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Genome-scale analysis of interactions
between genetic perturbations and natural
variation

Joseph J. Hale 1, Takeshi Matsui 2,7, Ilan Goldstein 1,7, Martin N. Mullis 1,
Kevin R. Roy 3,4, Christopher Ne Ville1, Darach Miller2, Charley Wang1,
Trevor Reynolds1, Lars M. Steinmetz 3,4,5, Sasha F. Levy 2,6 &
Ian M. Ehrenreich 1

Interactions between genetic perturbations and segregating loci can cause
perturbations to show different phenotypic effects across genetically distinct
individuals. To study these interactions on a genome scale inmany individuals,
we used combinatorial DNAbarcode sequencing tomeasure the fitness effects
of 8046 CRISPRi perturbations targeting 1721 distinct genes in 169 yeast cross
progeny (or segregants). We identified 460 genes whose perturbation has
different effects across segregants. Several factors caused perturbations to
show variable effects, including baseline segregant fitness, themean effect of a
perturbation across segregants, and interacting loci. We mapped 234 inter-
acting loci and found four hub loci that interact with many different pertur-
bations. Perturbations that interact with a given hub exhibit similar epistatic
relationships with the hub and show enrichment for cellular processes that
may mediate these interactions. These results suggest that an individual’s
response to perturbations is shaped by a network of perturbation-locus
interactions that cannot be measured by approaches that examine perturba-
tions or natural variation alone.

Genetic perturbations can interact with genetic variants (or loci) seg-
regating in a population1. These interactions cause perturbations to
show different phenotypic effects in genetically distinct individuals
(also known as genetic background effects)2. For example, disease
mutations often exhibit incomplete penetrance and variable expres-
sivity in humans3. Similarly, background effects could cause genome
editing to have variable efficacy, as applied to human disease, pro-
ductivity of crops or livestock, and engineering of cells and micro-
organisms for industrial applications. In an evolutionary context, the
fitness effect of de novo mutations can depend on interactions with
specific alleles present in an individual. These interactions can impact

the dynamics of beneficial mutations spreading through a
population4,5 or deleterious mutations persisting within a population6.

Interactions between genetic perturbations and loci also impact
the phenotypic effects of loci. A perturbation may alter the degree to
which an interacting locus influences a trait (magnitude epistasis) or
which allele of that locus confers a higher trait value (sign epistasis)7,8.
In some cases, a perturbation can uncover cryptic loci that do not
typically show phenotypic effects9,10, or mask loci that usually exhibit
phenotypic effects11. The net effect of a perturbation can depend on
epistasis withmultiple loci that interact not only with the perturbation
but also each other (higher-order epistasis)12. That is, the response of a
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given individual to a perturbation will depend on its genotype at all
interacting loci13.

While numerous examples of background effects have been
reported14–29, we lack a detailed understanding of interactions between
genetic perturbations and genetic backgrounds. For example, we do
not yet know what characteristics of perturbations and individuals’
genotypes increase the likelihood of interactions, what types of epis-
tasis aremost likely to underlie background effects, and the properties
of interaction networks between perturbations and loci. To answer
these questions systematically, we require two things: perturbations at
a genomic scale and extremely high-throughput measurement of the
phenotypic effects of these perturbations across many individuals.
Studies of this scale have been technically challenging and cost
prohibitive.

Here, we developed a scalable platform for assaying interactions
between genetic backgrounds and genetic perturbations using a
genomic double barcoding system30,31 and inducible CRISPR inter-
ference (CRISPRi)32–34. We utilized 169 haploid progeny (segregants)
from a cross between the BY4716 (BY) lab and 322134S (3S) clinical
strains of Saccharomyces cerevisiae, eachofwhich contained a barcode
thatmarked a segregant35,36.We then integrated a genome-scale library
of 8,046 guide RNAs (gRNAs), each marked with a barcode, at an
adjacent site. Pooled competitions, double barcode sequencing, and
lineage trajectory analyses enabled precise measurement of the fit-
nesses of ~875,000 segregant-gRNA combinations. This large
dataset allowed us to identify 460 genes whose perturbation has dif-
ferent effects across segregants and to characterize factors that cause
these background effects.

Results
Construction of a double barcoded library of segregants with
inducible CRISPRi perturbations
Wepreviouslygenerated, genotyped, andbarcoded822haploid,MATɑ
BYx3S ura3Δ segregants carrying a genomic landing pad at the neutral
YBR209W locus35,36 (Supplemental Figs. 1 and 2). The landing pad
contains a loxP site and a partial URA3 marker for site-directed inte-
gration of constructs and recovery of integrants by selection forURA3.
The barcodes enable measurement of each segregant’s frequency in a
pool by amplicon sequencing.Whenmeasured atmultiple time points,
these frequencies can be used to infer the relative fitness of each
segregant in a pool34,35. To prevent cell clumping and flocculation
during pooled experiments, the main flocculin (FLO11)37 and the pri-
mary transcriptional activator of cell-cell and cell-surface adhesion
phenotypes (FLO8)38 in S. cerevisiaewere deleted from BY and 3S prior
to mating. We randomly chose 169 barcoded BYx3S segregants from
different tetrads for use in the current study (Supplemental
Data 1 and 2). Most of these segregants were represented by a single
barcode in the panel. To enable tests for reproducibility, 30 segregants
were represented by 2–3 distinct barcodes.

To introduce genetic perturbations into the segregants at high
throughput, we also designed a barcoded CRISPRi plasmid library that
could be integrated into the genomic landing pad adjacent to the
segregant barcode (Supplemental Figs. 3 and 4). An inducible CRISPRi
system33 was chosen because it provides several key advantages.
CRISPRi perturbations are only induced during phenotyping experi-
ments, which helps prevent accumulation of de novo suppressor
mutations during strain construction and culturing. The use of indu-
cible CRISPR interference also allows essential genes to be perturbed,
expanding the space of possible target genes. Finally, CRISPRi-
mediated gene repression is orthogonal to a cell’s endogenous tran-
scriptional machinery and should perform similarly across strains.
Each plasmid in this library contained an endonuclease-dead Cas9
(dCas9) fused with the Mxi1 repressor domain, an inducible single
guideRNA (gRNA) targeting dCas9 to a specific promoter, a unique 20-
nucleotide barcode, a loxP site to enable chromosomal integration,

and the remaining portion of URA3. This plasmid library targeted a
total of 1739 genes that have been reported to be essential under
fermentative or respiratory growth conditions with 8,864 unique
gRNAs, with an average of five distinct gRNAs per gene34 (Supple-
mental Data 3, Supplemental Fig. 5). 91 unique gRNAs targeting
intergenic and noncoding regions rather than promoters were also
included with the intent of serving as controls. Roughly 10 distinct
barcodes were generated for each gRNA on average, resulting in an
estimated plasmid library size of ≥90,000. All gRNAs were under the
control of a tetO-modified RPR1 promoter, enabling gRNA induction
by the addition of anhydrotetracycline (ATC) to liquid growth med-
ium. ATC itself has no effect on yeast growth at the concentrations
used in this assay33,39,40.

We integrated this library of barcodedCRISPRi plasmids into each
segregant and the BY parent using large-scale transformations and
Cre/loxP-mediated site-specific recombination. Natural variation in
transformability impeded integration of the library into certain seg-
regants, as well as into the 3S parent (Supplemental Fig. 6). Based on
colony counts and amplicon sequencing of double barcodes, we esti-
mated that ~10,000–15,000 integrants, or ~1.1–1.7 barcodes per gRNA,
were recovered per successfully transformed strain (Supplemental
Data 4). Transformants were grown to stationary phase and roughly
108–109 cells per strain were combined into an initial pool, which was
used as the initial time point (T0) in the subsequent fitness assays.

Phenotyping of the segregant-gRNA pool
Plasmids were designed so that after integration, chromosomally-
encoded segregant and plasmid barcodes would be 99 bp apart,
enabling their co-amplificationbyPCRand sequencingwithin the same
paired-end read (Fig. 1a, Supplemental Fig. 3). Unlike previous
experiments involving single barcodes35, this double-barcode design
allows both the genotype and its integrated gRNA to be identified in a
single sequencing read. Sequencing of barcode pairs revealed that 169
unique segregants (223 segregant barcodes) and 8046 unique gRNAs
(107,141 gRNA barcodes) targeting 1721 distinct genes were present in
T0. Each gRNA appeared in 110 segregants on average, with T0 con-
taining ~2,800,000 double barcodes in total. On average, ~4.5 gRNAs
targeted a given gene (Supplemental Data 5).

The T0 pool was split into three separate fitness assays: two
replicate experimental assays where the gRNA expressionwas induced
with ATC (ATC1 and ATC2, experimental conditions) and one control
assay where no ATC was added and gRNA expression was not induced
(CON, control condition). All assays were done in synthetic complete
medium containing glucose as the fermentable carbon source and
lacking uracil, which maintained selection for the URA3 marker gen-
erated by integration of CRISPRi plasmids. We performed the assays
for 10 generations in serial batchculture, diluting 1:4 roughly every two
generations, with a bottleneck size of ~2.5 × 1010 cells. We sequenced
each assay at zero, two, four, six, and 10 generations (T0, T1, T2, T3,
and T5). At each of these time points, all double barcodes were
extracted, sequenced, and counted. For each double barcode, fre-
quencymeasurements across allfive timepoints were combined into a
single lineage, using Bartender clustering to account for sequencing
errors and mutations41. These lineages were used to estimate the
relative fitnesses of segregant-gRNA combinations using PyFitSeq42

(Fig. 1b, Supplemental Figs. 7–10; Supplemental Table 1; Supplemental
Data 6–8). PyFitSeq estimates the fitnesses of lineages relative to the
meanfitnessof thewhole population. Specifically, PyFitSeqmodels the
fitnessof each individual lineage as constant across timeand allows the
mean population fitness to vary over time with changes in the fre-
quencies of different lineages42. Because fitness estimates are relative
to the mean population fitness within an assay, comparing fitnesses
between assays requires a normalization step. To enable comparisons
between assays, we normalized the fitnesses within each assay relative
to the fitnesses of control gRNAs, which target noncoding and
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Fig. 1 | Generating and phenotyping a panel of double-barcoded segregants
carrying CRISPRi perturbations. a Segregant-specific barcodes were first inte-
grated into the genomic landing pad, followed by barcoded CRISPRi constructs.
This resulted in a double barcode within each cell that uniquely identified its spe-
cific segregant-gRNA combination. b Pooled fitness assays were performed. Fit-
nesses were estimated using double barcode amplicon sequencing data from
multiple time points. Density plots showing the fitness of each double-barcode
lineage across either ATC1 and ATC2 (c) or CON and ATC1 (d). ATC1 and ATC2 are
two replicate experimental fitness assays where gRNAs were induced. CON is the
control assay where gRNAs were not induced. e Average fitness values of 74 gRNAs
that directly overlap polymorphisms between BY and 3S, across both experimental
and control assays. 3S alleles at binding sites have imperfect matches with gRNAs.
Boxes indicate interquartile ranges (IQRs), withmedians shown by horizontal lines.
Whiskers indicate a distance of 1.5 IQRs from the upper or lower quartile, up to the

minimum or maximum values. Asterisks and ‘n.s.’ respectively indicate p < 1 × 10−5

and >0.05 via two-sided t test (p value for ATCmatch vs ATCmismatch= 9.3 × 10−09,
p value for CON match vs CON mismatch = 0.837, p value for ATC vs
CON= 3.0 × 10−24). f Distribution of all mean gRNA effects as calculated by the
mixed effects linearmodel. The estimated null distribution is shown by the dashed
line. The threshold used for calling efficacious gRNAs is three standard deviations
below themean of this null distribution (vertical red line). The gRNA effect here is a
mean calculated by averaging across all segregants carrying the gRNA. Density
plots showing the average fitness values for each gRNA across either ATC1 and
ATC2 (g) or CON and ATC1 (h). For each gRNA, replicate barcodes within each
genotypewere averaged before taking themean across all genotypes. In all density
plots, the data points–double barcode lineages in (c) and (d) and gRNAs in (g) and
(h)–are organized in bins to generate heatmaps.
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intergenic DNA. We also adjusted all three assays such that the mean
fitness of all lineages in the CON assay was zero.

Because all three fitness assays contain the same double barcode
lineages, we can directly compare the fitnesses of lineages between
assays. We expected that lineages would have highly correlated fit-
nesses between the two replicate ATC assays. In part, we had this
expectation because we previously showed these segregants have
different fitnesses35,36, implying that a major source of variance in fit-
ness in this study should be baseline fitness differences among seg-
regants. Additionally, we expected that lineages carrying efficacious
gRNAs would have different fitnesses in ATC and CON assays. How-
ever, only a subset of the gRNAs have potent biological effects under
our assay conditions33,34, so we expected that only some lineages
would exhibit differences between ATC and CON. Most lineages
should thus correlate well between ATC and CON due to the lack of
gRNA effects, with the few lineages carrying efficacious gRNAs show-
ing large deviations. Indeed, we found that fitness estimates for the
two replicate ATC assays were highly correlated (Fig. 1c, Spearman’s
correlation: 0.8), and the correlationoffitness estimates betweenCON
and ATC1 was only slightly lower (Fig. 1d, Spearman’s correlation:
0.683). As expected, a subset of lineages showed decreased fitness in
ATC1 compared to CON, presumably because these lineages carry
gRNAs with significant fitness effects.

To identify specific efficacious gRNAs, we used mixed effects
linear models that accounted for both the baseline fitnesses of segre-
gants and themean fitness effects of gRNAs across segregants. For the
remainder of this paper, we use the ‘mean effect’ of a gRNA to refer to
its average fitness effect across all segregants, as estimated from a
mixed effects linear model. Similar to a prior study using the same
gRNA library33, ~33% of gRNAs (2290) had significantmean effects. The
specific gRNAs that were efficacious in our experiment showed sub-
stantial overlap with those identified in the prior study; of 731 gRNAs
previously shown to have an effect, 89% (651) also had significantmean
effects in our data set. To confirm that our technique was capable of
detecting gRNAs with variable effects across segregants, we examined
gRNAs in our library that directly target polymorphic sites. Because
these gRNAs are all specific to the BY genome, a 3S allele at the binding
site is likely to reduce, if not eliminate, gRNA binding and efficacy. For
these gRNAs,we found that segregants with the 3S allele at the binding
site had significantly higher fitness than segregants with the BY allele,
implying that gRNA binding was impacted by the SNP. This difference
in fitness was correlated with the distance between the disrupting SNP
and the protospacer adjacentmotif, with smaller distances leading to a
larger difference between BY and 3S alleles (Supplemental Fig. 11).
Additionally, in the CON assay, where gRNAs are not induced, this
difference was not significant (Fig. 1e, Supplemental Fig. 11 and Sup-
plementalTable 2). This implies that thefitnessdifferences observed in
our assayswere due to the biological effects of the gRNAs, and that our
technique had sufficient precision to detect differences in gRNA
activity across segregants. All gRNAs that bind near polymorphic sites
were excluded fromfurther analysis. As an additional validation,within
the same assay, efficacious gRNAs targeting the same gene had cor-
related effect sizes (Pearson correlation =0.382, p = 5.6 × 10−19; Sup-
plemental Fig. 12). Such a correlation was never observed across 1000
permutations of the same data (Pearson correlations in permutations:
mean= 5.4 × 10−4, min = −0.143, max =0.118; Supplemental Fig. 12).

Because all genes targeted in this study have been previously
annotated as essential under fermentative or respiratory growth
conditions34, we did not expect gRNAs to show positive effects. Thus,
in addition to the ANOVA model, we employed a conservative effect
size threshold to identify efficacious gRNAs. We only considered a
gRNA further if its mean effect was at least three standard deviations
below the mean of a null distribution inferred from the data (Fig. 1f,
Supplemental Data 9). Of the 6977 CRISPRi perturbations in this study
that had invariant binding sites, 1536met all of these criteria, targeting

787 distinct genes (Supplemental Fig. 13). To validate this thresholding
step, a single fitness estimate was obtained for each of these effica-
cious gRNAs by averaging all of its genotype and gRNA barcode
replicates within an experiment. These average fitnesses were highly
correlated between ATC1 and ATC2 (Fig. 1g, Spearman’s correlation:
0.986), but not between ATC1 and CON (Fig. 1h, Spearman’s correla-
tion: 0.198).

A limitation of our method is that it may take time for lineages
harboring efficacious gRNAs to equilibrate after induction. To inves-
tigate this potential time dependence, we re-calculated both fitness
and mean gRNA effect estimates using only the final three time points
from the fitness assays. Mean gRNA effects were higher when only
these ‘late’ time points were used (Supplemental Fig. 14). However, the
fitness estimates from late time points were also less reproducible for
lineages that dropped to low frequency over time, which should occur
if an efficacious gRNA is present (Supplemental Fig. 15). When all time
points were employed, as was done throughout the paper,mean gRNA
effect estimates remained highly correlated with estimates from late
time points (Spearman’s correlation = 0.804), and fitness estimates
weremore reproducible (Supplemental Fig. 15, Supplemental Table 3).

Identification and characterization of background effects
We measured the fitness of each segregant-gRNA combination under
both induced and uninduced conditions, making it possible to expli-
citly test for interactions between gRNAs and segregants using mixed
effect linear models. At a False Discovery Rate of 0.05, 699 of the 1536
efficacious gRNAs had significant background effects based on a gRNA-
segregant interaction term (Supplemental Data 9). These results sug-
gest that segregants do not show major differences in global CRISPRi
efficacy, as the majority of efficacious gRNAs (~54%) have indis-
tinguishable effects across segregants. The minority of gRNAs that
show background effects target 460 distinct genes in total (58% of all
genes targeted by efficacious gRNAs). Prior work acrossmodel systems
has shown that 15%–32% of all genes show background effects13. How-
ever, excluding genes whose perturbation does not show measurable
effects in any individual has been shown to increase estimates of the
prevalence of background effects to as high as 74%–89%13. Thus, the
proportion of genes thatwe identifiedwith background effects is in line
with other studies. For the remainder of this paper, we focus on a
reduced data set, selecting a single gRNA for each of the 460 genes.
Selections were made based on the significance of the background
effect, prioritizing gRNAs with mapped loci (as described later).

We next identified factors that caused gRNAs to show variable
effects across segregants. To compare fitness effects across diverse
gRNAs, we first estimated the effect of each individual gRNA in each
individual segregant using mixed effects linear models. Then, the
mean effect of a gRNA was subtracted from these segregant-specific
values. This assigned a single ‘deviation value’ to each segregant,
representing the difference between the effect of the gRNA in a spe-
cific segregant and its effect on average (Fig. 2a). This process was
repeated for each gRNA, assigning a deviation value to every observed
combination of gRNA and segregant (Fig. 2b, Supplemental Data 10).
We found a slight negative relationship between the deviation values
(the differencebetween the effect of a gRNA in an individual segregant
and the mean gRNA effect) and the baseline fitness of that segregant,
with the same gRNA having a more detrimental effect in higher-fitness
strains (simple linear regression R2 = 0.149, p < 1.0 × 10−100, 95% boot-
strap confidence interval: 0.145–0.152; Fig. 2c). This result is consistent
with prior work on the relationship between the fitness effects of
deleteriousmutations and baselinefitness6. In addition, the varianceof
a gRNA’s deviation valueswas related to itsmean effect size, withmore
detrimental gRNAs showing larger variances (simple linear regression
R2 = 0.543, p = 6.1 × 10−80, 95% bootstrap confidence interval:
0.459–0.618; Fig. 2d, Supplemental Fig. 16). However, highly detri-
mental gRNAs should also have higher variance as a result of increased
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measurement noise, caused by lineages dropping to low frequency
after gRNA induction. These results indicate that the baseline fitness of
a segregant (without any perturbation) and the mean effect of the
gRNA can both impact background effects. Baseline fitness impacts
the direction of a background effect in an individual segregant and
mean gRNA effect impacts the magnitude of background effects
across segregants.

We also determined the extent to which genetic factors segre-
gating in the cross explain the deviations. Using replicated measure-
ments among genotypes and gRNAs, we estimated broad sense

heritability (H2), which measures the total genetic contribution to a
trait43. H2 was 0.737 on average (sd =0.06, min =0.54, max =0.88,
Fig. 3a), implying thatbackground effects identifiedherehave amostly
genetic basis.

All loci contributing to a background effect show epistasis with a
perturbation (pairwise epistasis). However, some loci may interact not
only with a perturbation but also each other (higher-order epistasis).
The relative contribution of pairwise vs. higher-order epistasis under-
lying background effects can be estimated by comparing H2 and nar-
row sense heritability (h2), which measures only the additive genetic
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Missing combinations are shown in gray. Only rows and columns with 30% or less
missing data are shown. c Relationship between baseline segregant fitness and

deviation values for that genotype (n = 170, including 169 segregants and the BY
parent). Dots indicate average deviation value, and lines indicate 2 standard
deviations. The 95% bootstrap confidence interval for the R2 value of 0.149 was
0.145–0.152. d Relationship betweenmean gRNA effect and the standard deviation
(SD) of deviation values for that gRNA, with the best-fit line shown. The 95%
bootstrap confidence interval for the R2 value of 0.543 was 0.459–0.618.
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contribution to a trait43. Using genomic relatedness-based estimation,
we found that h2 was 0.358 on average (sd = 0.193, min = 0, max=
0.775). Thus, 51.4% (1–0.358/0.737) of the genetic basis of background
effects could be attributed to higher-order epistasis on average
(Fig. 3b). Thirty-five of 460 gRNAs (7.6%) were estimated to have zero
narrow-sense heritability. A biological basis for this finding could be
that the effects of these gRNAs depend on higher-order epistasis

between multiple loci and the perturbations18–22. However, it is also
possible this finding is a technical artifact of narrow-sense heritability
estimation.

Hub loci control the phenotypic effects of many gRNAs
We next used linkage mapping to identify interacting loci that cause
gRNAs to show variable effects across segregants. Specifically, we
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treated the deviations as trait values and mapped loci contributing to
these deviations. By definition, loci identified in such scans show
pairwise genetic interactions with gRNAs and play an additive role in
the deviations. Because only 169 segregant genotypes were present in
our data set, statistical power was limited, and we were only able to
detect loci for a subset of the gRNAs. Further, genetic variants that
modify chromatin accessibility near gRNA targetsmay impact CRISPRi
efficacy at those sites. Such variants were a minor contributor to our
data set: we found only 21 gRNAs with detected loci within 10 kb of
their binding site and excluded these cases from subsequent analyses
(Supplemental Table 4). Across the remaining gRNA-targeted genes
with background effects, we detected 234 loci at a permutation-based
significance threshold of -log10(pval) ≥4.21 (Fig. 3c, upper panel, Sup-
plemental Data 11). Of the targeted genes, 172 had a single mapped
locus, 28 had two mapped loci, and two had three mapped loci.

Detected loci were not evenly distributed across the genome
(Fig. 3c, lower panel). Across all loci, the BY allele produced higher
deviation values roughly as often as the 3S allele did (Fig. 3d). On
average, individual loci explained 21% of a deviation’s total genetic
basis (sd = 0.055, Fig. 3e). Of the 234 detected loci, 157 (67.1%) were
grouped into one of four ‘hubs’ that interactedwith a larger number of
genes than expectedby chance. Hubs onChromosomesVII, X,XIII, and
XIV showed linkage to 38, 25, 76, and 18 gRNA-targeted genes,
respectively (Fig. 3f, Supplemental Table 5). Similar results were
obtained from the replicate experimental assay (Supplemental Fig. 17).
The gRNA-targeted genes to which each hub showed linkage were
largely distinct, with only 7 genes connected to multiple hubs. This
result further supports the notion that the segregants do not show
major differences in global CRISPRi efficacy. We also found four other
loci that are likely hubs but did not pass our detection threshold
(Supplemental Fig. 18). Our identification of hubs is consistent with a
recent study in which the fitness effects of transposon insertions were
measured in a panel of yeast segregants and loci were identified that
modified the effects of numerous insertions6. Further, two hubs (Chr
XIII and XIV) and two loci that interacted with multiple gRNAs but did
not pass the threshold to be called hubs (Chr XII and XV) in our study
overlapped multi-hit loci found in this other study.

In addition, we mapped three loci that contribute to the baseline
fitness of the segregants (Fig. 3c). This low number of detected fitness
lociwasdue to the small number of segregants tested. The hubsonChr
X and XIII each overlapped one of these fitness loci, implying that the
same locus can affect both baseline segregant fitness and the effects of
genetic perturbations. We found that 43% of all detected loci with
effects on deviations were mapped to these two hubs. However, as we
show below, these loci had different impacts on baseline fitness and
CRISPRi perturbations.

Properties of hub loci that interact with many genetic
perturbations
We found that the effect of each hub shows a different relationship
with the mean effects of the gRNAs it interacts with. The Chr VII and
XIV hubs exhibit the greatest effects in the presence of gRNAs that
cause the largest fitness deficits. These hubs were not detected as
significant loci during the linkagemapping of baseline fitness (Fig. 3c),

but were instead identified through their interactions with multiple
gRNAs (Fig. 4a, b). In the presence of gRNAs interacting with either the
Chr VII or XIVhub, the 3S allele of the locus becomes beneficial relative
to the BY allele. This is true for all 38 of the gRNAs that interactwith the
Chr VII hub and all 18 of the gRNAs that interact with the Chr XIV hub.
The magnitude of the difference between genotype classes at these
hubs is positively related to the mean effect of a gRNA (Chr VII simple
linear regression R2 = 0.44, p = 6.2 × 10−06; Chr XIV simple linear
regression R2 = 0.63, p = 7.8 × 10−05).

By contrast, the Chr X and XIII hubs show the smallest effects in
the presence of gRNAs that cause the largest fitness deficits. These
hubswereboth detected as significant loci during the linkagemapping
of baseline fitness (Fig. 3c), with the 3S allele again being beneficial.
However, the fitness effects of both hubs are usually attenuated in the
presenceof interacting gRNAs (Fig. 4c, d). This is true for 23 of 25of the
gRNAs that interact with the Chr X hub and all 76 of the gRNAs that
interact with the Chr XIII hub. Unlike the Chr VII and XIV hubs, the
magnitude of the difference between genotype classes at the these
hubs is inversely related to the mean effect of a gRNA (Chr X simple
linear regression R2 = 0.52, p = 4.5 × 10−05; Chr XIII simple linear
regression R2 = 0.57, p = 4.7 × 10−08). Interactions between gRNAs and
hubs can result in masking of a hub’s effect (both Chr X and XIII) or
even sign epistasis (Chr XIII only). These results demonstrate that
genetic perturbations can quantitatively modify the effects of loci,
causing them to show a spectrumof effects in an otherwise genetically
identical population maintained in the same environment.

Insights from the genetic interaction network of the yeast cell
We hypothesized that the interactions between a given hub and dif-
ferent gRNAswere due to a commonunderlyingmechanism.Using the
genetic interaction network from TheCellMap44 and gRNA-targeted
genes to which a hub showed linkage, we obtainedmultiple significant
results from spatial analysis of functional enrichment (Fig. 5)44,45. The
Chr XIII and XIV hubs were enriched for transcription (p ≤ 1.0 × 10−04);
the Chr X and XIII were enriched for mitosis (p ≤0.05); and the Chr VII
and X hubs were enriched for DNA replication and repair (p ≤0.05).
Several hubs alsohad unique enrichments: Chr VII for protein turnover
and cell polarity (p ≤ 1.0 × 10−06); Chr X for glycosylation & protein
folding and MVB sorting & RIM signaling (p ≤ 1.0 × 10−04); and Chr XIII
for rRNA/ncRNA processing and vesicle traffic (p ≤ 1.0 × 10−07). These
data suggest that each hub may act through a distinct combination of
cellular processes to influence the phenotypic effects of genetic per-
turbations. The Chr VII and XIV hubs have similar effects on mean
fitness and deviation values across interacting gRNAs (Fig. 4a, b), but
few functional categories are shared between their interaction net-
works (Fig. 5a, b). The same is true for Chr X and Chr XIII
(Figs. 4c, d, 5c, d), indicating that different mechanisms can produce
similar allelic relationships.

Discussion
We developed a method for quantitatively measuring the effects of
many distinct genetic perturbations in a common panel of individuals
using combinatorial DNA barcoding and CRISPRi. This approach
makes it possible to study interactions between distinct genetic

Fig. 3 | Using deviationvalues as traits in linkagemapping. aHistogramof broad
sense heritability (H2) values for all gRNAswith background effects. bHistogramof
the ratio between narrow sense heritability (h2) and H2 for all gRNAs with back-
ground effects, shown as (1 - h2/H2). c Linkage mapping on deviation values. Upper
panel: Visualization of all 2x-log10(pval) drops for the gRNAs with significant peaks.
Each row is a unique gRNA. Locations of major fitness loci are indicated by black
bars. Lower panel: Number of overlapping 2x-log10(pval) drops at each nucleotide
positionalong the genome.Regionswheremore intervals overlap thanexpectedby
chance (hubs) are shown in unique colors. Vertical lines indicate chromosome

boundaries. Linkagemapping results for the replicate assay (ATC2) are available as
Supplemental Fig. 17. Mapping was performed as described in theMethods section
‘Linkagemapping’.dHistogramof all effect sizes for the detected loci. These values
were obtained from the linear model used for linkage mapping, deviations ~ locus,
taking the coefficient of the locus term. This is roughly equivalent to the difference
between themeandeviation valueof segregants carrying the 3S allele and themean
deviation value of segregants carrying the BY allele. e Histogram of the proportion
of heritability explained by each detected locus, calculated as R2/H2. f Interaction
plots connecting gRNA location to the locations of interacting loci shown in Fig. 3c.

Article https://doi.org/10.1038/s41467-024-48626-1

Nature Communications |         (2024) 15:4234 7



perturbations and segregating loci at the scale needed to obtain fun-
damental insights into background effects. Because our method
requires measuring the frequencies of lineages at multiple time points
and gRNAs may vary in the timing of their efficacy, a limitation is that
fitness and mean gRNA effect estimates can depend on the exact time
points analyzed. Thismeans that theoptimal choice of timepointsmay
need to be empirically determined based on the strains, gRNAs, and
environment under study. In our experiment, we employed time
points spanning the entire assay in order to maximize the reproduci-
bility of fitness estimates. Relative to using only late time points, this
choice may have led to the underestimation of some mean gRNA
effects. However, the strong correlation between mean gRNA effects
estimated from all and late time points suggests our findings on the
relative effects of genetic perturbations across individuals are robust.

By applying our approach to 169 yeast segregants and 1536 effi-
cacious gRNAs, we found that the effect of a genetic perturbation
depends on baseline fitness (i.e., the fitness of an individual in the
absence of a perturbation), the mean fitness impact of the perturba-
tion across individuals, and the specific alleles carried by an individual
at interacting loci. Our findings do not appear to be driven by major
differences in global CRISPRi efficacy, as most efficacious gRNAs do
not show background effects and hubs interact with different sets of
gRNAs. Further, variation in chromatin accessibility at gRNA target
sites cannot explain our results because the vast majority of loci that
contribute todeviations did not occur near gRNA target sites. Basedon
the heritability explained by detected loci, we can infer that there are

likely to be multiple interacting loci contributing to each background
effect. Comparison of our broad- and narrow-sense heritability esti-
mates suggests substantial variability in the extent to which loci
underlying background effects interact not only with genetic pertur-
bations, but also each other. The large number of perturbations in our
data allowed us to determine the degree to which segregating loci
interact with different perturbations. While some loci interact with
only one perturbation, we identified several hub loci that interact with
numerous perturbations, implying that responses to many different
perturbations can have a shared genetic basis.

Perturbation-locus genetic interaction networks like the one
described here have been historically difficult to map because they
require introducing and quantitatively phenotyping a large number of
genetic perturbations in a large number of individuals. These pre-
viously unmeasured networks shape how individuals respond to dif-
ferent perturbations. Features of these networks likely impact how
genetic background shapes the effects of perturbations, leading to
incomplete penetrance, variable expressivity, and differences in
robustness to perturbations. Theymight also control whichmutations
are deleterious or beneficial, thereby influencing evolutionary trajec-
tories. Similar to more well-described networks between genetic per-
turbations alone46 or between natural variation alone35,47, perturbation-
locus networks appear to contain many nodes with few interactions
and few nodes with many interactions. Further study is needed to
determine how these different types of genetic networks relate to
each other.
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Fig. 4 | Features of and comparisons between hubs. Effects of the Chr VII (a), XIV
(b), X (c), and XIII (d) hubs on mean fitness and deviation value across gRNAs that
interactwith each hub. Dot plots in upper panels: Effects of the hubonmeanfitness
when each interacting gRNA is induced. Control indicates a subset of 1294 gRNAs
with no phenotypic effect in our data set, as determined by gRNAs with p-values
greater than 0.8 for both themean effect term and the background effect term in a
mixed effects linear model (see Methods section ‘Identification and quantification
of gRNA effects’). Orange points show themean fitness of all genotypes with the 3S
allele at the peak marker for that gRNA’s interacting locus and green points show

genotypes with the BY allele. The fitnesses of replicate barcodes were averaged
before calculating themean for each genotype. Vertical bars for each point indicate
standard error. The control data used the center of the hub instead of a peak
marker. The gRNAs areordered on thex-axis by themagnitudeof theirmeaneffect.
Barplots in lower panels: Effects of a hub on deviation values across interacting
gRNAs. The change in deviation values was calculated by taking the mean of all
deviation values among genotypes with the 3S allele at the peak marker and sub-
tracting themean of all deviations among genotypes with the BY allele. The control
data has no deviation values.
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The measurable perturbation-locus network will depend on the
genetic variation segregating among examined individuals, and this
will necessarily be a subset of the full perturbation-locus network
within a species. To simplify this problem, we focused on a sys-
tematic analysis of the perturbation-locus network between two
haploid strains, BY and 3S. The current study could not fully map the
network of interactions between perturbations and loci in the BYx3S
cross due to the modest number of assayed segregants. This sample
size was chosen to facilitate examination of a genome-scale gRNA
library, with the expectation that many gRNAs would not be effica-
cious under our assay conditions. These results now enable follow-up
studies with more segregants and fewer gRNAs. Such studies will
facilitate the detection of many more loci that interact with pertur-
bations and thereby comprehensive mapping of the network of
interactions between perturbations and loci in this cross. The ulti-
mate goal of this line of study would be to predict the outcome of a
perturbation in an unseen genetic background with potential
lessons for therapeutic genome editing, crop and livestock
improvement, and engineering of cells and microorganisms for
industrial applications.

Methods
Generation of barcoded haploid segregants
The barcoded BYx3S MATɑ segregants in this study were previously
reported35,36. In brief, all segregants were tetrad dissected from a cross
between fcy1Δ flo8Δ flo11Δ ura3Δ versions of BY and 3S that both car-
ried the same genomic landing pad at the neutral YBR209W locus. The
fcy1Δ ura3Δ deletions provide counterselectable markers, while the
flo8Δ flo11Δ deletions eliminate cell-cell adhesion phenotypes, such as
flocculation. The genomic landing pad contains multiple partially-
crippled loxP sites in close proximity, in addition to a galactose-
inducible Cre recombinase. To barcode segregants, we individually
transformed them with a plasmid library containing 20-nucleotide
random barcodes, integrated plasmids into the landing pad by Cre/
loxP-mediated recombination, and obtained random integrants. The
barcodes present in the segregants, as well as segregant genotypes,
were then determined viamultiple IlluminaHiSeq 2500 lanes36. Briefly,
six HiSeq lanes were used to perform whole-genome sequencing on
each individual segregant, with reads mapped against the S288c
reference genome R64-2-1_20150113 using BWA48. SAMTOOLS49 was
used to convert alignments to pileups, from which high-confidence

a b

c dChr X Hub Chr XIII Hub

Chr XIV HubChr VII Hub

Fig. 5 | Interaction networks for each hub. Visualization of the interaction networks for the Chr VII (a), XIV (b), X (c), and XIII (d) hubs via spatial analysis of functional
enrichment44,45. A list of all genes targeted by a gRNA in this hub were used as a query at thecellmap.org to create these images, at a significance of p ≤0.05.
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SNP lists were generated. Segregant barcodes were identified using a
separate HiSeq 2500 lane, in which the barcode was PCR amplified
from each segregant using specific primers. After being isolated from
sequencing reads, barcodes were clustered using Bartender41, with
clusters making up greater than 5% of all reads from a segregant being
assigned as its true barcode.

CRISPRi plasmid construction
The pE32 CRISPRi plasmid was constructed using plasmids pKR387,
pKR482, and pKR919. An annotated plasmidmapof pE32 is available in
the supplementary information. To construct the pE32 CRISPRi plas-
mid, a C to T synonymousmutation was first introduced at amino acid
position 1319 (Glycine, GGC - > GGT) of dCas9 on pKR387 to remove an
AscI recognition site using the QuikChange II site-directed mutagen-
esis kit (Agilent #200523). The resulting product was transformed into
NEB 10-beta cells using a standard heat shock protocol and transfor-
mants were selected on LB agar plates with 100μg/mL of carbenicillin.
From this pKR387 plasmid with the mutated dCas9, a DNA fragment
containing a GPM1 promoter, tetR gene, GPM1 terminator, TEF pro-
moter, dCAS9, MxiI repressor domain, and CYC1 terminator was
amplified by PCR. The resulting product was inserted into linearized
pKR482 using NEBuilder HiFi DNA assembly kit (NEB E5520S) and
transformed into 10-beta cells. Transformants were selected on LB
agar plates with carbenicillin, and the resulting plasmid was named
pSL25. This pSL25 plasmidwas linearizedwith AscI andClaI and ligated
with a double-stranded oligonucleotide containing a partially crippled
Lox66 site using T4 DNA ligase (NEB M0202S). The ligation product
was transformed into 10-beta cells, selected on LB agar plates with
carbenicillin, and named pSL55. Finally, a DNA fragment containing
RPR1 promoter, tetO sequence, and a hammerhead ribozyme
sequence was amplified from pKR919 by PCR. The hammerhead
ribozymewas included because preliminary experiments found that it
improves gRNA efficacy in CRISPRi. The PCRproductwas inserted into
pSL55, which was linearized with SpeI and BspQI, using NEBuilder HiFi
DNA assembly kit. The resulting productwas transformed into 10-beta,
selected on LB agar plates with carbenicillin, and named pE32.

Generation of the CRISPRi library
All CRISPRi gRNAs used in this paperwere previously generated33,34. To
generate the CRISPRi plasmid library for this paper, ~20,000 arrayed
yeast strains34, each containing a unique chromosomally-encoded
gRNA, were plated onto YPD agar plates with 300μg/mL of Hygro-
mycin B in a 384-well format using Singer ROTOR. The yeast cells were
grown overnight at 30 °C. Although these yeast strains are genetically
identical except for the 20bp gRNA, heterogeneity in growth was
observed across yeast strains. To minimize bias in gRNA frequency,
equal amounts of each overnight colony were transferred into 200μL
of water using the ROTOR. Cells containing essential gRNAs targeting
essential and non-essential genes were then pooled separately and
spun down at 3000 rpm for 15min prior to genomic DNA extraction.
Genomic DNA was extracted using MasterPure yeast DNA purification
kit (Lucigen MPY80200). A DNA fragment containing a gRNA with the
tracrRNA scaffold sequence, URA3 promoter, 5’ half of URA3, an arti-
ficial intron, and an I-SceI cut site was amplified from the pooled
genomic yeast DNA. The reverse primer used to amplify this region
contained a random 20bp sequence, which was used to mark each
gRNA with an unique barcode. To minimize PCR bias, the amount of
DNA required for amplification was calculated such that each gRNA is
represented by ~1000 DNAmolecules. A total of 330 ng and 270 ng of
yeast genomic DNA was used as template for amplification of ~11,000
non-essential and ~9000 essential gRNAs, respectively. The resulting
product was inserted into pE32, which was linearized with BspQI and
AscI, usingNEBuilderHiFi DNAassembly kit. The resulting productwas
transformed into 10-beta cells and selected on LB agar plates with
carbenicillin. To ensure high barcode complexity, ~110,000 and

~90,000 transformation colonies were scraped and pooled prior to
plasmid extraction.While the CRISPRi library used in this study initially
had a library size of ~20,000 gRNAs, a previously unknown design
issue with the non-essential plasmid library affected growth on selec-
tivemedia, resulting in substantial depletion of non-essential gRNAs in
the T0 pool. As a result, all non-essential gRNAs were excluded from
analyses, which had a minor impact on our total data. Raw data from
non-essential gRNAs is included in the Supplementary Information.

Linking barcodes to gRNAs in the CRISPRi library
The CRISPRi library was initially generated using fully randomized
barcode sequences, necessitating a linkage step to connect known
gRNAs with their barcodes. To link barcodes and gRNAs, the full
plasmid library was sequenced using a PCR-free library preparation
method andOxford NanoporeMinION. The SQK-LSK109 protocol was
used to prepare this sequencing library, with elution steps after bead
cleanup performed at 37 °C for 10min to increase yield. Sequencing
wasperformedonR9.4.1 ChemistryMIN-106 flowcells. Basecallingwas
performed on the USC Center for Advanced Research Computing
Discovery cluster. We ran Guppy v6.0.1 with the configuration
dna_r9.4.1_450bps_sup.cfg on a single nodewith 16 threads and a V100
GPU. After basecalling, we first mapped the gRNA portion of a read to
its bestmatch among the knowngRNAs and thenmapped the barcode
portion of read to its best match among the known gRNA barcodes
from barcode sequencing of the T0 pool. Fuzzy string matching was
done in Python using the process.extractOne() function in the rapid-
fuzz library50.

Transformation of haploid strains with the CRISPRi library
The strains used in this studywere randomly selected from the haploid
panel described above. All selected strains were individually trans-
formed with the full CRISPRi library, using a modified version of the
standard lithium acetate protocol51 that scaled up all volumes by a
factor of 10. Roughly 8.0 × 108 cells and 30μg of plasmid library were
used for each transformation. Immediately after transformation, cells
were grown in 3.4mL of YP + Galactose liquid media for 18–20h to
induce integration of the plasmid while minimizing cell division. After
induction, cultures were grown in SC - URA liquid media in order to
select for cells that successfully integrated the plasmid. Since SC - URA
is not immediately lethal to non-integrated cells, cultures were first
grown in 60mL of selective media for 48 h. Next, 20mL of the culture
was combinedwith 40mL fresh SC - URA to perform a second setback.
This two-step enrichment was done to ensure that as many cells in the
cultures were true integration events and tomaintain the barcode and
gRNA diversity among yeast transformants. After enrichment, 12.5mL
of the stationary phase culture was saved and frozen as a freezer stock.

Fitness assay
One full freezer stock from each transformed segregant (roughly
1.25 × 108 cells) was used for the fitness assay, regardless of transfor-
mation efficiency. This value was chosen assuming a roughly uniform
distribution of gRNA frequency within each segregant, leading to an
expectation of ≥104 cells per lineage. All freezer stocks were thawed
and grown to stationary phase in SC - URA liquid media. Then, 10mL
from each culture (roughly 2 × 109 cells) was combined to generate a
2.5 L T0pool.Multiple T0 cell pellets were frozen for fitness assays and
DNA extraction. To begin the assay, 250mL of the T0 pool (roughly
5 × 1010 cells) was thawed and inoculated into 750mL fresh SC - URA
liquid media. To induce gRNA expression, ATC was added to experi-
mental flasks (assays) at a final concentration of 250ng/mL. ATC was
not added to the control assay. To generate the first time point (T1),
assays were grown for 24 h at 21 °C with shaking. The majority of the
culture was harvested and saved as a frozen cell pellet, while the
remaining 250mL was inoculated into 750mL of fresh media and
grown for another 24 h. This process was repeated to generate the
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remaining time points (T2 through T7). The ATC1, ATC2, and CON
assays were grown, harvested, and diluted in parallel, under identical
growth conditions.

Library preparation for barcode sequencing
DNA was extracted from frozen cell pellets using the Zymo Research
Quick-DNA Fungal/Bacterial Midiprep Kit, with roughly 120μg
extracted from each time point. In order to separate the barcode
region from the rest of the genome, extracted DNA was digested for
18 hwith the restriction enzyme I-SceI. The ~250 bpbarcode regionwas
then isolated from the genomic DNA via a standard AMPure XP bead
cleanup protocol. Briefly, cleanup was performed by incubating DNA
with 0.4X beads for 15min, taking the supernatant and incubatingwith
0.8X beads for 15min, then discarding the supernatant and washing
DNA off the beads. 70% Ethanol washes were performed between each
step. Total DNA after bead cleanup ranged from around 20μg to
30μg. The resulting DNA was first amplified with a 5-cycle PCR with
Phusion polymerase, using 200ng of input DNA and primers specific
to the double barcode region. These primers were:
1. AATGATACGGCGACCACCGAGATCTACACNNXXXXNNACACTC

TTTCCCTACACGAC
2. CAAGCAGAAGACGGCATACGAGATNNXXXXNNGTGACTGGAGT

TCAGACGTGTGCTCTTCCGATCT

The N’s in the above sequence represent the random unique
molecular identifiers (UMIs) used to account for and eliminate PCR
duplicates that could appear in later amplification steps. The X’s
represent Illumina multiplexing indices used to enable eventual
pooling of multiple libraries onto a single sequencing lane. To ensure
consistency of the PCR protocol, each library was split in half on this
step, with each aliquot amplified with a different set of multiplexing
indices. Final results and data output were similar across all index
combinations for each library.

After the first PCR step, all products were pooled together and
purified with Zymo Research DNA Clean & Concentrator-5 columns,
using 150μL of PCR product per column and eluting into 30μL. The
purified product was used to set up a second 26-cycle PCR with Phu-
sion polymerase, using 15μL of template. Universal Illumina primers P1
and P2 were used for this reaction. All PCR products from this reaction
were pooled and put through another Clean &Concentrator-5 column,
with 375μL of product per column, and eluted into 35μL. The cleaned
product was re-pooled, and the 200–300bp region was extracted via
agarose gel electrophoresis. DNA was recovered from the gel using
Zymo Research Zymoclean Gel DNA Recovery Kits and Clean &
Concentrator-5 columns. The purity and concentration of the final
library was assessed using Life Technologies Qubit 2.0 and Thermo
Fisher NanoDrop ND-1000 Spectrophotometer. The structure,
sequence, and diversity of each library was verified via Sanger
sequencing.

Barcode sequencing
150 bp paired-end sequencing was performed for all time points, on
either a NovaSeq 6000 or a HiSeq 4000 platform. Up to three multi-
plexed time points were included on each NovaSeq lane, with each
time point being allocated roughly 800 million reads regardless of
platform. Each sequencing lane was performed with 25% PhiX spike-in
to ensure nucleotide diversity during the run, since themajority of the
amplicons consisted offixedbases. Sequencing datawas analyzedwith
custom-written code in Python andR. For the initial processing of large
files, USC’s Center for Advanced Research Computing Discovery
cluster was used. Reads were sorted based on several multiplexing
indices unique to each time point. Forward reads were used to extract
gRNA barcodes and reverse reads were used for genotype barcodes,
with reads filtered out if the expected fixed nucleotides did not appear
immediately downstream of either barcode. These downstream

sequences are CCCGAGTCGCGATAA and TACCGTTCGTATAGG for
the gRNA and segregant barcodes, respectively. Reads were also fil-
tered out if the first 35 bases of either the forward or reverse read had
an average Illumina quality score below 30.

Consistent with previous publications30,31,35, very similar barcodes
were clustered together and treated as the same sequence in order to
minimize the effects of sequencing errors and random mutations on
barcode counts. Clustering was performed using both Bartender41

software and the rapidfuzz package (v2.13.0)50, and was done sepa-
rately for genotype and gRNA barcodes. First, a list was generated of
every unique barcode detected across all time points by the extraction
method described above. Consensus sequences were identified from
this input using Bartender, with the merging threshold disabled (-z -1)
to avoid frequency-based clustering. Each consensus sequence was
then compared against the entire list of verified reference barcodes
using rapidfuzz, with similarity scores of 90 or higher considered a
match. This threshold is roughly equivalent to a 1–2 nucleotide dif-
ference between the Bartender consensus sequence and the known
reference barcode. The majority of reads clustered and matched this
way (>95%) were associated with a perfectly-matched reference bar-
code (score = 100). Reference lists for genotype barcodes were
obtained through separate HiSeq 4000 lanes on pooled segregant
barcodes36, in addition to Sanger sequencing on individual segregants.
Reference lists for gRNA barcodes were obtained from separate
Nanopore sequencing lanes (see section ‘Plasmid Library Preparation’
for more detail).

After clustering, the frequency of each double barcode in each
time point was calculated. Barcode amplicons undergo PCR before
being sequenced, and PCR duplicates can cause significant bias if they
are not removed when calculating frequencies. To account for this, a
random 4-mer UMI was added to every multiplexing index during the
library preparation, for a total of 8 random nucleotides per fragment.
TheseUMIs, which are added on an early step of PCR, are distinct from
the 20-nucleotide barcodes described above, and are only used to
eliminate PCR duplicates. Because the total number of possible
8-nucleotide combinations (48 = 65,536) is significantly higher than the
expected number of reads for any individual double-barcode frag-
ment, it is unlikely that the same DNA template will contain the same
UMIs by chance. This can facilitate estimation of barcode frequencies
by counting unique UMIs detected for each double barcode. However,
UMI-containing primers were not fully removed from the sample by
PCR cleanup kits due to their large size (>50 bp), causing unique UMIs
to be added in all stages of PCR, not just the first few cycles. Thismeant
that not every PCRduplicate could be identified via UMIs and removed
from our frequency measurements.

Removing PCR chimeras
The double barcode constructs in this study consist of two highly
variable barcodes separatedby a regionof invariant nucleotides,which
can enable the production of spurious double barcodes (chimeras)
during PCR52. To quantify and account for chimeras, we chose ~10
individual segregants and extracted their barcodes in isolation from
each other. These individually-prepared segregants were sequenced
via the methods described above on the HiSeq 4000 platform. Since
segregants were completely isolated during this library preparation,
there was no opportunity for PCR chimeras to be generated. This
allowed us to construct a high-confidence list of the true gRNA bar-
codes present in those 10 segregants, which in turn identified double
barcodes from the fitness assay data that were likely chimeras. The
number of double barcodes per segregant identified as chimeric based
on invalid combinations of barcodes from this data was consistently
<10%. Tomore broadly correct these data for chimeras, a linearmodel
was fit for the frequency of each known chimera as a function of the
total frequency of the corresponding segregant and gRNA barcodes in
that sequencing lane: (frequency of chimera) ~ (total frequency of
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segregant barcode) + (total frequency of gRNA barcode). This linear
modelwasfit separately in four early timepoints fromthefitness assay,
and the coefficients were averaged across the four models. The final
model was used to correct every double barcode’s calculated fre-
quency in each time point for its expected number of chimeras, with
corrected double barcode frequencies set to a minimum of zero.

Fitness estimation
Fitness estimationwas performed as previously reported42, withminor
edits to adapt themethod to our fitness assay. Specifically, differences
in coverage between time points (Supplemental Table 1) were first
accounted for by normalizing read counts. This was done by dividing
each read count by the total number of reads from that time point. All
read counts were then multiplied by the same arbitrary value
(450,000,000, roughly the number of reads present in T0). PyFitSeq42

was used to estimate fitness of each double barcode lineage, which
consisted of normalized read counts from five separate time points.
PyFitSeq is commonly used software for fitness estimation in barcode
sequencing studies42. This software infers the fitnesses of lineages
relative to the whole population based on changes in lineage fre-
quencies over time, to determine the fitness of each lineage relative to
the mean of the population at T0. The mean population fitness is
allowed to vary over time as different lineages proliferate or decline in
frequency, but the fitness of each individual lineage is fixed across all
time points. Fitness estimates are used to project lineage trajectories,
these projected trajectories are compared to observed trajectories,
and are adjusted over the course of multiple iterations until an opti-
mum is reached. The maximum number of iterations was set to 200,
and all default PyFitSeq settings were used otherwise. Lineages were
removed from the data set if their log likelihood score was one inter-
quartile range below the first quartile, or if <5 readswere present at the
first time point (T0), as both cases led to inaccurate fitness estimates.
Additionally, segregants with <100 associated gRNAs were removed
from the data set entirely, as were gRNAs with <2 associated
segregants.

PyFitSeq generates fitness estimates that are relative to the mean
population fitness of each assay at T0, so any small differences
between the mean fitness of each assay must be corrected via nor-
malization. This allows the fitness estimates to be compared between
different assays, and is done by selecting a subset of lineages that is
expected to have the same fitness in all three assays. This normal-
ization was performed using 83 control gRNAs that target intergenic
and noncoding regions as the common reference point across the
three assays. For each of the control gRNAs, the average fitness of
every lineage carrying that gRNAwas determined. Six of the 83 control
gRNAs were removed at this step, as their average fitness was below
zero and they had inconsistent effects between the experimental and
control assays. After taking the average fitness of every gRNA, the
median of these values was used to normalize all three assays. Speci-
fically, the difference in these medians between ATC1 and CON was
subtracted from the fitness of every lineage in ATC1, and this process
was repeated for ATC2. Normalization was then performed by taking
the difference in median fitness among the neutral gRNAs between
ATC and CON assays, with both ATC assays normalized to CON.

To ensure the validity of this normalization method, two other
common reference points were chosen. Both of these leveraged the
fact that we do not expect any gRNAs to have positive effects in our
data set. The first additional reference point was the set of all gRNAs
whose average fitness was higher in both experimental assays than in
the control assay. The second additional reference point was the set of
all gRNAs whose average fitness appeared in the 4th quartile of all
three assays. Normalizing with respect to both of these additional
reference points produced similar values to normalizing via the
control gRNAs.

Finally, to aid in interpretationof thefitness values,we adjusted all
fitness estimates in all assays by the same value, such that the mean
fitness of all lineages in CONwas exactly zero. This was done to ensure
that neutral lineages with no major fitness effects were as close as
possible to an intuitive fitness value of zero, which is not produced by
PyFitSeq by default. Because our analysis only concerns comparisons
between fitness values, shifting the entire data set in this way has no
impact on the following analysis.

Identification and quantification of gRNA effects
After assays were normalized, mixed effects linear models were used
to determine if gRNAs had a significant mean effect across all segre-
gants, and if any background-specific effects were present. Here, we
use ‘mean effect’ to refer to the impact a gRNA has on fitness on
average, when considering all genotypes together. This is distinct from
the genotype-specific deviation values discussed elsewhere in this
study. The mean effect of each gRNA was determined by first identi-
fying the subset of all lineages carrying that gRNA, then comparing the
fitnesses of these lineages across one experimental assay (ATC1) and
the control assay (CON) usingmixed effectsmodels. Themixed effects
modelfitness ~ segregant + gRNA+ errorwasfit to this subset of lineages
using the lme() function in the nlme package in R (v3.1.160)53. Here, the
segregant term was treated as a random effect and the gRNA term was
treated as a fixed effect. All lineages from the control assay were
assumed to lack the perturbation (gRNA =0), and all lineages from the
experimental assay were assumed to have the perturbation present
(gRNA = 1). If the addition of a genotype:gRNA interaction term sig-
nificantly improved model fit, the model fitness ~ segregant + gRNA +
segregant:gRNA + error was used for that gRNA instead. Regardless of
model, if the p value for the gRNA termwas significant after Benjamini-
Hochberg multiple testing correction, the perturbation was con-
sidered to have a potential mean effect. Among the gRNAs with mean
effects, if the p value for the gRNA:genotype interaction term was also
significant after Benjamini-Hochberg multiple testing correction, the
gRNA was considered to have a background-dependent effect. This
was repeated for each individual gRNA. After all gRNAs had been tes-
ted for effects, this process was repeated using the second replicate
experimental assay (ATC2) rather than ATC1.

Mean gRNA effects were estimated by extracting the gRNA term
coefficient from the appropriate linear model described above. This
was done for all gRNAs, regardless of their effects. Analysis of the
control data indicated that some gRNAs had leaky expression, having
similar mean effects across both experimental and control assays.
The linear models described above also removed these gRNAs from
the data set, as the mean gRNA effect was determined by comparing
the same gRNA between ATC and CON assays. We found that the p
value threshold described above was not sufficiently stringent to
identify efficacious gRNAs. To set a conservative threshold for effi-
cacious gRNAs, we took the subset of gRNAs with neutral or bene-
ficial effects and simulated a normal distribution from this data.
Perturbations were only considered to have a mean effect if they
were also at least three standard deviations below the median of this
simulated distribution.

In the case that a background-specific effect was detected using
the method described above, segregant-specific model coefficients
were extracted using the predict() function in R. This provided an
estimated gRNA effect for every segregant in which that gRNA occurs.
The overall mean gRNA effect was then subtracted from these values,
giving us segregant-specific deviation values. These represent the
direction andmagnitude of each segregant’s response to a gRNA after
correcting out the gRNA’s mean effect. Segregants with insufficient
data to obtain a coefficientwere excluded from this calculation. gRNAs
with deviation values for less than 35 segregants (~20%) were excluded
from further analysis.
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Linkage mapping
Linkage mapping was performed individually for each gRNA using
deviation values as phenotypes. For each gRNA, we performed
genome-wide scans using the lm() function in R, with the model
lm(deviations ~ locus). Significance thresholds were determined by
running 1000 permutations in which a random gRNA was chosen, its
deviations were randomly shuffled, and the lowest p value was saved.
From these 1000 p values, the 5th percentile was used as the sig-
nificance cutoff for the respective linkage mapping model. Peak
detection was performed by taking 2x-log10(p value) drops for each
locus that was both above the significance cutoff and at least 100 kb
away from any other 2x-log10(p value) drop. Any loci for which the
gRNA’s binding location was <10 kb away from the peak marker were
excluded from analysis. These could potentially represent poly-
morphisms that disrupt a gRNA target site or that impact gRNA
binding bymodifying local chromatin accessibility. In total, 655 gRNAs
were removed this way. Thus, local variation in chromatin did not have
a major impact on our study.

Heritability estimation
Reproducibility of gRNA effects across ATC1 and CON assays was used
to estimate broad-sense heritability. This was possible due to the
replication present in the data set, with most gRNAs and many segre-
gants each represented by multiple distinct barcodes. First, a mean
fitness estimate for each segregant was obtained from the CON assay
and control gRNAs. Then, for each gRNA, these segregant fitnesses
were subtracted from each corresponding double barcode fitnesses
from the ATC1 assay, providing a gRNA effect estimate for every
individual double barcode. These estimates were used to fit the linear
model guide_effect ~ genotype. Using this model, broad-sense herit-
ability for each gRNA was determined by taking the sum of squares
between genotypes and dividing by the total sum of squares. Narrow-
sense heritability was estimated using the sommer package in R
(v4.3.2)54. The A.mat() function was used to generate an additive rela-
tionship matrix from the deviation values previously generated for
each segregant-gRNA combination, and the mmer() and vpredict()
functions were used to generate the narrow-sense heritability estimate
from this matrix.

Analysis of hub loci
Asignificance threshold fordetectinghubswas calculatedby assuming
a random distribution of intervals across the genome55. Specifically,
the genome was split into 20 kb bins and a threshold was set at 0.05/
(number of bins). A Poisson distribution was used to determine the
number of overlapping intervals per bin that would result in a p value
below this threshold. For this Poisson distribution, lambda was set as
(total length of all detected 2x-log10(p value) drops in bp)/(total length
of the yeast genome in bp). Hubs were defined as adjacent loci with
counts (number of overlapping intervals) above this threshold. The
locuswith the highest countwas selected as themarker for that hub. In
the case of ties, the genomic positions of the tied loci were averaged,
and the locus closest to the average was used as the marker. All gRNA-
targeted genes whose 2x-log10(p value) drops overlapped this marker
were considered a part of that hub. The effect of each hub locus on
deviation value in the context of interacting gRNAswas extracted from
the linear model used for linkage mapping lm(deviations ~ locus), tak-
ing the coefficient of the locus term. Proportion of broad-sense herit-
ability explained by the hub locus for each gRNA was also calculated
this way, by taking the variance explained by themodel and dividing it
by the broad-sense heritability estimate for that gRNA. TheCellMap
analysis was performed by uploading lists of genes comprising each
hub to thecellmap.org and downloading enrichment tables and
visualizations44. Data visualization was performed using the circlize
(v0.4.15)56 and ggplot2 (v3.4.3)57 packages in R.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The barcode sequencing data generated in this study have been
deposited in the NCBI Sequence Read Archive Bioproject under
accession code PRJNA986287. Data used to generate figures are
available through the SourceData file. Supplemental data files 1–14 are
available both as Supplementary data files and through Figshare at:
https://figshare.com/s/c4c90d476ae701a6cf16. The S288c reference
genome data used in this study is available at http://sgd-archive.
yeastgenome.org/sequence/S288C_reference/. The data used for spa-
tial analysis of functional enrichment via TheCellMap is available at
https://thecellmap.org/. Source data are provided with this paper.

Code availability
All code used for data processing and analysis is available through
Figshare at: https://figshare.com/s/c4c90d476ae701a6cf16.
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