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A reactive neural network framework for
water-loaded acidic zeolites

Andreas Erlebach 1 , Martin Šípka1,2, Indranil Saha1, Petr Nachtigall1,3,
Christopher J. Heard 1 & Lukáš Grajciar 1

Under operating conditions, the dynamics of water and ions confined within
protonic aluminosilicate zeolite micropores are responsible for many of their
properties, including hydrothermal stability, acidity and catalytic activity.
However, due to high computational cost, operando studies of acidic zeolites
are currently rare and limited to specific cases and simplified models. In this
work, we have developed a reactive neural network potential (NNP) attempt-
ing to cover the entire class of acidic zeolites, including the full range of
experimentally relevant water concentrations and Si/Al ratios. This NNP has
the potential to dramatically improve sampling, retaining the (meta)GGA DFT
level accuracy, with the capacity for discovery of new chemistry, such as col-
lective defect formation mechanisms at the zeolite surface. Furthermore, we
exemplify how the NNP can be used as a basis for further extensions/
improvements which include data-efficient adoption of higher-level (hybrid)
references via Δ-learning and the acceleration of rare event sampling via
automatic construction of collective variables. These developments represent
a significant step towards accurate simulations of realistic catalysts under
operando conditions.

Zeolites are a class of microporous aluminosilicates with tremendous
structural and chemical diversity, which originates from the myriad
stable three-dimensional arrangements of covalently connected silica/
alumina tetrahedra. This makes zeolites a versatile material class with
applications ranging from thermal energy storage to gas separation
and water purification, but predominantly in heterogeneous
catalysis1,2. The presence of aluminum, and in particular the necessary
charge compensation add another layer of complexity to the structural
characterization of these materials but are crucial to the catalytic
function of zeolites. For example, the proton-exchanged aluminosili-
cate zeolites, i.e., Brønsted acidic site (BAS) zeolites, are one of the
cornerstones of industrial petrochemical processes3. Recently, great
experimental and theoretical efforts have beenmade to go beyond the
traditional applications of zeolites, for example in converting sus-
tainable bio-feedstocks into chemicals4–6.

A further critical consideration for both existing and emerging
applications is the interaction between BAS zeolites and water. This
relationship governsmany features of BAS zeolites including (i) proton
solvation, and thus acidity7,8, (ii) hydrolytic bond dissociation and
defect formation, which controls catalyst durability and activity9, (iii)
water mobility and clustering in zeolite pores10, and (iv) the synthesis
of zeolites from precursor gels containing silica fragments, water and
cations11. Owing to themicroporous nature of zeolites, this interaction
is not adequately viewed as a simple bulk-liquid interface, but rather a
collection of complex binding, clustering, exchange, and reaction
steps between variously sized water clusters and an inhomogeneous
surface that is complicated by topology-dependent confinement
effects12. As a result, the proper mechanistic understanding of BAS-
water-zeolite interactions is still lacking, limited to either static calcu-
lations at ultra-high vacuum conditions13,14 or exploratory (ab initio)
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dynamical simulations of narrow scope15–18. These investigations
demonstrate the importance of capturing dynamics under operating
conditions, being able to discover unexpected reaction mechanisms
anddefective species that hitherto eluded structural identification, but
are not sufficiently economical for a global exploration of structural
and reactive space.

A standard tool for accelerating the reactive sampling in zeolite-
water systems, and thus reaching experimentally relevant timescale or
realistic levels of model complexity is the class of reactive analytical
potentials, for example, ReaxFF19. However, due to their fixed func-
tional form, these potentials have limited transferability to systems
with different chemical composition20. Therefore, they frequently
require re-parameterization for a specific system for fine-tuning21. An
emerging alternative to analytical force fields is represented by
machine learning potentials (MLPs), which interpolate the potential
energy surface (PES) at the level of an ab initio training set22–24.

Two paradigms dominate the MLP field currently: (i) training of
universalMLP that cover large parts of the chemical space with dozens
of elements, but with limited coverage of the configuration space, e.g.,
not considering all relevant chemical reactions with the associated
transition states, e.g., OC22, CHGNet, and others25–29, and (ii) active-
learning procedures to develop system-specific MLPs to accelerate

simulations for a specific model or thermodynamic state point30–32,
which capture the details of the PES, including transition states, but
have little or no transferability to systems with different chemical
composition. The universal MLPs, trained on very large datasets (few
million data points), are constructed as highly transferable, but
approximate models, meant for initial screening, typically with a need
for further fine-tuning before being used for production runs. Also,
commonly, the universalMLPs are trained ondatasets comprising only
close-to-equilibrium structures25,27–29, hence caution is needed when
applying them to activated events. On the other hand, the system-
specificMLPs are able to achieve quantitative accuracy with respect to
their reference level, even considering highly activated events, and
being typically trained on only hundreds to low thousands of data
points. However, their applicability is limited only to the specific sys-
tem of interest. Hence, MLPs that are able to simultaneously cover the
broad chemical and configurational space needed for a class of
materials such as BAS zeolites, including the complexity of framework
and water-framework-based highly activated reactive transitions, are
currently missing.

In this work, we developed reactive global neural network
potentials (NNP) for an entire material class, namely, BAS zeolites. The
breadth of chemical and configurational space spanned by the training
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Fig. 1 | Training and testing of general BAS zeolite NNPs. a Computational
workflow for the creation of the SCAN+D3(BJ) database using subsets of ab initio
molecular dynamics (MD) trajectories selected by Farthest Point Sampling (FPS)
with the smooth overlap of atomic positions (SOAP) descriptor. The generality of
the NNPs was tested by (biased) MD and nudged-elastic band (NEB) calculations.
The end-to-end learned representations areused forΔ-learning and constructionof

ML collective variables (ML CV). b t-distributed stochastic neighbor embedding (t-
SNE) plot of the average representation vectors of all configurations in the training
database (color codes shownon the left). Generalization tests arehighlighted in red
(Si: yellow, Al: gray, O: red, H: white). c Reaction energy error distribution ΔEr (see
Eq 1) of the NNPs in comparison with ReaxFF58.
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database (see Fig. 1 and Supplementary Figs. 1–2) as well as a con-
sistently good performance of the NNPs in a battery of generalization
and transferability tests considering multiple unseen zeolitic frame-
works, various water loadings, and Si/Al ratios, indicates that these
potentials are indeed able to capture large portions of the configura-
tional and chemical space ranging from dense silica and alumina
polymorphs, through water-containing BAS zeolites of varying Si/Al
ratios, to bulk water and water gas-phase clusters. In addition, gen-
eralization tests showed hitherto unseen chemical species and pro-
cesses, including a collective hydrolysis mechanism at the surface of a
zeolite nanosheet. Finally, we show that the learned representations of
the NNP baseline models can be used for data-efficient learning of
higher (hybrid) DFT level corrections (Δ-learning)33 for specific use
cases, in addition to developing machine-learned collective variables
for the acceleration of rare event sampling34.

Results
Database generation and training of the general BAS
zeolite NNPs
One of the challenges in training general NNPs for a material class is
creating a training database that captures relevant parts of the con-
figuration and chemical space. The computational procedure
employed in this work is summarized in Fig. 1a. The bulk of the data-
base is derived from 500 short (10 ps) ab initio molecular dynamics
(AIMD) trajectories (at PBE +D3(BJ) level)35–37 using a set of BAS zeolite
models. This structure set contains 150 zeolites constructed using ten
topologies (three existing and seven hypothetical) with varying Si/Al
ratios (~1–32, only with Löwenstein pairs) and water loadings (from 0
to ~1.1 g cm−3) at three temperatures ranging from 1200K to 3600K
(see Supplementary Table 1). The seven hypothetical zeolite frame-
works were selected from a siliceous zeolite database38 by Farthest
Point Sampling (FPS)39,40 using the smooth overlap of atomic positions
(SOAP)41 kernel as metric to obtain configurations with structurally
distinct atomic environments (see “Methods” section and Supple-
mentarymethods).We also added three existing zeoliteswithdifferent
framework densities (14.9–20.5 Si nm−3) and a low-density, two-
dimensional silica bilayer to further diversify the initial configura-
tions in terms of atomic density and structure (see Supplementary
methods). The chosen structures cover a broad range of zeolite ring
topologies from 3-membered rings all the way 14-membered rings and
are available under: https://doi.org/10.5281/zenodo.10361794. The
AIMD simulations were performed on a wide temperature range (see
above) to sample low- and high-energy parts of the PES which is a
standard procedure to sample reactive, rare events in an unbiased way
(see “Methods” section and Supplementary Methods)38,42–44. During
these high-temperature AIMD simulations a number of distinct bond-
breaking events were observed, such as Si–O/Al–O bond hydrolysis,
generation of hydroxonium/hydroxide species or generation of other
defective species with increased Al/Si coordination.

In addition, nine AIMD runs were performed for bulk water at
three densities (0.9–1.1 g cm−3) and at three temperatures
(300–900K). All AIMD trajectories were then subsampled by SOAP-
FPS.Wealso subsampled (using SOAP-FPS) AIMD trajectories of zeolite
CHA taken fromour previous works on non-Löwenstein pairs (Al-O-Al)
with various water loadings (0, 1, 15 water molecules)45 and biased
AIMD runs of Si-O(H) and Al-O(H) bond cleavage mechanisms15. These
structures were used for SCAN+D3(BJ)46 single-point (SP) calculations
to create the bulk of the training database. We note that the enhanced
sampling AIMD runs make up only a small portion of our dataset, as
our aim was to allow for unbiased exploration of the phase space,
allowing for the “discovery" of a priori unknown reactive mechanisms
in such complex environments. However, the inclusion of the biased
AIMD runs in the dataset is important and computationally efficient
when generating training data for system-specific/reaction-specific
MLPs47–49. To systematically sample states close to the equilibrium

structures, lattice deformations (see Supplementary Methods and
Methods section) were applied to the optimized structures of the BAS
zeolite models mentioned above, and these structures were then used
for SCAN+D3(BJ) single-point (SP) calculations. Finally, to further
diversify the database, the same lattice deformations were used for
alumina and ice polymorphs as well as water clusters50 (see “Methods”
section).

The resulting database contains 248,439 structures which ismuch
larger compared to datasets used typically to train MLPs for specific
systems/reactions (e.g., those with fixed chemical composition)30,31 yet
much smaller than databases (e.g., OC22)26 that aim to span the whole
periodic table containing millions of DFT data points. We trained (an
ensemble of six) SchNet-based potentials using a well-tested setup of
hyperparameters38,48,51 which provides the best performance also
herein (see Supplementary Fig. 3 and “Methods” section for details on
hyperparameter testing). The trained NNPs achieve an average test
root mean square errors (RMSE) of 5.3meV atom−1 and 186meV Å−1 for
energies and forces, respectively (see Supplementary Table 2). These
errors are similar to other reactive (rotationally invariant) MLPs42,44,52

and about the sameas for our previously developed silica NNPs38. Note
also that such errors are not larger than the errors between two dif-
ferent “flavors" of the (meta)GGA exchange-correlation DFT func-
tionals (see, e.g., Supplementary Table 4 in ref. 38 comparing the
energy and force errors of PBE and SCAN functionals). This indicates
that the trained NNPs are expected to retain the (meta)GGA DFT level
of accuracy. With the adoption of the new generation of rotationally
equivariant NNPs one can expect the training errors to drop few-
fold53–55, getting the trained NNPs closer to a specific reference level
used for their training, i.e., the SCAN-D3(BJ) level herein. Nevertheless,
the performance tests of the herein-trained NNPs for reactive events
and various near-equilibrium properties in this work (see below) show
that these errors do not compromise the value of the potentials for
application to zeolite problems, retaining the intended (meta)GGA
DFT quality.

Figure 1 b provides a low-dimensional representation of the
training database. It shows a t-distributed stochastic neighbor
embedding (t-SNE)56 plot of the averaged SchNet representation vec-
tors (see Supplementary methods) to visualize the structural and
chemical diversity of the training database, ranging from water-free
alumina and silica systems through various water-loaded BAS zeolites
to bulk water and small clusters. The t-SNE components of the aver-
aged SchNet representations change smoothly with the chemical
composition of the structures as well as with their total energy (see
Supplementary Fig. 2). In addition, all generalization tests (see below)
lie within the generated interpolation grid of the database and cover a
wide range of application cases for zeolite modeling.

Generalization tests and exploration of configuration space
To properly test the generalization abilities of the trained NNPs, we
employed a series of simulations for systems outside of the training
domain (OOD or generalization tests), i.e., including: (i) MD simula-
tions at ambient conditions that probe the performance of NNPs for
close-to-equilibrium structures and (ii) high-temperature MD simula-
tions (supplemented by nudged-elastic band (NEB) transition path
searches) to assess theNNPquality for highly activated, reactive events
(see “Methods” section). In theseMD simulations, the NNP forces were
used to propagate the systems in time and DFT single-point (SP) cal-
culations were carried out for configurations uniformly sampled from
the MD trajectory. In addition, we have carried out further validations
(most of them of OOD nature), in which we have driven the calcula-
tions (biased and equilibrium MD as well as geometry optimization)
using both the DFT and NNP forces and compared their performance
on an equal footing for multiple properties (densities, lattice para-
meters, adsorption energies, free energy profiles, etc.) - we defer fur-
ther discussion of these validations to the sections “Sampling
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equilibrium properties" and “NNP robustness at high temperatures"
below. The systems considered in generalization tests sample the
chemical and structural space of (water-loaded) BAS zeolites (see
Fig. 1b) varying in water and aluminum content, aswell as in the zeolite
topology (FAU, GIS, and MFI zeolite frameworks which are not seen
during the training) and dimensionality of the BAS systems (three-
dimensional crystal, zeolite layer or a zeolitic molecular fragment
interacting with bulk water). Here, we focus on the overall perfor-
mance of our trainedNNP in these generalization tests. Toquantify the
NNP accuracy and generalization capability, we use two energy error
metrics to compare NNP (and ReaxFF) energies with DFT: a reaction
energy error ΔEr and a relative energy error ΔΔE. Firstly, we define the
reaction energy Er of the hypothetical formation reaction:

xSiO2 +
y
2
Al2O3 +

z
2
H2OðgÞ ! SixAlyHzO2x + 1:5y+0:5z ð1Þ

with α-quartz, corundum (α-Al2O3), and a single water molecule in the
gas phase as reference structures. This reaction energy is used for
calculation of the NNP (and ReaxFF) error ΔEr with respect to the DFT
reference level (here: SCAN+D3(BJ)) using the DFT SP calculations of
the subsampled NNP trajectories. Adoption of ΔEr allows for bench-
marking methods across a broader (BAS zeolite) chemical space, as
exemplified by Hautier et al.57. Alternatively, we also used relative
energies ΔE with respect to a reference configuration with the same
chemical composition, e.g., the initial structure of anMD trajectory or
NEB calculation (see Supplementary Table 3), to define the relative
energy error ΔΔE. This metric only quantifies energy errors within the
same system but not across the chemical space. Obviously, the force
errors as intensiveproperties are independent of the referenceand can
be compared directly across the chemical space. Table 1 summarizes
the RMSEs of energies and forces for all test cases (2700 structures in
total) of the NNP with respect to SCAN+D3(BJ) reference and Fig. 1c
shows the total energy errorΔEr distribution (see Supplementary Fig. 4
for ΔEr and ΔΔE distributions for each system separately). Fig. 1c (and
Supplementary Table 3) also show the performance of the standard
reactive analytical force field ReaxFF specialized for water-loaded BAS
zeolite systems58.

The total NNP errors are similar to other state-of-the-art (rota-
tionally invariant)MLPs38,42,44 for themodeling of reactive events.More
importantly, the NNP calculated reaction energies Er are consistent
over the entire range of chemical BAS zeolite compositions and con-
figurations. Only in the case of GIS(T = 3000K) + 24H2O, the energy
and force errors about twice as high compared to the other test cases.
Such higher errors were also obtained for MLPs when applied to
simulations with a large number of reactive events at extreme
temperatures38,42. To put these NNP errors in context, note that stan-
dard GGA-level DFT functionals show, for 27 formation reactions that
involve silica, an RMSE of about 28 meV atom−1 with respect to
experiment57. Therefore, theNNPs safely retain themetaGGA-level DFT

quality for the description of the water-loaded BAS zeolite systems. In
addition, we have also tested, whether the NNP reproduces the DFT
potential energy surface consistently across the configurational space.
For this purpose, we evaluated the covariance between the force
(energy) errors and the total forces (and energies) from the explicit
DFT calculations (see Supplementary Table 3). The average covariance
(averaged overall generalizations tests) between the actual forces (at
DFT) and the NNP error in forces is small (0.13), which indicates that
errors in forces are mostly random (the largest force covariance was
obtained for FAU(Si/Al = 1) + 48H2O system reaching 0.24), and largely
independent of the configurations sampled. This shows that theNNP is
not expected to bias the sampling of the configurational space,
representing correctly the (average) curvature (structure) of the
reference potential energy surface. We also note that MLPs with about
the same force accuracy were shown to accurately reproduce equili-
brium properties such as vibrational density of states38,42.

Sampling of equilibriumproperties. The dynamic behavior of zeolite-
confined water-containing solvated protons is of high interest due to
the (potential) applications of zeolites in water purification10,59, heat
storage60 or reaction optimization under humid conditions (such as
biomass conversion)7. The ability to realistically model the (water-
loaded) BAS systems close-to equilibrium is crucial for understanding
of many of their signature properties such as acidity, (water) adsorp-
tion and diffusion, or relative stability as a function of topology, water
content, and aluminum distribution and concentration.

The role of water loading and aluminum concentration was pro-
bed using equilibrium MD simulations of water-loaded zeolite with
FAU (faujasite) topology (see “Methods” section for details about the
model generation) - an industrially important zeolite topology unseen
in the NNP training - under standard conditions (300K). We con-
sidered model systems with the (theoretically) lowest and highest
possible Si/Al ratios in a (primitive) FAU unit cell, namely, a single
Brønsted acid site (BAS) with Si/Al = 47 and Si/Al = 1 according to
Löwenstein’s rule that prohibits the formation of Al–O–Al pairs. In the
case of Si/Al = 47 (FAU(Si/Al = 47) + nH2O), three water loadings nwere
tested, fromsinglewater through awater tetramer to fullwater loading
of FAU with 48 water molecules (approximate water density of
1 g cm−3). For Si/Al = 1, full water loading with 48 molecules per FAU
unit cell was chosen to focusonextensive samplingof BASprotonation
and deprotonation events, a key reactive event characterizing these
strong solid acids.

In the case of the FAU (Si/Al = 47) model, the single water mole-
cule (n = 1) remains adsorbed at the BAS throughout the 1 ns MD
simulation, in line with the very strong interaction between BAS and
water molecule. This strong binding is characterized by the water
adsorption energy of approx. −79 kJmol−1 calculated here using NNP
(evaluated as an average over the MD trajectory) - this strong stabili-
zation is in qualitative agreement with the static single water adsorp-
tion energies in CHA zeolite reported in the literature ranging from
−50 to almost −100 kJmol−1 depending on the type of exchange-
correlation DFT functional adopted61. We also quantified the degree of
solvation by calculating theminimumdistance of Al-OFW-Si framework
oxygens to all hydrogen atoms (see Supplementary Fig. 5). The proton
was considered solvated if it is closer to awater oxygen than to Al-OFW-
Si. Only very few solvated states (less than 3% of the trajectory) were
observed during the 1 ns run, in line with previous (shorter) AIMD
simulations at the DFT level for FAU and CHA zeolite17,45. However, the
water tetramer (n=4) is already able to deprotonate the BAS, but
similarly to single water, the tetramer stays close to the framework Al
during the 1 ns MD trajectory (on average 3.1 Å between Al and the
cluster center-of-mass, see Supplementary Fig. 5). At full water loading
(n = 48), the proton rapidly leaves the BAS and stays solvated with an
average distance of 7.3 Å (ranging from 3 to 10 Å) from the Al-OFW-Si
(see Supplementary Fig. 5). Importantly, both the degree of

Table 1 | Root mean square errors of the NNP reaction ener-
gies ΔEr (see Eq 1) [meV atom−1] and forces [eV Å−1] with
respect to the SCAN+D3(BJ) reference for the test cases
shown in Fig. 2

Generalization test case Energy Forces

FAU(Si/Al = 1) + 48H2O 0.9 0.11

FAU(Si/Al = 47) + nH2O 2.4 0.07

Si(OH)4 + 96H2O 4.1 0.12

Al(OH)3 + 96H2O 4.1 0.12

GIS(T = 3000K) + 24H2O 10.0 0.28

MFI(2D) + 165H2O 1.4 0.16

Average 3.8 0.11
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deprotonation and the distance of the proton from the BAS as a
function of water loading are in very good agreement with the biased
AIMD simulations of Grifoni et al. for protonic FAU zeolite17. However,
the evaluation of the confined water dynamics herein is hindered by
finite-size effects, due to a small primitive cell of FAU chosen primarily
for benchmarking purposes. Hence, we refer the interested reader to
our preliminary work62 using the NNPs presented here on water dif-
fusion in FAUusing anappropriately sized FAUunit cell (cubic cell with
edge length of 25 Å) that is prohibitively large for carrying out routine
DFT calculations. A particularly challenging case is the interaction of
water with the framework of FAU with Si/Al = 1, owing to the large
number of BAS and complexwater-mediated communication between
acid sites. Despite the fact that the MD trajectory contains several
protonation and deprotonation events, the errors of the NNP for this
challenging case increase only mildly (see Table 1) and are well below
the test errors for the training database (see above). Thus we conclude
that the NNP is able to reproduce the solvation behavior of zeolites
across a wide space of Si/Al ratios and water loadings.

To check the NNP generality further, we employed the “inverse"
models to water-loaded zeolites, namely the fragments of zeolites
(silicic acid Si(OH)4 and aluminum hydroxide Al(OH)3) solvated in
bulk-like water (using a simulation box containing 96 water mole-
cules). Such systems are relevant for modeling potential precursors of
zeolite synthesis or products of zeolite degradation in hot liquid water
(de-silication and de-alumination)5,9,63,64. Since both processes take
place under rather harshhydrothermal conditions (temperature above
100 °C and pressure above 10 bars), the test simulations were carried
out at 500K. In both cases, the NNPs accurately reproduce the SCAN
+D3(BJ) energies and forces. Similar to the previously discussed system
FAU(Si/Al = 1) + 48H2O, the NNP energy errors (4meV atom−1) are
mainly connected to the offset of Er (see Supplementary Fig. 4).

Besides the generalization tests above, which were based on NNP-
driven MD simulations subsampled with DFT single points, we also
considered three other OOD tests, which compared DFT-driven
simulations (MD and geometry optimizations) with the NNP single
points and geometry optimizations. First, following the geometry
optimizations both at the reference DFT (SCAN+D3(BJ)) and the NNP
level we evaluated their performance in a “head-to-head" fashion for
multiple properties (energies, densities, average Si-O bond distances,
lattice parameters) of the small set of purely siliceous zeolites for
which the corresponding experimental data are known (see Supple-
mentary Table 4). The average results (based on mean absolute
deviation (MAD)) show that the NNP provides essentially identical
values to the reference DFT for lattice parameters and average Si-O
bond distances, slightly underestimates the density (by 0.1 Si nm−3

mostly due to a poorer description of the dense silicapolymorphs) and
slightly improves (compared to experimental data) the relative stabi-
lities (by 0.7 kJmol−3 Si). This dataset allowed us also to compare the
performance of the current NNP to our original NNP trained only using
all-silica data38; despite covering broader chemical space, the current
NNP show similar performance, which we relate to a more diverse set
of silicon and oxygen local atomic environments (including those of
all-silica nature) included in the current database. Next, we tested how
sensitive is the NNP to a mildly different structural nature of symme-
trically nonequivalent aluminum sites in an OOD MFI framework in
protonic form (Si/Al = 95), which we probed by evaluating single water
adsorption energies on all twelve (T1-T12) symmetrically none-
quivalent aluminum sites (see Supplementary Fig. 7). The NNP water
adsorption energies range between −80 and −110 kJ/mol, are char-
acterized byMADof about 10 kJmol−1 with respect to the SCAN+D3(BJ)
reference and the NNP in most cases follows the relative ordering of
stabilities observed at the reference level. Toput this performance into
context, the MAD of another DFT exchange-correlation (XC) func-
tional (PBE+D3(BJ)) with respect to SCAN+D3(BJ) is 12 kJmol−1, i.e., the
NNP is at least as good as an approximation to the SCAN+D3(BJ) as

another “flavor” of the XC DFT functional. Lastly, we carried out MD
simulations at the reference DFT level for “pinned hydroxonium”

species (see Supplementary Fig. 6). These species were observed to
form during the NNP MD simulations of FAU(Si/Al = 1) + 48H2O and in
similar NNP-based simulations before62. The “pinned hydroxonium”

species remained stable during 10 ps long SCAN+D3(BJ) AIMD, the
NNP errors both in energies and forces remain rather small (similar to
the overall RMSE for the whole database). Besides validating the NNP,
these results also demonstrate the capacity of the NNP to explore
hitherto unseen species, such as the “pinned hydroxonium”, which
may indeed be present in zeolites with very high Al content. In con-
clusion, the above-presented tests strongly suggest that the NNPs
developed herein enable us to run reliable large-scale equilibriumMD
simulations across broad parts of the chemical and configuration
space of BAS zeolites and water with a level of accuracy that is close-to
metaGGA DFT.

NNP performance for highly activated reactive events. Modeling of
chemical reactions at the BAS zeolite-water interface requires a robust
interpolation of the relevant transition states. However, MLPs are
expected to have only limited capability to reliably describe config-
urations and energetics in extrapolated or sparsely interpolated
regions of the potential energy surface22, whichoften coincidewith the
high-energy transition state configurations. Therefore, we tested the
trainedNNPs byperformingMD simulations at very high temperatures
(at 1600 and 3000K) for an unbiased assessment of the NNP quality
and robustness formodeling reactive processes.Wenote, that the very
high-temperature conditions are not applicable to standard applica-
tions of water-zeolite systems, however, the reactive (rare) events
observedwith increasedprobability at such conditions areexpected to
be both realistic (see below) and a challenging case to model accu-
rately.We chose two systems that were not part of the training dataset:
an interfacemodel comprisedof a siliceousMFI slab in interactionwith
bulk-like water and water-loaded GIS with Si/Al = 1. In addition, we
tested the accuracy of theNNPs using static nudged-elastic band (NEB)
calculations, which are used to locate specific transition pathways, for
four reactions relevant for BAS zeolite-based catalysts (see below).
Lastly, we evaluated the free energy barrier for a proton jump in the
water-free CHA model (an in-domain case) both at the NNP and the
reference SCAN+D3(BJ) level.

The first generalization test was amodel for the external interface
of siliceous MFI with bulk water (see “Methods” for details about the
slab model employed). This zeolite model resembles 2D-MFI nanosh-
eets which have been successfully prepared by exfoliation of a multi-
lamellar MFI zeolite65. To sample reactive events at the external zeolite
surface, we performed an exploratory MD run at 1600K for 1 ns. No
extrapolation was detected using the ensemble of NNPs. As expected,
significantly increased temperature leads to increased probability of
the highly activated reactive events to take place and we do observe a
relevant chemical reaction taking place over the course of 5 ps, in
which a silanol defect is created at the external MFI surface (see
Fig. 2a). In our previous work15, a fairly similar Si-O bond-breaking
mechanism involvingproton transferwas found tobe characterizedby
a free energy of activation amounting to approx. 80 kJmol−1 (at 450K).
Theobserved reaction starts at the intersectionof thebulkwater phase
with the MFI main channel (along the crystallographic b-direction).
Firstly, a watermolecule adsorbs at a surface Si site (Fig. 2b), which is a
standard precursor for Si-O bond hydrolysis reported in multiple
publications before15,66–68. The autoprotolysis of a nearby water mole-
cule leads to the transfer of a proton from the adsorbed water mole-
cule to the formed hydroxide ion creating an additional surface silanol
group at the five-fold coordinated Si atom (Fig. 2c). The remaining
hydroxonium ion shuttles the excess proton together with the sur-
rounding water molecules to a framework oxygen bound to the five-
fold coordinated Si (Fig. 2d). This process finally leads to the cleavage
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of the Si–O(H) bond, creating a silanol defect in an axial position to the
previously formed surface silanol, i.e., the same product and
mechanism observed previously to take place inside the cage systems
of various zeolites (CHA15, UTL18). Our exploratory MD simulation
revealed a feasible reaction mechanism for silanol defect creation at
the external zeolite surface involving the autoprotolysis of water,
which would be challenging to find with biased dynamics simulations
with human-designed CVs. These findings are also in linewith previous
experimental studies on the hydrolysis of MFI zeolites in hot liquid
water that suggest that zeolite degradation predominantly starts at the
external surface, in whichwater autoprotolysis and silanol groups play
a crucial role69,70. To confirm that the defect creation process observed
at the NNP level is reliable, we performed SCAN+D3(BJ) SP calculations
using 100 snapshots comprising the reaction steps depicted in
Fig. 2b–e. The NNPs proved very accurate for this test case with an
energy RMSE of 1.4meV atom−1 (see Table 1).

The second particularly challenging generalization test was a GIS
zeolite model (Si/Al = 1) loaded with waters (24 molecules), which was
molten at 3000K for 2 ns to sample multiple highly activated reactive
events taking place simultaneously (see alsoSupplementary Fig. 8).We
obtained a stable MD trajectory of the liquid BAS zeolite state with
thousands of bond-breaking events (including Si–O and Al–O bond
hydrolysis, aluminol, and silanol formation, increaseof Al coordination
up to six, water splitting/re-formation, water autoprotolysis, (de)pro-
tonation of the silanols/aluminols and formation of aluminum oxide-
like islands in the framework) over the entire simulation time, without
detecting extrapolation using the trained ensemble of NNPs. However,
this test case shows higher energy RMSE by around a factor of two
when compared to the other test cases (see Table 1). Similar trends of
increased energy errors have also been observed for other MLPs
applied to high-temperature MD runs of the liquid state of strongly
(covalently) bound materials (see e.g., Refs. 38,42). Even though the
NNP accuracy mildly deteriorates at these extremely high tempera-
tures, they proved robust in these simulations of a large variety of
highly activated reactive events.

Next, we tested the accuracy of trained NNPs on specific ele-
mental reactions in water-loaded BAS zeolites with well-known tran-
sition states: a proton jump with and without water48,71,72, and water-
assisted bond-breaking mechanisms of the Si–O and Al–O(H)
bonds14,66,73 (see Supplementary Fig. 9 and Supplementary Table 5 as
well as Fig. 3). All NEB calculations were performed for FAU; an

industrially relevant zeolite topology that was not part of the training
dataset. For quantification of the NNP error, we used SCAN+D3(BJ) SP
calculations on all generated NEB images. On average, the relative NNP
energies only slightlydeviate from theirDFT referencewith anRMSEof
about 6 kJmol−1. Such small errors for activation barriers can be con-
sidered to lie within DFT accuracy which is on average about
20–30 kJmol−1 with respect to coupled cluster calculations in the case
of (meta)GGA functionals74.

Lastly, we calculated, using metadynamics simulations75, the free
energy profile of a proton jumpprocess (between O2 andO3 oxygens)
in thewater-free CHAmodel (see Fig. 3a). TheNNP is able to reproduce
the reference SCAN-D3(BJ) DFT free energy profile very well, with only
minor deviations (within 10 kJ/mol for both free energy barriers and
reaction energies). Note, that suchminordeviations are expected to lie
well within the errors that are due to the sub-optimal set-up of the free
energy method parameters (see Supplementary Fig. 12 or a related
recent work76). These tests strongly suggest that the herein-developed
NNP indeed reconstructs broad parts of the DFT-based PES well and is
thus able to sample similar configurational/phase space as the DFT
reference.

We also note that many of the reactions probed above involve
hydrogen. Hence the nuclear quantum effects (NQEs) will affect the
dynamics and barriers. A recent work from Bocus et al.48 attempted to
quantify these effects for proton jump in H-CHA zeolite reporting the
loweringof theproton jumpbarriers by a rather small amount (5–10 kJ/
mol) depending on the temperature and we expect similar minor
effects in our simulations. However, quantifying the extent of NQEs is
out of the scope of the current contribution.

In conclusion, the tests presented in this section indicate that the
trained NNPs are robust and general interpolators for simulations
across broadparts of the chemical and configuration space spannedby
the water-loaded BAS zeolites and that they are able to retain the
reference-level (SCAN+D3(BJ)) DFT quality not only for close-to-
equilibrium simulations but also for highly activated reactive events.

Extensions of the NNP model
Obtaining a general NNP model that describes water-loaded BAS
zeolitic systems with metaGGA DFT quality with several orders of
magnitude speedup is clearly beneficial. However, with such a robust
baseline NNP model available, it is possible to construct extensions
that can improve either the accuracy of the description or the effi-
ciency of sampling of the reactive events of interest.

Improving the baseline model accuracy using Δ-learning. To
improve the accuracy of thebenchmark level, one canemploy thewell-
known Δ-learning concept33. In this way, one may train a correction
model on top of the baseline model, using a computationally more
demanding butmore accurate level of theory for a small subset of data
points that typically covers only the specific process/reaction of
interest (e.g., a proton jump in a specific zeolite framework)48. Δ-
learning is typically computationallymuchmore efficient than training
of an NNP directly using only data from a high-level method. The
reason is that the correction- (Δ-) surface is expected to be much
smoother than the full potential energy surface. For the higher-level
reference, we chose the range-separated hybrid DFT functionalωB97X
complemented with the empirical dispersion correction D3(BJ): a
functional that shows considerably better performance for water
cluster binding energies and reaction barriers74,77,78 than our baseline
reference SCAN+D3(BJ) functional.

First, we considered a common application domain/target of the
Δ-learning approach, in which one trains and deploys the correction
(ΔNNP) model on the same reaction/process (the in-domain case)79,
i.e., the proton jump in CHA. Initially, we generated a small ωB97X-
D3(BJ) database containing 500 structures taken from the biased (NNP
level) MD runs of an H-jump in water-free CHA (between O2 and O3,

a c

e

b

a

d

b

Fig. 2 | Surface defect creation in an 2D-MFI nanosheet. a Snapshot of 2D-MFI
from an exploratory 1 ns MD run at 1600 K to sample reactive events (Si: yellow, O:
red, H: white). b–e Reaction steps of silanol defect creation at the 2D-MFI-water
interface: b water adsorption on a surface Si and water autoprotolysis; c proton
transfer from the adsorbed water to the hydroxide ion; d migration of the hydro-
xonium ion and adsorption on a framework oxygen; e Si--O bond hydrolysis,
creating a silanol defect in axial position to the formed surface silanol.
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see “Methods” section) taken from Ref. 34. Next, we trained a correc-
tion (ΔNNP) to the atomic energies of the NNPbaselinemodel by using
a simple linear regression for the ΔNNPmodel (seeMethod section). It
was found that 150 training structureswere sufficient to reach (test set)
RMSEs of 1.3meV atom−1 and 69meV Å−1 for energy and forces,
respectively (see Supplementary Fig. 10). Figure 3b show the results of
the NNP level NEB calculations along with the corresponding DFT
energies. Figure 3a depicts the structures for the reaction path and
Table 2 also compares the relative energies of the proton jump in CHA
(O2–O3). The deviation between the reference ωB97X-D3(BJ) and the
(baseline plus) ΔNNP model is very small (less than 3 kJ/mol), i.e.,
within chemical accuracy (less than 1 kcal/mol).

Next, we focused on more challenging cases, in which we tested
the performance of the ΔNNP model in two out-of-domain (OOD)
scenarios - first, the same type of reaction (proton jump) in an OOD
framework (FAU) and second, an OOD reaction in an OOD framework

(Al-O(H) bond dissociation in FAU). In particular, we chose FAU with a
singleAl site (Si/Al = 47) as a test case. Figure3d–gandTables 2–3 show
the results of the NNP level NEB calculations for these OOD tests along
with the corresponding DFT energies. For the proton jump in FAU the
ΔNNP accuracy of the relative energies mildly deteriorates (about

Table 2 | Relative energies ΔE [kJmol−1] of the proton jump in
CHA and FAU at the (Δ)NNP and DFT level
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+D3(BJ)

ωB97X-
D3(BJ)
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Fig. 3 | Reaction path modeling using Δ-learning and ML collective variables.
Reaction path modeling for an (Δ)NNP in-domain (ID) case: a proton jump in CHA
(a–c); and two out-of-domain (OOD) cases: a proton jump (d, f, h) and an Al–O(H)
bond dissociation (e, g, i) in FAU. a, d, e Atomic structures along the reaction path
(Si: yellow, Al: gray, O: red, H: white). b, f, g Static (Δ)NNP simulations and

corresponding DFT energies for the NNP baseline level (SCAN+D3(BJ)) and the
ΔNNP level (ωB97X-D3(BJ)). c, e, f Estimated free energy profiles using a standard
collective variable CVd (see “Methods” section) for CHA and using ML collective
variables for FAU.
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5 kJmol−1 error) compared to theCHAcase, however, it still provides an
improved description compared to the baseline NNP model with the
baseline reference-level metaGGA DFT. For the most challenging OOD
case of the Al–O(H)–Si bond scission in FAU (see Method section for
details), the error of the ΔNNP model with respect to the reference
ωB97X-D3(BJ) in the relative energies ΔΔE further mildly increases (up
to 8 kJmol−1) (see Table 3). Unfortunately, for this particular OOD case,
such an error in relative positioning of the stationary states is already
close to thedifferences betweenbaseline- (SCAN+D3(BJ)) and thehigh-
level (ωB97X-D3(BJ)) DFT predictions (within 7 kJ/mol), making the
ΔNNPmodel predictions, in this particular case, as good (or as bad) as
the those of the baseline NNP model. However, we note that the fact
that the ΔNNP model, in conjunction with the baseline NNP does not
worsen the description over the baseline NNP for such a challenging
OOD case is a surprising result.

A more in-depth analysis of the ΔNNP errors for these OOD cases
is provided in the Supplementary Information (see Supplementary
Table 6), including an extended dataset containing also the single-
point data taken from biased dynamics runs depicted in Fig. 3h, i
(Supplementary Fig. 11 and Supplementary Table 7). In summary,
ΔNNP simulations can model chemical reactions similar to those cov-
ered by the training data, even in an OOD zeolite framework, but has
only limited generalization capability to systems with different che-
mical composition (see Supplementary discussion). Nevertheless, the
fairly good extrapolation robustness of our (very simple) ΔNNPmodel
for similar reaction pathways indicates both that the general NNP
baselinemodel is rather robust across the BAS zeolite PES (with water)
and that the correction surface is rather simple (low-dimensional) as,
e.g., shown recently for the DFT-to-MP2 correction surface of alkane
adsorption in protonic zeolites80.

Accelerating rare event sampling using baseline model repre-
sentations. In the previous section, we tested the Δ-learned model for
accurate (hybrid DFT) modeling using static calculations of known
reaction mechanisms. However, prior investigations have shown the
unforeseen and highly collective nature of water-involved reaction
mechanisms as well as the sizable role of temperature effects15,16,18.
Both imply the need for a tool with the ability to effectively discover
and sample transition pathways. For effective sampling of the acti-
vated reactive events, which are therefore rare on the timescales
accessible even for the NNP-accelerated simulations, one typically
adopts a biasing along a low-dimensional representation of the reac-
tive process, i.e., along the reaction coordinates or collective variables
(CVs). However, good CVs can be difficult to construct in case of
unknown, possibly complex, reaction pathways.

Our recent work34 shows how the end-to-end learned atomic
representations of our baseline NNP model can be used to auto-
matically generate robust machine-learned CVs (ML-CVs). In this
approach, the structures of the reactant, product, and perhaps also
tentative transition states are first represented using the atomic
representations of the herein-trained baseline NNPmodel. Next, these
representations are used as an input for the dimensionality reduction
model (variational autoencoder), which generates a low-dimensional
(typically one- or two-dimensional) latent space fromwhich themodel

attempts to reconstruct the input representation vectors as precisely
as possible. As a result, the latent low-dimensional space effectively
distinguishes products from reactants, i.e., it represents the reactive
coordinate or collective variable.

We showed previously that learned ML-CVs coupled with the
baseline NNP enable efficient sampling of the free energy surface for a
proton jump and Si-O bond hydrolysis in CHA zeolite34. Here, we test
this procedure using the aforementioned proton jump and Al-O2(H)
bonddissociationmechanism inFAUwith Si/Al = 47which is outside of
the NNP training domain, in contrast to CHA (see “Methods” section).
Figure 3h, i show the estimated free energyprofiles calculatedwithML-
CVs using well-tempered metadynamics75 simulations (see Methods
section). The free energy barrier (approx. 110 ± 10 kJmol−1 at 300K) of
the proton jump in FAU is somewhat higher compared to the static
calculations (84 kJmol−1, see Table 2). This is in line with previous
calculations48,72 which showed increasing reaction barriers with tem-
perature (up to 20 kJmol−1 from 0K to room temperature). In case of
the Al-O(H) bond dissociation the activation free energy is about
80 kJmol−1, similar to the barrier found by the NEB simulations (see
Table 3). Hence, with the baseline NNP model, one can not only
accelerate the evaluation of energies (and forces) necessary for sam-
pling the water-loaded BAS zeolite systems but also use it to auto-
matically generate ML-CVs accelerating the sampling of a particular
reactive process.

In this work, we developed a neural network potential (NNP) to
cover the entire class of proton-exchanged aluminosilicate (BAS)
zeolites, which are one of the cornerstones of existing petrochemical
processes3, as well as one of the main candidates for emerging
applications in sustainable chemistry2. The breadth of chemical and
configurational space spanned by the training database as well as a
consistently good performance of the NNPs in a battery of general-
ization and transferability tests suggests that our NNP is able to pro-
vide a general approximation of the potential energy surface of the
BAS zeolites, including reactive interactions with water, capturing
both close-to-equilibrium structures and high-energy bond-breaking
scenarios. These tests ranged from zeolite surfaces varying in water
and aluminum content to zeolite fragments solvated in bulk-like
water and a high-temperature melt of the aluminosilicate zeolite GIS.
The very good performance of the NNP points to the high transfer-
ability of the NNPs, which are able to maintain consistent accuracy
close to the (meta)GGA DFT level, outperforming standard analytical
reactive force fields for water-loaded BAS zeolites58 by at least one
order of magnitude. Moreover, in some of these tests, we observed
hitherto unseen chemical processes and species, which confirms the
capability of the NNP for exploration and discovery of reactive
pathways, in addition to the acceleration of configuration space
sampling.

Furthermore, we exemplified on a small set of use cases, how the
herein-developed NNP can be used as a basis for further extensions/
improvements such as: (i) data-efficient adoption of higher-level
(range-separated hybrid DFT) description via Δ-learning33, and (ii)
acceleration of reactive event sampling using automatic construction
of collective variables, via end-to-end learned atomic representations34.
Hence, we have highlighted how the baseline NNP model with its ML-
based extensions may constitute a broader ML-based framework
within which one can simulate BAS zeolite materials in a comprehen-
sive, bias-free fashion with tunable accuracy.

We expect that the NNP, especially when complemented with the
extensions exemplified above will represent a big step towards large-
scale simulations of BAS zeolites tackling long-lasting challenges in the
field, ranging from understanding the mechanistic underpinnings of
zeolite hydrothermal (in)stability to thedetermination of the character
of active species and defects under operating conditions. The appli-
cation of these methods to long-time-scale diffusive processes and
reaction networks in highly defective model systems that match those

Table 3 | Relative energies ΔE [kJmol−1] of the Al-O(H) bond
dissociation in FAU at the (Δ)NNP and DFT level

SCAN+D3(BJ) ωB97X-D3(BJ)

NNP DFT ΔNNP DFT

TS1 77 79 93 85

I 63 63 68 60

TS2 66 69 74 68

FS 47 40 48 47
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of industrial application is already underway, with more data-efficient
rotationally equivariant NNP architectures being adopted.

Methods
Dataset generation
Covering the chemical and configuration space of BAS zeolites
requires a structurally distinct set of zeolite frameworks with different
water loadings and Si/Al ratios. In our previous publication38, we used
SOAP-FPS39–41 to find a subset of siliceous zeolites that optimally covers
the structural diversity of existing and more than 300 k hypothetical
zeolites. From this subset, ten zeolites were selected, three existing
(CHA, SOD, MVY) and seven hypothetical zeolite frameworks (see
Supplementary methods). These frameworks were used for the con-
struction of 150 initial structures combining four water loadings (from
0 to~1.1 g cm−3) with three Si/Al ratios between ~1–32 (in protonic form)
and water-loaded purely siliceous zeolites (see Supplementary
Table 1). We also added a two-dimensional silica bilayer (12 Å vacuum
layer) used in ref. 38 with three different water loadings to the initial
structure set. This bilayer resembles silicatene, a two-dimensional
double-six-ring layer81, but contains four-, five-, six-, and ten-rings (see
Supplementary Table 1). All 153 initial configurations were then opti-
mized under zero pressure conditions.

Next, the entire structure set was equilibrated for 10 ps at 1200,
2400, and 3600K using AIMD simulations to sample reactive events at
higher energies. Sampling of the low-energy parts of the PES used 210
unit cell deformations applied to all optimized structures (see Sup-
plementary methods). Apart from microporous structures and two-
dimensional BAS zeolites, we also added the same set of 210 lattice
deformations for six dense BAS zeolite polymorphs, namely, four
alumina polymorphs α-Al2O3 (corundum)82, θ-Al2O3

83, γ-AlO(OH)
(Boehmite)84, and α-Al(OH)3 (Gibbsite)

85, as well as two aluminosilicate
polymorphs, Si3Al2O12H3 (H3O-Natrolite)

86 and Al2Si2O5(OH)4
(Dickite)87. Additionally, we (SOAP-FPS) subsampled AIMD trajectories
of zeolite CHA taken from previous publications15,45 to further extend
the structure database. These trajectories are equilibrium MD runs of
non-Löwenstein pairs (Al-O-Al) with various water loadings (0, 1, 15
water molecules)45 and biased AIMD runs of Si-O(H) and Al-O(H) bond
cleavage mechanisms15.

For interpolation of the interactions in pure water, we performed
AIMD simulations (10 ps) for bulk water with 64 water molecules at
three densities (0.9, 1.0, 1.1 g cm−3) and at three temperatures (300,
600, and900K). In addition,weused singlewater andwater clusters in
vacuo taken from the BEGDB database50 (38 isomers from (H2O)2 to
(H2O)10, available under: begdb.org) and four isomers of (H2O)20

88. All
clusters were first optimized (constant volume conditions) with a unit
cell ensuring a distance between equivalent periodic images of at least
1 nm. Then the aforementioned 210 lattice deformations were applied
to all optimized clusters. Finally, the unit cells of two ice polymorphs
(Ice II89 and Ice Ih

90) were deformed in the same way for sampling of
low-energy structures of crystalline water.

All AIMDsimulations and structureoptimizationswere performed
at the computationally less demanding PBE +D3(BJ)35 level employing
the dispersion correction of Grimme et al. (D3)36 along with Becke-
Johnson (BJ)37 damping. The AIMD equilibration used the canonical
(NVT) ensemble along with a 1 fs time step, the Nosé-Hoover
thermostat91,92, and with hydrogen being replaced by tritium. Struc-
turally diverse configurations were extracted from theMD trajectories
using SOAP-FPS (see Supplementary methods). These decorrelated
MD structures were used, together with the generated set of lattice
deformations, for single-point (SP) calculations at the (metaGGA)
SCAN-D3(BJ) level46. The resulting SCAN+D3(BJ) reference dataset
contained 248,439 structures.

An ensemble of six SchNet51 NNPs was trained on the final SCAN
+D3(BJ) database. The six independent training runs used different,
randomly split parts of the DFT dataset with approximately 80% of the

data points as training set and 10% as validation and test set, respec-
tively. We used the same SchNet hyperparameters (6 Å cutoff, 6
interaction blocks, 128 feature vector elements, 60 Gaussians for dis-
tance expansion) and themean squared error of energies and forces as
loss function with trade-off 0.01 (high weight on force errors) as in our
previous publication38. Minimization of the loss function used mini-
batch gradient descent along with the ADAM optimizer93 and four
structures per batch. If the loss function for the validation set did not
decrease in three subsequent epochs, the learning rate was lowered
(from 10−4 to 3 ⋅ 10−6) by factor 0.75.

Generalization tests and reaction path searches
Testing of the NNP accuracy, robustness, and generality used a series
of MD and NEB calculations of systems that were not included in the
trainingdatabase. To test theNNPperformance at close-to-equilibrium
(low temperature) conditions, we performed four MD runs (1 ns,
300K) for zeolite FAU (primitive unit cell, 48 T-sites) at different
chemical compositions. Three of the MD runs used a single Al atom
(and BAS) per unit cell (Si/Al = 47) and three water loadings (1, 4, 48
water molecules). The fourth run was performed with 24 Al per unit
cell (Si/Al = 1) and 48 water molecules. From every MD trajectory, 500
configurations were selected for subsequent SCAN+D3(BJ) and ReaxFF
SP calculations. As an “inverse" test case to three-dimensional zeolites,
we chose silicic acid Si(OH)4 and aluminum hydroxide Al(OH)3 sol-
vated in bulk water (96 water molecules). Both systems were equili-
brated at hydrothermal conditions 500K for 1 ns. Subsequently, two
hundred configurationswere selected frombothMDruns for accuracy
evaluation.

To check the NNP performance and robustness for the sampling
of reactive events, we first constructed a model of the external MFI-
water interface. The starting point was an orthorhombic (96 T-site,
taken from the IZAdatabase)MFI unit cell with one silanol nest at T-site
T9 for exploratory, high-temperature MD runs to sample reactive
events at the internal and external MFI-water interface. Next, an
MFI(010) surfacemodelwas createdby adding a 12 Å vacuum layer and
cleaving the Si–O bonds between the T-sites T7, T9, T10, and T12
(lattice plane with the lowest number of bridging O) yielding eight
silanol groups on both surfaces. The resulting surface model is similar
to previously usedmodel systems94,95 of synthesizedMFI nanosheets65.
After the addition of 165 water molecules, the model was equilibrated
for 2 ns at 1600K. One hundred structures were selected from the
trajectory that include the surface defect creation shown in Fig. 2 for
SP calculations. As an extreme case to test the NNP robustness at very
high temperatures, we simulated the liquid state-of a BAS-watermodel
system at 3000K. The initial configuration was a model of GIS (32
T-site unit cells) with Si/Al = 1 and 24 water molecules which was
equilibrated for 2 ns. Finally, two hundred structures were extracted
from the MD run for the NNP and ReaxFF error evaluation.

For the FAU(Si/Al = 1) + 48H2O system, we also performed an
AIMD simulation directly at the SCAN+D3(BJ) level, in which we used
the forces from the reference level of theory to propagate the struc-
ture in the MD simulation and then calculated the single-point NNP
energies and forces for the selected snapshots from the AIMD trajec-
tory. As the initial structure, we took an optimized structure from the
FAU(Si/Al = 1) + 48H2O test case simulations (see above) since the
“pinned hydroxonium" species (see “Results” section) were observed
to formduring theNNP trajectory (see Supplementary Fig. 6). TheNNP
optimized initial structure was equilibrated for 10 ps at 300K.

All MD simulations used a time step of 0.5 fs with hydrogen being
replaced by deuterium, employing the Nosé-Hoover thermostat with a
relaxation time of 40 fs91,92. The final generalization test set collected
fromall trajectories contains 2700configurations for SP calculations at
the SCAN+D3(BJ) and ReaxFF58 level allowing the energy and force
error evaluation shown in Table 1 and Fig. 1c (and Supplementary
Table 3).
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In addition, we optimized a set of seven silica structures (three
polymorphs: α-quartz, α-cristobalite, tridymite; four zeolites: AFI, FER,
IFR, MTW) at the NNP level (including the unit cell) for which experi-
mental data (structures and enthalpies)96–98 and DFT data (PBE+D3(BJ),
SCAN+D3(BJ))38 are available (see Supplementary Fig. 1 and Supple-
mentary Table 4). This set of structures was chosen to check whether
the current NNPs have the same accuracy as our previously developed
NNPs for silica38 and to evaluate how much the NNP energy/force
errors change the structure and energetics of the DFT-optimized
zeolites. Another accuracy comparison between the current NNPs and
the previously developed silica NNPs involved a SCAN+D3(BJ) dataset
of 1000 hypothetical zeolites randomly chosen from the hypothetical
zeolite database38 (see Supplementary Fig. 1 and Supplementary dis-
cussion). Here, we calculated energy and forces for this test set at the
NNP level while the DFT data was taken from Ref. 38. We also calcu-
lated the adsorption energies of a single water molecule in MFI(Si/
Al = 95) on all twelve (T1-T12) symmetry inequivalent T-sites and (ran-
domly) chosen BAS (see Supplementary Fig. 7). The manually con-
structed initial structures were optimized at the NNP level (at constant
volume). These MFI structures were then re-optimized at the PBE
+D3(BJ) and SCAN+D3(BJ) levels to test the influence of NNP energy/
force errors on structure optimizations and adsorption energy calcu-
lations in direct comparison to DFT.

Next, we conducted NNP performance tests for modeling of
reaction pathways in FAU (primitive unit cell, Si/Al = 47) using NNP
level climbing image NEB calculations. We chose four reaction path-
ways: (i) a proton transfer with one water molecule and without water
(between O1–O4)48,71,72, and (ii) water-assisted bond-breaking
mechanisms of the Si–O2 and Al–O2(H) bonds14,66,73 (see Fig. 3 and
Supplementary Fig. 9). In addition, we tested a water-free proton
transfer in CHA between O2 and O3. The numbering of the symmetry
inequivalent oxygen atoms (see Supplementary Fig. 13) is consistent
with the labeling of the zeolite frameworks in the IZA database
(available under: iza-structure.org/databases). Energies at the SCAN
+D3(BJ) were then obtained by SP calculations for all NEB images.

Lastly, the standard metadynamics75 calculations both at the
SCAN+D3(BJ) (using VASP package - see below) and the NNP (using
PLUMED package - see below) level were used to evaluate the free
energy profile of the proton jump in water-free CHA model with Si/
Al = 11 (12 T-site unit cell), with the proton transferring betweenO2 and
O3 framework oxygens. The collective variable defined as a difference
of O2–H and O3–H distances was used. The simulations were run at
300K, with the time step of 0.5 fs, the height of Gaussians set to
2.7 kJmol−1, andwith the hydrogen replaced by tritium. The deposition
rate and the Gaussian width were set to 50 and 0.02 Å for DFT calcu-
lations. The DFT calculation took about 60ps until first recrossing. For
NNP calculations, we could allow for longer simulations times (approx.
110 ps in total until recrossing), and thus slower deposition rate of 200
with the Gaussian width set to 0.04 Å was used (see Supplementary
Fig. 12 for the effect of free energy parameters on NNP the free energy
profiles).

Δ-learning
We applied the Δ-learning approach33 to improve the accuracy of our
baseline SCAN+D3(BJ) model to the (hybrid DFT) ωB97X-D3(BJ) level.
First, wegenerated a training set using a subset of an (NNP level) biased
dynamics run of a proton jump in CHAbetweenO2 andO3, taken from
Ref. 34. These structures were selected by FPS using the Euclidean
distance of the (baseline) SchNetNNP representation vectors averaged
over each MD snapshot. SP calculations were then applied to 500
extracted configurations to obtain energies and forces at the ωB97X-
D3(BJ) level.

The ΔNNP correction of the atomic energies ΔEi to the NNP
baselinemodel (SCAN+D3(BJ))wasobtainedby linear regressionof the
SchNet representation vectors xi of each atom i with the (column)

weight vectorwi and bias bi: ΔEi =wTxi + bi. We tested the ΔNNPmodel
performance using 250 randomly chosen structures from the dataset
and convergence tests showed that 150 training points give sufficiently
low test set errors (see Supplementary Fig. 10). To test the ΔNNP
quality, we repeated the NEB calculations described above for the
water-freeproton jumpandAl–O2(H) bondhydrolysis in FAUaswell as
the proton transfer in CHA (O2–O3) without water. In addition, we
performed two hundred SP calculations for structures taken from the
biased dynamics runs of the proton jump (O1–O4) and the water-
assisted Al–O2(H) bond cleavage to improve the force error statistics
of the ΔNNP model.

Biased dynamics using ML collective variables
Collective variables guiding proton transfer (O1–O4) and Al–O2(H)
bond dissociation reactions in FAU described in the manuscript were
trained using a variational autoencoder build on topof NNP-generated
representation vectors.

To train the proton jump reaction, we used 3500 data points
simulated from equilibrium MD runs on reactants and the same
number on products. The data generated by using intuitively chosen
CV and steered dynamics method were available for verification (see
Supplementary Fig. 14) but were not used during training. The NNP
representations were calculated and saved in a cache and an encoder
producing a single CV was trained together with the decoder. We
trained on 40 epochs with a learning rate of 10−4. The encoder gen-
erating the CV was a simple linear layer on top of pre-trained repre-
sentations. To reduce the complexity of the task, only the 30
representation elements were chosen that maximized the variance
between reactant and product configurations. For the biased dynam-
ics, we used well-tempered metadynamics from the PLUMED
package75,99. The parameters for the simulation are in Supplementary
Table 8. The simulation was run for 1,800,000 steps using a 0.5 fs
time step.

Al–O(H) bond dissociation was trained similarly to the proton
jump case. We used the same number of data points obtained by
running unbiased trajectories in both end states. The encoder was
again only linear and was trained for 60 epochs with a learning rate
2.10−4. 200 representation elements were pre-selected from the
representation vectors generated by the NNP.

Parameters for the well-tempered metadynamics method are
reported in Supplementary Table 7. We ran the biased dynamics for
both test reaction for 1,500,000 timesteps of 0.5 fs. To improve the
sampling of the desired reaction mechanisms we restricted the
dynamics of someof thedegrees of freedom. Inparticular, we required
the distance between the free water molecule and the aluminum atom
to be at most 2.2 Å to avoid it diffusing away. We also fixed two
hydrogen atoms to their corresponding oxygens to avoid permuta-
tions that would complicate the process. In the same fashion, we dis-
allowed the formationof thehydrogenbond (Fig. 3e-FS) for differentO
andHpairs. These restraints represent an approximation thatmay lead
to a bias in the reported free energy profiles, however, the aim herein
was to showcase the capabilities of themethod rather than to obtain as
accurate free energy profiles as possible. A detailed description of the
autoencoder architecture, python code, and workflow can be found
in ref. 34.

Computational details
All simulations at the DFT level used the Vienna Ab initio Simulation
Package100–103 (VASP, version 5.4.4) along with standard versions of the
Projector Augmented-Wave (PAW) potentials104,105. Calculations at
constant volume were performed with an energy cutoff of 400 eV.
Structure optimizations at constant (zero) pressure employed a larger
energy cutoff of 800 eV. The minimum linear density of the k-point
grids was set to 0.1 Å−1 along the reciprocal lattice vectors. Single-point
calculationsusingReaxFF58wereperformedwithGULP106. NNP training
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and NNP level simulations used the Python packages SchNetPack107

(version 1.0) and the atomic simulation environment (ASE)108. All initial
structures were constructed using the Materials Studio suite along
with its Solvate module to add water molecules to the unit cell109.
Unless stated otherwise, the initial zeolite structure models for all
simulationwere taken from the IZA database96,97 and then optimized in
their siliceous form under constant (zero) pressure conditions. The
subsequent dataset generation and test simulations used constant
volume conditions.

Data availability
The trainedNeuralNetwork Potentials (NNP andΔNNPmodel), scripts,
and all energy and force data used in this work at the (Δ)NNP, ReaxFF,
and DFT (SCAN+D3(BJ) and ωB97X-D3(BJ)) level as well as the DFT
(SCAN+D3(BJ)) training data are publicly available in a Zenodo repo-
sitory under CC-BY-NC-SA 4.0 license: https://doi.org/10.5281/zenodo.
10361794.

Code availability
The python package enabling automatic generation of the collective
variables using variational autoencoders (see also ref. 34) including
examples with data is available at https://doi.org/10.5281/zenodo.
10938030 and themodified PLUMED library enabling use of theseML-
based collective variables with PLUMED can be found at 10.5281/
zenodo.10938033.
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