = 704 samples from516 tumors) and for single, randomly
selected samples from each of the primary tumors analyzed on HTA
(n = 315). This resulted in k = 5 and k = 4 optimal sample clusters,
respectively (Supplementary Fig. 18). There was a near perfect con-
cordance in sample clustering between the two runs at k = 4 (con-
sidering overlapping samples between the two sets only; accuracy 97%,
Cohen’s κ =0.96; Supplementary Fig. 19a). In the full sample set, the
largest sample cluster from k = 4 was subdivided into two clusters at
k = 5 (Supplementary Fig. 19b, c), but gene set enrichment analyses
showed little discrimination between the two clusters (Supplementary
Fig. 20). The full tumor series and NMF at k = 4 was therefore used for
further analyses, to strengthen the biological and statistical rigor. NMF
classification was also tested using ITH-low genes defined by the pre-
viously published scoring threshold as a template (ITH-score 0–0.2;
n = 396 genes)53. This resulted in only two sample clusters differ-
entiatedmainly basedonMSI/MSS-like gene expression characteristics
(Supplementary Fig. 21). Classification of liver metastases by NMF was
also based on genes identified as ITH-low in primary tumors. Alluvial
diagrams were plotted using the R package ggalluvial (v.0.12.4).

Classification of external tumor series based on ITH-low genes
The ITH-low gene set was filtered prior to analyses of two external
tumor series, due to variation in gene expression platforms. Tumors in
GSE39582 (n = 566)were analyzed onAffymetrixHumanGenomeU133
Plus 2.0 Arrays, and probe sets were mapped to unique gene symbols
using the function collapseRows in the R package WGCNA (v.1.72-5)
with default settings58. Genes with lowmedian expression (<4 on log2-
scale) or variance (<0.1) across the tumors were filtered out, retaining
1217 (79%) of the ITH-low genes. Filtering with the same thresholds in
TCGA (n = 573 tumors analyzed by RNA sequencing) retained 1387
(90%) of the ITH-low genes. The two tumor series were classified
separately according to the same approach as in the in-house series,
using NMF with predefined ranks 2–6 on the filtered set of ITH-low
genes. Pathway enrichment analysis of differentially expressed genes
between NMF subtypes (limma: Benjamini–Hochberg adjusted p
value < 0.001 and log2 fold change > |1.0|) was performed with the R
package pathfindR (v.2.3.0) using default settings, including testing of
the KEGG pathway database and Benjamini–Hochberg adjustment of p
values59.

Statistical analyses
All statistical analyses were performed in R v.4.2.260. Two-sided p
values < 0.05, or adjusted p values as specified, were considered sig-
nificant. Principal components analysis was performed with the
prcomp function in the package stats (v.4.2.2) based on the genes with
highest cross-sample variance (n = 1000). Pearson’s and Spearman’s
correlations were calculated and visualized using the functions cor,
cor.mtest and corrplot in the R package corrplot (v.0.92), and with
conf.level = 0.95. Odds ratios and 95% CIs were estimated with Fishers’
exact test (fisher.test), and were together with Pearson’s chi-squared
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test (chisq.test) and Welch’s two sample t-test (t.test) used to evaluate
associations between clinicopathological parameters and sample
groups according to molecular characteristics. Classification accuracy
andCohen’s κwere estimatedwith the function confusionMatrix in the
package caret (v.6.0-93). The center line of box plots represents the
median, boxes represent the interquartile range, and whiskers repre-
sent 1.5× the interquartile range above the 75th percentile (maxima) or
below the 25th percentile (minima).

Survival analyses were performed for patients with stage I–III CRC
(unless otherwise stated) treated by complete tumor resection (resi-
dual tumor status R0) and with no pre-surgical chemoradiation or
synchronous tumors. Five-year RFS was the primary endpoint and
estimated as time from surgery to relapse or death from any cause.
Patients with no events were censored after 5 years or at last follow-up.
Overall survival was evaluated as the time from surgery to death from
any cause. Multivariable and univariable Cox proportional hazards
models were estimated using the coxph function in the survival
package (v.3.4-0) with p values from Wald tests. The proportional
hazards assumption was assessed for all models using the cox.zph
function, and all variables met the assumption, except for patient age
or KRAS mutation status in multivariable models including gene
expression subtypes. Stratification of models according to these vari-
ables did not have a strong impact on the results (Supplementary
Data 6 and 11). Kaplan–Meier plots were generatedwith the ggsurvplot
function in the survminer package (v.0.4.9), with p values from Wald
test. The proportion of explained variation in 5-year RFS by each
variable in multivariable models was calculated using rsq in the surv-
Misc package (v.0.5.6)61, and bootstrapped with 5000 iterations and
sampling with replacement. Survival analyses of the GSE39582 series
were also performed for patients with stage I–III cancers and with
5-year RFS as the endpoint (n = 493 patients with follow-up data).
Survival analysis of the TCGA series was not performed due to short
follow-up time of the majority of patients (70% were lost to follow-up
during the first 12 months).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The microarray gene expression data are publicly available. Multi-
regional primary CRC samples generated in this study (n = 286) have
been deposited to the NCBI’s Gene Expression Omnibus under acces-
sion code GSE241101. The extended single-sample primary tumor set
has previously been deposited under accession codes GSE24550,
GSE29638, GSE69182, GSE79959, GSE139170, and GSE96528. The liver
metastases samples have previously been deposited under accession
code GSE159216. The rawRNA sequencing data are considered patient
identifiable and subject to secure storage regulations in accordance
with Norwegian legislation and the ethical approval of the study by the
Regional Committee for Medical and Health Research Ethics, South
Eastern Norway (data will be made available upon request to the cor-
responding author at email address anita.sveen@rr-research.no, and
this will require formalization of a data transfer agreement). Public
gene expression data from the GSE39582 and TCGA series were
downloaded from the SAGE Bionetworks Synapse platform [https://
www.synapse.org/#!Synapse:syn2634724], and single-cell RNA
sequencing data were downloaded from GEO under accession code
GSE144735. Source data are provided with this paper.

Code availability
All data processing and analyses were performed with published
software packages and computer code, and have been described and
cited in the “Results” and/or “Methods”. No custom code was devel-
oped in the study.
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