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The chromatin landscape of pathogenic
transcriptional cell states in rheumatoid
arthritis
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Laura T. Donlin 8,9, Kevin Wei 1 & Soumya Raychaudhuri 1,2,3,4,5,10

Synovial tissue inflammation is a hallmark of rheumatoid arthritis (RA). Recent
work has identified prominent pathogenic cell states in inflamed RA synovial
tissue, such as T peripheral helper cells; however, the epigenetic regulation of
these states has yet to be defined. Here, we examine genome-wide open
chromatin at single-cell resolution in 30 synovial tissue samples, including
12 samples with transcriptional data in multimodal experiments. We identify
24 chromatin classes and predict their associated transcription factors,
including a CD8 +GZMK+ class associated with EOMES and a lining fibroblast
class associated with AP-1. By integrating with an RA tissue transcriptional
atlas, we propose that these chromatin classes represent ‘superstates’ corre-
sponding to multiple transcriptional cell states. Finally, we demonstrate the
utility of this RA tissue chromatin atlas through the associations between
disease phenotypes and chromatin class abundance, as well as the nomination
of classes mediating the effects of putatively causal RA genetic variants.

Rheumatoid arthritis (RA) is a chronic autoimmune disease that
affects ~1% of people in North America and Northern Europe1. In RA,
the synovial joint tissue is infiltrated by immune cells that interact
with stromal cells to sustain a cycle of inflammation. Untreated, RA
can lead to joint destruction, disability, and a reduction in life
expectancy2. The heterogeneous clinical features of RA, including
differences in cyclic citrullinated peptide antibody autoreactivity3,
underlying genetics4,5, and response to targeted therapies6–10, render

it challenging to construct generic treatment plans that will be
effective for most patients.

Recent studies have taken advantage of single-cell technologies
to define key cell populations that are present and expanded in RA
tissue inflammation11–14, demonstrating both the heterogeneous
nature of tissue inflammation and the promise to identify novel tar-
geted therapeutics for RA. Our recent Accelerating Medicines Part-
nership Program: Rheumatoid Arthritis (AMP-RA) reference study14
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comprehensively classified pathogenic transcriptional cell states
within synovial joint tissue using single-cell CITE-seq15, which simul-
taneously measures mRNA and surface protein marker expression at
the single-cell level. Within 6 broad cell types (B/plasma, T, NK,
myeloid, stromal [fibroblast/mural], and endothelial), the study
defined 77 fine-grain cell states. Many of these cell states have been
previously shown to be associated with RA pathology: for example,
CD4+ T peripheral helper cells (TPH)11,12, HLA-DRhi sublining
fibroblasts11, proinflammatory IL1B+ monocytes11, and autoimmune-
associated B cells (ABC)11,16. However, we have a limited under-
standing of the chromatin accessibility profiles that underlie these
pathogenic synovial tissue cell states.

Open chromatin at critical cis-regulatory regions allows essential
transcription factors (TFs) to access DNA and epigenetically regulate
gene expression17. Chromatin accessibility is a necessary, but not suf-
ficient, condition for RNA polymerases to produce transcripts at gene
promoters18. Therefore, one possibility is that each transcriptional cell
state has its own unique chromatin profile19, which we will denote as a
chromatin class. Alternatively, multiple transcriptional cell states
could share a chromatin class if the cell states were dynamically tran-
sitioning from one to another in response to external stimuli without
altering the chromatin landscape19. In RA, those external stimuli could

be cytokines that activate TFs to induce the expression of key genes
and drive pathogenic cell states20. For example, NOTCH3 signaling
propels transcriptional programs coordinating the transformation
from perivascular fibroblasts to inflammatory sublining fibroblasts21.
Similarly, exposure to TNF and interferon-γ promotes the differentia-
tion of monocytes into inflammatory myeloid cells22.

Here, we characterize synovial cells from patients with RA or
osteoarthritis (OA) using unimodal single-cell ATAC-seq (scATAC-seq)
and multimodal single-nucleus ATAC-seq (snATAC-seq) and RNA-seq
(snRNA-seq) technologies to compare chromatin classes to transcrip-
tional cell states (Fig. 1a). Our results support a model of open chro-
matin superstates shared by multiple fine-grain transcriptional cell
states. We show these superstates may be regulated by key TFs and
associated with clinical and genetic factors in the pathology of
RA (Fig. 1a).

Results
Quality control of unimodal scATAC-seq and multimodal
snATAC-seq synovial tissue datasets
We obtained synovial biopsy specimens from 25 people with RA and 5
with OA and disaggregated cells using well-established protocols from
the AMP-RA/SLE consortium23 (Methods). We conducted unimodal
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Fig. 1 | Study overview and open chromatin broad cell type identification.
aStudyoverview. Synovial biopsy specimens fromRAandOApatientswereutilized
for unimodal scATAC-seq and multimodal snATAC-seq + snRNA-seq experiments.
CITE-seq on similar specimens was performed in the AMP-RA reference study14. We
defined chromatin classes using the unimodal scATAC-seq and multimodal
snATAC-seq data and compared them with AMP-RA transcriptional cell states14

classified onto the multiome cells. We further defined transcription factors likely

regulating these chromatin classes and found putative links to RA pathology by
associating the classes to RA clinical metrics, RA subtypes, and putative RA risk
variants. b Open chromatin broad cell type identification in unimodal scATAC-seq
datasets (left) and multimodal snATAC-seq datasets (right) visualized on a UMAP,
processed separately. Parts of Fig. 1a were generated using Servier Medical Art,
provided by Servier, licensed under a Creative Commons Attribution 3.0 unported
license.
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scATAC-seq on samples from 14 RA patients and 4 OA patients and
multimodal snATAC-/snRNA-seq on samples from 11 RA patients and 1
OApatient (Supplementary Table 1). Applying stringent quality control
to the open chromatinmodality, we retained cells with >10,000 reads,
>50% of those reads falling in peak neighborhoods, >10% of reads in
promoter regions, <10% of reads in the mitochondrial chromosome,
and <10% of reads falling in the ENCODE blacklisted regions24 (Meth-
ods; Supplementary Figs. 1a, b and 2a, b; Supplementary Table 2). We
further required that cells from the multimodal data pass quality
control for the snRNA-seq modality (Methods; Supplementary
Figs. 1b and 2c). After additional QC within individual cell types com-
bining both technologies, thefinal dataset contained 86,994 cells from
30 samples (median of 2990 cells/sample) (Supplementary Figs. 1c, d
and 2d, e). For consistency, we called a set of 132,520 consensus peaks
from the unimodal scATAC-seq data to be used for all analyses
(Methods). We observed that 95% of the called peaks overlapped
ENCODE candidate cis-regulatory elements (cCREs)25 and 17% over-
lapped promoters26, suggesting highly accurate peak calls (Supple-
mentary Fig. 2f).

Defining RA broad cell types by clustering unimodal and mul-
timodal datasets
To assign each cell to a broad cell type, we clustered the unimodal
scATAC-seq and multimodal snATAC-seq datasets independently
(Methods). In both instances, we characterized six cell types that we
annotated based on the chromatin accessibility of “marker peaks,”
defined as peaks in cell-type-specific marker gene promoters (Meth-
ods; Fig. 1b). We identified T cells (CD3D and CD3G), NK cells (NCAM1
andNCR1), B/plasma cells (MS4A1 and TNFRSF17), myeloid cells (CD163
and C1QA), stromal cells (PDPN and PDGFRB), and vascular endothelial
cells (VWF and ERG) (Supplementary Fig. 2g–j). In themultimodal data,
we observed consistent peak accessibility and gene expression for
marker genes in these cell types (Supplementary Fig. 2k–m).

We combined cells from unimodal and multimodal chromatin
technologies and then created datasets for each of the broad cell
types. For cell types with more than 1500 cells, we applied Louvain
clustering to a shared nearest neighbor graph based on batch
corrected27 principal components (PCs) of chromatin accessibility to
define fine-grain chromatin classes (Methods).

RA T cell chromatin classes
We first examined the accessible chromatin for 23,168T cells across
unimodal and multimodal datasets. Louvain clustering defined 5T cell
chromatin classes, denoted as TA for T cell ATAC, across 30 samples
(Fig. 2a; Supplementary Fig. 3a). In the TA−2: CD4+ PD-1+ TFH/TPH
chromatin class, we observed high promoter accessibility and gene
expression for PD-1 (PDCD1) and CTLA4, marker genes for T follicular
helper (TFH)/TPH cells (Fig. 2b; Supplementary Fig. 3b). A known
expanded pathogenic cell state in RA, TFH/TPH cells help B cells
respond to inflammation11,12. The TA−3: CD4+ IKZF2+ Treg cluster had
high accessibility and expression for IKZF2 (Helios), which can stabilize
the inhibitory activity of regulatory T cells28 (Treg) (Fig. 2b). We also
observed open chromatin regions at both the FOXP3 transcription start
site (TSS) as well as the downstream Treg-specific demethylated
region29 (TSDR) specifically for TA−3 (Supplementary Fig. 3c); FOXP3
was also expressed exclusively in TA−3 cells (Supplementary Fig. 3b).
We found onemore predominantly CD4+T cell class, TA−1: CD4+ IL7R+,
with high expression and accessibility for IL7R, encoding the CD127
protein. This marker is typically lost with activation, suggesting that
TA−1 is a population of naive or central memory T cells, as further
evidenced by SELL and CCR7 expression (Fig. 2b; Supplementary
Fig. 3b). The TA−0: CD8A+ GZMK+ cluster was marked by GZMK and
CRTAM peak accessibility and gene expression (Fig. 2b; Supplementary
Fig. 3b); a similar population has been shown to be expanded in RA and
a major producer of inflammatory cytokines11,30. We found another

primarily CD8+ group of T cells, the TA−4: CD8A+ PRF1+ cytotoxic
cluster, which had high accessibility for the PRF1 promoter and
expression for the PRF1, GNLY, and GZMB genes, suggesting an effector
memory phenotype (Fig. 2b; Supplementary Fig. 3b).

Since T cells are primarily defined as CD4 and CD8 lineages that
are not thought to cross-differentiate31, we next examinedwhether the
chromatin classes were strictly segregated by CD4 or CD8 promoter
peak accessibility. We observed that each chromatin class, while lar-
gely showing accessibility for only one lineage’s promoter, also inclu-
ded some cells with accessibility for the other lineage’s promoter
(Supplementary Table 3). For example, cytotoxic T cells in TA−4 were
more likely to have an accessible CD8A promoter, but also included a
minority of cells with accessibility at the CD4 promoter. Therefore, we
assessedwhichpromoter peakswereassociatedwith a specific lineage.
While accounting for chromatin class, sample, and fragment count, we
ran a logistic regression model over all T cells relating each promoter
peak’s openness to CD4/CD8Apromoter peak accessibility status: 1 for
open CD4 and closed CD8A, −1 for open CD8A and closed CD4, or 0
otherwise (Methods). We only found 93 out of 16,383 promoter
peaks open in T cells significantly associated with a lineage’s promoter
accessibility, with 29 associating to CD4 and 64 to CD8A, at FDR <0.20
(Supplementary Data 1). This indicated that T cell lineage is important
for a small subset of genes’ local promoter chromatin environment,
such as IL6ST in CD4 T cells and CRTAM in CD8 T cells, and those
lineage-specific loci segregate by chromatin class as expected (Meth-
ods; Supplementary Fig. 3d). However, the majority of promoters
appeared to be more specifically accessible within their chromatin
classes across lineages. This might suggest that the corresponding
gene’s function was critical for the class definition, as highlighted by
functional genes such as PRF1 with expression in both cytotoxic CD4
andCD8T cells32 as well as the homing geneCCR7 that acts across both
lineages33.

We next identified the TFs potentially regulating these T cell
chromatin classes by calculating TF motif enrichments34 in class-
specific peaks35 whose TFs were at least minimally expressed within
that class (Methods). In the primarily CD8+ classes, TA−0: CD8A+
GZMK+ and TA−4: CD8A+ PRF1+ cytotoxic, we found EOMES
(padj = 7.44e-99, 8.12e-44, respectively) and T-bet (TBX21) (padj = 4.92e-
90, 2.75e-38, respectively) motifs enriched (Fig. 2c); the corresponding
TFs are known to drive memory and effector CD8+ cell states36. EOMES
had significantly higher gene expression in TA−0 cells compared to all
other T cells (Wilcoxon FDR= 1.92e-84; Supplementary Data 2). Fur-
thermore, we found both motifs in the promoter of KLRG1, a gene
expressed in CD8+ effector T cells that might participate in the
effector-to-memory transition37 (Fig. 2d). The cytotoxic TA−4 class was
also enriched for RUNX338 motifs (padj = 5.81e-13) (Fig. 2c). Within the
TA−2: CD4+ PD-1+ TFH/TPH class, we observed high enrichments for
AP-1 motifs, especially BATF (padj = 3.31e-103; Fig. 2d), which promotes
expression of key programs in TFH cells39 and had higher gene
expression in this class’s cells (Wilcoxon FDR= 3.10e-125; Supplemen-
tary Data 2). We found TCF7 and LEF1 motifs40 within the non-activated
TA−1: CD4+ IL7R+ cluster (padj = 1.14e-10, 3.97e-13, respectively; Fig. 2d).

RA stromal chromatin classes
Next, we analyzed 24,307 stromal cells (Methods). With Louvain clus-
tering, we partitioned the cells into 4 open chromatin classes: lining
fibroblasts (SA−1) along the synovial membrane, sublining fibroblasts
(SA−0, SA−2) filling the interstitial space, and mural cells (SA−3) adja-
cent to blood vessels41 (Fig. 3a; Supplementary Fig. 4a). The most
abundant sublining cluster, SA−0: CXCL12+ HLA-DRhi sublining fibro-
blasts, was a proinflammatory cluster marked by CXCL12, HLA-DRA,
and CD74 accessibility and expression; SA−0 also expressed IL6, which
is an established RAdrug target7,8 (Fig. 3b; Supplementary Fig. 4b). The
SA−2: CD34+ MFAP5+ sublining fibroblast class had accessible pro-
moter peaks,where available, for the expressedCD34,MFAP5, PI16, and
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DPP4 genes, previously reported to represent a progenitor-like fibro-
blast state shared across tissue types42–44 (Fig. 3b; Supplementary
Fig. 4b). The SA−1: PRG4+ lining fibroblast chromatin class was char-
acterized with high accessibility and expression of PRG4 and CRTAC1
(Fig. 3b; Supplementary Fig. 4b). We also observed high expression of
MMP1 and MMP3, matrix metalloproteinases responsible for extra-
cellular matrix (ECM) destruction45, within SA−1 (Supplementary
Fig. 4b). Finally, we found a mural cell class, SA−3: MCAM+mural, with
both gene expression and promoter peak accessibility for MCAM and
NOTCH3 (Fig. 3b; Supplementary Fig. 4b). In RA, NOTCH3 signaling

from the endothelium acts primarily on mural cells, which in turn sti-
mulate sublining fibroblasts along a spatial axis21 as seen in the
decreasing NOTCH3 gene expression from SA−3, SA−0, SA−2, to SA−1 in
the multiome cells (Supplementary Fig. 4b). Knockout of NOTCH3 has
been shown to reduce inflammation and joint destruction in mouse
models21.

DNA methylation and chromatin accessibility work in tandem to
define cell-type-specific gene regulation through silencing CpG-dense
promoters and repressing methylation-sensitive TF binding46. Methy-
lation changes have been previously described between cultured

Fig. 2 | RA T cell chromatin classes. a UMAP colored by 5 T cell chromatin classes
defined from unimodal scATAC-seq and multimodal snATAC-seq cells. b Mean
binned normalized marker peak accessibility (top; yellow (high) to purple (low))
and gene expression (bottom; yellow (high) to blue (low)) for multimodal snATAC-
seq cells on UMAP. c UMAP colored by chromVAR34 deviations for the TBX21 motif
(left).Most significantly enrichedmotifs in class-specific peaks per T cell chromatin
class (right). Tobe included per class,motifs had to be enriched in the class above a
minimal threshold, and corresponding TFs had to have at least minimal expression

in snRNA-seq.Color scalenormalizedpermotif across classeswithmax−log10(padj)
value shown in parentheses in motif label. P values were calculated via hypergeo-
metric test in ArchR35. d UMAP colored by KLRG1 normalized gene expression in
multiome cells (left). KLRG1 locus (chr12:8,987,550–8,990,000) with selected gene
isoforms, motifs, open chromatin peaks, and chromatin accessibility reads from
unimodal and multiome cells aggregated by chromatin class and scaled by read
counts per class (right).
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fibroblast cell lines from RA and OA patients47,48. Thus, we wondered if
a specific subset of fibroblasts might be the source of these differen-
tiallymethylated regions (DMRs). Using apublished set ofDMRs for RA
versus OA fibroblast-like synoviocyte (FLS) cell lines47, we defined a
per-cell score of peak accessibility associated with hypermethylated
(positive) or hypomethylated (negative) loci in RA (Methods). The
sublining fibroblasts in SA−0 were enriched for hypomethylated
regions (Wilcoxon SA−0 versus other stromal cells one-sided p < 2.2e-
16), suggesting that the RA synovial fibroblast DMRs were relatively
enriched for putatively functional accessible chromatin regions

specifically in sublining fibroblasts (Supplementary Fig. 4c). Further-
more, the genes associated to these FLS DMRs were expressed pri-
marily in tissue SA−0 (Supplementary Fig. 4d, right; Methods) and are
crucial to a number of signaling pathways potentially at play in these
inflammatory fibroblasts47: STAT3 in IL-6 signaling, CASP1 in IL-1 sig-
naling, TRAF2 in TNF signaling, and TGFB3 in TGFβ signaling. These
results proposed the possibility of epigenetic memory retention even
after multiple FLS cell line passages49, as sublining fibroblasts, parti-
cularly HLA-DRhi and CD34−

fibroblasts, are expanded in RA relative to
OA in synovial tissue samples11.

Fig. 3 | RA stromal chromatin classes. a UMAP colored by 4 stromal chromatin
classes defined from unimodal scATAC-seq and multimodal snATAC-seq cells.
b Mean binned normalized marker peak accessibility (top; yellow (high) to purple
(low)) and gene expression (bottom; yellow (high) to blue (low)) for multimodal
snATAC-seq cells on UMAP. c UMAP colored by chromVAR34 deviations for the
FOS::JUNDmotif (left).Most significantly enrichedmotifs in class-specific peaks per
stromal chromatin class (right). To be included per class, motifs had to be enriched
in the class above a minimal threshold, and corresponding TFs had to have at least

minimal expression in snRNA-seq. Color scale normalized per motif across classes
with max −log10(padj) value shown in parentheses in motif label. P values were
calculated via hypergeometric test in ArchR35. d UMAP colored by MMP3 normal-
ized gene expression (left). MMP3 locus (chr11:102,843,400–102,844,000) with
selected gene isoforms, motifs, open chromatin peaks, and chromatin accessibility
reads from unimodal andmultiome cells aggregated by chromatin class and scaled
by read counts per class (right).
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We then considered if the retention of DNA methylation after
multiplepassages extended to a retention of chromatin accessibility or
whether that would be lost alongside transcriptional identity21. To
assess this, we developed two per-cell scores of fibroblast identity
comparing tissue lining (SA−1) to sublining (SA−0, SA−2) cells; one score
using differentially expressed genes and the other using differentially
accessible peaks. Using a multiome dataset of isolated FLS from two
RA synovial tissue samples cultured for three passages in a recent RA
fibroblast heterogeneity study44, we compared their per-cell fibroblast
identity score to our tissue fibroblast populations in both gene and
peak space. Unsurprisingly, we found that differential genes from tis-
sue were able to separate tissue lining and tissue sublining cells, but
the cultured FLS did not have discernable lining and sublining popu-
lations by the same measure, consistent with previous results21 (Sup-
plementary Fig. 4e). More surprisingly, we saw similar results using the
fibroblast identity peak score (Supplementary Fig. 4f), suggesting that
fibroblast peak accessibility, and more broadly chromatin class iden-
tity, was not maintained in cell culture after multiple passages. This
disconnect between DNA methylation and chromatin accessibility has
also been seen previously when assaying both directly using ATAC-Me
in the monocyte-to-macrophage cell fate transition50.

Next, we investigated which TFs were putatively driving these
chromatin classes (Fig. 3c). AP-1 motifs such as FOS::JUND were most
significantly enriched in the SA−1 lining class (padj = 9.29e-152;
Fig. 3c). These TFs are known to play many roles in RA and specifi-
cally regulate MMP1 and MMP3 promoters49,51 (Fig. 3d). The
progenitor-like sublining SA−2 class harbored NFATC motifs, such as
NFATC4 (padj = 2.89e-36; Fig. 3c). In the SA−0: CXCL12+ HLA-DRhi

sublining chromatin class, we found TEAD152 (padj = 2.86e-52; Fig. 3c)
and STAT1/3 TF motif enrichments (padj = 3.34e-37, 4.27e-38,
respectively; Fig. 3c), with the latter likely regulating the JAK/STAT
pathway responsible for the proinflammatory cytokine activation
central to RA clinical activity9,53. The gene expression of TEAD1 and
STAT3 in SA−0 cells was significantly higher than in the other stromal
cells (Wilcoxon FDR= 1.05e-27 and 1.65e-17, respectively; Supple-
mentary Data 2). Finally, SA−3: MCAM+ mural cells were enriched for
KLF254,55 and EBF156,57 motifs (padj = 4.94e-119, 1.83e-119, respec-
tively; Fig. 3c).

RA myeloid chromatin classes
We classified 25,691 myeloid cells into 5 chromatin classes (Fig. 4a;
Supplementary Fig. 5a). The first class, MA−2: LYVE1+ TIMD4+ TRM,
had markers for tissue-resident macrophages (TRM) with gene and
peak signal at LYVE1, a perivascular localizationmarker13, and TIMD4, a
scavenger receptor13 (Fig. 4b; Supplementary Fig. 5b). We found
another TRM class, MA−0: F13A1+ MARCKS+ TRM, with high accessi-
bility and expression at F13A1 and MARCKS, both known to be
expressed in macrophages58,59 (Fig. 4b; Supplementary Fig. 5b). The
MA−1: FCN1+ SAMSN1+ infiltrating monocytes had accessibility and
expression for FCN1, PLAUR, CCR2, and IL1B, similar to an expanded
proinflammatory population in a previous RA study11 (Fig. 4b; Sup-
plementary Fig. 5b). TheMA−4: SPP1+ FABP5+ intermediate class likely
arose from bone marrow-derived macrophages60 with its high acces-
sibility and expression for SPP1 (Fig. 4b); bone marrow-derived mac-
rophages are known be abundant in active RA and induce
proinflammatory cytokines/chemokines13,61. Finally, we found the
MA−3: CD1C+ AFF3+ DC chromatin class with expression markers
CD1C, AFF3, CLEC10A, and FCER1A, whose corresponding promoter
peaks generally showed more promiscuously open chromatin across
classes (Fig. 4b; Supplementary Fig. 5b).

We next investigated the TF motifs enriched in the myeloid
chromatin classes. MA−2 was enriched for KLF motifs (Fig. 4c), with
KLF4 (padj = 1.34e-6) known to both establish residency of TRMs and to
assist in their phagocytic function62. Furthermore, we found a KLF4
motif in the promoter of C1QB, whose protein product bridges

phagocytes to the apoptotic cells they clear63 (Fig. 4d). Both the
intermediate MA−4 and the infiltrating monocyte MA−1 classes had
significant enrichments of AP-1 activation motifs (e.g., JUN padj = 1.77e-
153, 3.65e-136, respectively; Fig. 4c). AP-1 TFs have been shown to
function in human classical monocytes along with CEBP TFs64, also
enriched in MA−1 (e.g., CEBPD padj = 2.10e-26; Fig. 4c). SPI1 (PU.1) is the
master regulator of myeloid development65, including conventional
DCs66. We found the SPI1 motif most strongly enriched in the DC
cluster MA−3 (padj = 3.24e-55; Fig. 4c), though the related SPIB motif’s
corresponding TF, known to function in pDCs67, was more specifically
expressed in this class (Wilcoxon FDR =6.93e-74; Supplemen-
tary Data 2).

RA B/plasma chromatin classes
Next, we clustered 8641 B and plasma cells into 4 MS4A1+ B cell and 2
SDC1+ plasma cell chromatin classes (Methods; Fig. 5a; Supplementary
Fig. 6a). We defined a BA−3: FCER2+ IGHD+ naive B class with high
accessibility and expression of FCER2, encoding naïve marker CD2368

(Fig. 5b; Supplementary Fig. 6b). We also labeled a BA−4: CD24+
MAST4+ unswitched memory B class (Supplementary Fig. 6b). IGHD
and IGHM expression was lower in BA−2: TOX+ PDE4D+ switched
memory B cells, and the TF TOX had its highest expression and
accessibility within B cells in BA−2 as previously shown in switched
memory B cells69,70 (Fig. 5b; Supplementary Fig. 6b). BA−5: ITGAX+ABC
had high accessibility and expression of ITGAX, encoding for CD11c, a
keyABCmarker71 (Fig. 5b; Supplementary Fig. 6b). ABCswere shown to
be associated with leukocyte-rich RA11 with a potential role in antigen
presentation72, which was supported here by the expression of LAMP1
and HLA-DRA in BA−5 (Supplementary Fig. 6b). The plasma chromatin
class, BA−0: CREB3L2+ plasma, wasmarked by CREB3L2, a known TF in
the transition between B and plasma cells73 (Fig. 5b; Supplementary
Fig. 6b). These results suggested tissue in situ B cell activation and
differentiation into plasma cells, as we have previously suggested74.
Finally, BA−1: CD27+ plasma, had the highest accessibility and expres-
sion of CD27 (Fig. 5b; Supplementary Fig. 6b). We note that plasma
cells were difficult to define using chromatin accessibility data, with
many of the immunoglobulin genes having low signal (Supplemen-
tary Fig. 6b).

We then explored the TF motif landscape of B and plasma cells. B
cells shared many TF motifs across clusters, with many ETS factors
(e.g., SPIB, SPI1, ETS1) as well as EBF1 and NFkB1/2 (Fig. 5c). SPIB and
SPI1 work together to regulate B cell receptor signaling75, which starts
its dysregulation in RA at the naive B cell level76,77 (padj = 0, 0, respec-
tively; Fig. 5c). Switchedmemory B cells were enriched for ETS1motifs
(padj = 9.51e-19; Fig. 5c), whose TF is required for IgG2a class switching
in mice78. In plasma cells, BA−0 had over-represented motifs such as
KLF279 and SP380 (padj = 8.94e-105, 3.84e-138, respectively; Fig. 5c, d).
BA−1 was enriched for AP-1 factor motifs81, namely BATF::JUN (padj = 0;
Fig. 5c, d, Supplementary Fig. 6c). Both BATF and JUN gene expression
was higher in BA−1 cells compared to those in other B/plasma classes
(Wilcoxon FDR = 9.29e-04 and 1.60e-47, respectively; Supplementary
Data 2). In the locus ofPRDM1, a knownplasmacell TF80, themoreBA−0
accessible peak had an SP3motif while themore BA−1 accessible peaks
had BATF::JUN motifs (Fig. 5d), suggesting potentially different reg-
ulatory strategies by class.

RA endothelial chromatin classes
Among the 3809 endothelial cells, we identified 4 chromatin classes
(Fig. 6a; Supplementary Fig. 7a). The EA−2: SEMA3G+ arteriolar class
had gene and peak markers for signaling-related genes including
SEMA3G82, CXCL12, and JAG1 (Fig. 6b; Supplementary Fig. 7b). The
NOTCH3 signaling gradient that causes inflammation and joint
destruction inRAmousemodels likelyoriginates throughNotch ligand
JAG1 in these arteriolar endothelial cells21. We identified the EA−0: SELP+
venular class with markers for leukocyte trafficking to tissue such as
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SELP83 as well as inflammatory genes HLA-DRA and CD74 (Fig. 6b;
Supplementary Fig. 7b). We also found a capillary class, EA−1: RGCC+
capillary marked by RGCC84 and SPARC chromatin accessibility and
gene expression (Fig. 6b; Supplementary Fig. 7b). Finally, a small
population of EA−3: PROX1+ lymphatic cells had gene expression of
and promoter peak accessibility at PROX185 and PARD6G genes (Fig. 6b;
Supplementary Fig. 7b).

We identified SOXmotifs86 in EA−2, STATmotifs87 in EA−0, and AP-
1motifs88 in EA−1 (Fig. 6c). Sox17 is a crucial intermediary betweenWnt
and Notch signaling that specifically initiates and maintains

endothelial arterial identity in mice86. Similarly, we found a SOX17
motif (padj = 3.27e-8) in the promoter of NES89,90 with its highest
accessibility and expression (Wilcoxon FDR = 4.29e-19; Supplementary
Data 2) in EA−2 cells (Fig. 6d).

Chromatin classes are stable irrespective of OA and low-cell-
count samples
Our chromatin classes were determined using all samples for max-
imum power, so we next investigated the contribution of OA and low-
cell-count samples to this classification. While we were underpowered

Fig. 4 | RA myeloid chromatin classes. a UMAP colored by 5 myeloid chromatin
classes defined from unimodal scATAC-seq and multimodal snATAC-seq cells.
b Mean binned normalized marker peak accessibility (top; yellow (high) to purple
(low)) and gene expression (bottom; yellow (high) to blue (low)) for multimodal
snATAC-seq cells on UMAP. c UMAP colored by chromVAR34 deviations for the
KLF4 motif (left). Most significantly enriched motifs in class-specific peaks per
myeloid chromatin class (right). Tobe included per class,motifs had to be enriched
in the class above a minimal threshold, and corresponding TFs had to have at least

minimal expression in snRNA-seq. Color scale normalized per motif across classes
with max −log10(padj) value shown in parentheses in motif label. P values were
calculated via hypergeometric test in ArchR35.dUMAPcolored byC1QBnormalized
gene expression (left). C1QB locus (chr1: 22,652,235–22,653,595)with selected gene
isoforms, motifs, open chromatin peaks, and chromatin accessibility reads from
unimodal and multiome cells aggregated by chromatin class and scaled by read
counts per class (right).
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to reliably detect differences between RA and OA, we saw that chro-
matin classes varied in their proportions between these two diseases
(Supplementary Table 4). To determine if the chromatin class defini-
tions were robust to the exclusion of OA samples, we removed the
2395 T cells corresponding to OA samples and reclustered the
remaining cells. We only observed positive, significant odds ratios
(ORs) for cells from a new RA-only cluster belonging to their corre-
sponding original chromatin class, relative to the other classes (Sup-
plementary Fig. 8a). This showed that the same groups of RA T cells
cluster together regardless of whether OA T cells were included in the

clustering. Since stromal cells had a higher proportion of OA cells,
particularly in lining fibroblasts14,91 (Supplementary Table 4), we also
reclustered the stromal cells after removing 4,462 cells from OA
samples and found that all four of our original stromal chromatin
classes had corresponding RA-only cluster(s) (Supplementary Fig. 8b).
Furthermore, we sought to determine if including the low-cell-count
samples was impacting the chromatin class definitions, especially for
the cell types with lower cell counts overall. To test this, we removed
467 cells across 11 samples with fewer than 100 B/plasma cells and
reclustered the remaining cells.Wewere able to recover all the original

Fig. 5 | RAB/plasma chromatin classes. aUMAPcolored by 6 B/plasma chromatin
classes defined from unimodal scATAC-seq and multimodal snATAC-seq cells.
b Mean binned normalized marker peak accessibility (top; yellow (high) to purple
(low)) and gene expression (bottom; yellow (high) to blue (low)) for multimodal
snATAC-seq cells on UMAP. cUMAP colored by chromVAR34 deviations for the SP3
motif (left). Most significantly enriched motifs in class-specific peaks per B/plasma
chromatin class (right). To be included per class, motifs had to be enriched in the
class above a minimal threshold, and corresponding TFs had to have at least

minimal expression in snRNA-seq. Color scale normalized per motif across classes
with max −log10(padj) value shown in parentheses in motif label. P values were
calculated via hypergeometric test in ArchR35. d UMAP colored by PRDM1 nor-
malized gene expression (left). PRDM1 locus (chr6:106,082,865−106,111,658) with
selected gene isoforms, motifs, open chromatin peaks, and chromatin accessibility
reads from unimodal andmultiome cells aggregated by chromatin class and scaled
by read counts per class (right).
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B/plasma chromatin classes (Supplementary Fig. 8c), suggesting that
these low-cell-count samples did not drive our original classes. We saw
similar results in endothelial cells after removing 954 cells across
19 samples (Supplementary Fig. 8d). These analyses suggested our
chromatin classeswere robust to the inclusion of bothOAand low-cell-
count samples.

Synovial tissue is key to identifying pathogenic RA chromatin
classes
To determine if the chromatin classes identified in RA tissue were
comparablewith the knownperipheral blood chromatin landscape, we

clustered the tissue cells with those from a published healthy PBMC
multiome dataset92,93 (Supplementary Fig. 9). To determine the simi-
larity between the PBMC and tissue chromatin classes, we calculated
the OR between the newly defined clusters and the original blood and
tissue labels; overall, there was good concordance. For example, the
PBMCTreg cells and TA−3: CD4+ IKZF2+ Treg cells were both enriched
in T cell combined cluster 5 (OR = 12 and 85, respectively) (Supple-
mentary Fig. 9a) andPBMCcDC2andpDCassociatedwithMA−3:CD1C+
AFF3 + DC in myeloid combined cluster 4 (OR=45, 78, and 100,
respectively) (Supplementary Fig. 9b). However, therewere some tissue
chromatin classes that did not have clear counterparts in PBMCs,

Fig. 6 | RA endothelial chromatin classes. a UMAP colored by 4 endothelial
chromatin classes defined from unimodal scATAC-seq and multimodal snATAC-
seq cells. bMean binned normalized marker peak accessibility (top; yellow (high)
to purple (low)) and gene expression (bottom; yellow (high) to blue (low)) for
multimodal snATAC-seq cells on UMAP. c UMAP colored by chromVAR34 devia-
tions for the SOX17motif (left). Most significantly enrichedmotifs in class-specific
peaks per endothelial chromatin class (right). To be included per class, motifs had
to be enriched in the class above aminimal threshold, and corresponding TFs had

to have at least minimal expression in snRNA-seq. Color scale normalized per
motif across classes with max −log10(padj) value shown in parentheses in motif
label. P values were calculated via hypergeometric test in ArchR35. EA−3 is not
shown because only 1 class-specific peak was found, likely due to low cell counts.
d UMAP colored by NES normalized gene expression (left). NES locus (chr1:
156,675,398–156,680,400) with selected gene isoforms, motifs, open chromatin
peaks, and chromatin accessibility reads from unimodal and multiome cells
aggregated by chromatin class and scaled by read counts per class (right).
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such as TA−2: CD4+ PD-1+ TFH/TPH, MA−2: LYVE1+ TIMD4+ TRM,
MA−4: SPP1+ FABP5+ intermediate, and BA−5: ITGAX+ABC (Supple-
mentary Fig. 9). With the current dataset, we cannot conclusively
determine whether these disparities reflect tissue and blood or RA and
healthy differences. However, prior studies have shown both that
these cell states are tissue-enriched12,71,94 and implicated in RA
pathogenesis11–13,16,61, suggesting that the study of disease tissue is
necessary for well-powered analyses of these populations.

Chromatin classes are epigenetic superstates of transcriptional
cell states
To understand how these chromatin classes corresponded to tran-
scriptionally defined cell states, we used Symphony95 to map the RA
multimodal snRNA-seq profiles into the well-annotated AMP-RA cell
type references14. After embedding themultimodal snRNA-seq profiles
into the AMP-RA reference data, we annotated eachmultimodal cell by
themost commoncell state of itsfivenearest referenceneighbors. 70%
of T cells (24 states), 96% of stromal cells (10 states), 96% of myeloid
cells (15 states), 87% of B/plasmacells (9 states), and 99%of endothelial
cells (5 states) mapped well (i.e., at least 3/5 neighbors had the
same cell state annotation). We also observed that the proportion of
each cell state in the AMP-RA reference and the multimodal query
datasets was consistent, suggesting that the reference and query
datasets had comparable cell state distributions despite different
technologies (Supplementary Fig. 10a–e).

We then sought to understand the correspondence between the
mapped transcriptional cell states and chromatin classes. We calcu-
lated an OR for each combination of state and class to measure the
strength of association and used a Fisher’s exact test to assess sig-
nificance. We observed that each transcriptional cell state generally
corresponded to a single chromatin class (Fig. 7a–c; Supplementary
Fig. 10g, h). In contrast, a single chromatin class represented a super-
state encompassing multiple transcriptionally defined cell states. For
example, cells in the TA−0: CD8A+ GZMK+ chromatin class were more
likely to be labeled in the T-5: CD4+ GZMK+ memory, T-13: CD8+
GZMK/B+ memory, or T-14: CD8+ GZMK+ transcriptional cell states
across CD4/CD8 lineages (OR = 11, 12, 11, respectively; Fig. 7a); the high
GZMK promoter accessibility and expression shared by these states
may have contributed to this categorization (Supplementary Fig. 10f).
We saw examples of thismodel in every cell type: SA−1 linked to F-0/F-1
and SA−0 to F-6/F-5/F-3/F-8 in stromal cells; MA−1 to M-7/M-11 and
MA−4 to M-3/M-4 in myeloid cells; BA−4 to B-1/B-3 in B/plasma cells;
and EA−0 to E-1/E-2 in endothelial cells (Fig. 7b, c; Supplementary
Fig. 10g, h; Supplementary Data 3). In all cell types, the transcriptional
cell state classification was more accurate within cells whose tran-
scriptional cell state and chromatin class were concordant (e.g., T-14
and TA−0), supporting our class-to-state mapping (Supplementary
Fig. 10i).

Indeed, when we aggregated the snATAC-seq reads by states, we
observed shared openness between transcriptional cell states within
the same class (i.e., superstate), as seen with the cytotoxic TA−4
grouped cell states T-12/T-15 at the cytotoxicity-associated32 FGFBP2
gene, lining fibroblast SA−1 grouped cell states F-0/F-1 at the lining-
associated11 CLIC5 gene, and intermediate myeloid MA−4 grouped cell
statesM-3/M-4 atbonemarrow-derivedmacrophage-associated60 SPP1
gene (Supplementary Fig. 11). Furthermore, we found very few differ-
ential promoter peaks between transcriptional states in the same
chromatin class even after pseudobulking by sample and state to
decrease sparsity (Supplementary Fig. 12a). TA−1: CD4+ IL7R+ had one
of the higher numbers of differential peaks within a class, but still only
found 1.3% of the peaks tested as differential at FDR <0.10. Among
those was the expected CD4 and CD8A promoter peaks since both the
T-4: CD4+ naive state and T-16: CD8+ CD45ROlow/naive state corre-
sponded to TA−1 (Supplementary Fig. 12b; Fig. 7a). These populations
likely mapped together since they shared naïve T cell transcriptional

profiles, consistent with a highly accessible SELL promoter peak. This
contrasted sharply to the number of differential peaks found between
states across classeswithin a cell type (median of 8717within a cell type
vs 23 within a single class; Supplementary Fig. 12a), suggesting that the
chromatin landscape in states within a class is much more homo-
geneous than across classes, as proposed by our superstate model.

We next asked if evidence for chromatin superstates was sensitive
to clustering resolution. We observed that the class and state rela-
tionships largely replicated when we increased the open chromatin
clustering resolution (Supplementary Fig. 13). To further support the
superstate hypothesis, we trained a linear discriminant analysis (LDA)
model to predict the transcriptional cell state between each pair of
states from the chromatin PCs, uponwhich the chromatin classes were
defined. Generally, transcriptional cell states belonging to the same
chromatin class were difficult to distinguish using chromatin accessi-
bility data alone (Supplementary Fig. 14). As an example, transcrip-
tional states T-14 and T-13 both belonged to chromatin class TA−0, and
thus chromatin PCs could not easily discriminate between them
(AUC=0.61); on the other hand, T-14 and T-3 belonged to classes TA−0
and TA−2, respectively, and LDA nearly perfectly distinguished them
(AUC=0.98) (Supplementary Fig. 14a). In all cell types, the mean AUC
between states within the same chromatin class was less than that of
states across different chromatin classes. For instance in T cells, the
mean AUC was 0.77 within the same classes and 0.88 across different
classes, suggesting there was a limit to how well the chromatin
accessibility data could differentiate between transcriptional cell
states.

Finally, to more thoroughly investigate the validity of the chro-
matin superstate model, we profiled the chromatin accessibility and
transcriptomes of select cell states known to be functionally distinct
and defined by well-characterized surface markers12,96. We generated
a multiome dataset of sorted RA PBMC subsets via fluorescence-
activated cell sorting (FACS) of four populations spanning two
chromatin classes and four transcriptional states: CD4+CD127−CD25hi

Treg, CD4+CD127−CD25int Treg, CD4+CD25−PD1+CXCR5+ TFH, and
CD4+CD25−PD1+CXCR5− TPH (Supplementary Fig. 15a). We performed
quality control steps in all three modalities and identified FACS cell
state labels before doing any downstream analysis for the remaining
2,998 cells (Supplementary Fig. 15b). When we de novo clustered the
chromatin accessibility data of the combined PBMC and tissue cells
(Supplementary Fig. 15c), we found that the sorted RA PBMC TFH/
TPH cells were most enriched in combined cluster 2 (OR = 4), which
was most highly enriched for RA tissue TFH/TPH cells (OR = 32).
Similarly, sorted RA PBMC Tregs were most enriched for combined
cluster 4 (OR = 3), which was most highly enriched for RA tissue
Tregs (OR = 24). This confirmed that our tissue class annotations
agreed with well-known subclasses of T cells sorted using established
protein markers.

We also wanted to assess whether the two cell states within a
chromatin class defined via cell surface proteins (e.g.,
CD4+CD25−PD1+CXCR5+ TFH and CD4+CD25−PD1+CXCR5− TPH) were
transcriptionally distinct. By clustering the cells from the four sorted
populations based on gene expression, we successfully distinguished
between the pairs of transcriptomic states from each chromatin class
(Supplementary Fig. 15d). Moreover, we observed that each gold-
standard FACS-defined population had a distinct mRNA cluster iden-
tity. Next, we calculated the differentially expressed genes and differ-
entially accessible promoter peaks between the transcriptional states
within the same class. While we found significant transcriptional dif-
ferences, we largely did not observe similar accessibility differences in
the corresponding genes’ promoter peaks (Fig. 7d, e). This was con-
sistent with the model of transcriptional cell states from a common
superstate sharing open chromatin landscapes. For example, the
PDE4D gene, which encodes an RA treatment target97, had significantly
more expression in TPH than TFH cells (unadjusted P = 4.64e-19), but a
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Fig. 7 | A chromatin class encompassed multiple transcriptional cell states in
proposedsuperstatemodel. a–c ForaT,b stromal, and cmyeloid cells, chromatin
class UMAP colored by the classified AMP-RA reference transcriptional cell states
for multiome cells (left) and the natural log of the odds ratio between the chro-
matin classes and transcriptional cell states (right). On the right, non-significant
values (FDR <0.05) are white, and the colors of the y axis labels correspond to the
colors in the UMAPs on the left. In c, the M-13: pDC transcriptional cell state was
excluded as fewer than 10 cells were classified into it. d, e Using genes and

promoter peak pairs with at least minimal signal, the two-sided Wilcoxon
−log10(FDR) of normalized gene expression (x axis) and the logistic regression LRT
−log10(FDR) of binary promoter peak accessibility (y axis) between d RA PBMC
CD25hi and CD25int Treg populations (n = 7208 pairs) and e RA PBMC TFH and TPH
populations (n = 5264 pairs). Color was determined by the state with the higher
gene expression and the shape denotes whether the state with the higher chro-
matin accessibility agreed. The dotted lines correspond to FDR =0.10, calculated
separately within modalities.
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non-significant change in the promoter peak accessibility (unadjusted
P =0.913) (Supplementary Fig. 15e). On the other hand, ZBTB10, a
telomere-associated TF98, was a rare example where the chromatin
accessibility and gene expression concurred across Treg states (Sup-
plementary Fig. 15f). However, globally, the lack of these examples
likely contributed to the lack of fully distinguished state-specific
chromatin classes.

Cell neighborhood associations with histological metrics and
cell state proportions
Next, we sought to investigate associations between the RA chromatin
classes and RA clinical metrics using the larger AMP-RA reference
dataset with clinical measurements for 82 RA or OA patients. Per cell
type, we classified95 each cell from the AMP-RA reference dataset, now
the query, into the RA chromatin classes based on the five nearest
multimodal snRNA-seq neighbors, now the reference. To validate this
annotation, we compared the relative proportions of chromatin classes
between the unimodal scATAC-seq cells and the classified AMP-RA
scRNA-seq cells for donors in both studies. We observed a generally
high correlation between the two technologies (Fig. 8a; Supplementary
Fig. 16a). We then investigated RA clinical associations calculated via
Co-varying Neighborhood Analysis (CNA)99. In brief, CNA tests asso-
ciations between sample-level attributes, such as clinical metrics, and
cellular neighborhoods, which are small groups of cells that reflect
granular cell states. We used the previously described CNA associations
defined in the AMP-RA reference cells and re-aggregated them by their
chromatin classes. For example, we found an association between
myeloid cells and histology characterized by lymphoid infiltration
density (p =0.005). Specifically, the increase in lymphocyte populations
was positively associated with the MA−4: SPP1+ FABP5+ intermediate
class, whose inflammatory cytokines/chemokines production may be
responsible for lymphocyte homing100, and negatively associated
with MA−2: LYVE1+ TIMD4+ TRM, whose gene markers were found
more often expressed in synovial TRMs from healthy and remission
RA than active RA patients13 (Fig. 8b). Additionally, we observed
an association between T cells and the histological Krenn inflammation
score (p =0.02), with TA−2: CD4+ PD-1+ TFH/TPH positively101 and TA−4:
CD8A+ PRF1+ cytotoxic negatively correlated (Supplementary Fig. 16b).
These results were consistent with the original transcriptional cell state
findings14 and suggested that the connections between RA pathology
and cell state may begin before transcription.

One of the key findings from the AMP-RA study was the identifi-
cation of six Cell Type Abundance Phenotypes (CTAPs), which char-
acterized RA patients into subtypes based on the relative proportions
of their broad cell type abundances in synovial tissue14. For instance,
CTAP-TB has primarily T and B/plasma cells. Specific cell neighbor-
hoods within cell types were expanded or depleted in these CTAPs as
defined by CNA associations in the AMP-RA reference cells. We reca-
pitulated some of these transcriptional associations by re-aggregating
theCNA resultswithin the chromatin classes; for example, theRATcell
class TA−2 was positively associated with CTAP-TB compared to other
T cell classes, likely reflecting the role of TFH/TPH cells in B cell
inflammation response11,12, while TA−4 was negatively associated
(p = 0.046; Fig. 8c). Furthermore, in stromal cells, we saw the SA−1:
PRG4+ lining class positively associated with CTAP-F, a primarily
fibroblast CTAP (p =0.0027; Supplementary Fig. 16c). This indicated
that the most expanded type of fibroblasts in CTAP-F individuals was
predominantly from the synovial lining layer, which was consistent
with lining marker CLIC5 protein having high staining in the lining
fibroblasts and being expressed in the highest proportion of cells from
high-density fragments of CTAP-F samples (ANOVA padj = 4.92e-03
between CTAPs)14. Therefore, we could meaningfully replicate the RA
pathological associations of both clinical metrics and phenotypic
subtypes to transcriptional cell states using their related chromatin
class superstate, suggesting that the epigenetic regulation underlying

the transcriptional cell states may be mined for further pathological
insights into RA.

Chromatin classes prioritize RA-associated SNPs
We next asked whether RA risk variants overlapped the chromatin
classes to help define the function of putatively causal variants,
genes, and pathways at play in RA pathology102–106. Using an RAmulti-
ancestry genome-wide association meta-analysis study107, we over-
lapped fine-mapped non-coding variants with posterior inclusion
probability (PIP) greater than 0.1 with the 200 bp open chromatin
peaks and assessed peak accessibility across the 24 chromatin classes
(Fig. 8d; Supplementary Table 5). For six loci, putatively causal var-
iants overlapped a peak accessible in predominantly one cell type,
such as rs11209051 in peak chr1: 67,333,106–67,333,306 in T cells
(Wilcoxon T versus non-T class one-sided p = 4.17e-04) near the
IL12RB2 gene and rs4840568 in peak chr8:11,493,501–11,493,701 in B/
plasma cells (Wilcoxon p = 1.49e-05) near the BLK gene. In the other
loci, variants overlapped with chromatin classes from two cell types,
with most combinations involving T cells. There were four SNPs
overlapping peaks accessible in the TA−2: CD4+ PD-1+ TFH/TPH class,
which was the most targeted class within T cells and known to be
important for RA pathogenesis11,12.

As an example, we observed the putatively causal SNP rs798000
(PIP = 1.00) overlapped with peak chr1: 116,737,968–116,738,168,
accessible primarily in T cells (Wilcoxon p = 2.35e-05) with TA−2 as
its most accessible class (z = 3.03) (Fig. 8d, e, top). In a previous
study93, we linked active chromatin regions to their target genes,
which suggested CD2 was the causal gene in this locus. CD2 is a co-
stimulatory receptor primarily expressed in T andNK cells108, which
likely explains why it was only accessible in our T cell chromatin
classes among the five cell types investigated (Fig. 8e, bottom).
Intriguingly, rs798000 overlaps a STAT1/2 binding site at a
high information content half site position (Fig. 8e, top, position 8
in JASPAR109 motif MA0517.1), suggesting a potential direct link to
TF regulation of the JAK/STAT pathway commonly upregulated
in RA53.

We also discovered SNP rs9927316 (PIP = 0.54) inmyeloid-specific
peak chr16:85,982,638–85,982,838 (Wilcoxon p = 4.17e-04), down-
stream of IRF8, one of the master regulator TFs of myeloid and B cell
fates110–112 (Supplementary Fig. 17a). The SNP disrupts a KLF4 motif62,
one of the TRM TFs highlighted earlier (Supplementary Fig. 17a;
Fig. 4c, d). Furthermore, we observed SNP rs734094 (PIP = 0.41)
overlapping peak chr11:2,301,916–2,302,116 with its most accessible
classes in T andmyeloid cells: TA−4: CD8A+ PRF1+ cytotoxic andMA−3:
CD1C+ AFF3+ DC (z = 1.94, 1.65, respectively) (Fig. 8d; Supplementary
Fig. 17b).While existing in the promotersof bothTSPAN32 andC11orf21
gene isoforms (Supplementary Fig. 17b), we93 proposed the causal
gene as Lymphocyte-specific Protein 1 (LSP1), shown to negatively
regulate T cell migration and T cell-dependent inflammation in
arthritic mouse models113.

For each of these loci, we also aggregated chromatin accessi-
bility reads by classified transcriptional cell state and saw that the
multiple states underlying each class had similar patterns, such as
rs734094 having some of the strongest signal in TA−4 associated
classes T-12, T-21, and MA−3 associated classes M-10, M-14 (Supple-
mentary Fig. 18). This both reaffirmed our chromatin class superstate
model and suggested that the classes are useful functional units that
simplify mapping risk loci to affected cell states. The RA tissue chro-
matin classes can help prioritize putative cell states of action for non-
coding RA risk variants to assist in their functional characterization
within disease etiology.

Discussion
In this study, we described 24 chromatin classes across 5 broad
cell types in 30 synovial tissue samples assayed with unimodal
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scATAC-seq and multimodal snATAC-seq along with the TFs
potentially regulating them. Based on our observation that cells
from the same chromatin class corresponded to multiple tran-
scriptional cell states, we proposed that these chromatin classes
were putative superstates of related transcriptional cell states.
Finally, we assessed these chromatin classes’ relationship to RA
clinical metrics, subtypes, and genetic risk variants. Our main

findings are summarized in Supplementary Table 6 and Supple-
mentary Data 4.

Chromatin accessibility is a key piece in the puzzle of gene reg-
ulation. It determines which regions of the genomemay participate in
regulatory events such as TF binding or may be impacted by non-
coding genetic variants. Accessible TFmotifs are not guaranteed to be
bound, in contrast to the regions identified in gold-standard TF ChIP-
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seq114 or CUT&RUN115. However, chromatin accessibility datasets are
not TF-specific or dependent on antibodies, so they can capture
potential regulatory sites for a broader set of factors. At a small scale,
the regulation of key loci can be interrogated using scATAC-seq. For
example, we found accessible AP-1 motifs in the differentially acces-
sible promoter peak of MMP3, a key driver of RA extracellular matrix
destruction51, in lining fibroblasts compared to other stromal cells
(Fig. 3c, d). Multiple drugs (e.g., CKD-506, T-5224, Roflumilast) are
under investigation to disrupt this specific interaction of AP-1 at the
MMP3promoter, and AP-1 signaling targetsmore broadly, inmodels of
arthritis as well as clinical trials of RA patients116. At a large scale, these
TF-gene interactions can be linked together to form gene regulatory
networks in silico117,118 to interrogate the more widespread effects of
disrupting signaling cascades. Furthermore, as ~90% of disease causal
genetic variants fall in non-coding regions119, chromatin accessibility
can prioritize where to look for functional effects of putatively causal
RA genetic variants, particularly for those that disrupt TF motifs. Our
analyses suggested that the likely causal SNP rs798000 may disrupt
STAT binding in a TFH/TPH regulatory region reported to act on CD2,
an important T cell co-stimulatory gene120,121. Therefore, our study
underscores the value of chromatin accessibility studies in disease-
specific transcriptional regulation.

Simultaneous chromatin accessibility and gene expression mea-
surements in the multiome cells were essential to test the relationship
between marker peaks and genes. Across cell types, the correlations
between scaled marker peak accessibility and gene expression across
our chosen markers varied. T cells had higher correlation (R =0.92;
Supplementary Fig. 3b) while myeloid cells had lower correlation
(R =0.76; Supplementary Fig. 5b), potentially due to more hetero-
geneous subpopulations such as TRMs, infiltrating monocytes, and
dendritic cells. Furthermore, when we did not see class correspon-
dence between chromatin accessibility and gene expression on the
individual gene level, we observedmore class-specific gene expression
in the context of promiscuous chromatin accessibility. This suggested
a poised chromatin state that depends on the presence of a specific TF
or extracellular signal to give rise to a particular transcriptional out-
come. For example, the promoter peak of RTKN2 was accessible in all
CD4 T cells, but the gene was primarily expressed in Tregs (Supple-
mentary Fig. 3b), likely because it is a direct target of the Treg master
regulator FOXP3122. CCL2 in stromal fibroblasts had an accessible pro-
moter peak in both sublining populations, butwas primarily expressed
in the inflammatory subset (Supplementary Fig. 4b), likely due to sti-
mulation by TNF/INFγ44,123.

Indeed,whenexpandinggenome-wide,we sawa similarpatternof
class-specific transcriptional cell states but chromatin classes encom-
passing multiple related states in our proposed superstate model
(Fig. 7a–c; Supplementary Fig. 10g, h). To validate this model, we
conducted an RA PBMC multiome experiment of FAC-sorted popula-
tions. While we saw differentially expressed genes between transcrip-
tional cell states within a chromatin class, there was an almost
complete lack of differentially accessible promoter peaks corre-
sponding to those genes (Fig. 7d, e). Biologically, open chromatin is

necessary but not sufficient for gene expression18, so it is reasonable to
expect related cell states to have similar open chromatin landscapes
with further specificity coming from TFs among other epigenetic
regulators. Technically, the robustness of the observed class-state
relationships across multiple clustering resolutions mitigated con-
cerns that this proposedmodelwas an artifact (Supplementary Fig. 13).
Even in the absence of clusters, classifiers based on continuous chro-
matin PCs also demonstrated the lack of resolution chromatin acces-
sibility has to distinguish between similar transcriptional states
(Supplementary Fig. 14).

Defining the relationship between transcriptional cell states and
chromatin classes may have important therapeutic implications. One
effective RA treatment strategy is the deletion of a pathogenic cell
state: the use of B cell-depleting antibodies (e.g., rituximab10) is an
example. However, if one chromatin class corresponds to multiple
transcriptional cell states, then deleting very specific pathogenic
populations may be ineffective as other non-pathogenic states may
transition into the pathogenic state in response to the same patho-
genic tissue environment. As an example, a recent study124 of ILCs in a
mousemodel of psoriasis showed chromatin accessibility in a disease-
relevant population of ILC3s even before disease inductionusing IL-23,
particularly at ILC3 TFs, that then increased further after induction. In
that case, altering the environment or removing exogenous factors
(e.g., TFs, cytokines) might be a more effective treatment. Within RA,
the SA−0: CXCL12+ HLA-DRhi sublining fibroblast class, with its four
related transcriptional states in our superstate model, may merit fur-
ther investigation in this regard. SA−0 accessible peaks were enriched
for STAT motifs, suggesting potential regulation by the JAK/STAT
signaling pathway. Indeed, JAK inhibition via tofacitinib and upadaci-
tinib has been shown to prevent pro-inflammatory HLA-DR induction
in RA synovialfibroblasts125. Additional experimentswouldbe required
to determine if the F-3: POSTN+ sublining transcriptional cell state
could transform into the RA-expanded14 F-5: CD74hiHLAhi sublining or
F-6: CXCL12+ SFRP1+ sublining fibroblast populations under JAK/STAT
stimulation.

More broadly, the results presented here suggest some interest-
ing next steps. First, our chromatin class superstate model indicated
that certain transcriptional cell states were more closely linked, but
further experimentationwould be required to ascertain whether these
related cell states have a plastic enough chromatin landscape to allow
for cross-differentiation or whether they aremore broadly grouped by
function. Second, to better understand whether the more pathogenic
chromatin classes such as TA−2: CD4+ PD-1 + TFH/TPH and MA−1:
FCN1+ SAMSN1+ infiltrating monocytes are indeed only in tissue, a RA
PBMC scATAC-seq study may be warranted. While we saw a general
consensus between the chromatin landscapes of RA tissue class TA−2
and our small population of RA blood TFH/TPH cells, a larger PBMC
study would be better powered to determine if the chromatin envir-
onment in blood may be a proxy for the environment in tissue that
gives rise to pathogenic transcriptional populations. Third, even
though we did not see large effects of OA and low-cell-count samples
on our chromatin classes, a larger study with a more even distribution

Fig. 8 | Linking RAchromatin classes toRApathology. a For each donor of the 14
donors shared between the unimodal scATAC-seq and AMP-RA reference studies
with at least 200T cells, the Pearson correlation coefficient (R) and two-sided p value
(P) between the relative proportions of T cell chromatin classes defined in the
unimodal scATAC-seq datasets (x axis) and classified into in the CITE-seq datasets
through the multiome cells (y axis). b CNA correlations between myeloid cell
neighborhoods and lymphoid density in AMP-RA reference myeloid cells visualized
on chromatin class UMAP (top; two-sided global P=0.005) and aggregated by clas-
sified myeloid chromatin classes (bottom). On the top, cells not passing the FDR
threshold were colored grey. On the bottom, FDR thresholds shown in dotted black
lines. c CNA correlations between T cell neighborhoods and CTAP-TB in AMP-RA
reference T cells visualized on chromatin class UMAP (top; two-sided global

P=0.046) and aggregated by classifiedT cell chromatin classes (bottom). On the top,
cells not passing the FDR threshold were colored grey. On the bottom, FDR thresh-
olds shown in dotted black lines. d Scaled mean normalized chromatin accessibility
for peaks that overlap putatively causal RA risk variants across chromatin classes in
unimodal and multimodal datasets. Additional information is in Supplementary
Table 5. e rs798000 locus, zoomed in (chr1: 116,735,799–116,740,800) (top) and
zoomed out (chr1: 116,658,581–116,775,106) (bottom) with selected gene isoforms,
SNPs, open chromatin peaks, and chromatin accessibility reads aggregated by
chromatin class and scaled by read counts per class. STAT1/2 motif was downloaded
from JASPAR109 IDMA0517.1 and is not to scale, but it is aligned to the SNP-disrupting
motif position.
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of RA and OA samples with higher cell counts would be better able to
distinguish between RA- and OA-specific chromatin variation.

In conclusion, we presented an atlas for RA tissue chromatin
classes that will be a useful resource for linking chromatin accessibility
to gene expression and the interpretation of genetic information.

Methods
Patient recruitment
Fourteen RA and 4 OA patients were recruited by the Accelerating
Medicines Partnership (AMP) Network for RA and SLE to provide
samples for use in the unimodal scATAC-seq experiments. Separately,
synovial tissue samples from 11 RA patients and 1 OA patient were
collected fromBrighamandWomen’sHospital (BWH) and theHospital
for Special Surgery (HSS) for use in the multimodal ATAC + Gene
Expression experiments. Histologic sections of RA synovial tissue were
examined, and samples with inflammatory features were selected in
both cases.

Patients were recruited from Brigham and Women’s Hospital,
Columbia University, Hospital for Special Surgery, Queen Mary Uni-
versity of London UK, University of Birmingham UK, University of
California SanDiego, University of Pittsburgh, University of Rochester.
All sites obtained approval for this study from their Institutional
Review Boards. All patients gave written informed consent. We have
complied with all relevant ethical regulations.

Synovial tissue collection and preparation
Synovial tissue samples from 14 RA patients and 4 OA patients were
collected and cryopreserved as part of a larger study cohort by the
AMP Network for RA and SLE, as previously described14. Synovial tissue
samples were thawed and disaggregated as previously described14,23.
The resulting single-cell suspensions were stained with anti-CD235a
antibodies (clone 11E4B-7-6 (KC16), Beckman Coulter, 1:100 dilution)
and Fixable Viability Dye (FVD) eFlour 780 (eBioscience/Thermo-
Fisher). Live non-erythrocyte (i.e., FVD− CD235−) cells were collected
by fluorescence-activated cell sorting (BD FACSAria Fusion). The sorted
live cells were then re-frozen in Cryostor and stored in liquid nitrogen.
The cells were later thawed and processed as described above for
droplet-based scATAC-seq according to manufacturer’s protocols (10X
Genomics). For the multimodal experiments, the 11 RA and 1 OA
synovial tissue samples were collected and cryopreserved before being
thawed, disaggregated, and FAC-sorted, as described above.

Unimodal scATAC-seq experimental protocol
Unimodal scATAC-seq experiments were performed by the BWH Cen-
ter for Cellular Profiling. Each sample was processed separately in the
cell capture step. Nuclei were isolated using an adaptation of the
manufacturer’s protocol (10X Genomics). Approximately ten thousand
nuclei were incubated with Tn5 Transposase. The transposed nuclei
were then loaded on a Chromium Next GEM Chip H and partitioned
into Gel Beads in-emulsion (GEMs), followed by GEM incubation and
library generation. The ATAC libraries were sequenced to an average of
30,000 reads per cell with the recommended number of cycles
according to the manufacturer’s protocol (Single Cell ATAC V1.1, 10X
Genomics) using Illumina Novaseq. Samples were initially processed
using 10x Genomics Cell Ranger ATAC 1.1.0, which included barcode
processing and read alignment to the hg38 reference genome.

Multiome experimental protocol
Multiomeexperimentswereperformedby theBWHCenter forCellular
Profiling. Each sample was processed separately in the cell capture
step. Nuclei were isolated as above. Approximately ten thousand
transposed nuclei were loaded on Chromium Next GEM Chip J fol-
lowed by GEM generation. 10x Barcoded DNA from the transposed
DNA (for ATAC) and 10x Barcoded, full-length cDNA from poly-
adenylated mRNA (for Gene Expression) were produced during GEM

incubation. The ATAC libraries and Gene Expression libraries were
then generated separately. Both library types were sequenced to an
average of 30,000 reads per cell on different flow cells with the
recommended sequencing cycles according to the manufacturer’s
protocol (Chromium Next GEM Single Cell Multiome ATAC + Gene
Expression, 10X Genomics) using Illumina Novaseq. Samples were
initially processed using 10x Genomics Cell Ranger ARC 2.0.0, which
included barcode processing and read alignment to the hg38 refer-
ence genome, for both ATAC and GEX information.

Computational methods
Supplementary Fig. 1 shows an overview of the computational meth-
odology for cell type/state identification, asmany of themethodswere
reused in different contexts. In the following sections, we explain the
core methodology the first time it is used, and then only the ways in
which the methodology differs in the different contexts afterwards.

ATAC read QC
Reads were quality controlled from the Cell Ranger BAM files via a new
cell-aware strategy that removes likely duplicate reads from PCR
amplification bias within a cell while keeping reads originating from
the same positions but from different cells. For unimodal scATAC-seq
data, duplicate reads from the same cell were called based on read and
mate start positions and CIGAR scores, but the multimodal snATAC-
seq data only used start positions since Cell Ranger ARC did not pro-
vide a mate CIGAR score (MC:Z flag). Reads that were not properly
mappedwithin a pair, had aMAPQ<60, did not have a cell barcode, or
were overlapping the ENCODE blacklisted regions24 of ‘sticky DNA’
were also removed. Using the deduplicated BAM files, we converted
them to fragment BED files using BEDOPS126 bam2bed while account-
ing for the 9-bp Tn5 binding site.

ATAC peak calling
Peaks were called twice on the unimodal scATAC-seq cells, before and
after “ATAC cell QC”, to first provide general peak information to be
used in the cell QC step and then afterwards on the post QC cells to
provide the final, refined peak set. Individual sample unimodal
scATAC-seq BAM files were converted to MACS2127 BEDPE files using
macs2 randsample, concatenated across samples, and thenused to call
consensus peaks with macs2 callpeak --call-summits using a control
file128 where ATAC-seq was done on free DNA to account for Tn5’s
inherent cutting bias. Each sub-peakwas trimmed to 200 bp (summit ±
100bp) to localize the signal and avoid confounding any statistical
analysis with peak length. Any overlapping peaks were removed
iteratively, keeping the best sub-peak, as determined by q-value, to
avoid double counting. For consistent analysis, we used the post cell
QC unimodal scATAC-seq trimmed consensus peaks for all down-
stream analyses unless otherwise stated. We wanted to confirm that
these unimodal scATAC-seq consensus peaks were reasonable to use
for themultimodal snATAC-seq datasets, beyond just that the datasets
were doneon the same tissue type. Therefore, we called peaks, as done
above, on the individual samplemultimodal snATAC-seq BAM files and
found that an average of 75% (n = 12 samples; range: 66–83%) of the
200bp trimmed multimodal snATAC-seq sample-specific peaks over-
lapped the unimodal scATAC-seq consensus peaks. Furthermore, we
used the 5x full consensus peak neighborhoods in the cell QC step for
multiome datasets as an added safeguard. We also confirmed our
peaks’ quality by seeing good overlap with ENCODE SCREEN v3 can-
didate cis-regulatory elements (cCREs)25 and the GENCODE v2826

promoter annotations via bedtools129 intersectBed (Supplemen-
tary Fig. 2f).

ATAC cell QC
We kept cells with more than 10,000 reads with at least 50% of those
reads falling in peak neighborhoods (5x full peak size), at least 10% of
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reads in promoter regions, not more than 10% of reads called in the
mitochondrial chromosome, and not more than 10% of pre-
deduplication reads falling in the ENCODE backlisted regions24. The
genome annotation we used to define promoters was GENCODE v28
basic26 as was done for Cell Ranger ATAC read mapping; we defined
promoter regions for the QC step as 2 kb upstream of HAVANA
protein coding transcripts that we subsequently merged to avoid
double counting. The fragments from the post QC cells were quan-
tified within the 200bp trimmed consensus peaks (see “ATAC peak
calling”) via GenomicRanges::findOverlaps130 into a peaks x cells
matrix.

ATAC clustering
We did multiple rounds of clustering with different inputs. Generally,
we did: binarize peaks x cells matrix, log(TFxIDF) normalization using
Seurat::TF.IDF131, most variable peak feature selection using
Symphony::vargenes_vst95, center/scale features to mean 0 and var-
iance 1 across cells using base::scale, PCA dimensionality reduction
using irlba::prcomp_irlba, batch correction by sample using
Harmony::HarmonyMatrix27, shared nearest neighbor creation
using RANN::nn2 and Seurat::ComputeSNN131, Louvain clustering using
Seurat::RunModulatrityClustering131, and cluster visualization using
UMAP coordinates via umap::umap. For the unimodal scATAC-seq
feature selection, we chose peaks that had at least one fragment in at
least five percent of cells and TFxIDF normalization using
Seurat::TF.IDF131 before continuing in the above steps. We used 20 PCs
for the broad cell type clustering and 10 PCs for the chromatin class
clustering since there was less variation within a cell type.

For cluster identification, we usedmarker peaks, defined as peaks
overlapping the promoters of marker genes; if there were multiple
peaks overlapping a gene’s promoter or multiple isoforms of a gene,
the peak that best tracked with the gene’s expression in the multiome
cells was chosen. The broad cell type marker peaks we used are in
Supplementary Fig. 2g–j and the chromatin class marker peaks in
panel b of Supplementary Figs. 3–7.

ATAC doublet cluster removal
Within the unimodal scATAC-seq and multimodal snATAC-seq sepa-
rately,we thendid an initial roundofATACclustering using all post cell
QC cells to find doublet clusters. We removed doublet clusters with
multiple cell-type-specific marker peaks, intermediate placement
between broad cell type clusters in PC space, high fragment counts,
and high doublet scores determined per cell per sample by ArchR35.
Note that this does not necessarily preclude doublets of the same
cell type.

RNA cell QC
Multimodal snRNA-seq cells had to pass Cell Ranger ARC cell filtering
and have at least 500 genes and <20% ofmitochondrial reads. The Cell
Ranger ARC filtered genes x cells matrix was subsetted to only these
cells passing cell QC.

RNA clustering
To cluster genes x cells matrices, we did: log normalization to 10,000
reads using Seurat::NormalizeData131, most variable gene feature
selection using a variance stabilizing transformation (VST)131, center/
scale features to mean 0 and variance 1 across cells using base::scale,
PCA dimensionality reduction using irlba::prcomp_irlba, batch cor-
rection by sample via Harmony::HarmonyMatrix27, shared nearest
neighbor creation using RANN::nn2 and Seurat::ComputeSNN131,
Louvain clustering using Seurat::RunModulatrityClustering131, and
cluster visualization using UMAP coordinates via umap::umap. We
used 20 PCs for the broad cell type clustering and 10 PCs for the
sorted RA PBMC mRNA clustering since there was less variation
within a cell type.

For cluster identification, we used marker genes seen in Supple-
mentary Fig. 2l, m for the broad cell types and in panel b of Supple-
mentary Figs. 3–7 for the chromatin classes.

RNA doublet cluster removal
After doing an initial round of RNA clustering on the post cell QC cells,
we removed doublet clusters with multiple cell-type-specific genes,
intermediate placement between broad cell type clusters in PC space,
high UMI counts, and high doublet scores determined per cell per
sample by Scrublet132. Note that this does not necessarily preclude
doublets of the same cell type.

Symphony classification of transcriptional identity
To determine the RA transcriptional cell types/states within our mul-
timodal data, we used Symphony95 to map the multimodal snRNA-seq
profiles into the AMP-RA reference synovial tissue transcriptional cell
types/states14 (Supplementary Fig. 1b, d). We used one Symphony
reference object from that study for the broad cell types together and
one for each broad cell type we tested (T cell, stromal, myeloid, B/
plasma, and endothelial) for the fine-grain cell state identities. The
broad cell types and lymphocyte states were defined using both gene
and surface protein expression while the others were defined using
gene expression only. In each case, wemapped themultimodal snRNA-
seq gene x cells matrix into the appropriate Symphony reference
object using themapQuery function, accounting for sample as a batch
variable. Using the knnPredict function with k = 5, each multiome cell
was classified into a reference transcriptional cell type/state by the
most common annotation of its five nearest AMP-RA reference
neighbors in the harmonized embedding. We considered it a high
confidence mapping if at least 3 out of the 5 nearest reference neigh-
bors were the same cell type/state, though the number of cell types/
states will affect this as more cell types/states means more boundary
regions between cell types/states.

Broad cell type clustering
For non-doublet cells passing cell QC, we subsetted the feature x cells
matrices and performedbroad cell type clusteringwithinmodalities as
described above in “ATAC clustering” for the unimodal scATAC-seq
and multimodal snATAC-seq datasets separately and “RNA clustering”
for the multimodal snRNA-seq datasets (Supplementary Fig. 1a, b). We
also classified the multimodal snRNA-seq cells into the AMP-RA CITE-
seq study14 broad cell types using Symphony95 (see “Symphony clas-
sification of transcriptional identity”). The small minority of cells (2%)
with discordant cell types defined in the snATAC-, snRNA-, and CITE-
seq modalities for the multiome datasets were removed (Supplemen-
tary Fig. 1b). Here, as in all analyses unless otherwise stated, we
included OA samples to increase cell counts, but we did not make any
OA versus RA comparisons due to low power.

Fine-grain chromatin class clustering
To define chromatin classes within broad cell types (Supplementary
Fig. 1c), we made peaks x cells matrices for each broad cell type con-
catenating unimodal scATAC-seq and multimodal snATAC-seq cells of
that type across the consensus peaks. Since peaks were called on all
unimodal scATAC-seq cells regardless of cell type, we first subset each
consensus peaks x broad cell type cells matrix by “peaks with minimal
accessibility” (PMA). We defined minimal accessibility as consensus
peaks that had a fragment in at least 0.5% of cells of that type, except
for endothelial cells whichwe increased to aminimumof 50 cells. After
subsetting the matrix by PMA peaks, we ran the same clustering
pipeline detailed in “ATAC clustering”. For endothelial cells, due to
small cell counts, we batch-corrected on both sample and assay and
updated Harmony’s sigma parameter to 0.2. We did another round of
QC toexclude cells that clusteredprimarily due to relatively fewer total
fragments per cell and fewer peakswith at least one 1 fragmentper cell,
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and then re-clustered.We tried a number of clustering resolutions (see
Supplementary Fig. 13 for a subset) and chose the resolution at which
known cell-state-specific gene markers’ promoter peak chromatin
accessibility andgene expression largely respected cluster boundaries,
such as PRF1 in TA−4: CD4+ PRF1+ cytotoxic (Fig. 2b) or SPP1 in MA−4:
SPP1+ FABP5+ intermediate (Fig. 4b).

To label chromatin classes,weused thefirst letter of thebroadcell
types (T - T cell; S - stromal;M -myeloid; B - B/plasma; E - endothelial), a
subscript A for accessibility, a cluster number (ordered by number of
cells, with the biggest cluster named 0). To give biological context, we
took advantage of both the peak accessibility and gene expression
profiles. We chose a class’s markers based on a number of factors: (1)
the class-specificity of the marker gene’s expression, (2) the class-
specificity of the marker peak associated to that gene’s promoter, (3)
previous reports of that gene as a cell typemarker in the literature, and
(4) corroboration with our well-annotated AMP-RA tissue CITE-seq
dataset14 via reference mapping95 (Figs. 2–6b, 7a–c; Supplementary
Figs. 1d, 3–7b, 10g, h; Supplementary Data 3, 4). We proposed a cell
identity based on knownmarkers in the field; for example, PDCD1 and
CXCL13 in TFH/TPH12 or PRG4 and CD55 in lining fibroblasts21. We fur-
ther supported the proposed identity by the correspondence to the
transcriptional cell state annotation from our well-annotated AMP-RA
reference of synovial tissue CITE-seq data14 (Fig. 7a–c; Supplementary
Fig. 10g, h; Supplementary Data 3).

T cell lineage analysis
We used a logistic regression model to investigate how promoter
peaks align with the CD4 and CD8 lineage distinction (‘lineage’) across
T cells beyond their chromatin class identity (‘class’), sample identity
(‘sample’), and overall fragment counts (‘nFragments’). The lineage
variable was defined as the cell’s chromatin accessibility at the pro-
moter peaks of: CD4+ CD8A- (+1), CD4+ CD8A+ or CD4− CD8A− (0),
CD4− CD8A+ (−1); cell counts by lineage and class are in Supplemen-
tary Table 3. A plus sign (+) signifies that the CD4 or CD8 lineage
promoter peak is accessible while a minus sign (−) signifies that it is
not. Genome-wide T cell promoter peaks were defined as those T cell
PMA peaks that overlapped an ENCODE promoter-like cCRE25, whose
proposed target gene was assessed via overlapping ENSEMBL133 hg38
release 92 transcript annotations. We note that if there were multiple
overlapping transcripts, we selected one gene to annotate the cCREs
by excluding lincRNA, miRNA, antisense genes, orfs, and other pseu-
dogenes then selecting one of the remaining genes. We excluded
peaks that were uniformly positive or negative after binarizing. For
each of these binarized promoter peaks (‘peak’), we calculated two
logistic regressions using lme4::glmer134 with a nloptwrap optimizer
for speed:

Full model : peak∼ lineage+ class + ð1jsampleÞ
+ scaleðlog 10ðnFragmentsÞÞ

Null model : peak∼ class + ð1jsampleÞ+ scaleðlog 10ðnFragmentsÞÞ

A lineage beta in the model is positive if the peak is associated to
CD4 and negative if associated to CD8. We calculated significance as a
likelihood ratio test (LRT) between the full and null models with mul-
tiple hypothesis test correction using FDR <0.20; significant results
are shown in Supplementary Data 1. Furthermore, we defined a lineage
score per cell via: (1) subsetting the normalized chromatin accessibility
matrix by the lineage-significant peaks; (2) dividing CD4-associated
peaks by the number of CD4-associated peaks to normalize; (3)
dividing CD8A-associated peaks by the number of CD8A-associated
peaks to normalize; (4) multiplying CD8A-associated peaks by −1 to
differentiate lineage; (5) summing over peaks by cell to get a cell score.
Thus, if a cell’s lineage score is positive, that cell is more associated

with CD4 and CD8 if otherwise. We aggregated these cell scores by
chromatin class in Supplementary Fig. 3d.

TF motif analysis
We used ArchR35 version 1.0.2 for our TF motif analysis. For each cell
type’s final QC cells, we subsetted each sample’s fragments using
awk135, bgzip136, and tabix137 before creating arrowfiles from themusing
createArrowFiles with all additional QC flags nullified. ArchR removed
samples with two or fewer cells, so one sample with only two B/plasma
cells was removed in that cell type. From the arrow files, we created an
ArchRproject via ArchRProject.We addedourpeak set into the project
by addPeakSet and recreated a peaks by cells matrix via addPeakMa-
trix. We added our chromatin classes to the project’s cell metadata
with addCellColData. Then, we added motif annotations to our peaks
using addMotifAnnotationswith the JASPAR2020motif set version 2, a
4 bpmotif searchwindowwidth, andmotif p value of 5e-05.We added
chromVAR background peaks via addBgdPeaks and then calculated
chromVAR deviations using addDeviationsMatrix. Next, we found
class-specific peaks for each chromatin class using getMarkerFeatures
via a Wilcoxon test and accounting for TSS Enrichment and log10(n-
Fragments). Within those peaks, we found motif enrichment via pea-
kAnnoEnrichment with cutoffs FDR ≤ 0.1 and Log2FC ≥0.5. We
modeledour heatmapofmotif enrichmentonplotEnrichHeatmap, but
we added some filters. As in the default plotEnrichHeatmap method,
we used the −log10(padj), where the p value is calculated via a hyper-
geometric test, as the motif enrichment value. For each chromatin
class sorted by maximum motif enrichment value, we chose the top
motifs not already chosen that had at least an enrichment value of 5 for
that class, had the maximal or within 95% of the maximal enrichment
for that class, and whose corresponding TF had at least 0.05 mean-
aggregated normalized gene expression for that class. For myeloid
cells, the enrichment cutoffwas set to 2 to show somemotifs forMA−0.
In endothelial cells, there were so few EA−3 cells that only 1 class-
specific peak was called, resulting in no useful motif information to be
shown; we also added a SOX17 motif (JASPAR109 ID MA0078.1), a pro-
minent arteriolar endothelial TF86, to the JASPAR2020 motif set for
endothelial cells. For the chosen motifs, we plotted the percentage of
the max enrichment value across classes with the max value in par-
entheses in the motif label as in plotEnrichHeatmap.

For the TFs associated with the top class-specific accessible
motifs, we used a one-sided Wilcoxon test to compare the normalized
gene expression for the TF between cells in that chromatin class and
the other cells within that cell type, with the alternative hypothesis
being “greater” and multiple hypothesis test correction within cell
types using FDR (Supplementary Data 2).

Loci visualization
To visualize the chromatin accessibility read buildups by chromatin
class or transcriptional cell state (class/state), we first subsetted the
deduplicated BAM files for each sample by the cells in the specific
state/class using an awk135 command looking for the samtools CB:Z
(i.e., cell barcode) flag; a BAM index file wasmade for each BAM file for
region subsetting purposes later. Then for each class/state at each
locus, we subsetted each sample’s BAM file for that region using
samtools view, merged the BAM files across samples using samtools
merge, converted the BAM files to bedgraph files using bedtools129

genomecov, and then divided the bedgraph counts by the total read
count (by 1e7 reads) in that class/state to allow for comparison
between classes/states. The bedgraph files were then imported to
IGV138 and the data range for each class/state was set to the maximum
value across classes/states. Tracks were colored by their class/state.
We did not always show all classes/states for space reasons, but we
picked representatives that were similar in the locus shown. Peaks
(see “ATAC peak calling”), motifs (see “TF motif analysis”), and SNPs
(see “Genetic variant analysis”) were imported into IGV as BED files.We
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could not label all motifs found in these loci for space reasons, so we
picked the enriched motif we were highlighting and a few other enri-
chedmotifs.We also could not always showall the gene isoforms for all
loci for space reasons, butwedid always showa representative isoform
for those that looked similar in the locus shown.

Stromal DNA methylation analysis
We downloaded 1859 DM loci for RA versus OA synovial fibroblast cell
lines from Nakano et al., 201347. We converted the 1 bp DM regions
fromhg19 tohg38 referencegenomesusing liftOver139; 1 regiondid not
map. Next, we overlapped these DM loci with our 200bp stromal PMA
peaks using intersectBed129 to get 152 DM loci, with 67 associated eith
hypermethylation and 85 to hypomethylation. We defined a per-cell
score as in the “T cell lineage analysis” section, but with positive scores
corresponding to hypermethylation and negative scores to hypo-
methylation. We calculated a one-sided Wilcoxon test p value of DNA
methylation cell scores between the 11,733 cells in SA−0 and the
12,574 stromal cells not in SA−0 to get significance of SA−0 enrichment
for hypomethylated regions.

We used the genes assigned to the DM loci from the original
paper47. For the genes related to hypermethylated DM and hypo-
methylated DM accessible loci separately, we plotted their scaled
mean normalized gene expression within fibroblast classes SA−0, SA−1,
and SA−2 to assess fibroblast class preferences.

Cultured fibroblast datasets
We obtained two cultured unstimulated FLS multiome datasets from
Smith et al.44. We downloaded their genes x cells matrices from Imm-
port accession ID SDY2213 and fragment files from the authors. We
subset these files by their QCed cells found in Immport file ada-
ta_scatac_chromVAR_motif_cultured.968213.h5; there were 19,573 QC
cells across the two samples. We overlapped this subsetted fragment
file by our peaks to create a peaks x cells matrix. We saw good overlap
in that matrix with 99.99% of our peaks having at least 1 cell repre-
sented and all cells having overlapping fragments with at least a few
hundred peaks. For both gene and peak matrices individually, we
concatenated the two samples and normalized as above.

Fibroblast identity analysis
We subsetted our stromal tissue datasets to only include fibroblast
populations (SA−0, SA−1, SA−2). We calculated differentially expressed
genes between tissue lining (SA−1) and sublining (SA−0, SA−2) popu-
lations in the normalized gene expression matrix using pre-
sto::wilcoxauc and adjusted p values using FDR. We created gene sets
of 382 lining and 254 sublining genes using the cutoffs: FDR< 0.1,
logFC > 0.25, and AUC>0.6. We then calculated a per-cell score as in
the “T cell lineage analysis” section, but with positive scores corre-
sponding to lining fibroblasts and negative scores to sublining
fibroblasts. Using the tissue-defined gene sets, we calculated this per-
cell fibroblast identity gene score in the normalized cultured fibro-
blast gene expression matrix (see “Cultured fibroblast datasets”). We
used a two-sided Wilcoxon test of fibroblast identity gene scores
between all pairs of fibroblast sources to determine significance via
ggpubr::compare_means. We did the same analysis with differentially
accessible peaks in the normalized chromatin accessibility matrix
using cutoffs FDR <0.1, logFC > 0.1, and AUC>0.58 to get 248 lining
peaks and 294 sublining peaks.

Tissue and blood analysis
We downloaded a publicly available 10x Single Cell Multiome ATAC +
Gene Expression dataset92 of healthy donor (female, age 25) PBMCs
with granulocytes removed through cell sorting as part of our sister
study93 (‘Public PBMC’ dataset). The PBMC cell labels were generated
using the processing defined in that study. No further quality control
was done on the fragment file downloaded from the 10x website

(https://cf.10xgenomics.com/samples/cell-arc/2.0.0/pbmc_
granulocyte_sorted_10k/pbmc_granulocyte_sorted_10k_atac_
fragments.tsv.gz). For each cell type (B, T, andmyeloid), we subset the
fragment file by that cell type’s cells and then overlapped them with
our peaks to get a peaks x cells matrix as done in “ATAC quality con-
trol”. We concatenated this matrix to our RA tissue’s peaks x cells
matrix for each corresponding cell type and then re-clustered using
the same PMA and variable peaks chosen for tissue and harmonizing
by sample. We chose the resolution that best mirrored the RA tissue
chromatin classes. The odds ratio for each individual biological sour-
ce’s cell label and the combined tissue and blood cluster label was
calculated as in “Class/state odds ratio”. We replicated this analysis
using the RAPBMCs for TFH/TPH andTreg FACSpopulations and the 5
RA tissue chromatin classes.

Class/state odds ratio
For each combination of chromatin class and transcriptional cell state
within a cell type, we constructed a 2 × 2 contingency table of the
number of cells belonging or not to the class and/or state. For cell
states that had >10 cells, we then calculated the odds ratio (OR) and p
value via stats::fisher.test. We did multiple hypothesis test correction
via stats::p.adjust using FDR <0.05.We displayed the natural log of the
OR via base::log, and if the value was infinite, we capped it at 1 plus the
ceiling of the non-infinite max absolute value of logged OR for display
purposes; negative infinity was the negative capped number. All the
ORs and p values for all class/state combinations from Fig. 7a–c and
Supplementary Fig. 10g, h are in Supplementary Data 3.

We defined the accuracy of the class/state correspondence as the
percentage of multiome cells with perfect mapping (i.e., all 5 nearest
neighbors in the reference had the same cell state) within each group
of ‘concordant’ (i.e., cells whose class and state agreed as determined
by the odds ratio) or ‘discordant’ (i.e., cells whose class and state dis-
agreed) cells per cell type. For example, cells mapping to class TA−0:
CD8A+ GZMK+ and state T-14: CD8+ GZMK+ memory would be ‘con-
cordant’ cells while cells mapping to class TA−2: CD4+ PD-1+ TFH/TPH
and state T-14: CD8+ GZMK+ memory would be ‘discordant’ cells.

ATAC pseudobulk differential peak analysis
For T, stromal, and myeloid cell types, we summed the non-binary
peaks x cells matrix by sample and transcriptional cell state combi-
nations across cells. We subset the summed matrix to include only
samples with more than 150 cells, states with more than 130 cells, and
combinations with more than 10 cells. For the within-class analysis, we
split the matrix by the transcriptional cell states that belonged to the
same chromatin class (e.g., 5 T cell matrices); we excluded any class
with only 1 state passing our QC thresholds. We also kept the full
matrix per cell type for the across-classes analysis. We subset peaks by
each cell type’s promoter PMA peaks (see “T cell lineage analysis”) that
had at least 5 reads across the pseudobulks within that analysis. For
each peak for each set of states (either within or across classes), we
calculated two negative binomial models of that peak’s sample/state
pseudobulk distribution using MASS::glm.nb, accounting for covari-
ates of sample identity (‘sample’) and the number of fragments
(‘nFragments’) in the sample and cell state combination and differing
by the inclusion of transcriptional cell state (‘cell state’):

Full model : peak∼ cell state + sample + scaleðlog 10ðnFragmentsÞÞ

Null model : peak∼ sample + scaleðlog 10ðnFragmentsÞÞ

Cell state and sample were represented by 1-hot encoded matri-
ces. We calculated an ANOVA log-likelihood ratio test (LRT) p value
between these two models and reconciled multiple hypothesis test
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correction within each analysis separately via FDR. Peaks were con-
sidered differential if they had FDR <0.10.

Linear discriminant analysis
We used LDA to determine how well knowing the chromatin harmo-
nized principal component (hPC) information helped predict the
mRNA fine-grain cell states for eachpairwise combination of states.We
specifically use pairwise combinations instead of 1 versus all compar-
isons to assess the chromatin accessibility data’s ability to give rise to
one or multiple transcriptional cell states. For each pair of transcrip-
tional cell states within a broad cell type, we subset all data structures
by those cells and remade the cell state vector into a 1-hot encoding. If
either cell state of the pair had <50 cells, we excluded it from further
analysis.We used the 10 chromatin hPCs from the fine-grain chromatin
class clustering (see “Fine-grain chromatin class clustering”). Covari-
ates of sample (1-hot encoded for 12 samples) and scaled logged
number of fragments (nFragments) were used since both can affect
cell type identity. We trained an LDAmodel using MASS::lda on 75% of
cells across thepairof states, verifying that the training and testing sets
had cells from both states:

LDA model : cell state∼ chromatin hPCs + sample

+ scaleðlog 10ðnFragmentsÞÞ

We tested the model using stats::predict for the 25% of held-out
data and quantified the discriminative value of themodel using an area
under the curve AUC metric from ROCR140 library functions ROCR::-
prediction and ROCR::performance. Pairs of distinct clusters wereonly
calculated once; the square matrices of results have the triangles
mirrored. If the cell states were the same and a model was not run
(identity line) or the model between pairs of clusters had a constant
variable due to sampleswith too few cells (non-identity line), the box is
greyed out.

Superstate FACS protocol
From pooled PBMC samples from 4 RA patients, we enriched for CD4
T cells using the MACS protocol and sorted for 4 populations using
FACS (CD4+CD127−CD25hi Tregs, CD4+CD127−CD25int Tregs,
CD4+CD25−PD1+CXCR5+ TFH, and CD4+CD25−PD1+CXCR5− TPH). FACS
sequential gating plots can be found in Supplementary Fig. 15a. We
used the following antibodies: CD3-FITC, CD4-BV421, CD25-PE-Cy7,
CD127-BV650, CXCR5-PE, PD1-APC. All antibodies were purchased by
BioLegend and used at one microliter per million cells. The Live/Dead
dye 7-AAD was purchased from ThermoFisher Scientific and used at
five microliters per million cells. After nuclei isolation, each sorted
population was taggedwith a nuclear hashing antibody before pooling
across populations. Total-SeqTM-A hashtag antibodies (A0451-A0454)
were purchased from BioLegend and used at a 1:40 dilution.

Superstate multiome experimental protocol
We performed a multiome experiment as described in “Multiome
experimental protocol”, with the additional step of producing cDNA
from Hashtag oligos (for Protein Antibody Hashtags) during GEM
incubation, generating the Hashtag library alongside the Gene
Expression library. The Hashtag library was sequenced at approxi-
mately five thousand reads per cell.

Superstate multiome quality control
Quality control steps for the superstatemultiome experimentwere the
same as the RA tissue multiome experiments, up to and not including
the doublet step in both modalities (Supplementary Fig. 1b). To better
account for doublets between these very similar cell states, we only
included cells with a single identity determined by running
Seurat::HTODemux131 on the normalized hashtag library. Those cell
state identities were strictly used as a label. Cells needed to pass QC in

all threemodalities to be included in the downstreamanalysis.We kept
402 CD4+CD127−CD25hi Tregs, 1690 CD4+CD127−CD25int Tregs, 535
CD4+CD25−PD1+CXCR5+ TFH, and 371 CD4+CD25−PD1+CXCR5−

TPH cells.

Single-cell differential peak analysis
We used a logistic regression model to determine differential pro-
moter peaks across chromatin class identity. We did this at the single
cell level for the combined unimodal scATAC-seq and multimodal
snATAC-seq cells and took into account the sample’s sample (‘sample’)
and overall fragment counts (‘nFragments’) as covariates. Genome-
wide promoter peaks were defined per cell type as in “T cell lineage
analysis”. For each peak and class combination, we calculated two
logistic regressions using lme4::glmer134 with a nloptwrap optimizer
for speed:

Full model : peak∼ class + ð1jsampleÞ+ scaleðlog 10ðnFragmentsÞÞ

Null model : peak∼ ð1jsampleÞ+ scaleðlog 10ðnFragmentsÞÞ

The log2FC was determined as the cell type beta. We calculated
significance as a LRT between the full and null models with multiple
hypothesis test corrections using FDR. The top 5 peaks per class,
defined as having log2FC>0.5 and −log10(FDR) > 5, ordered by FDR,
are shown in Supplementary Data 4.

Single-cell differential gene analysis
For the multiome cells only, we calculated differentially expressed
genes between chromatin class identities within a cell type via a two-
sided Wilcoxon test using a normalized gene expression matrix input
to presto::wilcoxauc. The top 5 genes per class, defined as having
logFC >0.5 and −log10(FDR) > 5, ordered by FDR and logFC, are shown
in Supplementary Data 4. We selected one peak of potentiallymultiple
that overlapped the annotated gene based on the differential peak’s
significance in the corresponding class.

TFH/TPH/Treg differential feature analysis
For the sorted RA PBMCs, we determined differential genes and peaks
between each pair of states within one chromatin class: (1)
CD4+CD127−CD25hi Tregs and CD4+CD127−CD25int Tregs; (2)
CD4+CD25−PD1+CXCR5+ TFH and CD4+CD25−PD1+CXCR5− TPH. We
calculated differential genes as in “Single-cell differential gene analy-
sis”. Differential promoter peaks were calculated similarly to “Single-
cell differential peak analysis”, but we excluded sample as a covariate
since there was a single pooled RA PBMC sample and used stats::glm
instead of lme4::glmer sincewe removed the random effect of sample,
thus negating the need for amixed effectmodel. If a gene hadmultiple
promoter peaks, we chose the peak with the max normalized peak
accessibility summed across cells in that pair of states. Furthermore,
we only included peak/gene pairs with at least 1 fragment/UMI in
greater than 50 cells in that pair of states. We corrected p values using
FDR separately within modalities.

Symphony classification of chromatin class
To utilize the richer clinical information in themore abundant AMP-RA
reference datasets, we classified each AMP-RA reference cell into a
chromatin class. We used the same shared transcriptional spaces by
cell type defined in “Symphony classification of transcriptional iden-
tity”, but we reversed the reference and query objects in the knnPre-
dict function, such that the multiome cells were in the ‘reference’ and
the AMP-RA reference cells were in the ‘query’. We used the most
common annotation of the 5 nearest multiome neighbors to classify
the chromatin class in the AMP-RA reference cells. We averaged the 5
nearest multiome neighbors’ UMAP dimensions to visualize the
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classified chromatin classes in the AMP-RA reference cells on the
chromatin class UMAPs.

Unimodal scATAC-seq and AMP-RA CITE-seq shared donor
analysis
There were different samples that came from the same donors in the
unimodal scATAC-seq and AMP-RA reference CITE-seq datasets. We
expected similar, but not the same, chromatin class proportions for
samples coming from the same donor’s tissue but put through dif-
ferent experimental protocols and class assignmentmethods. First, we
filtered out any donors that did not have at least 200 scATAC-seq or
CITE-seq cells in all cell types except endothelial, in which we lowered
the threshold to 100 cells. We then calculated the proportion of each
sample’s cells coming from each chromatin class for each technology
and plotted the CITE-seq proportion by scATAC-seq proportion for
each donor, faceted by chromatin class in Fig. 8a and Supplementary
Fig. 16a. We calculated the Pearson correlation and two-sided p value
for each chromatin class by stats::cor.test.

Co-varying neighborhood analysis
We used the significant CNA99 correlations between AMP-RA reference
cell neighborhoods and sample-level covariates from our AMP-RA
reference study14. We re-plotted the AMP-RA reference cell CNA cor-
relations on the chromatin class UMAPs and re-aggregated them by
classified chromatin class calculated in “Symphony classification of
chromatin class”. In Supplementary Table 6, clinicalmetrics andCTAPs
were listed if the median abundance correlation of the AMP-RA refer-
ence cells within their Symphony-classified chromatin class was more
extreme than the FDR threshold for that patient attribute14. Classes
were considered significantly expanded if that class’s cells were posi-
tively correlated with that attribute’s per-sample class abundance
within a cell type and depleted if negatively correlated.

Genetic variant analysis
We used the set of RA-associated non-coding SNP locations and
statistically fine-mapped PIPs from our previously published RA
multi-ancestry genome-wide association meta-analysis study107.
We subsetted the SNPs by PIP > 0.1 and overlapped their locations
with our 200 bp trimmed peaks using intersectBed129. For the
overlapping peaks, we plotted their normalized chromatin acces-
sibility mean-aggregated by chromatin class and scaled in Fig. 8d
with more description in Supplementary Table 5. To determine
broad cell type specificity of a peak’s accessibility, we calculated a
Wilcoxon test one-sided “greater” p value between the normalized,
mean aggregated, scaled peak accessibility in the broad cell type’s
classes versus those classes in the other broad cell types. Classes
were considered accessible for that peak if the scaled mean nor-
malized peak accessibility over 24 classes and 11 peaks, z, >1. We
plotted example loci in Fig. 8e and Supplementary Fig. 17 as
described in “Loci visualization”; we excluded some chromatin
classes for space, but we kept the most accessible chromatin
classes and at least one chromatin class from each cell type at each
locus. The TF motif logos in Fig. 8e and Supplementary Fig. 17 were
downloaded from the JASPAR motif database109 for accession IDs
MA0517.1 (STAT1::STAT2), MA0039.4 (KLF4), andMA1483.1 (ELF2);
they were not to scale, but the motif position the SNP disrupts was
aligned to the SNP. We further aggregatedmultimodal snATAC-seq
reads by transcriptional cell state for visualization purposes in
Supplementary Fig. 18.

Computational versions used
Specific software versions are listed here, but more information about
how they were used within this study can be found in the appropriate
Methods sections.

Flow cytometry data was analyzed using FlowJo (v10.7.2 for tissue
samples and v10.8.1 for blood samples).

We used R v3.6.1 for most analyses with the following packages:
argparse v2.0.3, aricode v1.0.0, BiocGenerics v0.30.0, class v7.3-17,
data.table v1.12.8, dplyr v1.0.2, GenomeInfoDb v1.20.0, Genomi-
cRanges v1.36.1, ggbeeswarm v0.6.0, ggplot2 v3.3.0, ggpubr v0.4.0,
ggrastr v0.2.3, ggrepel v0.8.2, ggthemes v4.2.0, gplots v3.0.1.1, grid-
Extra v2.3, gtools v3.8.2, harmony v1.0, IRanges v2.18.3, irlba v2.3.3,
lattice v0.20-41, lme4 v1.1-21, magrittr v1.5, MASS v7.3-51.6, Matrix v1.2-
18, Matrix.utils v0.9.7, matrixStats v0.56.0, patchwork v1.1.0.9000,
pheatmap v1.0.12, plyr v1.8.6, presto v1.0.0, RANN v2.6.1, RColor-
Brewer v1.1-2, rcompanion v2.4.1, Rcpp v1.0.4.6, RcppCNPy v0.2.10,
repr v1.0.1, reticulate v1.13, Rmisc v1.5.1, ROCR v1.0-7, rstatix v0.7.0,
S4Vectors v0.22.1, scales v1.1.1, Seurat v3.2.0, Signac v1.1.0, stringr
v1.4.0, symphony v1.0, tibble v3.0.1, tidyr v1.0.3, umap v0.2.3.1, uwot
v0.1.8, viridis v0.5.1, viridisLite v0.3.0.

For ArchR analyses, we used R v4.2.0 with the following packa-
ges: ArchR v1.0.2, argparse v2.1.6, Biobase v2.56.0, BiocGenerics
v0.42.0, Biostrings v2.64.1, BSgenome v1.64.0, BSgenome.Hsa-
piens.UCSC.hg38 v1.4.4, chromVARmotifs v0.2.0, data.table v1.14.4,
GenomeInfoDb v1.32.4, GenomicRanges v1.48.0, ggplot2 v3.3.6,
gridExtra v2.3, gtable v0.3.1, gtools v3.9.3, IRanges v2.30.1, JAS-
PAR2016 v1.24.0, JASPAR2018 v1.1.1, JASPAR2020 v0.99.10, magrittr
v2.0.3, Matrix v1.5-1, MatrixGenerics v1.8.1, matrixStats v0.62.0,
plyr v1.8.7, Rcpp v1.0.9, rhdf5 v2.40.0, rtracklayer v1.56.1, S4Vectors
v0.34.0, stringr v1.4.1, SummarizedExperiment v1.26.1, TFBSTools
v1.34.0, tidyr v1.2.1, XVector v0.36.0.

We also used python v3.7.3, scrublet v0.2.3, samtools v1.9, bed-
tools v2.28.0, bedops v2.4.36, GNU Awk 3.1.7, jupyter v4.4.0.

Data availability
The raw FASTQs files generated in this study have been deposited in
the dbGaP database under accession code phs003417.v2.p1. These
data are available under restricted access as patient-identifiable data;
access can be requested from dbGaP. The processed data files gener-
ated in this study have been deposited in Synapse under accession
code syn53650034141. Source data are provided with this paper.
Symphony references from ref. 14 are available in Synapse under
accession code syn52297840142. Cultured unstimulated FLS multiome
datasets from ref. 44 are available in Immport accession ID SDY2213.
JASPAR motifs from ref. 109 are available in JASPAR under accession
codes MA0517.1, MA0039.4, MA1483.1, and MA0078.1.

Code availability
The codeused to generate the results presented herein canbe foundon
GitHub (https://github.com/immunogenomics/RA_ATAC_multiome/).
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