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AI-enhanced integration of genetic and
medical imaging data for risk assessment of
Type 2 diabetes

Yi-Jia Huang1,2, Chun-houh Chen 2 & Hsin-Chou Yang 1,2,3,4

Type 2 diabetes (T2D) presents a formidable global health challenge, high-
lighted by its escalating prevalence, underscoring the critical need for preci-
sion health strategies and early detection initiatives. Leveraging artificial
intelligence, particularly eXtreme Gradient Boosting (XGBoost), we devise
robust risk assessmentmodels for T2D. Drawing upon comprehensive genetic
and medical imaging datasets from 68,911 individuals in the Taiwan Biobank,
our models integrate Polygenic Risk Scores (PRS), Multi-image Risk Scores
(MRS), and demographic variables, such as age, sex, and T2D family history.
Here, we show that our model achieves an Area Under the Receiver Operating
Curve (AUC) of 0.94, effectively identifying high-risk T2D subgroups. A
streamlined model featuring eight key variables also maintains a high AUC of
0.939. This high accuracy for T2D risk assessment promises to catalyze early
detection and preventive strategies. Moreover, we introduce an accessible
online risk assessment tool for T2D, facilitating broader applicability and dis-
semination of our findings.

Type 2 diabetes (T2D) is a prevalent global health concern, comprising
almost 90% of diabetes mellitus (DM) cases1. T2D is associated with
severe complications such as retinopathy, nephropathy, and cardio-
vascular diseases, significantly impacting health and quality of life and
increasing healthcare expenses2. Early detection and risk assessment
of T2D are crucial for effective health management. T2D has a global
prevalence of 6%3. However, in Taiwan, the prevalence is even higher,
at approximately 10%. The mortality and economic burden in medical
care among T2D patients increase significantly over time4. T2D has a
polygenic andmultifactorialmodeof inheritance5,6. The significant risk
factors include genetic components, food intake, and environmental
exposures7,8.

Genome-wide association studies (GWAS) have identified T2D
susceptibility loci and genes, which have been used to develop T2D
prediction models9–11. Polygenetic risk scores (PRS) and weighted PRS
have attracted attention for the genetic prediction of T2D12–14. How-
ever, the prediction accuracymustbe elevated for clinical use15. Recent
studies have combined single nucleotide polymorphisms (SNPs) from

multi-ethnic GWAS to calculate PRS and improve prediction
accuracy16,17. Methods, such as PRS-CSx, have been developed to
integrate GWAS summary statistics from multiple ethnic groups and
combine multiple PRSs with weights considering linkage
disequilibrium18–20. The use of PRS for T2D risk assessment and pre-
diction is crucial in clinical application and precision medicine21.

Recent smart medicine and precision health studies have high-
lighted the utility of medical imaging analysis in disease diagnosis and
prediction, in addition to genetic markers. Moreover, previous
research has demonstrated the association of several diseases with
T2D22,23, some of which can be diagnosed using medical imaging
techniques. For instance, nonalcoholic fatty liver can be diagnosed
through abdominal (ABD) ultrasonography24, osteoporosis through
bone mineral density (BMD)25, and cardiovascular disease through
electrocardiography (ECG)26. These T2D-associated diseases can be
effectively diagnosed and detected using medical imaging analysis.
Considering this, our study incorporates genetic markers and medical
imaging data to assess the risk of T2D. This approach enables a
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comprehensive evaluation and potential improvement in T2D predic-
tion and risk assessment.

Artificial intelligence, which encompasses machine learning and
deep learning, has found extensive applications in genetic research,
including disease diagnosis, classification, and prediction using
supervised learning27,28. Extreme Gradient Boosting (XGBoost), a
supervised tree-basedmachine learning approach29, has demonstrated
superior performance in classification and prediction. Successful
applications of XGBoost in precision medicine include chronic kidney
disease diagnosis30, orthopedic auxiliary classification31, chronic
obstructive pulmonary prediction32, and multiple phenotypes
prediction33.

Taiwan Biobank (TWB), established in 2012, is a valuable resource
for the integrative analysis of genetic and medical imaging data34. The
TWB enrolled participants aged over 20 from the Han Chinese popu-
lation in Taiwan and collected baseline questionnaires, blood, urine
samples, and their biomarkers of lab tests, as well as genotyping data
from all participants. Follow-up data, including repeated ques-
tionnaires, biomarker measurements, and medical imaging data, were
collected every two to four years. Medical imaging data includes ABD,
carotid artery ultrasonography (CAU), BMD, ECG, and thyroid ultra-
sonography (TU). The integrative analysis of genetic and medical
imaging data holds great promise for disease risk assessment and
prediction, as demonstrated by recent studies35–38. Here, we present a
study integrating genome-wide SNPs and multimodality imaging data
from theTWB for T2D risk assessment,marking an advancement in the
field. We developed machine learning models incorporating genetic
information, medical imaging, demographic variables, and other risk
factors. Furthermore, we identified high-risk subgroups for T2D, pro-
viding insights into T2D precision medicine.

Results
This study comprised two primary analyses: a genetic-centric analysis
(Analysis 1; detailed in Fig. 1 and the Methods section) and a genetic-
imaging integrative analysis (Analysis 2; detailed in Fig. 2 and the
Methods section). Data used in the two analyses are summarized
(Supplementary Table S1). A total of 68,911 participants from the TWB
were included in the analysis (Fig. S1).

Genetic-centric analysis – Comparison of prediction models
We evaluated the prediction performance under different scenarios
hierarchically (the best scenario at a previous variable was given for a
discussion of the next variable) in the following order: the sources and
significance levels of T2D-associated SNPs (Fig. 3A and Fig. S2), T2D
phenotype definitions (Fig. 3B), family history variable combinations
(Fig. 3C and Fig. S3), demographic variable combinations (Fig. 3D),
demographic and genetic variable combinations (Fig. 3E), and SNP and
PRS combinations (Figs. 3F and 3G). The findings are summarized as
follows: First, using T2D-associated SNPs from the previous large-
sample-size GWAS11 as predictors had the highest AUC of 0.557, but its
AUC was not significantly higher than that used the SNPs identified by
our smaller-sample-size GWAS under different thresholds of statistical
significance (Fig. 3A), although our GWASs did identify some T2D-
associated SNPs (Fig. S4). Second, the phenotype defined by self-
reported T2D with HbA1C ≥ 6.5% or fasting glucose ≥126mg/dL (i.e.,
T2D Definition IV) had the highest AUC of 0.640. Its AUC was sig-
nificantly higher than the AUCs of the other three T2D definitions
(Fig. 3B). Third, sibs’ disease history had a significantly higher AUC of
0.732 than parents’ disease history with an AUC of 0.670 (p = 0.009).
Moreover, additive parent-and-sib disease history had the highest AUC
of 0.758. Its AUC was significantly higher than parent-only (p < 0.001)
(Fig. 3C). Fourth, a joint effect of age, sex, and additive parent-sib
disease history had the highest AUC of 0.884. Its AUCwas significantly
higher than other demographic variable combinations, except for the
combination of age and additive parent-sib disease history (Fig. 3D).

Fifth, whatever SNPs were included or not, demographic and PRS
combinations outperformed themodels without incorporation of PRS
(Fig. 3E), although genetic factors only improved up to 3% of AUC
conditional on demographic characteristics (age, sex, and family his-
tory of T2D). Finally, given T2D-associated SNPs, AUC significantly
increased if PRS was included (Fig. 3F); T2D-associated SNPs provided
a limited additional effect if PRS was already included (Fig. 3G).

Among different prediction models, the model with predictors
PRS-CSx, age, sex, and family history of T2D had the highest AUC0.915
(Fig. 4A) for Type VI definition of T2D based on the first testing dataset
(i.e., Dataset 6’ in Fig. 1). The optimal threshold, determined by the
Youden index, for the fitted value that used to predict T2D or non-T2D
in the XGboost model was 0.16. The Accuracy, Sensitivity, Specificity,
and F1 indices were 0.843, 0.844, 0.843, and 0.672, respectively. Fur-
thermore, the model was tested in the second independent testing
dataset (i.e., Dataset 7’ in Fig. 1), and a promising result similar to the
first testing dataset was found: AUC=0.905, Accuracy = 0.843, Sensi-
tivity = 0.846, Specificity = 0.842, and F1 = 0.644. AUCs are also pro-
vided for the other three T2D definitions (Fig. S5).

The importance of each predictor was evaluated through a
backward elimination procedure of variables. The optimal model
incorporating age, sex, family history of T2D, andPRS achieved anAUC
of 0.915. The AUC reductions upon removing individual variables are
as follows: (a) Omitting the age variable resulted in an AUC of 0.839,
representing a reduction of 0.076. (b) Excluding the sex variable
resulted in an AUC of 0.905, with a decrease of 0.01. (c) Removing the
family history of the T2D variable yielded an AUC of 0.881, with a
reduction of 0.034. (d) Eliminating the PRS variable resulted in anAUC
of 0.884, decreasing to 0.031. Based on the decrease in AUC, the
impact size appears to be in the order of age > family history > PRS >
sex. Additionally, we evaluated feature importance (see the Methods
section), and the order of feature importance is family history > age >
PRS > sex. Our findings consistently highlight age and family history as
the most crucial risk factors for T2D.

Genetic-centric analysis – Assessment of family history of T2D
Familyhistory encompasses genetics andenvironment.Wedelved into
the connection between the family history of T2D – treated as a graded
scale (0, 1, 2, 3, and 4) – and the genetic component represented by the
PRS. Through ordinal logistic regression, we observed a beta coeffi-
cient of 0.808 and an associated odds ratio (OR) of 2.24 (p = 1.65 ×
10–296). The remarkably small p-value emphasizes the robust statistical
significance, signaling a substantial association between the PRS and
familial T2D status. For each incremental unit rise in an individual’s
PRS, their odds of belonging to a higher family history category for
T2D increase by 2.24 times. This implies a tangible shift in the like-
lihood of different family history classifications as the PRS changes.
The findings underscore a strong statistical link between genetic pre-
disposition, as captured by the PRS, and the gradation of family his-
tory of T2D.

Furthermore, we calculated the Population Attributable Risk
(PAR) by dichotomizing PRS into a high-risk group (PRS tercile >80%)
and a non-high-risk group (PRS tercile <80%). Among the 59,811 par-
ticipants, the breakdown was as follows: high PRS with family history
(N = 5473), high PRS without family history (N = 6489), non-high PRS
with family history (N = 16,054), and non-high PRS without family his-
tory (N = 31,795). The PAR estimate was 10.17%, indicating that 10.17%
of the family history of T2D is attributed to genetic heritability. If
considering a broader definition of the high-risk group (PRS tercile
>60%) and non-high-risk group (PRS tercile <60%), the PAR estimate
increased to 18.41%.

Further consideration of environmental factors, including edu-
cation level, drinking experience, exercise habits, the number of
exercise types, and SNP-SNP interactions with and without SNPs’main
effect, did not improve T2D prediction (Supplementary Table S2).
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Considering model parsimony, the final model did not include these
environmental factors and SNP-SNP interactions. In addition to pre-
diction models, classification models were also established. The AUCs
in classification models (Fig. S6) were generally slightly higher than
those in prediction models (Fig. S5).

Genetic-centric analysis – Assessment of PRS
The positive association between PRS and T2D risk is shown (Fig. 4B).
Compared to theparticipants in the 40–60%PRSdecile group, those in
the top 10% decile group had a 4.738-fold risk of developing T2D (95%
confidence interval: 3.147–7.132, p <0.001) and a 4.660-fold risk (95%
confidence interval: 2.682–8.097, p <0.001) after adjusting for age,
sex, and family history. In addition, we performed a stratified analysis
across various combinations of age subgroups, sex subgroups, and
family history subgroups to identify high-risk subgroups, where age
was stratified into four subgroups based on quartiles: 0–25%, 25–50%,

50–75%, and 75–100%, corresponding to age subgroups of ≤43, 43–52,
52–59, and >59 years of age, respectively (Fig. S7).We identified a high-
risk subgroup of women who were older than 59 and had a family
history of T2D. The ratio of case vs. control sample size was as high as
7.3–13.0-fold in the 80–100% decile groups (Fig. 4C). The ratio was
much higher than a 1.6-fold that did not consider PRS (i.e., PRS at
0–100%) (Fig. 4C). Due to ambiguity or instability in the evidence for
other combinations, we chose not to report them.

Genetic-centric analysis – Risk of developing T2D
Among 8347 non-T2D participants at baseline in the first testing
dataset of 8827 participants, 220 reported T2D in the follow-up. The
Cox regression analyses considered two types of time scales and three
types of sex variable treatment and obtained a consistent result
(Supplementary Table S3). Using the analysis in which we considered
time-on-study as the time-scalewith age at baseline, sex, family history
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4 Validation data (20%) 

Phenotype N Case Ctrl

Def I 10,197 506 9,691

Def II 5,404 401 5,003

Def III 5,838 210 5,628
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5GWAS data (70%)

Phenotype N Case Control

Def I 35,688 1,791 33,897

Def II 18,911 1,426 17,485

Def III 20,430 748 19,682

Def IV 13,138 1,425 11,713

1 Training data (24%)

Phenotype N Case Control

Def I 12,236 592 11,644

Def II 6,484 462 6,022

Def III 7,004 242 6,762
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2 Validation data (6%)
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Def II 1,622 115 1,507

Def III 1,752 60 1,692
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3

Our GWAS ?
NoYes

Testing data 2, 2’ 7 7’

Phenotype N Case Control
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/ /
Inclusion criteria 

Phenotype definitions
Def I Def II Def III Def IV

Case
Self-reported T2D v v v v v v
HbA1c ≥ 6.5% v v v
Fasting glucose ≥ 126 mg/dL v v v

# of cases 3,227 2,321 1,157 2,393

Control 
Self-reported no T2D v v v v
HbA1c ≤ 5.6% v v
Fasting glucose < 100 mg/dL v v

# of controls 56,584 27,906 31,363 18,152
N 59,981 30,227 32,520 20,545

Fig. 1 | Flowchart of genetic-centric analysis. A Data partitioning. The dataset
containing information from 60,747 individuals after data quality control (QC) was
divided into several subsets: (i) The genome-wide association study (GWAS) sam-
ples (Dataset 1, N = 35,688), training samples (Dataset 2, N = 12,236; Dataset 4,
N = 40,787), and validation samples (Dataset 3, N = 3060; Dataset 5,N = 10,197). For
classification analysis, testing samples comprised Dataset 6 (N = 8827) and Dataset
7 (N = 936), while for prediction analysis, they were represented as Datasets 6’
(N = 8827) andDataset 7’ (N = 936);BSample size. Total sample size, alongwith the
number of cases and the number of controls, are shown for each of the four
phenotype definitions in Datasets 1 – 7; C Phenotype definition criteria. The

definition and sample size for the four Type2Diabetes (T2D) phenotype definitions
is shown. D Analysis flowchart. The analysis flow comprises three steps, starting
with selecting T2D-associated single nucleotide polymorphisms (SNPs) and poly-
genic risk score (PRS), then selecting demographic and environmental covariates,
and the best XGBoost model was established using the selected features. As to the
first step, SNPs can be chosen from A our own GWAS with an adjustment for age,
sex, and top ten principal components (PCs), B published studies based on single
ethnic populations, and C published studies based onmultiple ethnic populations.
Source data are provided as a Source Data file.
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of T2D, and PRS as covariates for illustration, age, sex, family history of
T2D, and PRS were all significantly associated with T2D (p < 0.001)
(Fig. 4D). Increased age, higher PRS, and stronger T2D family history
had a higher T2D risk. The elderly male, with a strong family history
and high PRS, had a severe T2D risk (Fig. 4E for multivariate Cox
regression and Fig. S8 for univariate Cox regression).We also provided
the predicted time-to-event (week) (Fig. 4F). For example, a 50-year-
old man with one of his family members had T2D will achieve median
T2D-free time after 460 weeks (95% CI, 384–NA). The median time to
develop T2D was shortened to 419 weeks (95% CI, 384–NA) after
considering a standardized PRS of 0.66 (equivalent to a PRS risk sub-
group in the top 25% of the population).

A linear regression analysis was performed to assess the impact of
exercise on HbA1c. Multiple testing for 110 analyses was corrected
using Bonferroni correction, and the significance level was set as 4.5 ×
10-4. It was observed that individuals engaging in regular exercise
experienced a significant reduction in HbA1c by an average of 0.09%
mg/dL (p <0.001) compared to those who did not engage in regular
exercise. Moreover, individuals with a high PRS who engaged in
exercise demonstrated a greater reduction in HbA1c (0.13% mg/dL)
than those with a low PRS (0.08% mg/dL). The results also suggested
that the T2D patients who regularly engaged in exercise can have a

noteworthy improvement of 0.32% mg/dL in HbA1c than those T2D
patients who did not exercise regularly. In addition, among the various
types of exercise, walking for fitness exhibited the most robust
reduction in HbA1c for all samples, including high and low-risk sub-
groups and both T2D and non-T2D groups (Fig. S9). On average, par-
ticipants engaged in walking for fitness 18.30 times a month (standard
deviation = 8.64) for approximately 48.13minutes per session (stan-
dard deviation = 22.92).

Genetic-centric analysis – The ability of T2D early detection in
our model
To investigate the early detection capability of our model for T2D, we
performed an analysis focusing on 550 women participants older than
59 years, all of whomhad a family history of T2D.We identified themas
at high risk if they possessedahighPRS, even though theywere initially
reported as non-T2D at baseline. Thirty-six were changed to T2D, and
514were still non-T2D at follow-up.Wepredicted their T2D status. G1 –
G4 are the groups of participants in true positive, false negative, false
positive, and true negative, respectively (Fig. 5A).We evaluated thatG3
was indeed misclassified by our prediction model or our prediction
had corrected the problem in the self-reported T2D by further inves-
tigating: (1) their follow-up time and current risk in the Cox regression
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HbA1c ≤ 5.6% & GLU-AC < 100 mg/dL
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EUR
N = 933,970 
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853,816 Controls)
10,454,875 SNPs

EAS
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(16,540 Cases / 
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1000 genome reference
1,297,432 SNPs 
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N = 7,786 ; 9,814,910 SNPs

(502,049 SNPs) (484,307 SNPs) (514,858 SNPs)

Fig. 2 | Flowchart ofgenetic-image integrativeanalysis.ADatapartitioning and
model training. Phenotype Definition IV was used as an example to illustrate the
process. The data containing information from 7,786 individuals were divided into
four subsets: a training dataset (N = 4689), a validation dataset (N = 1175), and two
independent testing datasets (N = 1469 for the first dataset and N = 444 for the
second independent dataset). Subsequently, the best XGBoost model was

established.BFlowchart of PRS construction. The Polygenic Risk Score (PRS) was
constructed using PRS-CSx, utilizing genome-wide association study (GWAS)
summary statistics from the European (EUR), East Asian (EAS), and South Asian
(SAS) populations obtained from the analysis of the DIAGRAM Project. Source data
are provided as a Source Data file.
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model; (2) HbA1c and fasting glucose; (3) the accuracy of self-reported
disease status.

The Kaplan-Meier curve for each subgroup is depicted (Fig. 5B).
The distributions of median survival time for each subgroup are
illustrated (Fig. 5C). The distributions of the time period from base-
line to follow-up for each subgroup are presented (Fig. 5D). The
distributions of Type 2 diabetes (T2D) risk at follow-up for each
subgroup are shown (Fig. 5E). The distributions of HbA1c levels at
baseline and follow-up for each subgroup are displayed (Fig. 5F). The

distributions of fasting glucose levels at baseline and follow-up are
demonstrated (Fig. 5G).

First, compared to G4 (true negative), G3 had a significantly lower
T2D-free probability (Fig. 5B), shorter median survival time (Fig. 5C),
higher T2D-risk under similar follow-up time (Fig. 5D and 5E), higher
HbA1c (Fig. 5F), andhigher fasting glucose (Fig. 5G). Second, compared
to G1 (true positive), G3 had a comparable survival rate (Fig. 5B),
median survival time (Fig. 5C), and T2D-risk under similar follow-up
time (Fig. 5D and 5E) but lower HbA1c (Fig. 5F) and fasting glucose

(n)

p-

Fig. 3 | Model evaluation and comparison. A bar chart displays AUC. The two-
sided DeLong test examined the difference between AUCs. Bonferroni’s correction
was applied tocontrol for a family-wise error rate inmultiple comparisons. Symbols
*, **, and *** indicate p-values < 0.05, 0.01, and 0.001, respectively.A SNP selection.
Model predictors were SNPs selected from published studies or our GWAS under
different p-value thresholds, where our GWAS association test is a two-sided Wald
test for the slopecoefficient in a logistic regression. The averageAUCsof prediction
models for four phenotype definitions were compared. B T2D Phenotype Defi-
nition. In addition to including the selected variables in Fig. 3A, the AUCs of four
phenotype definitions were compared. C Family history of T2D. In addition to
including the selected variables in Fig. 3A, B, the AUCs of the four types of T2D
family history (i.e., (i): parents (binary factor), (ii) sibs (binary factor), (iii) either
parents or sibs (binary factors), and (iv) bothparents and sibs (ordinal factor)) were

compared. D Demographic variables. In addition to including the selected vari-
ables in Fig. 3A–C, the AUCs of different combinations of demographic factors,
including age, sex, and family history of T2D, are compared. E PRS and demo-
graphic variables. In addition to including the selected variables in Fig. 3A–D, the
AUCs of different combinations of genetic variables, including SNPs, PRS-CS, and
PRS-CSx, and demographic variables, including age, sex, and family history of T2D,
are compared. F Impact of including PRS after SNPs. The AUCs of themodels that
consider SNPs, SNPs+PRS-CS, and SNPs+PRS-CSx as predictors are compared. G
Impact of including additional SNPs after PRS. The additional 137 SNPs were
collected from published studies (Supplemental Text 2). The AUCs of the models
that consider additional SNPs given PRS in the model are compared. Source data
are provided as a Source Data file.
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(Fig. 5G). We didn’t compare G2 and G3 because of the small sample
size in G2. Finally, among the 395 participants in G3, 80.76% of them
were removed from our previous analysis because their baseline
HbA1c and fasting glucose violated the criteria for the phenotype

definition (Fig. 1C); 339 participants were removed because of their
follow-up HbA1c and fasting glucose violated the formal T2D criteria;
only 34 self-reported non-T2D were really non-T2D participants who
had HbA1C < 6.5% and fasting glucose <126mg/dL (Fig. 5H). Overall,

Fig. 4 | Results in the genetic-centric analysis. A AUCs of all models based on
Phenotype Definition IV. A heatmap summarizes the AUCs of all models based on
Phenotype Definition IV (i.e., T2D was defined by self-reported T2D, HbA1c, and
fasting glucose). The genetic variables are shown on the X-axis, and the demo-
graphic variables are shownon theY-axis.BPositive correlationbetweenPRSand
T2D odds ratio. In each decile of PRS based on PRS-CSx, the odds ratio of T2D risk
and its 95% confidence interval were calculated based on an unadjusted model
(blue line) and an adjustedmodel considering age, sex, and T2D family history (red
line). The reference group was the PRS group in the 40–60% decile. The horizontal
bars are presented as the odds ratio estimates (square symbol) +/– its 95% con-
fidence intervals (left and right ends) at a PRS decile. C High-risk group. In the
chart, the figures from the inner to the outer represent (i) the case-to-control ratio,

(ii) the number of cases, and (iii) the number of controls in the PRS decile sub-
groups.D Association of age, sex, T2D family history, and PRS with T2D. In the
univariate analysis, the p-values for age, sex, family history, and PRS were 4.17 ×
10–20, 7.08 × 10–7, 9.41 × 10–13, and 2.06 × 10–13, respectively. In the multivariate
analysis, the p-values for age, sex, family history, and PRS were 2.00 × 10–16, 5.56 ×
10–5, 1.43 × 10–10, and 5.49 × 10–13, respectively. E Risk factors for T2D. Kaplan-Meier
curves reveal that Age (older individuals), sex (males), T2D family history (the larger
number of parents and siblings who had T2D), and PRS (high decile PRS group) are
risk factors (high-risk level) for T2D risk. FMedian event time of T2D. Examples of
the median event time for developing T2D are provided based on a multivariate
Cox regression model, both without and with incorporating PRS. NA indicates not
assessable. Source data are provided as a Source Data file.
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the results consistently indicate that G3 represents individuals in a pre-
T2D stage, which our model can detect early.

Genetic-imaging integrative analysis – Model performance and
essential features
The model that combined four types of image features performed
best. Moreover, the model based on BMD image features exhibited a
higher AUC, accuracy, specificity, and F1 than themodels based on any
other three types of images (Fig. 6A). The models based on image
features had an AUC of 0.898, higher than the ones of genetic infor-
mation (AUC=0.677) and demographic factors (AUC=0.843). Inte-
grating image features, genetic information, and demographic factors
increased AUC to 0.949 in the first testing data (Fig. 6B); the results for
each of the four images are also provided (Fig. S10). The accuracy,
sensitivity, specificity, and F1 of themodel in the first testing data were
0.871, 0.878, 0.870, and 0.663, respectively, based on a classification
threshold of 0.03. The model also performed reasonably well in the
second testing dataset with AUC=0.929, Accuracy = 0.854, Sensitivity
= 0.789, Specificity = 0.862, and F1 = 0.558. The results of a prediction
model using tuned parameters are also provided (Supplementary
Table S4). As no significant improvement was observed, this paper

discusses the default model. According to the estimated feature
importance in the best XGBoost model, all genetic factors (PRS), four
types of medical images, and demographic variables provided infor-
mative features for risk assessment, such as PRS (genetics), family
history and age (demographic factors), fatty liver (ABD images), end-
diastolic velocity in the right common carotid artery (CAU images), RR
interval (ECG images), and spine thickness (BMD images). Of the 152
medical imaging features, 125 were selected in the final
model. (Fig. 6C).

To address the challenges of practical clinical implementation in
the best XGBoostmodel, we have proposed an alternativemodel that
requires a limited number of features. We systematically calculated
each feature’s incremental area under the AUC by sequentially
including those with the highest feature importance. We selected the
top features showing a positive AUC increment. The analysis
revealed that a sub-model incorporating only the following eight
crucial variables: family history (from the questionnaire), age (from
the questionnaire), fatty liver (from ABD images), spine thickness
(from BMD images), PRS (fromgenetic data), end-diastolic velocity in
the right common carotid artery (R_CCA_EDV) (from CAU images),
RR interval (from ECG images), and end-diastolic velocity in the left

22 45294

Baseline exclude

Include N = 34

G3 (N = 395)

Control

Control

Control

Control

Case

Case

Control

Control

Caee

Control

Case

Control

0.00

0.25

0.50

0.75

1.00

0 100 200 300 400 500

l

ns

200

250

300

350

400

450

G3(Ref.) G1 G2 G4

m
ed

ia
n 

su
rv

iv
al

 ti
m

e 
(w

ee
ks

)

ns
ns

ns

100

200

300

400

G3(Ref.) G1 G2 G4

Fo
llo

w
 ti

m
e 

pe
rio

d 
(w

ee
ks

)

ns

0.0

0.3

0.6

0.9

G3(Ref.) G1 G2 G4

T2
D

 ri
sk

p < 0.001 p = 0.039 p < 0.001

p < 0.001 p = 0.001 p < 0.001

High

Optimal
6

8

10

12

G3(Ref.) G1 G2 G4

H
bA

1c
 (%

)

Baseline Follow

p < 0.001 p = 0.001 p = 0.016

p < 0.001 p = 0.001 p = 0.018

High

Optimal
100

150

200

250

G3(Ref.) G1 G2 G4

Fa
st

in
g 

gl
uc

os
e 

(m
g/

dL
)

Baseline Follow

N = 550

Follow

Case Control

Case
3

(G1) (G2)
36

Control
(G3)

1
(G4)

514

Baseline Control
(self-reported non-T2D)
Female, age 59, with family history

Testing data baseline / follow-up

Pheon.  N            Case Control

Def 1 8,827 480 / 696 8,347 /

Def 2 3,210 318 / 318 2,893 / 2,892

Def 3 3,334 105 / 107 3,229 / 3,227

Def 4 1,776 339 / 339 1,437 / 1,437

Model predict status

True follow-up 
status

Fig. 5 | T2D early detection using our prediction model (Phenotype Definition
IV; age, sex, family, and PRS). A Four subgroups (N = 550). B Survival rate
(N = 550). CMedian survival time (N = 550). P-valuesof G1 vs. G3, G2 vs. G3, andG4
vs. G3 were 0.092, 0.0014 (**), and 2.22 × 10–16 (***), respectively.D Follow-up time
(N = 550). P-values of G1 vs. G3, G2 vs. G3, and G4 vs. G3 were 0.056, 0.32, and 0.14,
respectively. E T2D risk (N = 550). P-values of G1 vs. G3, G2 vs. G3, and G4 vs. G3
were 0.018 (*), 0.073, and 0.0039 (**), respectively. F HbA1c (N = 550). P-values of
G1 vs. G3, G2 vs. G3, and G4 vs. G3 were 2.21 × 10–14, 0.0039, and 3.00 × 10–5;
respectively; in the follow-up, p-values of G1 vs. G3, G2 vs. G3, and G4 vs. G3 were
1.50 × 10-13, 6.01 × 10−4, and 4.55 × 10-6, respectively.G Fasting glucose (N = 550). In

the baseline, p-values of G1 vs. G3, G2 vs. G3, and G4 vs. G3 were 2.06 × 10-12, 6.66 ×
10–4, and 1.63 × 10–2; respectively; in the follow-up, p-values of G1 vs. G3, G2 vs. G3,
and G4 vs. G3 were 8.30 × 10–8, 1.38 × 10–3, and 1.84 × 10–2, respectively. H Pheno-
type definition in G3 (N = 395). Many individuals in G3 cannot satisfy the T2D
Phenotype Definition IV. In Fig. 5C–G, two-sided Wilcoxon rank-sum tests were
applied to compare group differences. The box plots’ center lines indicate the
medians, the lower and upper boundaries of the boxes represent the first and third
quartiles, and the whiskers extend to cover a range of 1.5 interquartile distances
from the edges. The violin plots’ upper and lower bounds depict theminimum and
maximum values. Source data are provided as a Source Data file.
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common carotid artery (L_CCA_EDV) (from CAU images), maintains a
commendable AUC of 0.939 (Fig. S11). This streamlined model sig-
nificantly reduces the number of risk predictors while preserving
high prediction accuracy, demonstrating promising potential for
practical application in clinical settings. Moreover, the reduced
number of risk predictors in the streamlined model alleviates con-
cerns about model overfitting.

Genetic-imaging integrative analysis – Multi-image risk
score (MRS)
Each participant’s multi-image risk score (MRS) was calculated as the
likelihood of being predicted as a T2D case using XGBoost, which
analyzed the medical imaging features for T2D prediction. The odds
ratio and its confidence interval for the association between MRS and
T2D are shown by percentiles of MRS (Fig. 6D). Compared to the
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Fig. 6 | Results in the genetic-image integrative analysis. A Performance com-
parison of medical imaging data analysis. The area under the receiver operating
characteristic (ROC) curve (AUC), accuracy (ACC), sensitivity (SEN), specificity
(SPEC), and F1 score are compared for the integrative analysis of four types of
medical images (All) and individual medical image analyses, including BMD, ECG,
CAU, and ABD.B Themodel that combines four types ofmedical imaging, PRS,
and demographic variables shows the highest AUC of 0.949. ROC plots and the
corresponding AUC for the models considering medical image features (I), genetic
PRS (G), and demographic variables, including age, sex, T2D family history (D), and
their combinations. C An optimal model combining medical imaging, PRS, and
demographic variables. The best model’s top 20 features with a high feature
impact include the medical image, genetic, and demographic features. D Positive
correlation between MRS and T2D odds ratio. In each decile of MRS based on

four types of medical images, the odds ratio of T2D risk and its 95% confidence
interval were calculated based on an unadjustedmodel (blue line) and an adjusted
model considering age, sex, and T2D family history (red line), with the MRS group
in the 40–60% decile serving as the reference group. The horizontal bars are pre-
sented as the odds ratio estimates (square symbol) +/– its 95% confidence intervals
(left and right ends). E High-risk group. The figures from the inner to the outer in
the chart display (i) the case-to-control ratio, (ii) the number of cases, and (iii) the
number of controls in the MRS decile subgroups. F Input page of the online T2D
prediction website. Personal information, including age, sex, family history of
T2D, PRS, and MRS, is input to calculate T2D risk. PRS and MRS are optional, and a
reference distribution is provided. G Output page of the online T2D prediction
website. Source data are provided as a Source Data file.
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participants in the 40–60%MRSdecile group, the riskofT2D increased
with MRS. Of importance, we further identified that, for the men older
than 54 years old with a family history of T2D, the case vs. control ratio
of sample size was 9.3 in the 90–100%MRS decile group, much higher
than 1.3, which MRS was not considered (Fig. 6E).

Online T2D-risk assessment
We have established a website where users can calculate their T2D risk
online. To obtain the risk assessment, users are required to provide
age, sex, and family history of T2D, and they can optionally provide
PRS and MRS (Fig. 6F). PRS and MRS can be entered manually or
uploaded as a file (Supplemental Text 1). Additionally, we have pro-
vided PRS andMRS risk percentages based on the study population as
a reference. The online risk assessment offers information, including
the risk of developing T2D over 3, 5, and 7 years, T2D-free probability,
and T2D risk with and without considering PRS (Fig. 6G). The assess-
ment takes into account both PRS and MRS (Fig. 6G). For example,
consider a 50-year-old male with a family history of T2D and PRS 1.5
and MRS 1.5. Without considering PRS, the risk (probability) of devel-
oping T2D after a 7-year follow-up is 0.23. However, when PRS is
considered, the risk increases to 0.37. Furthermore, considering MRS
further increases the risk to 0.81. The online tool provides these
valuable insights to users based on their input data.

Discussion
In this study, we conducted a comparative analysis of two prediction
models based on GWAS data. The first method utilized T2D-associated
SNPs derived from our GWAS with a limited sample size, either as
individual predictors or in combination to construct a PRS for the
prediction model. The second method incorporated T2D-associated
SNPs from previously published GWASs with a significantly larger
sample size or utilized summary statistics of whole-genome SNPs from
GWASs with a considerably larger sample size to construct the PRS.
Notably, the latter approach yielded a higher prediction AUC. These
findings underscore the substantial impact of sample size in GWAS,
PRS construction, and subsequent classification and prediction ana-
lyses, aligning with previous research39. Consequently, in situations
where the sample size is limited, we propose utilizing external genetic
information such as SNPs and summary statistics from published stu-
dies with larger sample sizes, which not only facilitates the develop-
ment of a more predictive PRS and model but also reduces
computational overhead40.

Our study investigated the importance of employing a precision
phenotype definition to evaluate disease risk. We also addressed a
potential limitation associated with the prevalent use of self-reported
disease status. Utilizing four T2D definitions, Type IV, which integrates
self-reported T2Dwithmeasurements of HbA1c and GLU-AC, emerged
as a definition closely aligned with clinical practice. Our results
demonstrate that the model based on T2D Definition IV exhibits the
highest prediction accuracy. Consequently, in this study, superior
diagnostic accuracy corresponds with higher prediction accuracy.
Furthermore, the application of self-reported T2D (Definition Type I)
yields an AUC significantly lower than the AUC of Definition Type IV.
This outcome underscores a potential limitation associated with the
commonly used self-report disease status, which functions as a con-
venient phenotype in the analysis of TWB data.

Our study emphasizes the superiority of disease familyhistory as a
predictor of T2D compared to T2D-associated SNPs and PRS. The
inclusion of genetic factors such as significant SNPs and PRS as addi-
tional predictors, given family history, only results in modest
improvements in the model’s predictive capability. Family history
encompasses genetic, epigenetics, and shared environmental influ-
ences, which are crucial in understanding the etiology of T2D41. Addi-
tionally, we observed that the disease history of siblings providesmore
informative value for prediction than the disease history of parents42.

T2D subgrouping can facilitate the implementation of precision
medicine in clinical practice, particularly when utilizing complex
data43. This study demonstrated a positive association between PRS
and MRS with T2D risk. Notably, we identified a high-risk subgroup of
women older than 59 yearswith a family history of T2D,where the case
vs. control ratio of sample size in the 80–100% PRS decile group ran-
ged from 7 to 13, significantly higher than the overall population.
Similarly, forMRS, we found a high-risk subgroupofmen older than 54
years with a family history of T2D, where the case vs. control ratio of
sample size in the 90–100% MRS decile group was 9.3, considerably
higher than the ratio of 1.3 when MRS was not considered. These
results demonstrate the utility of PRS and MRS in identifying high-risk
subgroups for T2D.

In the PRS-CSx method, we considered three weighting methods
to combine several population-specific PRSs into the final PRS: (1) an
equal weight, (2) the population-specified weight, and (3) the meta-
effect size for each SNP. Our results showed that the meta-effect size
obtained a worse performance. The population-specified weight per-
formed best; however, the result may vary between cohorts.

In this study, our PRS based on PRS-CSx achieved anAUC of 0.732
for T2D prediction. The AUC increased to 0.915 after further, including
age, sex, and family history of T2D in the prediction model. When
comparing our results with the previous publications, Khera, Chaffin44

achieved an AUC of 0.725 using a logistic regression that included age,
sex, and PRS constructed with LDpred45. Imamura, Shigemizu14

achieved an AUC of 0.648 with a PRS built by 49 T2D-associated SNPs
with LD weights, and the AUC increased to 0.787 after including age,
sex, and BMI. Ge, Irvin18 achieved an AUC of 0.694 with a PRS con-
structed using summary statistics from three large-scale GWASs.
Walford, Porneala46 achieved an AUC of 0.641 with a PRS built by 63
SNPs, age, and sex. In summary, our study utilized phenotype refine-
ment through HbA1c and fasting glucose, employed XGBoost with
superior performance, and considered the family history of T2D as a
critical factor for T2D prediction, leading to improved performance
compared to previous studies.

Including environmental factors such as education level, drinking
level, exercise habit, and the number of exercise types in our models
increased prediction accuracy for non-T2D participants but decreased
accuracy for T2D cases. The overall improvement in prediction per-
formance achieved by including these environmental factors was
relatively modest and did not reach statistical significance. Similarly,
including SNP-SNP interactions in the models did not lead to a sig-
nificant improvement. While SNP-SNP interactions have been pro-
posed as a potential explanation for missing heritability47, our findings
indicate that incorporating these interactions does not provide addi-
tional benefits when PRS is already included in the model. This could
be attributed to PRS already capturing a substantial portion of the
genetic component, making incorporating SNP main effects and SNP-
SNP interactions less impactful.

This study demonstrates good ability in detecting T2D cases, but
we observed that some self-reported non-T2D individuals might be
misclassified as T2D cases. Further investigation suggested that these
cases represent individuals in a pre-T2D stage. Firstly, their T2D risk at
the follow-up time was higher than true non-T2D participants but
lower than the confirmed T2D cases, indicating an elevated but not
fully developed risk. Secondly, these individuals exhibited higher
HbA1c and fasting glucose levels than true non-T2Dparticipants, albeit
lower than confirmed T2D cases, suggesting a pre-T2D stage. Lastly,
when redefining the phenotype using HbA1c and fasting glucose,most
of these participants did notmeet the inclusion criteria for the control
group, further suggesting that they may not be genuinely non-T2D
participants. Considering these factors, it is evident that although
these participants are self-reported as non-T2D, they are likely in a pre-
T2D stage, with an increased risk of developing T2D in the future. It is
crucial to follow up with these individuals, monitor their condition
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closely, and implement preventive interventions tomitigate the risk of
T2D development.

The integration of genetics and medical imaging data into risk
assessment shows excellent potential for enabling early T2D detection
and prevention, albeit at a higher cost. Practical examples from health
examinations and screenings, such as theMJHealth SurveyDatabase in
Taiwan48, provide compelling evidence for successfully incorporating
these data into real-world practices. These examples highlight the
valuable role that genetics and medical imaging data can play in
enhancing risk assessment and underscore the potential benefits of
integrating these approaches for improved disease management and
prevention. Notably, the performance of T2D classification and pre-
diction in the established models was validated in a second indepen-
dent dataset, yielding equally impressive results, thus demonstrating
that the results are not due to overfitting.

While our current study presents a robust proof-of-principle
model for disease risk evaluation based on genetic andmulti-modality
medical imaging variables within the TWB, we recognize the impor-
tance of external validation for broader generalizability. However, the
current landscape poses challenges in accessing publicly available
datasets encompassing genetic and all four types of medical imaging
data. Despite the inherent limitations in readily available datasets with
comparable characteristics, we are actively collaborating with a med-
ical center to collect external validation data for future studies.

Another limitation of our study is that due to limited follow-up
time in the TWB, only a limited number of participants experienced a
change in T2D status from baseline to follow-up, particularly for
redefining the phenotype using HbA1c and fasting glucose. To assess
the early detection capability of our model for T2D, we are currently
addressing this issue by monitoring the participants who exhibited
changes in self-reported T2D status from baseline to follow-up in our
Cox regression model. This limitation can be overcome in future stu-
dies as the TWB continues to track these samples. In addition, con-
ducting a cohort survey or clinical trial is warranted to evaluate the
high-risk subgroups our PRS and MRS identified for future precision
T2D medicine.

In conclusion, our study surpassed previous research in predict-
ing and classifying T2D. We successfully developed artificial intelli-
gence models that effectively combined genetic markers, medical
imaging features, and demographic variables for early detection and
risk assessment of T2D. PRS and MRS were instrumental in identifying
high-risk subgroups for T2D risk assessment. To facilitate online T2D
risk evaluation, we have also created a dedicated website.

Methods
Inclusion and ethics declarations
The TWBcollectedwritten informed consent fromall participants. The
TWB (TWBR10911-01 and TWBR11005-04) and the Institute Review
Board at Academia Sinica approved our data application and use (AS-
IRB01-17049 and AS-IRB01-21009).

Study participants and variables
This study included a genetic-centric analysis (Analysis 1) and a
genetic-imaging integrative analysis (Analysis 2). A total of 68,911
participants in the TWB were analyzed.

In the genetic-centric analysis, 50,984 participants who had only
baseline data (i.e., without follow-up data) were used as the training
and validation samples; they consisted of 2531 self-reported T2D
patients and48,453 self-reported non-T2D controls (Fig. 1A and S1).We
assigned 80% and 20% of data as the training and validation samples.
TheGWAS samples (Dataset 1,N = 35,688), training samples (Dataset 2,
N = 12,236; Dataset 4, N = 40,787), and validation samples (Dataset 3,
N = 3060; Dataset 5, N = 10,197). For classification analysis, testing
samples comprised two independent datasets: Dataset 6 (N = 8827)
and Dataset 7 (N= 936), while for prediction analysis, they were

represented as Datasets 6’ (N = 8827) and Dataset 7’ (N = 936) (Fig. 1A
and Fig. S1). Here, 9763 participants who hadboth baseline and follow-
up data were used as the testing samples, where 8,827 and 936 parti-
cipants were recruited as the first and second testing datasets; they
consisted of 528 self-reported T2D patients and 9235 self-reported
non-T2D controls at baseline; 767 self-reported T2Dpatients and 8996
self-reported non-T2D controls at follow-up (Fig. 1A and Fig. S1A).

In addition to the self-reported T2D, hemoglobin A1C (HbA1c) and
fasting glucose (GLU-AC) collected inbothbaseline and follow-upwere
used to refine the self-reportedT2Dphenotype. In total,weconsidered
four definitions for T2D as follows: (1) Self-reported T2D: The case and
control information was collected from the questionnaire directly; (2)
Self-reported T2D +HbA1C: A case was defined as self-reported T2D
and HbA1C ≥ 6.5% and control was defined as self-reported non-T2D
and HbA1C ≤ 5.6%; (3) Self-reported T2D+GLU-AC: A case was defined
as self-reported T2D and GLU-AC ≥ 126 and control was defined as self-
reported non-T2D and GLU-AC< 100; (4) Self-reported T2D +HbA1c +
GLU-AC: A case was defined as self-reported T2D, HbA1C ≥ 6.5%, or
GLU-AC ≥ 126 and control was defined as self-reported non-T2D,
HbA1C ≤ 5.6%, and GLU-AC < 100 (Figs. 1B and 1C).

The demographic characteristics of the study population for four
phenotype definitions were shown (Table 1). The table reveals that the
participants in the T2D case group are older than those in the control
group, with a higher proportion of males.

Other variables in the genetic-centric analysis (Fig. 1D) are illu-
strated as follows: Demographic variables included age, sex, and family
history of T2D. Four types of family history were: T2D occurrence in
any of father and mother (parents) (Yes or No), in any of brother and
sister (sibs) (Yes or No), in any of father, mother, brother, and sister
(Yes or No), and the number of T2D cases in father, mother, brother,
and sister (0, 1, 2, 3, or 4). Environmental exposures included educa-
tion level, drinking level, exercise habits, and the number of exer-
cise types.

Whole-genome genotyping using one of two SNP arrays was
performed based on the samples in the baseline. TWBv1.0 SNP array
with approximately 650,000 SNP markers or TWBv2.0 SNP array with
approximately 750,000 SNP markers was employed. Imputation was
performed based on the 1KG-EAS panel49. The SNPs with an info score
of less than 0.9 were removed50. Sample and marker quality controls
followed the procedures of Yang, Chu51. Related samples were
removed using the index of identity by descent in the quality control
procedure. External information about T2D-associated SNP sets, and
effect sizes based on the GWAS summary statistics of T2D were col-
lected (Supplemental Text 2).

In the genetic-imaging integrative analysis, 17,785 participants
who had both genetic data and medical imaging data were analyzed
(Fig. 2A andS1B); they consistedof 1366 self-reportedT2Dpatients and
16,419 self-reported non-T2D controls (Fig. 2A); here, the case and
control were defined based on the questionnaire at follow-up rather
than baseline. For example, based on the T2D Definition IV (Fig. 1C),
7786 participants, which consisted of 1118 cases and 6668 controls,
were analyzed (Fig. 2A). The entire dataset was split into training +
validation and testing sets at an 8:2 ratio. Subsequently, the training +
validation set was further randomized into distinct training and vali-
dation datasets, maintaining an 8:2 ratio. Imaging report variables in
the genetic-imaging integrative analysis (Upper left in Fig. 2A) con-
sisted of 28 ABD features, 29 CAU features, 85 BMD features, and 10
ECG features (Supplemental Data 1). TU features were not included
because of a small sample size. The details about the medical imaging
protocol can be referred to TWB (https://www.biobank.org.tw/about_
value.php). In the flowchart of PRS calculation, external information
about T2D-associated SNP sets and GWAS summary statistics from
DIAGRAM are provided (Fig. 2B). This paper provides only numerical
data in aggregate and summary statistics. No individuals can be
identified.
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Polygenic risk score for T2D
PRS was constructed by using PRS-CS52 and PRS-CSx19. PRS-CS52 was
run based on the meta-GWAS summary statistics of T2D in East Asia
in the DIAGRAM Consortium53 and the linkage disequilibrium (LD)
reference from the EAS population of the 1000 Genomes Project49.
PRS was calculated using PLINK (--score command) based on our
genotype data, and 884,327 SNP effects were estimated using PRS-
CS. Normalized PRS was standardized to mean = 0 and standard
deviation = 1. PRS-CSx19 based on the meta-GWAS summary statistics
of T2D in multiple populations, including (a) East Asian: 56,268 cases
and 227,155 controls in the DIAGRAM Consortium53; (b) European:
80,154 cases and 853,816 controls in the DIAGRAM Consortium53; (c)
South Asian: 16,540 cases and 32,952 controls in the DIAGRAM
Consortium53, and the LD reference from each of the three popula-
tions (EAS, EUR, and SAS). 884,327, 880,098, and 900,047 SNPs for
EAS, EUR, and SAS were applied to our data to calculate the
population-specific PRS for each individual using the PLINK (--score
command). We combined the three population-specific PRS with
equal weight to calculate a final PRS. R language was used to stan-
dardize the PRS to mean = 0 and standard deviation = 1.

Classification and prediction for T2D
XGBoost algorithm29, implemented through Python code, was applied
to classify and predict T2D based on the following features: genetic
variables, demographic variables, environmental exposures, and ima-
ging report variables. Both classification and prediction models were
trained and validated based on the baseline data (Datasets 2–5 in
Fig. 1A). Final classification models were built and tested based on the
baseline phenotype data (Dataset 6 in Fig. 1A) and further replicated
based on the second independent testing dataset (Dataset 7 in Fig. 1A).
Final prediction models were built and tested based on the follow-up
phenotype data (Dataset 6’ in Fig. 1A) and replicated based on the
second independent testing dataset (Dataset 7’ in Fig. 1A). The illus-
tration of the data used for classification and prediction tasks in Ana-
lysis 1 and Analysis 2 are provided (Supplementary Table S1).

The XGBoost models were trained with the following default
parameter settings: amaximum tree depth of 6, a learning rate of 0.3, a
regularization parameter alpha (L1) of 0, a regularization parameter

lambda (L2) of 1, 100 boosting stages, and an early-stop parameter of
30. Feature importance was calculated based on the average of three
importance metrics: weight, gain, and cover indices for each variable
within a single tree and then averaged across all the trees in a model54.
Feature selection was performed based on the feature importance
score. Parameter tuning was conducted to establish the best model
(Supplementary Table S4).

The area under the receiver operating curve (AUC) was calculated
to evaluate the model’s overall performance. The two-sided DeLong
test (DeLong et al., 1988) examined AUCs’ differences. Bonferroni’s
correction55 was applied to control for a family-wise error rate in
multiple comparisons. In the best model, accuracy, sensitivity, speci-
ficity, and F1-scorewere calculated to evaluate the performance, where
the optimal cut-off value of the XGBoost model was calculated using
the Youden index56 in the validation data.

Event history analysis and online risk assessment
In the genetic-centric analysis, multivariate Cox regression57 was
applied to identify important risk factors for the T2D event time and
estimate the T2D-free probability in the testing datasets. The eventwas
defined as the occurrence of T2D in the follow-up for non-T2D parti-
cipants at baseline. The Cox regression analysis considered two types
of time scales (i.e., time-on-study and age) and three types of sex
variable treatment (i.e., adjusting for sex as a covariate, conducting
sex-specific analysis with an assumption of a common sex effect, and
performing sex-specific analysis with different sex effects), resulting in
six analyses (refer to Supplementary Table S3).

The initial three analyses considered time-on-study as the time
scale, with age at baseline included as a covariate, and incorporating
the following sex variable treatment: (1) Model 1: Sex was treated as a
covariate in the analysis; (2) Model 2: Sex-specific analysis, assuming a
common effect for males and females; (3) Model 3: Sex-specific ana-
lysis with different effects formales and females. The subsequent three
analyses considered age as the time scale, with age-at-baseline as left
truncation, along with the three sex variable treatments, similar to the
time-on-study analysis, to be Models 4 – 6.

The time-on-study scale analysis calculated the event time as the
duration frombaseline to follow-up. In the age scale analysis, the event

Table 1 | Demographic characteristics of the study population for four T2D definitions

Phenotype Overall T2D group Non-T2D group

Def I N 59,811 3011 56,800

Age, mean (SD) (years) 50.57 (10.57) 58.30 (7.62) 50.16 (10.54) p ≈0

Age, median (years) 52 60 51

Sex, male, n (%) 18,973 (31.72%) 1350 (44.83%) 17,623 (31.02%) p = 1.48 × 10–56

Def II N 30,227 2320 27,907

Age, mean (SD) (years) 47.87 (10.71) 58.22 (7.66) 47.01 (10.48) p ≈0

Age, median (years) 48 59 46

Sex, male, n (%) 8962 (29.64%) 1055 (45.47%) 7907 (28.33%) p = 2.11 × 10–67

Def III N 32,520 1155 31,365

Age, mean (SD) (years) 49.25 (10.67) 58.28 (7.55) 48.91 (10.62) p = 1.36 × 10–235

Age, median (years) 50 59 50

Sex, male, n (%) 8987 (27.63%) 537 (46.49%) 8450 (26.94%) p = 5.07 × 10–48

Def IV N 20,545 2393 18,152

Age, mean (SD) (years) 47.95 (10.84) 58.24 (7.63) 46.59 (10.47) p ≈0

Age, median (years) 48 59 46

Sex, male, n (%) 5746 (27.96%) 1,091 (45.59%) 4,655 (25.64%) p = 1.36 × 10–92

Sample size,mean andmedian agewith standard deviation (SD), the number andproportion ofmales, and their differences in the T2D case andcontrol groups are provided.P-values for two-sample
two-sided t-test and chi-square test are displayed. Note that the total sample size in this table isN = 59,811, comprising 40,787 participants in the training dataset, 10,197 participants in the validation
dataset, and8827 participants in thefirst testing dataset (refer to Fig. 1). Note that the participants in the second independent testingdataset (N = 936) (refer to Datasets 7 and 7’ in Fig. 1) are only used
for replication purposes and are therefore not included in this table.
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time was age-at-follow-up. In each model, the median event time in
weeks was also calculated. Because medical imaging data were only
available in the follow-up, the genetic-imaging integrative analysis
applied multivariate logistic regression58 to identify important risk
factors for T2D events and estimate the T2D-free probability in the
testing datasets. In addition, we established a website at https://
hcyang.stat.sinica.edu.tw/software/T2D_web/header.php to provide
an online risk assessment for T2D.

Web resources
We established a website at https://hcyang.stat.sinica.edu.tw/
software/T2D_web/header.php to provide an online risk assessment
for T2D.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data analyzed in this study were obtained from the Taiwan Bio-
bank with proper approval. As the data are subject to ownership rights
held by the Taiwan Biobank, they have not been deposited in a public
repository. Researchers interested in accessing the data must do so
through a formal application process, subject to approval by the Tai-
wan Biobank. Detailed instructions on requesting data access can be
found on the Taiwan Biobank’s official website (https://www.
twbiobank.org.tw/index.php). Source data are provided in the Sup-
plementary Information and Source Data files with this paper. In
addition to the TWB data, a set of 137 highly significant T2D-associated
SNPs from theAGEN canbe downloaded fromhttps://blog.nus.edu.sg/
agen/summary-statistics/t2d-2020/. Meta-GWAS summary statistics of
T2D in multiple populations from the DIAGRAM Consortium can be
obtained from https://diagram-consortium.org/downloads.html. The
linkage disequilibrium reference from various populations of the 1000
Genomes Project is available for download at https://github.com/
getian107/PRScsx. Source data are provided in this paper.

Code availability
The repository at https://github.com/yjhuang1119/Risk-assessment-
model contains code for constructing a disease risk assessment
model using eXtreme Gradient Boosting (XGBoost). The code also
computes performance metrics for model evaluation and feature
importance scores for model explainability. A README is provided.
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