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An improved epigenetic counter to track
mitotic age in normal and precancerous
tissues

Tianyu Zhu1,3, Huige Tong 1,3, Zhaozhen Du1, Stephan Beck 2 &
Andrew E. Teschendorff 1

The cumulative number of stem cell divisions in a tissue, known asmitotic age,
is thought to be a major determinant of cancer-risk. Somatic mutational and
DNA methylation (DNAm) clocks are promising tools to molecularly track
mitotic age, yet their relationship is underexplored and their potential for
cancer risk prediction in normal tissues remains to be demonstrated. Here we
build and validate an improved pan-tissue DNAm counter of total mitotic age
called stemTOC. We demonstrate that stemTOC’s mitotic age proxy increases
with the tumor cell-of-origin fraction in each of 15 cancer-types, in pre-
cancerous lesions, and in normal tissues exposed to major cancer risk factors.
Extensive benchmarking against 6 othermitotic counters shows that stemTOC
compares favorably, specially in the preinvasive and normal-tissue contexts.
By cross-correlating stemTOC to two clock-like somaticmutational signatures,
we confirm the mitotic-like nature of only one of these. Our data points
towards DNAm as a promising molecular substrate for detecting mitotic-age
increases in normal tissues and precancerous lesions, and hence for devel-
oping cancer-risk prediction strategies.

A key priority area of precision and preventive oncology is to develop
novel strategies for early detection and risk prediction1,2. Given the
growing evidence that the risk of neoplastic transformation of any
given tissue in any given individual is strongly influenced by the
cumulative number of stem-cell divisions (aka mitotic age) that the
underlying cell-of-origin has undergone2–5, the ability to measure this
mitotic age in human tissues could help address this clinical need.
Underpinning the association of mitotic age with cancer risk is the
gradual accumulation of molecular alterations following stem-cell
division, eventually predisposing specific subclones to neoplastic
transformation6–12. Conversely, these molecular alterations, if mea-
sured, could be used to estimate mitotic age11,13–22.

Among the potential molecular alterations that could be used to
measuremitotic age, somaticmutations andDNAmethylation (DNAm)

have emerged as the most promising ones11,14,15,23. DNAm-based mito-
tic-like counters hypothesized to track the cumulative number of DNA
methylation errors arising during cell division in both stem-cell and
expanding progenitor cell populations have been proposed16–18,24–29,
yet confounders such as cell-type heterogeneity (CTH)30 and chron-
ological age24 have cast doubt on the biological and clinical sig-
nificance of these counters and their total mitotic age estimates
(defined here as the cumulative number of divisions in both stem-cells
and amplifying progenitor populations). Moreover, DNAm changes in
normal and preneoplastic lesions often display a stochastic
pattern19,31,32, which can pose specific statistical challenges to estimat-
ingmitotic age. Finally, although the relationbetween clock-likeDNAm
and somatic mutational signatures has already undergone preliminary
investigations18,33, these studies have only explored this in the context
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of B cell malignancies33 or did not directly link total mitotic age esti-
mates to the specific somatic mutational signatures from Alexandrov
et al.18,34. Exploring this relationship across multiple cancer types is
vital to better understand which molecular substrate may be more
suitable for tracking mitotic age on the time scales in which pre-
cancerous lesions progress to invasive cancer35,36.

Herewe build and validate a pan-tissue epigenetic counter of total
mitotic age called stemTOC (Stochastic Epigenetic Mitotic Timer of
Cancer) that addresses the above challenges, and subsequently apply
it in conjunction with a DNAm atlas and advanced cell-type deconvo-
lution methods37,38, to demonstrate that a sample’s total mitotic age
correlates with the fraction of its putative tumor cell-of-origin, thus
establishing a direct link between mitotic age and tumor progression.
We show that stemTOC can track the subtle increases inmitotic age of
normal tissues exposed to cancer-risk factors, or at risk of cancer
development. By cross-correlating stemTOC to clock-like mutational
signatures, we find that the number of C > T mutations representing
deamination of 5-methylcytosine is a marker of mitotic age. Collec-
tively, our data point towards a potential advantage of DNAm changes
over clock-like mutational signatures11,34 as a means of tracking total
mitotic age in normal tissues at cancer risk, whilst also adding sub-
stantial evidence to the hypothesis put forward by Tomasetti and
Vogelstein3, that themitotic ageof a tissue is amajor cancer-risk factor.

Results
Construction of stemTOC
We aimed to build a mitotic counter that is, to the largest extent
possible, unaffected by confounders such as CTH and chronological
age, and which can also account for the potential stochasticity of
DNAm changes. To reduce confounding by CTH it is critical to build a
mitotic counter with CpGs that are not cell-type specific in an appro-
priate ground state39. To this end, we collected Illumina 450k/EPIC
DNAm profiles from 86 fetal samples encompassing 13 fetal/neonatal
tissue-types (“Methods” section), to select 30,257promoter-associated
CpGs that are constitutively unmethylated across all fetal/neonatal
tissue-types (Fig. 1a). To avoid confounding by chronological age, we
used the cell-line data fromEndicott et al.24 to require thatCpGs, which
undergo significant DNA hypermethylation (i.e. displaying gains of
DNAm) with increased population doublings (PDs) in-vitro across a
range of different normal cell lines, that they simultaneously do not
undergo hypermethylation in these same cell lines when treatedwith a
cell-cycle inhibitor (e.g mitomycin) or under reduced growth-
promoting conditions (i.e. serum deprivation) (“Methods” section). A
total of 6 cell lines were considered representing a variety of cell types
including fibroblasts, smooth muscle, and endothelial cells24. Of the
30,257 CpGs, only 629 (denoted “vitro-mitCpGs”, Fig. 1a) satisfied
these requirements. In order to avoid confounding by cell-culture
effects, we next required these CpGs to also undergo significant DNA
hypermethylation with chronological age in three separate large in-
vivo blood DNAm datasets (Fig. 1b). Since the cell-line data removes
many CpGs that accumulate DNA hypermethylation purely because of
“passage of time” (and hence chronological age), this additional
requirement is designed to ascertain that these vitro-mitCpGs do dis-
play age-associated DNA hypermethylation in-vivo, in line with the
expectation that in a tissue with a relatively high stem-cell division rate
(i.e. blood), mitotic age and chronological age should be strongly
correlated. Blood-tissue was chosen for another 2 reasons. First, the
availability of many large whole-blood DNAm datasets ensures ade-
quate power to detect DNAm changes associated with chronological
and mitotic age. Second, for blood-tissue, we can adjust for CTH at
high resolution (12 immune cell subtypes)40,41, which further ensures
that the observed DNAm changes are not due to shifts in underlying
cell-type proportions31. At the end of this step, we thus obtained a
reduced subset of 371 mitotic CpG candidates, which we call “vivo-
mitCpGs” defining our stemTOCCpGs (Fig. 1b, Supplementary Data 1).

Next, we subjected these 371 stemTOC CpGs to further tests to verify
their validity. First, using independent DNAm data from neonatal
buccal swabs and cord blood we verified that our 371 stemTOC CpGs
retain ultra-low DNAm levels, as required (“Methods” section, Sup-
plementary Fig. 1). Second, we used 3 separate age-matched DNAm
datasets of sorted cells42–44 (including adult neutrophils, monocytes,
naïveCD4+T-cells, B cells, neurons, adipocytes, endothelial cells, lung-
epithelial, colon-epithelial, hepatocytes, exocrine and endocrine pan-
creas), as well as the age-matched multi-tissue eGTEX dataset45, to
confirm that stemTOC CpGs are not cell-type specific markers of
adult cell types (“Methods” section, Supplementary Figs. 2 and 3).
Indeed, any cell-type specific DNAm differences in these aged cell and
tissue-types were exclusively restricted to comparisons involving
colon-epithelial cells, the tissue with the highest turnover rate, thus
clearly indicating that these DNAm differences are likely due to dif-
ferences in cell-type specific mitotic rates (Supplementary
Figs. 2 and 3). Applying eFORGE246,47 to the 371 stemTOC CpGs, we
observed strong and exclusive enrichment for DNase Hypersensitive
Sites (DHSs) as defined in hESCs (Supplementary Fig. 4a). Among
chromatin states, we observed strong enrichment for bivalent tran-
scription start sites (TSS), whichwas strongest for those alsodefined in
hESCs (Supplementary Fig. 4b). Correspondingly, we observed strong
enrichment for both H3K27me3 and H3K4me3 marks, although nota-
bly stronger for the repressive H3K27me3 mark (Supplementary
Fig. 4a), consistent with previous observations that H3K4me3 is
moderately protective of age-associated DNAm accrual39,48.

Based on the 371 vivo-mitCpGs, we finally derive a relative esti-
mate of total mitotic age that explicitly accounts for the underlying
stochasticity of mitotic DNAm changes in normal tissues19,31,32 (“Meth-
ods” section, Fig. 1c). This stochasticity implies that the 371 vivo-
mitCpGs could display marked variations in DNAm within a tissue and
subject, owing to the presence of multiple subclones of varying car-
cinogenic potential.We reasoned that a specific CpG subset displaying
the highest DNAm levels could mark the clone at the highest risk and
that this subset may vary randomly between subjects19,32,49. We built a
simple yet realistic simulation model (“Methods” section) to demon-
strate how taking a specific upper quantile of the DNAm distribution
over mitotic CpGs should yield an improved estimator of total mitotic
age compared to taking an average DNAm over these same CpGs
(Fig. 1c)19,32. In effect, taking an upper quantile can better capture the
mitotic age of any dominant subclone within the complex subclonal
mosaic characteristic of any aging tissue19,32,50–56. To identify a sensible
upper-quantile threshold, we computed upper quantiles for the 371
vivo-mitCpGs in a real DNAm dataset encompassing 42 normal-breast
samples adjacent to breast cancer (“normal-tissue at risk”) and 50 age-
matched normal-breast samples from healthy women (“normal
healthy”)32 (“Methods” section, Fig. 1d). This revealed substantially
larger effect sizes for higher upper-quantile values consistent with
DNAm changes in the normal tissue at risk being highly stochastic. We
decided on a 95% upper quantile threshold to maximize effect size
without compromising sampling variability (Fig. 1d).

Validation of stemTOC in normal tissues and sorted cell
populations
One way to assess if stemTOC is measuring mitotic age in in-vivo
human tissue samples is by cross-comparing correlation strengths of
mitotic age estimates with chronological age across tissues char-
acterized by very different stem-cell division rates. We reasoned that
for tissues with a high stem-cell division rate, the total mitotic age will
be strongly determined by the subject’s chronological age, whilst for
tissues with a low stem-cell division rate, or for tissues where the
mitotic age is more strongly influenced by temporary turnover
or other factors operating on shorter time scales (e.g. hormonal fac-
tors), the correlation between mitotic age and chronological age
should be much weaker or non-evident. Applying stemTOC to the
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normal-adjacent tissue data from the TCGA confirmed this: tissues
with a high stem-cell division rate like the colon and rectum displayed
strong correlations between mitotic and chronological age,
whilst slower-dividing and hormone-sensitive tissues like breast and
endometrium did not, despite these being appropriately powered
(Fig. 2a, b, Supplementary Fig. 5, SupplementaryData 2). Similar results

were obtained when estimating mitotic age in the enhanced GTEX
(eGTEX) DNAm dataset, encompassing 987 samples from 9 normal
tissue-types (Supplementary Fig. 6, Supplementary Data 3). For
instance, the colon displayed a clear correlation, whilst the ovary and
breast did not (Supplementary Fig. 6). Applying stemTOC to
large purified immune cell datasets from healthy individuals
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Fig. 1 | Construction of stemTOC and estimation of mitotic age. a We first
identify CpGs (n = 30,257) mapping to within 200bp upstream of the TSS of genes
that are unmethylated (defined by DNAm beta value <0.2) across 86 fetal-tissue
samples from 13 different fetal-tissues (including neonatal cord blood). These are
then filtered further by the requirements that they display hypermethylation as a
function of population doublings (PDs) in 6 cell lines representing fibroblasts,
endothelial, smooth muscle, and epithelial cell types. To avoid confounding by
chronological age, we also demand that they don’t display such hypermethylation
when cell lines are deprived of growth-promoting serum or when treated with
mitomycin (MMC, a cell-cycle inhibitor), resulting in 629 “vitro-mitCpGs”. b To
exclude cell-culture effects, CpGs displaying significant hypermethylation with
chronological age, as assessed in 3 separate whole-blood cohorts and after
adjusting for variations in 12 immune-cell type fractions, are selected. In the heat-
maps, rows label samples, ordered by increasing age. Columns label CpGs ordered
according to hierarchical clustering. c Simulation of DNAm changes at 20 CpGs
during carcinogenic transformation (a total of 40 independent samples, 10 from

each disease stage). Initially, DNAm changes are inherently stochastic, and average
DNAm over the CpGs may not discriminate normal healthy from normal “at-risk”
tissue. Taking an upper 95% quantile of the CpG’s DNAm values can discriminate
normal from normal at-risk. d Top: Scatterplot depicts the difference in upper
quantiles (y-axis) over the 371 vivo-mitCpGs between 42 normal samples adjacent
to breast cancer (NADJ, “normal at-risk”) and 50 age-matched healthy samples (N,
“normal healthy”), against the upper quantile threshold (x-axis). Horizontal blue
line indicates the difference inmeanDNAmover the 371 CpGs between NADJ andN
tissue. Vertical red line marks the upper-quantile threshold maximizing difference
without compromising variability. A relative mitotic-age score (stemTOC) is
obtained for any sample, by taking the 95%upper quantile (UQ) over the 371 DNAm
beta-values corresponding to these vivo-mitCpGs. Bottomdensity plots display the
distribution of the 371 DNAm values for one hypothetical normal healthy and one
hypothetical normal at-risk sample. Vertical lines indicate the stemTOC-scores (95%
upper quantiles defined over the 371 CpGs). Generated with Biorender.com.
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(“Methods” section) also revealed relatively strong correlations with
chronological age (Fig. 2c, d, Supplementary Data 4), in line with the
hematopoietic system’s relatively high stem-cell division rate3,57. Of
note, the correlation of stemTOC with chronological age was also
observed in a fairly large dataset of 139 naïve CD4+ T-cell samples
(Fig. 2c, d), supporting the view that the observed correlation in sorted
CD4+ T-cell datasets is not the result of age-associated shifts in the
naïve to mature CD4+ T-cell fractions41. Finally, in sorted neurons, a
predominantly post-mitotic population, the correlation was generally
speaking not significant (Fig. 2e).

To further demonstrate that the associations of stemTOC with
chronological age are not confounded by cell-type heterogeneity, we
assembled a large collection of 18 whole-blood cohorts encompassing

14,515 samples (“Methods” section), computing associations of stem-
TOC with chronological age in each one of them, before and after
adjustment for immune-cell fractions using our recently validated
DNAm reference matrix for 12 immune-cell types41. Associations of
mitotic age with chronological age remained significant and even
displayed a marginal increase after adjustment for CTH (Supplemen-
tary Fig. 7). Similar findings were obtained in the eGTEX normal tissue
datasets for which we could infer cell-type fractions using our
EpiSCORE DNA-atlas38 (“Methods” section, Supplementary Fig. 8a, b).
Thus, the correlation of stemTOC with chronological age is clearly
independent of any putative age-associated variations in cell-type
fractions as well as of any differences in the mitotic ages of underlying
cell types.
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To further validate stemTOC, we compared the estimatedmitotic
ages of tissues stratified by high, medium, and low stem-cell division
rates3,16. Using the normal-adjacent samples from the TCGA encom-
passing 15 tissue-types, we observed a strong correlation (PCC =0.94)
between stemTOC’s median mitotic age of the tissue and the tissue-
specific annual intrinsic rate of stem-cell division, as estimated by
Tomasetti & Vogelstein3,8 (Fig. 2f, “Methods” section). This association
was confirmed by plotting stemTOC against the estimated total
number of stem-cell divisions for each normal-adjacent sample on a
log-scale, revealing clear differences in mitotic age between low,
medium, and high stem-cell division rate tissues (Fig. 2g).

Benchmarking of stemTOC in normal tissues reveals
improvements
We next benchmarked stemTOC against 6 previously proposed
DNAm-basedmitotic counters, five ofwhich are built from, or restrict
to, 450k array probes (epiTOC230, epiTOC116, HypoClock18,30 and
EpiCMIT-hyper/hypo33), with the remaining one (RepliTali24) being
built entirely from EPIC beadarrays. CpGs making up each clock
displayed relatively little overlap except for the epiTOC1 and epi-
TOC2 clocks (Supplementary Fig. 9). We observed that counters
based on hypermethylated CpGs (i.e. stemTOC, epiTOC1/2 and
epiCMIT-hyper) displayed stronger correlations with age than
counters based on hypomethylated ones (i.e. displaying loss of
DNAm) (HypoClock, RepliTali, epiCMIT-hypo) (Fig. 2b). Similar pat-
terns were observed in the normal-tissue EPIC DNAm data from
eGTEX (Supplementary Fig. 6) as well as in the sorted immune-cell
subsets (Fig. 2d). StemTOC and the hypermethylation-based
counters also displayed much stronger correlations with the
Vogelstein–Tomasetti stem-cell division rates, as assessed over 15
tissue-types (Fig. 2h), suggesting that these counters yield more
accurate mitotic age estimates during normal/healthy aging com-
pared to those based on hypomethylation.

To explore the effect of CTH and the additional caveat that
RepliTali is EPIC-based and thus less likely to perform well on 450k
datasets, we compared regression statistics with chronological age
before and after adjustment for CTH, and, in the case of whole blood,
restricting also only to EPIC datasets. We observed that hypermethy-
lated counters displayed less sensitivity to the underlying CTH of the
tissue, as compared to the hypomethylated ones (Supplementary
Figs. 7, 8, 10). It is also noteworthy that stemTOC’s mitotic age dis-
played stronger correlations with chronological age than those of all
hypomethylated clocks, including RepliTali (Supplementary Figs. 8b,
S10b). For instance, in a high-turnover-rate tissue (colon eGTEX EPIC
dataset), RepliTali’s association with chronological age was only sig-
nificant upon adjustment for CTH, whilst stemTOC’s association was
stronger and independent of CTH adjustment (Supplementary
Fig. 8b). Moreover, the effect of beadarray technology seemed to be

relatively minor as RepliTali’s mitotic age estimates on EPIC data were
very robust upon restricting to 450k probes (Supplementary Fig. 8c).
Thus, overall, the results in normal tissue suggest an improvement of
stemTOC and the other hypermethylated clocks over the hypo-
methylated based ones.

stemTOC’s mitotic age correlates with tumor cell-of-origin
fraction
We reasoned that tumor samples of higher tumor purity would display
a higher mitotic age if mitotic age is a key marker of cancer progres-
sion. One way to estimate tumor purity is by estimating the tumor cell-
of-origin fraction in cancer samples, which could be accomplished
with our EpiSCORE algorithm and DNAm atlas encompassing tissue-
specific DNAm reference matrices for 13 tissue and 40 cell types
(“Methods” section)38. Before estimating cell-type fractions in the
TCGA samples however, we sought additional validation of our DNAm
atlas using an independent whole-genome bisulfite-sequencing
(WGBS) DNAm atlas of 102 sorted samples from Loyfer et al.58

encompassing 15 tissue-subtypes and 17 cell types (“Methods” section).
Applying EpiSCORE we were able to correctly predict the cell type in
Loyfer’sWGBSDNAmatlaswith anoverall 85% accuracy (Fig. 3a).Given
this good validation, we next applied stemTOC and EpiSCORE to the
TCGA samples (Supplementary Data 5–21), which revealed strong
correlations between mitotic age and tumor cell-of-origin fraction,
especially for those tumor-types where the cell-of-origin is reasonably
well established (Fig. 3b). For instance, colon and rectal adenocarci-
noma (COAD & READ) displayed very strong correlations between
stemTOC’s mitotic age and the epithelial cell fraction (Fig. 3b). Mitotic
age in luminal and basal breast cancer displayed strongest correlations
with the luminal and basal fractions, respectively. In the case of pan-
creatic adenocarcinoma (PAAD), mitotic age was most strongly cor-
related with the ductal fraction. Liver hepatocellular- (LIHC) and
cholangio- (CHOL) carcinoma displayed the strongest correlations
with hepatocyte and cholangiocyte fractions, as required. Mitotic age
in skin cutaneous melanoma (SKCM) displayed the strongest correla-
tions with the melanocyte fraction. Lung squamous cell (LUSC) and
lung-adeno (LUAD) carcinoma displayed the strongest correlations
with basal and alveolar epithelial fractions, respectively. It is worth
stressing that for each tumor-type, the strongest correlation with
mitotic age was attained by the presumed tumor cell-of-origin (Sup-
plementary Fig. 11a, b). stemTOC’s mitotic age also displayed strong
correlations with other tumor purity indices as estimated by Aran
et al.59, although the correlations with EpiSCORE’s tumor cell fraction
were generally higher than for gene-expression or IHC-based tumor
purity estimationmethods (Supplementary Fig. 11c). These data clearly
indicate that despite the CTH of TCGA samples, the mitotic age esti-
mates from stemTOC are tracking DNAm changes in the tumor cell-of-
origin of the respective cancer type. Mitotic age estimates can also

Fig. 2 | Validation and benchmarking of stemTOC. a For selected normal-
adjacent tissue-types, scatterplots of stemTOC’s mitotic age (y-axis) vs chron-
ological age (x-axis). Number of normal-adjacent samples is given above each plot.
The Pearson Correlation Coefficient (PCC) and two-tailed P-value from a linear
regression are given. Normal-adjacent tissue-types in TCGA are labeled by the
corresponding cancer type. b Heatmap of PCC values between mitotic and
chronological age for 7 mitotic clocks and across all normal-adjacent tissue-types
from the TCGA. Two-tailed P-values are from the linear regression test. Number of
normal-adjacent samples for tissue-types not shown in (a) are: CHOL(n = 9),
KIRP(n = 45), THCA(n = 56), HNSC(n = 50), BLCA(n = 21), PAAD(n = 10), PRAD(n =
50), ESCA(n = 16). cAs (a), but for three sorted immune-cell populations as profiled
byBLUEPRINT.dAs (b) but for all sorted immune-cell populations. Sorted immune-
cell samples labeledby cell-type and study it derives from. BP= BLUEPRINT. eAs (a)
but for sorted neurons from 4 different cohorts. In each panel we give the R-value
(same as PCC) and corresponding correlation test P-value. f Scatterplot of a normal
tissue’s relative intrinsic rate (RIR) estimated from taking themedian of stemTOC’s

mitotic age divided by chronological age and multiplied by 10 (y-axis), against the
Vogelstein–Tomasetti intrinsic annual rate of stem-cell division (IR) (x-axis), using
the normal-adjacent tissues with such estimates. The Pearson and Spearman Cor-
relationCoefficients (PCC&SCC) are given. gTop: Scatterplot of a normal sample’s
mitotic age (estimated with stemTOC) vs the estimated total number of stem-cell
divisions (TNSC = IR * Age) expressed in a log2-basis, to better highlight the dif-
ferences between the low andmedium turnover tissues. Two-tailed P-value is from
a multivariate linear regression including age as a covariate. Bottom: Violin plot
representation of middle panel, with normal-adjacent tissue samples grouped into
5 IR-classes, as shown. Low: Thyroid + Lung, MedLow= Liver + Pancreas + Kidney,
Med= Prostate + Breast + Bladder, MedHigh = Esophagus +Oral, High =Colon+
Rectum+ Stomach. h Barplots compare the PCC and significance level attained by
stemTOC shown in (g) to the corresponding values for 6 other mitotic clocks.
Mitotic clocks based on CpGs that gain/lose methylation with cell division
(hypermethylated/hypomethylated) are indicated. RepliTali results are for the
probes restricted to 450k beadarrays.
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inform on the potential cell-of-origin in tumor types where this is
controversial or lesswell established. For instance, in low-grade glioma
(LGG) and glioblastoma multiforme (GBM), mitotic age correlated
most strongly with astrocyte fraction (Fig. 3c, Supplementary Fig. 11b),
favoring an astrocyte-like progenitor as the putative cell of origin60.
Prostate adenocarcinoma (PRAD) has long been linked to a luminal
phenotype61,62, yet studies have also indicated a potential role for basal

cells in the initiation of this cancer type63. Our analysis is consistent
with the known luminal-cell expansion associated with PRAD (Fig. 3c,
Supplementary Fig. 11b), and the prevailing view that the cell-of-origin
of human PRAD is a luminal progenitor cell64–66.

Of note, the correlation strengths with tumor cell-of-origin
fraction obtained with stemTOC were significantly stronger than
those obtained with the other 6 counters (Fig. 3d, e). Moreover,
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none of the other 6 mitotic counters achieved 100% accuracy in
predicting the putative cell-of-origin (Supplementary Fig. 11d). We
also combined epiCMIT-hyper and epiCMIT-hypo into epiCMIT fol-
lowing Duran-Ferrer et al.33, but in line with epiCMIT-hypo’s worse
performance, stemTOC and epiCMIT-hyper also outperformed
epiCMIT (Supplementary Fig. 12). However, all mitotic counters were
universally accelerated in TCGA cancer types, as compared to their
respective age-matched normal-adjacent tissue (Supplementary
Fig. 13). To further explore the relationship between mitotic coun-
ters, we computed correlations between each pair of counters across
all sorted immune cell subsets, the normal tissues from GTEX
and the normal-adjacent and tumor samples from TCGA, demon-
strating that the hypermethylated counters are well-correlated with
each other and to a lesser extent also with RepliTali (Supplementary
Fig. 14−16), which is noteworthy given the aforementioned relatively
little CpGoverlap between them (Supplementary Fig. 9). In summary,
the correlation of stemTOC’s mitotic age with the tumor cell-of-
origin fraction underscores its potential to quantify cancer risk.

stemTOCpredicts increasedmitotic age in precancerous lesions
We next assembled 9 DNAm datasets representing different normal
healthy tissues and corresponding age-matched precancerous con-
ditions (“Methods” section). Mitotic age, as estimatedwith stemTOC,
was significantly higher in the precancerous tissue in each of these
datasets (Fig. 4a). For instance, stemTOC’s mitotic age could dis-
criminate neoplasia from benign lesions in the prostate, intestinal
metaplasia from normal gastric mucosa, or Barrett’s esophagus from
normal esophagus. Some of the other counters did not provide the
expected discrimination, and a formal comparison of all counters
across the 9 datasets revealed an overall improved performance of
stemTOC (Supplementary Fig. 17). Using EpiSCORE we next esti-
mated cell-type fractions in these datasets, and broadly speaking, for
most tissue-types we observed correlations of the mitotic age with
tumor cell-of-origin fraction in the precancerous lesions and in can-
cer itself, but not in the histologically normal tissue, although in
many cases the number of samples with normal histology was much
lower, which limits power to detect associations in this subgroup
(Supplementary Fig. 18). For instance, in colon adenoma there was a
clear correlation (R = 0.75, P = 3e-8, n = 39) but not so in normal colon
(R = 0.44, P = 0.27, n = 8), likely due to the much lower number of
normal samples (Supplementary Fig. 18). In premalignant cho-
langiocarcinoma (CCA) lesions, there was a strong correlation with
cholangiocyte fraction (R = 0.45, P < 0.001, n = 60), which was not
observed in normal liver samples (R = 0.16, P = 0.25, n = 50), probably
because the cholangiocyte fraction is much lower in these normal
samples (Supplementary Fig. S18). Correlations between stemTOC’s
mitotic age with tumor cell-of-origin fraction in normal-adjacent
tissue from the TCGA was broadly speaking also observed (e.g.
COAD, BRCA, PRAD), but there were also exceptions (e.g. KIRP,
LUAD) (Supplementary Fig. 19). Of note, using an upper quantile over
the 371 stemTOCCpGs to define themitotic age generally resulted in
larger effect sizes as well as stronger correlations with cancer-status

and tumor cell-of-origin fraction compared to taking an average,
highlighting the importance of taking the underlying stochasticity of
DNAm patterns into account (Supplementary Fig. 20). Overall, these
data underscore the potential of stemTOC’s mitotic age to indicate
cancer risk in precancerous lesions.

Correlation of mitotic age with smoking and obesity-associated
inflammation
Smoking and obesity are two main cancer-risk factors that promote
inflammation andwhich can increase the tissue’s intrinsic rate of stem-
cell division67,68. Hence, one would expect themitotic age of a tissue to
correlate with the level of exposure to such cancer-risk factors2,8,67,69–75.
To assess this, we analyzed an Illumina 450k DNAm dataset of 790
buccal swabs from healthy women all aged 53 at sample draw
(“Methods” section)76. Buccal swabs contain approximately 50%
squamous epithelial and 50% immune cells77 and we reasoned that the
mitotic age in these buccal swabs should correlate with both the
squamous epithelial fraction aswell as an individual’s lifelong smoking
habit. Estimating epithelial and immune-cell fractions following our
validated HEpiDISH procedure77, we observed a strong correlation of
stemTOC’s mitotic age with the squamous epithelial fraction, but
importantly also a significant positive correlation with smoking status,
which was independent of epithelial fraction (Multivariate linear
regression, P = 5e-5, Fig. 4b).

Epithelial cells in lung tissue are the cell-of-origin of lung cancer,
and so we next estimated stemTOC’s mitotic age in over 200 normal
lung-tissue samples from eGTEX45, also encompassing smokers,
ex-smokers, and never-smokers. Fractions for 7 cell types including
epithelial cells were estimated using EpiSCORE (“Methods” section,
Fig. 4c)38. In this cohort, donors were of different ages, and corre-
spondingly, we observed a strong correlation between stemTOC’s
mitotic age with chronological age (Fig. 4c). Importantly, multi-
variate regression analysis including age, epithelial fraction, and
smoking status, revealed a significant positive correlation of mitotic
age with smoking-exposure, with themitotic age of older individuals
displaying bigger differences between smokers and non-smokers
(Fig. 4c).

As another example, we focused on an EPIC DNAm dataset of
liver-tissue samples from 325 obese individuals diagnosed with non-
alcoholic fatty liver disease (NAFLD)78, of which 210 displayed no
fibrosis (grade-0), with the rest displaying severe fibrosis (grade 3–4)
(“Methods” section). Fractions for 5 cell types including hepatocytes
were estimated using EpiSCORE (“Methods” section)38, which con-
firmed the known reduction of hepatocyte fraction in NAFLD78 (Fig.
4d). We observed a strong correlation of stemTOC’s mitotic age with
chronological age, as well as with disease stage, both of which were
significant in a multivariate regression analysis that also included
hepatocyte fraction (Fig. 4d). Thus, the increased mitotic age with
NAFLD stage is observed despite the reduction in hepatocyte fraction,
attesting to stemTOC’s sensitivity. Overall, these data support the view
that stemTOC can track increased mitotic age in disease-relevant tis-
sues exposed to major cancer-risk factors.

Fig. 3 | Correlation of stemTOCwith tumor cell-of-origin fraction. aAlluvial plot
displaying the validation of EpiSCORE on sorted WGBS samples from Loyfer et al.
DNAmatlas. The left andmiddlebars label the tissue-typeand cell typeof theWGBS
sample from Loyfer et al. DNAmatlas. Right bar labels the predicted cell type using
EpiSCORE. Overall prediction accuracy is given below. b Scatterplot of stemTOC’s
relative mitotic age estimate (y-axis) vs. the presumed cell-of-origin fraction
derived with EpiSCORE (x-axis) for selected TCGA cancer types. The number of
tumor samples is indicated above the plot. For each panel, we provide the Pearson
Correlation Coefficient (PCC) and P-value from a linear regression. Of note, in each
panel, we are displaying the cell type that displayed the strongest correlation with
mitotic age and this coincides with the presumed cell-of-origin. c As (b), but for 3
tumor types where the tumor cell-of-origin is less well established or controversial.

d Heatmap of Pearson correlations for all 7 mitotic clocks and across all 18 cancer
types. COAD(n = 297), PRAD(n = 499), PAAD(n = 185), READ(n = 99), BRCA_lum(n =
567), BRCA_bas(n = 132), BLCA(n = 413), CHOL(n = 36), SKCM(n = 473), ESCC(n =
97), LIHC(n = 379), LUSC(n = 370), KIRP(n = 276), GBM(n = 153), LGG_astro(n = 68),
PNET(n = 45), LUAD(n = 460), KIRC(n = 320). e Heatmap displaying one-tailed
paired Wilcoxon rank sum test P-values, comparing clocks to each other, in how
well their mitotic age correlates with the tumor cell-of-origin fraction. Each row
indicates how well the corresponding clock’s mitotic age estimate performs in
relation to the clock specified by the column. The paired Wilcoxon test is per-
formed over the 18 cancer types. RepliTali results are for the probes restricted to
450k beadarrays.
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stemTOC correlates with clock-like somatic mutational
signature−1
Next, we explored the relationship of stemTOC with somatic muta-
tional “clock-like” signatures11,34,79. Among the somatic mutational sig-
natures derived from the TCGA cancer samples, two single-base
substitution signatures SBS1 and SBS5 (here termed MS1 and MS5)
have been shown to be associated with chronological age, with MS1 in
particular being linked to deamination of methylated CpG dinucleo-
tides resulting in C >T mutations11. Given that somatic mutations and
DNAm data in the same normal tissue specimens have not yet been

extensively characterized, we asked if the mutational loads in TCGA
cancer samples correlate with the estimated total (lifetime) number of
stem-cell divisions (TNSC), as derived using the Vogelstein–Tomasetti
estimates and chronological age at diagnosis (“Methods” section). As
remarked previously79, although cancers display a clear acceleration of
mitotic age, a broad correlation between a tumor’s mutational sig-
nature load and the baseline (normal) number of stem-cell divisions is
expected if the signature is of amitotic nature. Vindicating Alexandrov
et al.11, MS1 displayed a correlation with the total number of stem-cell
divisions (TNSC) across cancer types,whilstMS5 did not (Fig. 5a, b). To

st
em
TO
C

0.0
0.2
0.4
0.6
0.8
1.0

N PreC
n=9 n=38

Colon
Adenoma

P=5e-05

N PreC
n=41n=42

Colon
Adenoma

P=2e-17

N PreC
n=15n=40

Breast
DCIS

P=1e-09

N PreC
n=61n=130

Stomach
MetaPlasia

P=8e-24

N PreC
n=10 n=6

Prostate
Benign

P=0.005

N PreC
n=52n=81

Esophagus
Barretts

P=4e-17

N PreC
n=50n=60

Liver
PreM

P=2e-19

N PreC
n=18 n=8

Oral
OLP

P=0.008

N PreC
n=21n=35

Lung
LCIS

P=5e-09

G1

S

G2
M

stemTOC

n=790 buccal swabs
all women & aged 53

n=204 normal
lung (eGTEX)

a)

b)

0.0
0.2
0.4
0.6
0.8
1.0

Epi IC

f(Epi)

st
em
TO
C

0.10
0.15
0.20
0.25
0.30
0.35

0.0 0.2 0.4 0.6 0.8 1.0

P=1e-107

Smoking Status
n=258 n=365 n=167
Never Ex Current

P=5e-05

fra
ct
io
n

0.0

0.2

0.4

En
do Ep
i

G
ra
n

Ly
m

M
ac
ro

M
on
o

St
ro
m
al

fra
ct
io
n

0.00

0.10

0.20

<50 50-59 >59
12 11 35 27 10 29 22 33 25

P(Age)=1e-10 P(Smoking)=8e-04

st
em
TO
C

Age & Smoking Status

Current
Ex
Never

c)

n=325 liver
(healthy obese + NAFLD)

0.0
0.2
0.4
0.6

Chol EC Hep Kup Lym Normal III III-IV IV
n=210 n=55 n=36 n=24

Hepatocyte fraction
P=9e-68

st
em
TO
C

0.15
0.20
0.25
0.30
0.35

20 30 40 50 60 70

P=9e-32

Age

n=210 n=55 n=36 n=24
Normal III III-IV IV

P=0.001

NAFLD (Grade)

fra
ct
io
n

0.15
0.20
0.25
0.30
0.35

st
em
TO
C

d)

Article https://doi.org/10.1038/s41467-024-48649-8

Nature Communications |         (2024) 15:4211 8



check that this correlation is independent of chronological age, we
computed for each cancer type the median mutational load per Mbp
and calendar year over all samples of a given cancer type, and com-
pared it to the intrinsic rate of stem-cell division of the corresponding
normal tissue-type, revealing a positive correlation for MS1 but not for
MS5 (Fig. 5c, d). Like MS1, stemTOC displayed a clear positive corre-
lation with TNSC across tumors (Fig. 5e), which was also independent
of age (Fig. 5e, f). However, unlike MS1, stemTOC displayed a satura-
tion effect, with highly proliferative cancer types displaying high
stemTOC-values despite the relatively low turnover rate of the
underlying normal tissue (e.g. lung cancers). We verified that this
saturation effect is also observed if we define stemTOC in terms of an
average DNAm over the 371 CpGs (as opposed to taking the upper
quantile), indicating that this is not a technical artifact of our stemTOC
definition (Supplementary Fig. 21). Given that in normal-adjacent tis-
sues, stemTOC displays correlations with TNSC without evidence of a
saturation effect (Fig. 2f, g), this suggests that stemTOC is a sensitive
marker of mitotic age.

Next, we asked if stemTOC’s mitotic age correlates with the
mutational loads of MS1 and MS5. Correlating the median stemTOC’s
mitotic age of each cancer type to the correspondingmedianMS1 and
MS5 loads, revealed a significant associationwithMS1, but not forMS5,
further attesting to the more mitotic-like nature of MS1 (Fig. 5g, h). Of
note, stemTOC correlated with MS1 within most TCGA cancer types,
even after adjusting for chronological age (Supplementary Fig. 22).
However, in some cancer types (e.g. lung squamous cell carcinoma) no
correlation was evident (Supplementary Fig. 22). This indicates that
although stemTOC and MS1 both approximate mitotic age, that they
are also distinct. This is consistent with reports that MS1 may also
reflect somaticmutations arising fromothermutational processes2. Of
note, a strong correlation with tumor cell-of-origin fraction is not seen
if one were to use the MS1-load as a proxy for mitotic age (Supple-
mentary Fig. 23), and correlations of MS1-load with CPE-based tumor
purity estimates59 were weaker than with EpiSCORE-derived tumor
cell-of-origin fractions (Supplementary Fig. 24). Overall, these data
indicate broad agreement between stemTOC and MS1.

Discussion
We have here derived a pan-tissue epigenetic mitotic counter (stem-
TOC) that avoids as much as possible, the confounding effects of cell-
type heterogeneity and chronological age, and have used it in con-
junctionwith a state-of-the-artDNAmatlas encompassing 13 tissue and
40 cell types, to establish a concrete direct link between the mitotic
age of a sample and its tumor cell-of-origin fraction in eachof 15 cancer
types.Wenote that this result is consistentwithmitotic age correlating
with tumor purity under the reasonable assumption that tumor cells
have a highermitotic age than the surrounding stroma, likely owing to
the tumor cell’s higher proliferative potential. Most importantly

though, the potential of stemTOC to detect mitotic age increases was
also demonstrated inprecancerous lesions from8normal tissue-types,
as well as in normal oral/lung tissues exposed to smoking and normal
liver tissue from obese individuals, which collectively represent sce-
narios where “tumor” purity indices have not been defined or vali-
dated. As such, our findings are of profound biological and clinical
significance.

First, they add substantialweight to the hypothesis put forwardby
Tomasetti and Vogelstein3, that themitotic age of the cell-of-origin is a
major determinant of cancer risk, and that it increases with exposure
to exogenous cancer-risk factors. Second, the ability to accurately
measure mitotic age and tumor cell-of-origin fraction in preneoplastic
lesions opens up new avenues for risk prediction as well as preventive
and precision oncology. As a concrete example, the increased mitotic
age in the buccal swab squamous epithelium of healthy smokers vs
non-smokers could potentially be used as a non-invasive tool to
monitor cancer risk in relation to oral, lung, and esophageal squamous
cell carcinomas. Third, the 371 CpG loci making up stemTOC could
form the basis for developing non-invasive targeted bisulfite-
sequencing assays on cell-free DNA in serum20. Fourth, by comparing
stemTOC to somatic mutational signatures MS1 and MS5 in the TCGA
samples, we have confirmed that MS1 is clearly mitotic-like, whereas
MS5 is not. This is consistent with MS5 (and not MS1) being the
dominant somaticmutational signature in post-mitotic neurons80, and
contrasts with a previous study focusing on B cell malignancies which
found that the combined epiCMIT-hyper/hypo mitotic age estimate
correlated with both MS1 and MS533.

It is illuminating to discuss the comparison of stemTOC to MS1 in
more detail. Although recent studies have demonstrated a correlation
of MS1 with chronological age in normal healthy tissue-types52,80,81, the
analogous correlation of DNAm-based mitotic age with chronological
age has been more widely demonstrated across many more normal
tissue-types, including precancerous lesions. When correlating a
molecular clock’smitotic age to chronological age in cancer samples, it
is worth pointing out that for highly proliferative tumor types arising
from tissueswith a relatively low intrinsic rate of stem-cell division (e.g.
liver, pancreas, lung), the estimatedmitotic agewould notbe expected
to correlate well with age at diagnosis since for these cancer samples
the majority of cell divisions would have occurred after tumor onset.
This is exactly the pattern seen for stemTOC, which displayed a more
non-linear correlation and saturation effect with age across tumor
samples, even if defined by an averageDNAmover the stemTOCCpGs.
In contrast, in the same tumors, MS1, which is effectively also an
average molecular load estimate, displayed a more linear pattern. In
contrast to tumors, in normal tissue stemTOC displays strong linear
correlations with age without evidence of any saturation effect.
Although normal samples with matched DNAm and somatic muta-
tional profiles representing different tissue-types are still lacking to

Fig. 4 | stemTOC correlates with cancer risk and cancer-risk factors. a Violins
display the distribution of stemTOC’s mitotic age for normal tissue (N) and age-
matched precancerous (PreC) samples for 9 different DNAm datasets. Number of
samples in each category is displayedbelow x-axis, aswell as the tissue-type and the
nature of the precancerous sample. DCIS ductal carcinoma in situ, PreM pre-
malignant, OLPoral lichen planus, LCIS lung carcinoma in situ. P-value derives from
a one-tailed Wilcoxon rank sum test. b Top: Violin plots depicting the estimated
epithelial and immune cell fraction in 790 buccal swabs from women all aged-53 at
sample draw. Bottom left: Scatterplot of stemTOC (y-axis) against estimated
squamous epithelial fraction (x-axis) for the same 790 buccal swabs. Samples are
colored by their lifelong smoking habit (current, ex-smoker, and never-smoker).
Two-tailed P-value is from a multivariate linear regression including epithelial
fraction and smoking status. Bottom right: Violin plots display stemTOC versus
smoking status. Two-tailed P-value is fromamultivariate linear regression including
smoking status and squamous epithelial fraction. c Top: Violins display the esti-
mated cell-type fraction for 7 lung cell types (Endo endothelial, Epi epithelial, Gran

granulocyte, Lym lymphocyte, Macro macrophage, Mono monocyte, Stromal) in
204 normal lung samples from eGTEX. Bottom: Violin plots display stemTOC ver-
sus chronological age and smoking status in the same 204 normal lung-tissue
samples. Number of samples in each smoking category and age-group is shown
below each box. Violin colors label smoking status as in (b). Two-tailed P-values for
age and smoking status are derived from a multivariate linear regression that
included age, smoking, and lung epithelial fraction. d Top left: Violins of estimated
cell-type fractions for 5 cell types (Hep hepatocytes, Chol cholangiocytes, EC
endothelial cells, Kup Kupffer cells, Lym lymphocytes) in 325 liver samples. Top
right: Violins of the hepatocyte fraction against NAFLD disease stage. Two-tailed P-
value is from a linear regression. Middle: Scatterplot of stemTOC (y-axis) against
chronological age (x-axis) for the same 325 liver samples, with colors labeling the
stage of NAFLD, with color label as in the previous panel. Bottom: Violin plots
display mitotic age against NAFLD stage. Two-tailed P-value for disease stage
derives from a multivariate linear regression that included age and hepatocyte
fraction. Generated with Biorender.com.
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allow for an objective comparison, the lack of extensive somatic
mutational data in normal tissues underscores the greater intrinsic
difficulty of detecting somatic mutations in such tissues80. Indeed, the
advantage of DNAm over somatic mutations as a technically more
feasible substrate to track mitotic age in normal and preneoplastic
tissues, specially over the potentially shorter time scales between
preneoplastic and cancer stages36, should not be surprising given that
the rate at which DNAm changes are acquired in normal cells is about

10−100 times higher than somatic mutations82. Thus, DNAm could be
more useful than somatic mutations to track the evolution of pre-
cancerous states on shorter time scales36.

The benchmarking analysis of stemTOC against previous DNAm-
based clocks also revealed an important biological insight: in general,
clocks anchored on sites gaining methylation, specially stemTOC and
epiCMIT-hyper, appear to provide better proxies of mitotic age in
normal adult tissues compared to HypoClock and epiCMIT-hypo,
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Fig. 5 | Relation of stemTOCwith somaticmutationalMS1 andMS5 signatures.
a Scatterplot of MS1-signature load (Mutations/Mb, y-axis) against the estimated
total number of stem-cell divisions (Age*intrinsic annual rate of stem-cell division
of the corresponding normal tissue (IR), x-axis) for >7000 cancer samples from 17
TCGA cancer types. Only cancer types with an IR estimate in normal tissue were
used. Two-tailed P-values derive from amultivariate linear regression including age
as a covariate. bAs (a) but for somaticmutational signatureMS5. cMedian value of
age-adjustedMS1-signature load (multiplied by 10 to reflect change over a decade)
for each cancer type vs the annual intrinsic rate of stem-cell division of the corre-
sponding normal tissue-type. Both Pearson (PCC) and Spearman (SCC) correlation

coefficients are given. Two-tailed P-value tests for significance of SCC. Fitted line is
that of a linear regression model as this outperformed non-linear models. d As (c)
but for MS5. Best fit was for a non-linear decreasing function. e As (a), but for
stemTOC’s mitotic age. f As (c), but for stemTOC, adjusted for chronological age
and multiplied by 10 to reflect DNAm change over a decade. Best fit was for a non-
linear increasing function displaying a saturation effect, as shown. g Scatterplot of
the median stemTOC value of each TCGA cancer type (y-axis) vs the median
mutational load (mutations per Mb) of that cancer type, for MS1. Spearman’s cor-
relation coefficient and P-value are given. Regression line with standard error
interval is shown. h As (g) but for MS5.
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which are based on hypomethylation. However, a caveat as far as
HypoClock is concerned, is that this clock’s assessment on Illumina
beadarray data only considers a small fraction of the millions of solo-
CpGs that were originally proposed to lose DNAm with cell division18.
RepliTali, a clock trained and optimized on a subset of solo-CpGs with
representation on EPIC beadarrays performed much better than
HypoClock. Correspondingly, the comparison of stemTOC (restricted
to common 450k+EPIC probes) to RepliTali (trained on EPIC probes)
only revealed a relatively minor improvement: whilst on most 450k
datasets (a comparison that would favor stemTOC), we observed a
consistent improvement of stemTOC over RepliTali, on EPIC datasets
the improvements were more marginal. For instance, on the whole
blood and eGTEX EPIC datasets, stemTOC’s mitotic age was more
strongly correlated with chronological age, and in a few datasets
including high-turnover tissues like colon and blood, RepliTali’s mitotic
age did not pass the statistical significance threshold. Upon adjustment
for CTH, RepliTali’s correlations became significant, an indication that a
small fraction of RepliTali’s CpGs may be confounded by CTH. Overall,
our data reinforces the view that DNAm gains at specific genes that are
initially unmethylated in fetal tissue is a reliableway to trackmitotic age,
especially in the context of normal adult tissue turnover30. And whilst
the results comparing the specific clocks favor the ones based on
hypermethylation, this does not mean that the optimal subset of CpGs
formeasuringmitotic age are necessarily those gaining DNAmwith cell
division. Indeed, it is entirely plausible that a subset of solo-CpGs that
are currently underrepresented on Illumina beadarrays, could lead to
further improvements in mitotic-age prediction.

Any potential residual confounding by CTH and chronological is
also worth discussing further. First, it is important to stress that CTH
can confoundmitotic age estimates in three distinctways.Oneway is if
the CpGs making up the counter are cell-type specific DNAmmarkers,
i.e. if these CpGs display big differences in DNAm (typically >50%
DNAmchange) between cell types. In such a scenario, variations in cell-
type composition between bulk-samples could affect relative mitotic
age estimates. In relation to this, it is worth pointing out that by con-
struction, stemTOC’s CpGs (as well as those defining epiTOC1/216,30)
are not cell-type specific markers as defined in a suitably defined
ground state (fetal-stage). Furthermore, we have shown that stem-
TOC’s CpGs do not display big DNAm differences between age-
matched sorted cell and tissue-types, a clear indication that theseCpGs
are not cell-type specificmarkers of adult cell or tissue-types. A second
way in which CTH could bias mitotic age estimates is through the
selection of CpGs that only change with cell division in a specific cell
type, so that they don’t generalize to other cell types and tissues. We
also addressed this type of confounding, by ensuring that stemTOC
CpGs correlate with cell division in cell lines representing different cell
types (fibroblasts, endothelial cells and smooth muscle). In addition,
because these were selected by comparing DNAm changes in-vitro
with and without treatment by cell-cycle inhibitors, these stemTOC
CpGs are not confounded by chronological age. Hence, by further
requiring that these same CpGs also change with chronological age in-
vivo whilst adjusting for 12 immune-cell fractions in blood, this likely
selects for a subsetofCpGs that changewith cell division in-vivo. Finally,
the third way in which CTH can influencemitotic age estimates is when
applying the mitotic counter to a bulk-tissue sample which is made up
of different cell types. Even if the CpGs making up the counter are not
cell-type specific, it is clear that different cell types in a bulk-samplemay
have different mitotic ages, hence the mitotic age estimate reflects a
weighted average over the mitotic ages of each cell type with the
weights reflecting their cell-type proportions. Whilst we acknowledge
that stemTOC is unable to address this type of confounding, the
observed strong correlation between stemTOC’smitotic age and tumor
cell-of-origin fraction in each of 15 TCGA cancer types, demonstrates
that this is not a major source of confounding, probably because the
mitotic age of the highly proliferative cancer or precancer cells

dominates the average estimate. A related challenge and limitation is
that stemTOC’s mitotic age estimate not only reflects an average over
cell types, but also an average over the cells that make up the differ-
entiation hierarchy within a lineage. As such, the mitotic-age estimate
not only reflects the number of cell divisions of the underlying long-
lived stem-cell pool, but more broadly also the cell divisions of short-
term stem and progenitor cell expansions and their population sizes83.
In this regard though, it is worth pointing out that it is mainly and only
theDNAmchanges that accumulate in the long-lived stem-cell pool, and
which are inherited by progenitors and differentiated cells, that are able
to accumulate in the cell population at large.

Finally, this study has also highlighted the importance of the
underlying stochastic DNAm changes in aging and precancerous
lesions19,32,84. Indeed, by approximating mitotic age with an upper
quantile statistic over the pool of mitotic CpGs (as opposed to taking
an ordinary average), we can better account for the inherent inter-CpG
and inter-subject stochasticity, enabling the identification of DNAm
outliers that very likely reflect epigenetic mosaicism and subclonal
expansions31,32. In line with this, theseDNAmoutliers led tomitotic age
estimates displaying stronger correlations with cancer and tumor cell-
of-origin fraction. On the other hand, these DNAm outliers may also
not necessarilymark thepreneoplastic clones of highermitotic agebut
those characterized by subtle quenching or even silencing of tissue-
specific developmental genes, as such silencing may confer a selective
advantage49,85,86.

In summary, this work demonstrates how a DNAm-based mitotic
age counter can detect subtle increases of mitotic age in the tumor
cell-of-origin of normal and precancerous tissues, opening up new
biotechnological opportunities for developing early detection and
cancer-risk prediction strategies.

Methods
All data analyzed in this manuscript has already been published in the
respective publications, as described below and in the “Data avail-
ability” section. As such, this research complies with all ethical
regulations.

Illumina DNAm datasets used in the construction of stemTOC
Fetal tissue DNAm sets. We obtained and normalized Illumina 450k
data from the Stem-Cell Matrix Compendium-2 (SCM2)87, as described
by us previously16. There were a total of 37 fetal tissue samples
encompassing 10 tissue-types (stomach, heart, tongue, kidney, liver,
brain, thymus, spleen, lung, adrenal gland). We also obtained Illumina
450k data of 15 cord-blood samples88 and 34 fetal-tissue samples from
Slieker et al.89 encompassing amnion, muscle, adrenal, and pancreas.
Both sets were normalized like the SCM2 data, i.e. by processing idat
files withminfi90 followed by type-2 probe bias adjustment with BMIQ91.

Cell-line data from Endicott et al.24. The Illumina EPICv1 cell-line data
was downloaded from GEO under accession number GSE197512. Raw
idat files were processed withminfi and BMIQ normalized, resulting in
a normalized DNAm data matrix defined over 843,298 probes and 182
“baseline-profiling” samples. A total of 6 human cell lines were used,
including AG06561 (skin fibroblast), AG11182 (veil endothelial),
AG11546 (iliac vein smooth muscle), AG16146 (skin fibroblast),
AG21839 (neonatal foreskin fibroblast), and AG21859 (foreskin fibro-
blast). One cell line (AG21837, skin keratinocyte), which displayed
global non-monotonic DNAm patterns with population doublings
(PDs) was removed.

Whole-blood DNAm datasets. We used 3 Illumina whole-blood data-
sets. One EPIC dataset encompassing 710 samples from Han Chinese
was processed and normalized as described by us previously92. Briefly,
idat files were processed with minfi, followed by BMIQ type-2 probe
adjustment, and due to the presence of beadchip effects, data was
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further normalized with ComBat93. Another dataset is an Illumina 450k
set of 656 samples from Hannum et al.94. The normalization of this
dataset is as described by us previously92. Finally, we also analyzed a
450k dataset from Johansson et al.95. This dataset was obtained from
NCBI GEO website under accession number GSE87571. The file
“GSE87571_RAW.tar” containing the IDAT files was downloaded and
processed with minfi R-package. Probes with P-values <0.05 across all
samples were kept. Filtered data was subsequently normalized with
BMIQ, resulting in a normalized data matrix for 475,069 probes across
732 samples.

Independent buccal swab and cord blood Illumina DNAm
datasets
We analyzed two independent EPIC DNAm datasets to assess the
robustness and stability of the 371 stemTOC CpGs. One dataset con-
sists of 44 buccal swabs from infants96 and the other of 128 cord blood
samples fromneonates97. Briefly, idatfiles were downloaded fromGEO
under accession numbers GSE229463 and GSE195595, respectively,
and subsequently processed with minfi90 and BMIQ91 as described for
the other datasets.

Illumina DNAm cancer datasets
The SeSAMe98 processed Illumina 450k beta value matrices were
downloaded fromGenomic Data CommonsData Portal (https://portal.
gdc.cancer.gov/) with TCGAbiolinks99. We analyzed 32 cancer types
(ACC, BLCA, BRCA, CESC, CHOL, COAD, DLBC, ESCA, GBM, HNSC,
KICH, KIRC, KIRP, LAML, LGG, LIHC, LUAD, LUSC, MESO, PAAD, PCGP,
PRAD, READ, SARC, SKCM, STAD, TGCT, THCA, THYM, UCEC, UCS,
UVM). We did further processing of the downloaded matrices as fol-
lows: For each cancer type, probes with missing values in more than
30% samples were removed. The missing values were then imputed
with impute.knn (k = 5)100. Then, the type-2 probe bias was adjusted
with BMIQ91. Technical replicates were removed by retaining the
sample with the highest CpG coverage. Clinical information on TCGA
samples was downloaded from Liu et al.101. In addition, we analyzed an
Illumina 450k DNAm dataset from Pipinikas et al.102, consisting of 45
primary pancreatic neuroendocrine tumors (PNETs). Processing of the
idat files and QC was performed with minfi90, impute, and BMIQ as
described for the TCGA datasets.

Illumina DNAm dataset from eGTEX
The ChAMP103 processed Illumina EPIC beta-valued data matrix was
downloaded from GEO (GSE213478)45. The dataset includes 754,119
probes and 987 samples from 9 normal tissue-types: breast mammary
tissue (n = 52), colon transverse (n = 224), kidney cortex (n = 50), lung
(n = 223), skeletal muscle (n = 47), ovary (n = 164), prostate (n = 123),
testis (n = 50), and whole blood (n = 54) derived from 424 GTEX
subjects.

Illumina DNAm datasets of sorted immune-cell types
We analyzed Illumina 450k DNAm data from BLUEPRINT42, encom-
passing 139 monocyte, 139 CD4+ T-cell, and 139 neutrophil samples
from 139 subjects. This dataset was processed as described by us
previously104. In addition, we analyzed Illumina 450k DNAm data from
GEO (GSE56046) encompassing 1202 monocyte and 214 naïve CD4+
T-cell samples from Reynolds et al.105, and GEO (GSE56581) encom-
passing 98 CD8+ T-cell samples from Tserel et al.106. Data was nor-
malized as described by us previously107. We also analyzed Illumina
450k DNAm data from EGA (EGA: EGAS00001001598) encompassing
100B cell, 98CD4+T cell, and 104monocyte samples fromPaul et al.43.
Data was normalized as described by us previously43.

Other Illumina whole-blood DNAm datasets
We analyzed a large collection of 18 whole-blood cohorts encom-
passing a total of 14,515 samples. This is a subset of the over

20,000 samples we previously analyzed41, consistingmostly of healthy
samples. Illumina DNAm data was normalized as described by us
previously41. Briefly, the 18 whole-blood cohorts chosen here were:
LiuMS(n= 279):The 450k dataset fromKular et al.108 was obtained from
the NCBI GEO website under the accession number GSE106648.

Song (n = 2052): The EPIC dataset from Song et al.109 was obtained
from the NCBI GEO website under the accession number GSE169156.

HPT-EPIC (n = 1394) & HPT-450k (n = 418): These datasets110 were
obtained from the NCBI GEO websites under the accession numbers
GSE210255 and GSE210254.

Barturen (n= 5740): The EPIC dataset from Barturen et al.111 was
obtained from GEO under accession number GSE179325.

Airwave (n = 1032): The EPIC dataset from the Airwave study112 was
obtained from GEO under accession number GSE147740.

VACS (n = 529): The 450k dataset from Zhang et al.113 was obtained
from GEO under accession number GSE117860.

Ventham (n = 380): The 450k dataset from Ventham et al.114 was
obtained from NCBI GEO website under accession number GSE87648.

Hannon−1 and 2 (n = 636 and 665): The 450k datasets from Han-
non et al.115,116 were obtained fromNCBI GEO websites under accession
numbers GSE80417 and GSE84727.

Zannas (n = 422): This 450k dataset117 was obtained from GEO
under accession number GSE72680

Flanagan/FBS (n= 184): The 450k dataset Flanagan et al.118 was
obtained from NCBI GEO under the accession number GSE61151.

Johansson (n= 729): The 450k dataset from Johansson et al.95 was
obtained from GEO under accession number GSE87571.

Lehne (n = 2707): This 450k DNAm dataset consists of peripheral
blood samples119, and we used the already QC-processed and normal-
ized version previously described by Voisin et al.120.

TZH(n = 705), Hannum (n = 656), LiuRA (n = 689), Tsaprouni
(n = 464): The TZH (EPIC)92, Hannum (450k)94, LiuRA (450k)121, Tsa-
prouni (450k)122 were downloaded and normalized as described by us
previously92.

Illumina DNAm atlas from Moss et al.
We downloaded Illumina 450k & EPIC DNAm data (idat files)44 from
GEO under accession number GSE122126. We processed the 450k and
EPIC data separately with minfi, removing low-quality controls
(detection P-value <0.05) and further normalized the data with BMIQ,
resulting in a merged dataset defined over 449,156 probes and
28 samples. These 28 samples included sorted pancreatic beta cells
(n = 4), pancreatic ductal (n = 3), pancreatic acinar (n = 3), adipocytes
(n = 3), hepatocytes (n = 3), cortical neurons (n = 3), leukocyte (n = 1),
lung epithelial (n = 3), colon-epithelial (n = 3), and vascular endothe-
lial (n = 2).

Illumina DNAm datasets of sorted neurons
We analyzed a total of 4 Illumina DNAm datasets of sorted neurons
(neuronal nuclei NeuN+), in all cases only using normal control sam-
ples. In all cases, raw Illumina EPIC/450k DNAm files were downloaded
from GEO under accession numbers GSE112179 (n = 28, post-mortem
frontal cortex)123, GSE41826 (n = 29, post-mortem frontal cortex)124,
GSE66351 (n = 16, post-mortem human brains)125 and GSE98203
(n = 29, post-mortem human brains)126. In all cases, probes not detec-
ted above the backgroundwere assignedNA. CpGswith coverage 0.99
were kept (in the 2nd and 4th sets, this threshold was relaxed slightly
to 0.98). The remaining NAs were imputed with impute.knn (k = 5).
Finally, the beta-valued data matrix was normalized with BMIQ.

Illumina DNAm datasets from normal healthy and normal “at
cancer-risk” tissue

1. Lung preinvasive dataset : This is an Illumina 450k DNAm dataset
of lung-tissue samples that we have previously published76. We
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used the normalized dataset from Teschendorff et al.76 encom-
passing 21 normal lungs and 35 age-matched lung-carcinoma
in situ (LCIS) samples, and 462,912 probes after QC. Of these 35
LCIS samples, 22 progressed to an invasive lung cancer (ILC).

2. Breast preinvasive dataset : This is an Illumina 450k dataset of
breast tissue samples from Johnson et al.127. Raw idat files were
downloaded from GEO under accession number GSE66313, and
processedwithminfi. Probeswith sample coverage <0.95 (defined
as a fraction of samples) with detected (P <0.05) P-values were
discarded. The rest of the unreliable values were assigned NA and
imputed with knn (k = 5)100. After BMIQ normalization, we were
left with 448,296 probes and 55 samples, encompassing 15
normal-adjacent breast tissue and 40 age-matched ductal
carcinoma in situ (DCIS) samples, of which 13 were from women
who later developed an invasive breast cancer (BC).

3. Gastric metaplasia dataset : Raw idat files were downloaded from
GEO (GSE103186)128 and processed with minfi. Probes with over
99% coveragewerekept andmissing values imputedusing impute
R-package using impute.knn (k = 5). Subsequently, data was intra-
array normalized with BMIQ, resulting in a final normalized data
matrix over 482,975 CpGs and 191 samples, encompassing 61
normal gastric mucosas, 22 mild intestinal metaplasias, and 108
metaplasias. Although age informationwas not provided, we used
Horvath’s clock129 to confirm that normal and mild intestinal
metaplasias were age-matched. This is justified becauseHorvath’s
clock is not amitotic clock30 and displays amedian absolute error
of ±3 years129.

4. Barrett’s Esophagus and adenocarcinoma dataset : This Illumina
450k dataset49 is freely available from GEO under accession
number GSE104707. Data was normalized as described by us
previously130. The BMIQ-normalized dataset is defined over
384,999 probes and 157 samples, encompassing 52 normal
squamous epithelial samples from the esophagus, 81 age-
matched Barrett’s Esophagus specimens, and 24 esophageal
adenocarcinomas.

5. Colon adenoma dataset131: Illumina 450k raw idat files were
downloaded fromArrayExpress E-MTAB-6450 andprocessedwith
minfi. Only probes with 100% coverage were kept. Subsequent
data was intra-array normalized with BMIQ, resulting in a
normalized data matrix over 483,422 CpGs and 47 samples,
encompassing 8 normal colon specimens and 39 age-matched
colon adenomas. Although age information was not made
publicly available, we imputed them using Horvath’s clock,
confirming that normals and adenomas are age-matched.

6. Cholangiocarcinoma (CCA) dataset132: Raw idat files were down-
loaded from GEO (GSE156299). This is an EPIC dataset and was
processed with minfi. Probes with >99% coverage (fraction of
samples with P <0.05) were kept. NAs were imputed with impu-
te.knn (k = 5). Subsequent data was intra-array normalized with
BMIQ, resulting in a normalized data matrix over 854,026 probes
and 137 samples, encompassing 50 normal bile duct specimens,
60 premalignant, and 27 cholangiocarcinomas. Normal bile duct,
premalignant, and CCA specimens were derived from the same
patient. Thus, normal and premalignant samples are mostly age-
matched.

7. Prostate cancer progression dataset : Illumina 450k raw idat files
were downloaded from GEO (GSE116338)133 and processed with
minfi. CpGs with coverage >0.95 were kept. NAs were imputed
with impute.knn (k = 5). Subsequent data matrix was intra-array
normalized with BMIQ. Samples included benign lesions (n = 10),
neoplasia (n = 6), primary tumors (n = 14) and metastatic prostate
cancer (n = 6). In this dataset, benign lesions were significantly
older compared to neoplasia and primary tumors, thus this
dataset provides a particularly good test that mitotic clocks are
measuring mitotic age as opposed to chronological age.

8. Oral squamous cell carcinoma (OSCC) progression dataset : The
processed beta-valued Illumina 450k DNAm data matrix was
downloaded fromGEO (GSE123781)134. Probes not detected above
background had been assigned NA. CpGs with coverage >0.95
were kept. The remaining NAs were imputed with impute.knn
(k = 5). Then the beta matrix was BMIQ normalized. Samples
included 18 healthy controls, 8 lichen planus (putative premalig-
nant condition), and 15 OSCCs. This is the only dataset where
premalignant samples older than the healthy controls.

9. Colon adenoma dataset 2. Processed beta-valued Illumina 450k
DNAm data matrix was downloaded from GEO (GSE48684)135,
encompassing 17 normal-healthy samples, 42 age-matched colon
adenoma samples, and 64 colon cancer samples. Probes not
detected above background were assigned NA. CpGs with
coverage >0.95 were kept. The remaining NAs were imputed with
impute.knn (k = 5). Then the beta matrix was BMIQ normalized.
Although age information was not made publicly available, ages
were imputed with Horvath’s clock confirming that normals and
adenomas are age-matched.

10. Normal breast Erlangen dataset : This Illumina 450k dataset is
freely available from GEO under accession number GSE69914.
Data was normalized as described by us previously32. The BMIQ-
normalized dataset is defined over 485,512 probes and 397 sam-
ples, encompassing 50 normal-breast samples from healthy
women, 42 age-matched normal-adjacent samples, and 305
invasive breast cancers. We note that this dataset was excluded
from the formal comparison of stemTOC to all other clocks,
because this dataset was used to select the upper-quantile
threshold in the definition of stemTOC (see later).

Illumina DNAm datasets of normal tissues exposed to cancer-
risk factors

1. Buccal swabs+smoking (n= 790): This Illumina 450k DNAm data-
set was generated and analyzed previously by us76. We used the
same normalized DNAm dataset as in this previous publication.
Briefly, the samples derive from women all aged 53 years at
sampledrawandbelong to theMRC1946birth cohort. This cohort
has well-annotated epidemiological information, including
smoking-status information. Among the 790 women, 258 were
never-smokers, 365 ex-smokers, and 167 current smokers at
sample draw.

2. Lung-tissue+smoking (n = 204): This Illumina EPIC DNAm dataset
of normal lung-tissue samples derives from eGTEX45 and was
processed as the other tissue datasets from eGTEX. Age
information was only provided in age-groups. Smoking status
distributionwas 89 current smokers, 54 ex-smokers, and 61 never-
smokers.

3. Liver-tissue+obesity (n = 325): This Illumina EPIC DNAm dataset of
liver tissue is derived from GEO: GSE180474, and encompasses
liver tissue samples fromobese individuals (minimumBMI = 32.6),
all diagnosed with non-alcoholic fatty liver disease (NAFLD)78. Of
the 325 samples, 210 had no evidence of fibrosis (grade-0), 55 had
grade-3fibrosis, 36 intermediate grade 3-4fibrosis, and24grade-4
fibrosis. We downloaded the processed beta and P-values and
only kept probes with 100% coverage across all samples. Data was
further adjusted for type-2 probe bias using BMIQ.

Construction of stemTOC: identification of mitotic CpGs
The construction of stemTOC initially involves a careful selection of
CpGs that track mitotic age. Initially, we follow the procedure as
described for the epiTOC+epiTOC2 mitotic clocks, identifying CpGs
mapping to within 200 bp of transcription start sites and that are
constitutively unmethylated across 86 fetal tissue samples encom-
passing 15 tissue-types. Here, by constitutive unmethylation, we mean
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a DNAm beta value <0.2 in each of 86 fetal tissue samples encom-
passing 13 tissue-types. Of note, this means that all these CpGs occupy
the samemethylation state in the fetal ground state, i.e. theseCpGs are
not cell-type or tissue-specific in this ground state. Next, we use the
cell-line data from Endicott et al.24 to further identify the subset of
CpGs that display significant hypermethylation with population dou-
blings, but which do not display such hypermethylation when the cell
lines are treated with a cell-cycle inhibitor (mitomycin-C) or when the
cell-culture is deprived of growth-promoting serum. In detail, for each
of 6 cell lines (AG06561, AG11182, AG11546, AG16146, AG21837,
AD21859) representing fibroblasts (3), smoothmuscle (1), keratinocyte
(1) and endothelial cell types, we ran linear regressions of DNAm
against population doublings (PD) (a total of 182 samples), identifying
for each cell-line CpGs where DNAm increases with PDs (q-value
(FDR) < 0.05). Out of a total of 843,98 CpGs, 14,255 CpGs displayed
significant hypermethylation with PDs in each of the 6 cell lines. Of
these 14,225 CpGs, we next removed those still displaying hyper-
methylation (unadjusted P < 0.05) with days in culture in cell lines
treated with mitomycin-C or in cell lines deprived of serum. This
resulted in a much-reduced set of 629 “vitro-mitotic” CpG candidates.
In the next step, we asked how many of these “vitro-mitotic” CpGs
display age-associated hypermethylation in-vivo, using 3 separate
large whole-blood cohorts. The rationale for using whole blood is that
this is a high-turnover-rate tissue, and so chronological age should be
correlated with mitotic age. Moreover, large whole-blood cohorts
guarantee adequate power to detect age-associated DNAm changes.
And thirdly, by intersecting CpGs undergoing hypermethylation with
PDs in-vitro with those undergoing hypermethylation with age in-vivo,
we aremore likely to be identifyingCpGs that trackmitotic age in-vivo.
We used the 3 large whole-blood datasets as described in the previous
section, each containing approximately 700 samples, whilst adjusting
for all potential confounders including cell fractions for 12 immune-
cell subtypes40. Specifically, we used a DNAm referencematrix defined
over 12 immune cell types, which we have recently validated across
over 23,000 whole-blood samples from 22 cohorts41, to estimate cell-
type proportions using our EpiDISH procedure136. These proportions
were then included as covariates when identifying age-DMCs in each
cohort separately. To arrive at a final set of age-DMCs, we used the
directional Stouffer method over the 3 large cohorts to compute an
overall Stouffer z-statistic and P-value, selecting CpGs with z > 0 and
P <0.05. Of the 629 “vitro-mitotic” CpGs, 371 were significant in the
Stouffer meta-analysis of whole-blood cohorts. This set of 371 CpGs
defined our “vivo-mitotic” CpGs making up stemTOC.

Estimating relative mitotic age with stemTOC
Given an arbitrary sample with a DNAm profile defined over these 371
CpGs, we next define the mitotic age of the sample as the 95% upper
quantile of DNAm values over the 371 vivo-mitotic CpGs. The justifi-
cation for taking an upper quantile value, as opposed to taking an
average is as follows: extensive DNAm data from previous studies
indicate that DNAm changes that mark cancer risk (and hence also
mitotic age) are characterized by an underlying inter-CpG and inter-
subject stochasticity19,31,32,84. Specifically, relevant DNAm changes in
normal tissues at cancer risk constitute mild outliers in the DNAm
distribution representing subclonal expansions, that occur only
infrequently across independent subjects, with the specific CpG out-
liers displaying little overlap between subjects. Thus, for a given pool
of mitotic CpG candidates (i.e. the pool of 371 vivo-mitotic CpGs
derived earlier), only a small subset of these may be tracking mitotic
age in any given subject at-risk of tumor development. Thus, taking an
average DNAm over the 371 CpGs is not optimized to capturing the
effect of subclonal expansions that track the mitotic age. To under-
stand this, we ran a simple simulation model, with parameter choices
inspired by real DNAm data19,31,32,84, for a reduced set of 20 CpGs and
40 samples representing 4 disease stages (normal, normal at-risk,

preneoplastic, cancer) with 10 samples in each stage. In the initial
stage, all CpGs are unmethylatedwith DNAmbeta-values drawn from a
Beta distribution Beta(a= 10,b = 90), where Beta(a,b) is defined by the
probability distribution

p X = x ja,bð Þ∼ xa�1ð1� xÞb�1 ð1Þ

which has a mean E X½ �=a=ða+bÞ and variance Var X½ �=ab=
ðða+ b+ 1Þða+bÞ2Þ. For each “normal at-risk” sample, we randomly
selected 1–3 CpGs (precise number was drawn from a uniform dis-
tribution), simulating DNAm gains for these CpGs by drawing DNAm
values from Beta(a = 3,b = 7). For each preneoplastic sample, we ran-
domly selected 5–10 CpGs with DNAm values drawn from Beta(a = 5,
b = 5). Finally, for invasive cancer, we randomly selected 11–17 CpGs
with DNAm gains drawn from Beta(a= 8,b = 2). Under this model, dis-
crimination of normal-at-risk samples fromnormal healthy is difficult if
onewere to averageDNAmover 20CpGs.However, taking a95%upper
quantile (UQ) of the DNAm distribution over the 20 CpGs, one can
discriminate the normal at-risk samples. In this instance, a 95%UQover
20 CpGs corresponds to taking the maximum value over these 20
CpGs. Another way to understand this is by first identifying CpGs that
display DNAm outliers in the normal at-risk group compared to
normal. This can be done using differential variance statistics19,137 to
identify hypervariable CpGs, or alternatively, by finding CpGs for
which a suitable upper quantile over the normal at-risk samples is
much greater than the corresponding UQ value over the normal
samples. To determine what UQ-threshold may be suitable, we
analyzed our Illumina 450k DNAm dataset encompassing 50 normal-
breast tissues from healthy women and 42 age-matched normal-
adjacent samples (“at-risk” samples) fromwomen with breast cancer32.
For each of the 371 CpGs, we computed the mean and UQ over the 50
normal-breast samples, and separately over the 42 normal-adjacent
“at-risk” samples.We considered a range ofUQ thresholds from0.75 to
0.99.We then compared the difference (i.e. effect size) in the obtained
values between the normal-adjacent and normal-healthy, averaging
over the 371 CpGs. The effect size increases with higher UQ values. We
selected a 95% UQ because at this threshold we maximized effect size
without compromising variability (choosing higher UQs leads to
increased randomvariation). Although in this analysis, the UQ is taking
across samples, it is reasonable, given the underlying stochasticity of
the patterns, to apply the same UQ-threshold across CpGs. Thus, for
any independent sample, we define the relative mitotic age of
stemTOC as the 95% upper quantile of the DNAm distribution defined
over the 371 CpGs.We note however that results in thismanuscript are
not strongly dependent on the particular UQ value, i.e. results are
generally very robust to UQ values in the range 75–95%.

Estimating cell-type fractions in solid tissueswith EpiSCORE and
HEpiDISH
In this work we estimate the proportions of all main cell types within
tissues from the TCGA using our validated EpiSCORE algorithm37 and
its associated DNAm atlas of tissue-specific DNAm reference
matrices38. This atlas comprises DNAm reference matrices for lung
(7–9 cell types: alveolar epithelial, basal, other epithelial, endothelial,
granulocyte, lymphocyte, macrophage, monocyte and stromal), pan-
creas (6 cell types: acinar, ductal, endocrine, endothelial, immune,
stellate), kidney (4 cell types: epithelial, endothelial, fibroblasts,
immune), prostate (6 cell types: basal, luminal, endothelial, fibroblast,
leukocytes, smooth muscle), breast (7 cell types: luminal, basal, fat,
endothelial, fibroblast, macrophage, lymphocyte), olfactory epithe-
lium (9 cell types: mature neurons, immature neurons, basal, fibro-
blast, gland, macrophages, pericytes, plasma, T-cells), liver (5 cell
types: hepatocytes, cholangiocytes, endothelial, Kupffer, lympho-
cytes), skin (7 cell types: differentiated and undifferentiated kerati-
nocytes, melanocytes, endothelial, fibroblast, macrophages, T-cells),
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brain (6 cell types: astrocytes, neurons, microglia, oligos, OPCs and
endothelial), bladder (4 cell types: endothelial, epithelial, fibroblast,
immune), colon (5 cell types: endothelial, epithelial, lymphocytes,
myeloid and stromal) and esophagus (8 cell types: endothelial, basal,
stratified, suprabasal and upper epithelium, fibroblasts, glandular,
immune). Hence, when estimating cell-type fractions in the TCGA tis-
sue samples, we were restricted to those tissues with an available
DNAm reference matrix. EpiSCORE was run on the BMIQ-normalized
DNAmdata from theTCGAwith default parameters and 500 iterations.
EpiSCORE was also used to estimate cell-type fractions in solid tissues
from non-TCGA datasets. For instance, we used EpiSCORE to estimate
7 lung cell-type fractions (endothelial, epithelial, neutrophil, lympho-
cyte, macrophage, monocyte, and stromal) in normal lung-tissue
samples from eGTEX45, and 5 liver cell-type fractions (cholangiocyte,
hepatocyte, Kupffer, endothelial and lymphocyte) in liver tissue78. For
the buccal swabdataset, because buccal swabs only contain squamous
epithelial and immune-cells, we used the validated HEpiDISH algo-
rithm and associated DNAm reference matrix to estimate these frac-
tions in this tissue77.

Validation of EpiSCORE fractions using a WGBS DNAm atlas
Whilst EpiSCORE has already undergone substantial validation38, here
we decided to further validate it against the recent human WGBS
DNAm atlas from Loyfer et al.58, which comprises 207 sorted samples
from various tissue-types. Briefly, wedownloaded the beta-valued data
and bigwig files (hg38) from the publication website. We required
CpGs to be covered by at least 10 reads. We then averaged the DNAm
values of CpGs mapping to within 200bp of the transcription start
sites of coding genes, resulting in a DNAm data matrix defined over
25,206 gene promoters and 207 sorted samples. The 207 sorted
samples represent 37 cell types from 42 distinct tissues (anatomical
regions). We validate EpiSCORE in this WGBS-atlas by asking if it could
predict the corresponding cell type. This was only done for tissues for
which there is an EpiSCORE DNAm reference matrix. For instance, for
breast tissue, the WGBS DNAm atlas profiled 3 luminal and 4 basal
epithelial samples. Hence, for breast tissue, we applied EpiSCORE with
our breast DNAm reference matrix, derived via imputation from a
breast-specific scRNA-Seq atlas, to these 7 sorted samples to assess if it
can predict the basal/luminal subtypes using amaximum “probability”
criterion (using the estimated fraction as a probability). This analysis
was done for WGBS-sorted cells from 15 anatomical sites (brain, skin,
colon, breast, bladder, liver, esophagus, pancreas, prostate, kidney
tubular, kidney glomerular, lung alveolar, lung pleural, lung bronchus,
and lung interstitial) using our EpiSCOREDNAm referencematrices for
brain, skin, colon, breast, bladder, liver, esophagus, pancreas, prostate,
kidney and lung. An overall accuracy was estimated as the number of
sortedWGBS samples where the corresponding cell type was correctly
predicted.

Benchmarking against other DNAm-based mitotic clocks
We benchmarked stemTOC against 6 other epigenetic mitotic clocks:
epiTOC16, epiTOC230, HypoClock18, RepliTali24, epiCMIT-hyper and
epiCMIT-hypo33. Briefly, epiTOC gives a mitotic score called pcgtAge,
which is an average DNAm over 385 epiTOC-CpGs. In the case of epi-
TOC2, we used the estimated total cumulative number of stem-cell
divisions (tnsc). In the case of HypoClock, the score is given by the
average DNAm over 678 solo-WCGWs with representation on Illumina
450k arrays. Of note, for Hypoclock, smaller values mean a larger
deviation from the methylated ground state. In the case of RepliTali,
which was trained on EPIC data, the score is calculated with 87 Repli-
Tali CpGs and their linear regression coefficients as provided by End-
icott et al.24. Of the 87 RepliTali CpGs, only 30 are present on the
Illumina 450k array. As far as epiCMIT33 is concerned, this clock is
based on two separate lists of 184 hypermethylated and 1164
hypomethylated CpGs. Because the biological mechanism by which

CpGs gain or lose DNAm during cell division is distinct, the strategy
recommended by Ferrer-Durante to compute an average DNAm over
the two lists to then select the one displaying the biggest deviation
from the ground state as ameasureofmitotic age, is in our opinion not
justified. Their strategy could conceivably result in the hypermethy-
lated CpGs being used for one sample, and the hypomethylated CpGs
being used for another. Instead, in this work we separately report the
average DNAm of the hypermethylated and hypomethylated compo-
nents. Thus, for the hypermethylated CpGs, the average DNAm over
these sites defines the “epiCMIT-hyper” clock’s mitotic age, whereas
for the hypomethylated CpGs we take 1-average(hypomethylated
CpGs) as a measure of mitotic age, thus defining the “epiCMIT-
hypo” clock.

We compare all mitotic clocks using the following evaluation
strategies. In the analysis correlating mitotic ages to the fractions of
the tumor cell-of-origin in the various TCGA cancer types, we compare
the inferred Pearson Correlation Coefficients (PCCs) between each
pair of clocks across the TCGA cancer types using a one-tailed Wil-
coxon rank sum test. Likewise, in the analysis where we correlate
mitotic age to chronological age in the normal-adjacent samples from
the TCGA, in the normal samples from eGTEX, and the sorted immune-
cell subsets,wecompare the inferredPCCsbetween eachpair of clocks
across the independent datasets using a one-tailedWilcoxon rank sum
test. Finally, when assessing the clocks for predicting cancer risk, for
each of the 9 datasets with normal-healthy and age-matched “normal
at-risk” samples and for each clock, we first computed an AUC-metric,
quantifying the clock’s discriminatory accuracy. For each pair of
mitotic clocks, we then compare their AUC values across the 9 inde-
pendent datasets using a one-tailed Wilcoxon rank sum test.

Comparison to stem-cell division rates and somatic mutational
signatures
We obtained estimated tissue-specific intrinsic stem-cell division rates
of 13 tissue-types (bladder, breast, colon, esophagus, oral, kidney, liver,
lung, pancreas, prostate, rectum, thyroid, and stomach) from Vogel-
stein&Tomasetti3,8, supplementedwith estimates for skin andblood30,
corresponding to 17 TCGA cancer types (BLCA, BRCA, COAD, ESCA,
HNSC, KIRP & KIRC, LIHC, LSCC & LUAD, PAAD, PRAD, READ, THCA,
LAML, STAD, andSKCM). Thus, for eachnormal-adjacent sample of the
TCGA, we can estimate the total number of stem-cell divisions (TNSC)
by multiplying the intrinsic rate (IR) of the tissue with the chron-
ological age of the sample. Somaticmutational clock signature−1 (MS1)
and signature-5 (MS5) were derived from Alexandrov et al.11. These
loads represent the number of mutations per Mbp. Of note, because
thesemutational loads and stemTOC’s mitotic age both correlate with
chronological age, in specific analyses we divide these values by the
chronological age of the sample to arrive at age-adjusted values.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The main Illumina DNA methylation 450k/EPIC datasets used here are
freely available from the following public repositories: Endicott (182
cell-line samples, GSE197512)24. Hannum (656 whole blood, GSE40279,
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE40279])94;
MESA (214 purified CD4+ T-cells and 1202 Monocyte samples,
GSE56046 GSE56581)105; Tserel (98 CD8+ T-cells, GSE59065)106; BLUE-
PRINT (139 matched CD4+ T-cells, Monocytes and Neutrophils,
EGAS00001001456)42; Paul (100B cells, 98 T cells, and 104monocytes,
EGA: EGAS00001001598)43; Liu (335 whole blood, GSE42861)121; Pai
(n = 28 sorted neurons, GSE112179)123, Guintivano (n = 29 sorted neu-
rons, GSE41826)124, Gasparoni (n = 16 sorted neurons, GSE66351)125 and
Kozlenkov (n = 29 sorted neurons, GSE98203)126; Gastric tissue (191
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normal and metaplasia, GSE103186)128; Colon tissue (47 normal and
adenoma, E-MTAB-6450)131; Colon tissue2 (123 normal, adenoma, and
cancer samples, GSE48684)135; Breast Erlangen (397 normal,
GSE69914)32; Breast2 (121 normal, GSE101961)138; Breast Johnson (55
normal and ductal carcinoma in situ samples, GSE66313)127; Liver tissue
(137 normal, premalignant and cholangiocarcinoma samples,
GSE156299)132; Prostate tissue (36 normal, neoplasia, primary and
metastatic samples, GSE116338)133; Oral tissue (41 normal, lichen pla-
nus and oral squamous cell carcinoma samples, GSE123781)134; Eso-
phagus (50 normal, 81 Barrett’s Esophagus and 24 adenocarcinomas,
GSE104707)49; Liver-NAFLD (n = 325, GSE180474)78; SCM2 (37 fetal
tissue samples, GSE31848)87; Cord Blood (15 samples, GSE72867)88;
Slieker (34 fetal tissue samples, GSE56515)89; eGTEX (987 samples from
9 normal tissue-types, GSE213478)45; Buccal Swabs from Infants
(44 samples, GSE229463)96; Cord Blood from Neonates (128 samples,
GSE195595)97; TCGA data was downloaded from https://gdc.cancer.
gov; The DNAm dataset in buccal cells from the NSHD MRC194676 is
available by submitting data requests to mrclha.swiftinfo@ucl.ac.uk;
see full policy at http://www.nshd.mrc.ac.uk/data.aspx. Managed
access is in place for this 69-year-old study to ensure that the useof the
data is within the bounds of consent given previously by participants
and to safeguard any potential threat to anonymity since the partici-
pants are all born in the same week. The DNAm atlas encompassing
DNAm reference matrices for 13 tissue-types encompassing over 40
cell types is freely available from the EpiSCORE R-package https://
github.com/aet21/EpiSCORE. Sourcedata areprovidedwith this paper.
The remaining data are available within the Article, Supplementary
Information, or Source Data file. Source data are provided with
this paper.

Code availability
An R-package “EpiMitClocks” with functions to estimate the mitotic
age for each of the clocks in this work is freely available from https://
github.com/aet21/EpiMitClocks The package comes with a tutorial
vignette. The R-package EpiSCORE for estimating cell-type fractions in
solid tissue-types is available fromhttps://github.com/aet21/EpiSCORE
The package comes with a tutorial vignette. We have also made an
OceanCode Capsule available from https://codeocean.com/capsule/
3811164/tree.

References
1. Spira, A. et al. Precancer Atlas to drive precision prevention trials.

Cancer Res. 77, 1510–1541 (2017).
2. Jassim, A., Rahrmann, E. P., Simons, B. D. & Gilbertson, R. J. Can-

cers make their own luck: theories of cancer origins. Nat. Rev.
Cancer 23, 710–724 (2023).

3. Tomasetti, C. & Vogelstein, B. Cancer etiology. Variation in cancer
risk among tissues can be explained by the number of stem cell
divisions. Science 347, 78–81 (2015).

4. Zhu, L. et al. Multi-organ mapping of cancer risk. Cell 166,
1132–1146.e7 (2016).

5. Klutstein, M., Moss, J., Kaplan, T. & Cedar, H. Contribution of epi-
genetic mechanisms to variation in cancer risk among tissues.
Proc. Natl Acad. Sci. USA 114, 2230–2234 (2017).

6. Baylin, S. B. & Ohm, J. E. Epigenetic gene silencing in cancer - a
mechanism for early oncogenic pathway addiction? Nat. Rev.
Cancer 6, 107–116 (2006).

7. Feinberg, A. P., Ohlsson, R. & Henikoff, S. The epigenetic pro-
genitor origin of human cancer. Nat. Rev. Genet. 7, 21–33 (2006).

8. Tomasetti, C., Li, L. & Vogelstein, B. Stem cell divisions, somatic
mutations, cancer etiology, and cancer prevention. Science 355,
1330–1334 (2017).

9. Tomasetti, C., Vogelstein, B. & Parmigiani, G. Half or more of the
somaticmutations incancersof self-renewing tissuesoriginateprior
to tumor initiation. Proc. Natl Acad. Sci. USA 110, 1999–2004 (2013).

10. Alexandrov, L. B. et al. Mutational signatures associated
with tobacco smoking in human cancer. Science 354, 618–622
(2016).

11. Alexandrov, L. B. et al. Clock-like mutational processes in human
somatic cells. Nat. Genet. 47, 1402–1407 (2015).

12. Schumacher, B., Pothof, J., Vijg, J. & Hoeijmakers, J. H. J. The
central role of DNA damage in the ageing process. Nature 592,
695–703 (2021).

13. Blackburn, E. H., Greider, C. W. & Szostak, J. W. Telomeres and
telomerase: the path from maize, Tetrahymena and yeast to
human cancer and aging. Nat. Med. 12, 1133–1138 (2006).

14. Siegmund, K. D., Marjoram, P., Woo, Y. J., Tavare, S. & Shibata, D.
Inferring clonal expansion and cancer stem cell dynamics from
DNA methylation patterns in colorectal cancers. Proc. Natl Acad.
Sci. USA 106, 4828–4833 (2009).

15. Kim, J. Y., Tavare, S. & Shibata, D. Counting human somatic cell
replications: methylation mirrors endometrial stem cell divisions.
Proc. Natl Acad. Sci. USA 102, 17739–17744 (2005).

16. Yang, Z. et al. Correlation of an epigenetic mitotic clock with
cancer risk. Genome Biol. 17, 205 (2016).

17. Youn, A. & Wang, S. The MiAge Calculator: a DNA methylation-
based mitotic age calculator of human tissue types. Epigenetics
13, 192–206 (2018).

18. Zhou, W. et al. DNAmethylation loss in late-replicating domains is
linked to mitotic cell division. Nat. Genet. 50, 591–602 (2018).

19. Teschendorff, A. E. et al. Epigenetic variability in cells of normal
cytology is associated with the risk of future morphological
transformation. Genome Med. 4, 24 (2012).

20. Shen, S. Y. et al. Sensitive tumour detection and classification
using plasma cell-free DNA methylomes. Nature 563, 579–583
(2018).

21. Wang, T. et al. Epigenetic aging signatures in mice livers are slo-
wed by dwarfism, calorie restriction and rapamycin treatment.
Genome Biol. 18, 57 (2017).

22. Field, A. E. et al. DNA methylation clocks in aging: categories,
causes, and consequences. Mol. Cell 71, 882–895 (2018).

23. Yatabe, Y., Tavare, S. & Shibata, D. Investigating stem cells in
human colon by using methylation patterns. Proc. Natl Acad. Sci.
USA 98, 10839–10844 (2001).

24. Endicott, J. L., Nolte, P. A., Shen, H. & Laird, P. W. Cell division
drives DNAmethylation loss in late-replicating domains in primary
human cells. Nat. Commun. 13, 6659 (2022).

25. Curtius, K. et al. A molecular clock infers heterogeneous tissue
age among patients with Barrett’s esophagus. PLoS Comput. Biol.
12, e1004919 (2016).

26. Luebeck, G. E. et al. Implications of epigenetic drift in colorectal
neoplasia. Cancer Res. 79, 495–504 (2019).

27. Genereux, D. P., Miner, B. E., Bergstrom, C. T. & Laird, C. D. A
population-epigenetic model to infer site-specific methylation
rates from double-stranded DNA methylation patterns. Proc. Natl
Acad. Sci. USA 102, 5802–5807 (2005).

28. Sontag, L. B., Lorincz, M. C. & Georg Luebeck, E. Dynamics, sta-
bility and inheritance of somatic DNA methylation imprints. J.
Theor. Biol. 242, 890–899 (2006).

29. Minteer,C. J. et al.More thanbad luck: cancer andagingare linked
to replication-driven changes to the epigenome. Sci. Adv. 9,
eadf4163 (2023).

30. Teschendorff, A. E. A comparison of epigeneticmitotic-like clocks
for cancer risk prediction. Genome Med. 12, 56 (2020).

31. Teschendorff, A. E. & Relton, C. L. Statistical and integrative
system-level analysis ofDNAmethylationdata.Nat. Rev.Genet. 19,
129–147 (2018).

32. Teschendorff, A. E. et al. DNAmethylation outliers in normal breast
tissue identify field defects that are enriched in cancer. Nat.
Commun. 7, 10478 (2016).

Article https://doi.org/10.1038/s41467-024-48649-8

Nature Communications |         (2024) 15:4211 16

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103186
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-6450
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48684
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE69914
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE101961
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66313
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE156299
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116338
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123781
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104707
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE180474
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31848
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72867
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE56515
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE213478
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE229463
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE195595
https://gdc.cancer.gov
https://gdc.cancer.gov
http://www.nshd.mrc.ac.uk/data.aspx
https://github.com/aet21/EpiSCORE
https://github.com/aet21/EpiSCORE
https://github.com/aet21/EpiMitClocks
https://github.com/aet21/EpiMitClocks
https://github.com/aet21/EpiSCORE
https://codeocean.com/capsule/3811164/tree
https://codeocean.com/capsule/3811164/tree


33. Duran-Ferrer, M. et al. The proliferative history shapes the DNA
methylome of B-cell tumors and predicts clinical outcome. Nat.
Cancer 1, 1066–1081 (2020).

34. Alexandrov, L. B. et al. The repertoire of mutational signatures in
human cancer. Nature 578, 94–101 (2020).

35. Gabbutt, C., Wright, N. A., Baker, A. M., Shibata, D. &Graham, T. A.
Lineage tracing in human tissues. J. Pathol. 257, 501–512 (2022).

36. Gabbutt, C. et al. Fluctuating methylation clocks for cell lineage
tracing at high temporal resolution in human tissues. Nat. Bio-
technol. 40, 720–730 (2022).

37. Teschendorff, A. E., Zhu, T., Breeze, C. E. & Beck, S. EPISCORE: cell
type deconvolution of bulk tissue DNA methylomes from single-
cell RNA-Seq data. Genome Biol. 21, 221 (2020).

38. Zhu, T. et al. A pan-tissue DNA methylation atlas enables in silico
decomposition of human tissue methylomes at cell-type resolu-
tion. Nat. Methods 19, 296–306 (2022).

39. Nejman,D. et al.Molecular rules governingdenovomethylation in
cancer. Cancer Res. 74, 1475–1483 (2014).

40. Salas, L. A. et al. Enhanced cell deconvolution of peripheral blood
using DNA methylation for high-resolution immune profiling. Nat.
Commun. 13, 761 (2022).

41. Luo, Q. et al. A meta-analysis of immune-cell fractions at high
resolution reveals novel associations with common phenotypes
and health outcomes. Genome Med. 15, 59 (2023).

42. Chen, L. et al. Genetic drivers of epigenetic and transcriptional
variation in human immune cells. Cell 167, 1398–1414 e24 (2016).

43. Paul, D. S. et al. Increased DNA methylation variability in type 1
diabetes across three immune effector cell types. Nat. Commun.
7, 13555 (2016).

44. Moss, J. et al. Comprehensive human cell-type methylation atlas
reveals origins of circulating cell-free DNA in health and disease.
Nat. Commun. 9, 5068 (2018).

45. Oliva, M. et al. DNA methylation QTL mapping across diverse
human tissues providesmolecular links between genetic variation
and complex traits. Nat. Genet. 55, 112–122 (2023).

46. Breeze, C. E. et al. eFORGE: a tool for identifying cell type-specific
signal in epigenomic data. Cell Rep. 17, 2137–2150 (2016).

47. Breeze, C. E. et al. eFORGE v2.0: updated analysis of cell type-
specific signal in epigenomic data. Bioinformatics 35,
4767–4769 (2019).

48. Chen, Y., Breeze, C. E., Zhen, S., Beck, S. & Teschendorff, A. E.
Tissue-independent and tissue-specific patterns of DNA methy-
lation alteration in cancer. Epigenet. Chromatin 9, 10 (2016).

49. Luebeck, E. G. et al. Identification of a key role of widespread
epigenetic drift in Barrett’s esophagus and esophageal adeno-
carcinoma. Clin. Epigenet. 9, 113 (2017).

50. Brunner, S. F. et al. Somatic mutations and clonal dynamics in
healthy and cirrhotic human liver. Nature 574, 538–542 (2019).

51. Martincorena, I. et al. Somatic mutant clones colonize the human
esophagus with age. Science 362, 911–917 (2018).

52. Moore, L. et al. The mutational landscape of normal human
endometrial epithelium. Nature 580, 640–646 (2020).

53. Izzo, F. et al. DNA methylation disruption reshapes the hemato-
poietic differentiation landscape. Nat. Genet. 52, 378–387 (2020).

54. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk
inferred from blood DNA sequence. N. Engl. J. Med. 371,
2477–2487 (2014).

55. Mitchell, E. et al. Clonal dynamics of haematopoiesis across the
human lifespan. Nature 606, 343–350 (2022).

56. Jaiswal, S. et al. Age-related clonal hematopoiesis associatedwith
adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

57. Sender, R. & Milo, R. The distribution of cellular turnover in the
human body. Nat. Med. 27, 45–48 (2021).

58. Loyfer, N. et al. A DNA methylation atlas of normal human cell
types. Nature 613, 355–364 (2023).

59. Aran, D., Sirota, M. & Butte, A. J. Systematic pan-cancer analysis of
tumour purity. Nat. Commun. 6, 8971 (2015).

60. Alcantara Llaguno, S. R. & Parada, L. F. Cell of origin of glioma:
biological and clinical implications. Br. J. Cancer 115, 1445–1450
(2016).

61. Xin, L. Cells of origin for cancer: an updated view from prostate
cancer. Oncogene 32, 3655–3663 (2013).

62. Wang, X. et al. A luminal epithelial stem cell that is a cell of origin
for prostate cancer. Nature 461, 495–500 (2009).

63. Goldstein, A. S., Huang, J., Guo, C., Garraway, I. P. & Witte, O. N.
Identificationof a cell of origin for humanprostate cancer.Science
329, 568–571 (2010).

64. Zhang, D., Zhao, S., Li, X., Kirk, J. S. & Tang, D. G. Prostate luminal
progenitor cells in development and cancer. Trends Cancer 4,
769–783 (2018).

65. Wang, Z. A., Toivanen, R., Bergren, S. K., Chambon, P. & Shen, M.
M. Luminal cells are favored as the cell of origin for prostate
cancer. Cell Rep. 8, 1339–1346 (2014).

66. Karthaus, W. R. et al. Regenerative potential of prostate luminal
cells revealed by single-cell analysis. Science 368, 497–505
(2020).

67. Issa, J. P. Aging and epigenetic drift: a vicious cycle. J. Clin. Invest.
124, 24–29 (2014).

68. Wattacheril, J. J., Raj, S., Knowles, D. A. & Greally, J. M. Using
epigenomics to understand cellular responses to environmental
influences in diseases. PLoS Genet. 19, e1010567 (2023).

69. Wu, S., Powers, S., Zhu, W. & Hannun, Y. A. Substantial contribu-
tion of extrinsic risk factors to cancer development. Nature 529,
43–47 (2016).

70. Tomasetti, C. & Vogelstein, B. Cancer risk: role of environment-
response. Science 347, 729–731 (2015).

71. Ushijima, T. & Hattori, N. Molecular pathways: involvement of
Helicobacter pylori-triggered inflammation in the formation of an
epigenetic field defect, and its usefulness as cancer risk and
exposure markers. Clin. Cancer Res. 18, 923–929 (2012).

72. Ushijima, T. Epigeneticfield for cancerization. J. BiochemMol. Biol.
40, 142–150 (2007).

73. Issa, J. P. Epigenetic variation and cellular Darwinism. Nat. Genet.
43, 724–726 (2011).

74. Herceg, Z. et al. Roadmap for investigating epigenome dereg-
ulation and environmental origins of cancer. Int J. Cancer 142,
874–882 (2018).

75. Lappalainen, T. & Greally, J. M. Associating cellular epigenetic
models with human phenotypes. Nat. Rev. Genet. 18, 441–451
(2017).

76. Teschendorff, A. E. et al. Correlation of smoking-associated dna
methylation changes in buccal cells with DNA methylation chan-
ges in epithelial cancer. JAMA Oncol. 1, 476–485 (2015).

77. Zheng, S. C. et al. A novel cell-type deconvolution algorithm
reveals substantial contamination by immune cells in saliva,
buccal and cervix. Epigenomics 10, 925–940 (2018).

78. Johnson, N. D. et al. Differential DNA methylation and changing
cell-type proportions as fibrotic stage progresses in NAFLD. Clin.
Epigenet. 13, 152 (2021).

79. Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Campbell, P. J. &
Stratton, M. R. Deciphering signatures of mutational processes
operative in human cancer. Cell Rep. 3, 246–259 (2013).

80. Abascal, F. et al. Somatic mutation landscapes at single-molecule
resolution. Nature 593, 405 (2021).

81. Lee-Six, H. et al. The landscape of somatic mutation in normal
colorectal epithelial cells. Nature 574, 532–537 (2019).

82. Horsthemke, B. Epimutations in human disease. Curr. Top.
Microbiol. Immunol. 310, 45–59 (2006).

83. Laurenti, E. & Gottgens, B. From haematopoietic stem cells to
complex differentiation landscapes. Nature 553, 418–426 (2018).

Article https://doi.org/10.1038/s41467-024-48649-8

Nature Communications |         (2024) 15:4211 17



84. Teschendorff, A. E., Jones, A. & Widschwendter, M. Stochastic
epigenetic outliers can define field defects in cancer. BMC Bioin-
form. 17, 178 (2016).

85. Chen, Y., Widschwendter, M. & Teschendorff, A. E. Systems-
epigenomics inference of transcription factor activity implicates
aryl-hydrocarbon-receptor inactivation as a key event in lung
cancer development. Genome Biol. 18, 236 (2017).

86. Liu, T. et al. Computational identification of preneoplastic cells
displaying high stemness and risk of cancer progression. Cancer
Res. 82, 2520–2537 (2022).

87. Nazor, K. L. et al. Recurrent variations in DNA methylation in
human pluripotent stem cells and their differentiated derivatives.
Cell Stem Cell 10, 620–634 (2012).

88. Aranyi, T. et al. Systemic epigenetic response to recombinant
lentiviral vectors independent of proviral integration. Epigenet.
Chromatin 9, 29 (2016).

89. Slieker, R. C. et al. DNA methylation landscapes of human fetal
development. PLoS Genet. 11, e1005583 (2015).

90. Aryee, M. J. et al. Minfi: a flexible and comprehensive Bio-
conductor package for the analysis of Infinium DNA methylation
microarrays. Bioinformatics 30, 1363–1369 (2014).

91. Teschendorff, A. E. et al. A beta-mixture quantile normalization
method for correctingprobedesignbias in Illumina Infinium450k
DNA methylation data. Bioinformatics 29, 189–196 (2013).

92. You, C. et al. A cell-type deconvolution meta-analysis of whole
blood EWAS reveals lineage-specific smoking-associated DNA
methylation changes. Nat. Commun. 11, 4779 (2020).

93. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in
microarray expression data using empirical Bayes methods.
Biostatistics 8, 118–127 (2007).

94. Hannum, G. et al. Genome-wide methylation profiles reveal
quantitative views of human aging rates. Mol. Cell 49,
359–367 (2013).

95. Johansson, A., Enroth, S. & Gyllensten, U. Continuous aging of the
human DNA methylome throughout the human lifespan. PLoS
ONE 8, e67378 (2013).

96. Kocher, K. et al. Genome-wide neonatal epigenetic changes
associated with maternal exposure to the COVID-19 pandemic.
BMC Med Genom. 16, 268 (2023).

97. Petroff, R. L. et al. Translational toxicoepigenetic meta-analyses
identify homologous gene DNA methylation reprogramming fol-
lowing developmental phthalate and lead exposure in mouse and
human offspring. Environ. Int. 186, 108575 (2024).

98. Zhou,W., Triche, T. J. Jr., Laird, P.W. & Shen, H. SeSAMe: reducing
artifactual detection of DNAmethylation by InfiniumBeadChips in
genomic deletions. Nucleic Acids Res. 46, e123 (2018).

99. Colaprico, A. et al. TCGAbiolinks: an R/Bioconductor package for
integrative analysis of TCGA data. Nucleic Acids Res. 44, e71
(2016).

100. Troyanskaya, O. et al. Missing value estimation methods for DNA
microarrays. Bioinformatics 17, 520–525 (2001).

101. Liu, J. et al. An integrated TCGA pan-cancer clinical data resource
todrive high-quality survival outcomeanalytics.Cell 173, 400–416
e11 (2018).

102. Pipinikas, C. P. et al. Epigenetic dysregulation and poorer prog-
nosis in DAXX-deficient pancreatic neuroendocrine tumours.
Endocr. Relat. Cancer 22, L13–L18 (2015).

103. Tian, Y. et al. ChAMP: updated methylation analysis pipeline for
Illumina BeadChips. Bioinformatics 33, 3982–3984 (2017).

104. Teschendorff, A. E., Jing, H., Paul, D. S., Virta, J. & Nordhausen, K.
Tensorial blind source separation for improved analysis of multi-
omic data. Genome Biol. 19, 76 (2018).

105. Reynolds, L. M. et al. Age-related variations in the methylome
associatedwith gene expression in humanmonocytes and T cells.
Nat. Commun. 5, 5366 (2014).

106. Tserel, L. et al. Age-related profiling of DNA methylation in CD8+
T cells reveals changes in immune response and transcriptional
regulator genes. Sci. Rep. 5, 13107 (2015).

107. Zheng, S. C. et al. Correcting for cell-type heterogeneity in
epigenome-wide association studies: revisiting previous analyses.
Nat. Methods 14, 216–217 (2017).

108. Kular, L. et al. DNA methylation as a mediator of HLA-DRB1*15:01
and a protective variant in multiple sclerosis. Nat. Commun. 9,
2397 (2018).

109. Song, N. et al. Persistent variations of blood DNA methylation
associated with treatment exposures and risk for cardiometabolic
outcomes in long-term survivors of childhood cancer in the St.
Jude Lifetime Cohort. Genome Med. 13, 53 (2021).

110. Shang, L. et al. meQTL mapping in the GENOA study reveals
genetic determinants of DNA methylation in African Americans.
Nat. Commun. 14, 2711 (2023).

111. Barturen, G. et al. Whole blood DNA methylation analysis reveals
respiratory environmental traits involved in COVID-19 severity
following SARS-CoV−2 infection. Nat. Commun. 13, 4597 (2022).

112. Robinson, O. et al. Determinants of accelerated metabolomic and
epigenetic aging in a UK cohort. Aging Cell 19, e13149 (2020).

113. Zhang, X. et al. Machine learning selected smoking-associated
DNA methylation signatures that predict HIV prognosis and mor-
tality. Clin. Epigenet. 10, 155 (2018).

114. Ventham, N. T. et al. Integrative epigenome-wide analysis
demonstrates that DNA methylation may mediate genetic risk in
inflammatory bowel disease. Nat. Commun. 7, 13507 (2016).

115. Hannon, E. et al. An integrated genetic-epigenetic analysis of
schizophrenia: evidence for co-localization of genetic associa-
tions and differential DNA methylation. Genome Biol. 17,
176 (2016).

116. Hannon, E. et al. DNA methylation meta-analysis reveals cellular
alterations in psychosis and markers of treatment-resistant schi-
zophrenia. eLife 10, e58430 (2021).

117. Zannas, A. S. et al. Epigenetic upregulation of FKBP5 by aging and
stress contributes to NF-kappaB-driven inflammation and cardio-
vascular risk. Proc. Natl Acad. Sci. USA 116, 11370–11379 (2019).

118. Flanagan, J. M. et al. Temporal stability and determinants of white
blood cell DNA methylation in the breakthrough generations
study. Cancer Epidemiol Biomarkers Prev. 24, 221–229 (2015).

119. Lehne, B. et al. A coherent approach for analysis of the Illumina
HumanMethylation450 BeadChip improves data quality and per-
formance in epigenome-wide association studies. Genome Biol.
16, 37 (2015).

120. Voisin, S. et al. Meta-analysis of genome-wide DNA methylation
and integrativeomics of age in human skeletalmuscle. J. Cachexia
Sarcopenia Muscle 12, 1064–1078 (2021).

121. Liu, Y. et al. Epigenome-wide association data implicate DNA
methylation as an intermediary of genetic risk in rheumatoid
arthritis. Nat. Biotechnol. 31, 142–147 (2013).

122. Tsaprouni, L. G. et al. Cigarette smoking reduces DNAmethylation
levels atmultiple genomic loci but the effect is partially reversible
upon cessation. Epigenetics 9, 1382–1396 (2014).

123. Pai, S. et al. Differential methylation of enhancer at IGF2 is asso-
ciatedwith abnormal dopamine synthesis inmajor psychosis.Nat.
Commun. 10, 2046 (2019).

124. Guintivano, J., Aryee, M. J. & Kaminsky, Z. A. A cell epigenotype
specific model for the correction of brain cellular heterogeneity
bias and its application to age, brain region andmajor depression.
Epigenetics 8, 290–302 (2013).

125. Gasparoni, G. et al. DNA methylation analysis on purified neurons
and glia dissects age and Alzheimer’s disease-specific changes in
the human cortex. Epigenet. Chromatin 11, 41 (2018).

126. Kozlenkov, A. et al. DNAmethylation profiling of human prefrontal
cortex neurons in heroin users shows significant difference

Article https://doi.org/10.1038/s41467-024-48649-8

Nature Communications |         (2024) 15:4211 18



between genomic contexts of hyper- and hypomethylation and a
younger epigenetic age. Genes 8, 152 (2017).

127. Johnson, K. C. et al. DNA methylation in ductal carcinoma in situ
related with future development of invasive breast cancer. Clin.
Epigenet. 7, 75 (2015).

128. Huang, K. K. et al. Genomic and epigenomic profiling of high-risk
intestinal metaplasia reveals molecular determinants of progres-
sion to gastric cancer. Cancer Cell 33, 137–150 e5 (2018).

129. Horvath, S. DNAmethylation age of human tissues and cell types.
Genome Biol. 14, R115 (2013).

130. Maity, A. K. et al. Novel epigenetic network biomarkers for early
detection of esophageal cancer. Clin. Epigenet. 14, 23 (2022).

131. Bormann, F. et al. Cell-of-origin DNA methylation signatures are
maintained during colorectal carcinogenesis. Cell Rep. 23,
3407–3418 (2018).

132. Goeppert, B. et al. Integrative analysis reveals early and distinct
genetic and epigenetic changes in intraductal papillary and
tubulopapillary cholangiocarcinogenesis. Gut 71, 391–401 (2022).

133. Silva, R. et al. Longitudinal analysis of individual cfDNAmethylome
patterns inmetastaticprostatecancer.Clin. Epigenet. 13, 168 (2021).

134. Nemeth, C. G. et al. Recurrent chromosomal and epigenetic
alterations in oral squamous cell carcinoma and its putative pre-
malignant condition oral lichen planus. PLoS ONE 14,
e0215055 (2019).

135. Luo, Y. et al. Differences in DNA methylation signatures reveal
multiple pathways of progression from adenoma to colorectal
cancer. Gastroenterology 147, 418–29 e8 (2014).

136. Teschendorff, A. E., Breeze, C. E., Zheng, S. C. & Beck, S. A com-
parison of reference-based algorithms for correcting cell-type
heterogeneity in Epigenome-Wide Association Studies. BMC
Bioinform. 18, 105 (2017).

137. Teschendorff, A. E. & Widschwendter, M. Differential variability
improves the identification of cancer risk markers in DNA methy-
lation studies profiling precursor cancer lesions. Bioinformatics
28, 1487–1494 (2012).

138. Song, M. A. et al. Landscape of genome-wide age-related DNA
methylation in breast tissue. Oncotarget 8, 114648–114662 (2017).

Acknowledgements
This work was supported by NSFC (National Science Foundation of
China) grants, grant numbers 32170652 and 32370699. We would also
like to thank the TCGA and everyone who supports open-access data.

Author contributions
A.E.T. conceived and designed the study. A.E.T. wrote the manuscript.
T.Z., H.T., and A.E.T. performed the statistical and bioinformatic ana-
lyses. H.T. and Z.D. helped with bioinformatic analyses. S.B. provided
useful feedback.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-48649-8.

Correspondence and requests for materials should be addressed to
Andrew E. Teschendorff.

Peer review information Nature Communications thanks Georg Lue-
beck and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-48649-8

Nature Communications |         (2024) 15:4211 19

https://doi.org/10.1038/s41467-024-48649-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	An improved epigenetic counter to track mitotic age in normal and precancerous tissues
	Results
	Construction of stemTOC
	Validation of stemTOC in normal tissues and sorted cell populations
	Benchmarking of stemTOC in normal tissues reveals improvements
	stemTOC’s mitotic age correlates with tumor cell-of-origin fraction
	stemTOC predicts increased mitotic age in precancerous lesions
	Correlation of mitotic age with smoking and obesity-associated inflammation
	stemTOC correlates with clock-like somatic mutational signature−1

	Discussion
	Methods
	Illumina DNAm datasets used in the construction of stemTOC
	Fetal tissue DNAm�sets
	Cell-line data from Endicott et�al.24
	Whole-blood DNAm datasets
	Independent buccal swab and cord blood Illumina DNAm datasets
	Illumina DNAm cancer datasets
	Illumina DNAm dataset from�eGTEX
	Illumina DNAm datasets of sorted immune-cell�types
	Other Illumina whole-blood DNAm datasets
	Illumina DNAm atlas from Moss�et�al
	Illumina DNAm datasets of sorted neurons
	Illumina DNAm datasets from normal healthy and normal “at cancer-risk”�tissue
	Illumina DNAm datasets of normal tissues exposed to cancer-risk factors
	Construction of stemTOC: identification of mitotic�CpGs
	Estimating relative mitotic age with stemTOC
	Estimating cell-type fractions in solid tissues with EpiSCORE and HEpiDISH
	Validation of EpiSCORE fractions using a WGBS DNAm�atlas
	Benchmarking against other DNAm-based mitotic�clocks
	Comparison to stem-cell division rates and somatic mutational signatures
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




