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Zero-shot learning enables instant denoising
and super-resolution in optical fluorescence
microscopy

Chang Qiao 1,2,3,4,9, Yunmin Zeng 1,9, Quan Meng5,6,9, Xingye Chen1,2,3,4,7,9,
Haoyu Chen5,6, Tao Jiang5,6, Rongfei Wei5, Jiabao Guo5,6, Wenfeng Fu5,6,
Huaide Lu5,6, Di Li 5, Yuwang Wang 8, Hui Qiao 1,2,3,4, Jiamin Wu 1,2,3,4,
Dong Li 5,6 & Qionghai Dai 1,2,3,4

Computational super-resolution methods, including conventional analytical
algorithms and deep learning models, have substantially improved optical
microscopy. Among them, supervised deep neural networks have demon-
strated outstanding performance, however, demanding abundant high-quality
training data, which are laborious and even impractical to acquire due to the
high dynamics of living cells. Here, we develop zero-shot deconvolution net-
works (ZS-DeconvNet) that instantly enhance the resolution of microscope
images by more than 1.5-fold over the diffraction limit with 10-fold lower
fluorescence than ordinary super-resolution imaging conditions, in an unsu-
pervised manner without the need for either ground truths or additional data
acquisition. We demonstrate the versatile applicability of ZS-DeconvNet on
multiple imaging modalities, including total internal reflection fluorescence
microscopy, three-dimensional wide-field microscopy, confocal microscopy,
two-photon microscopy, lattice light-sheet microscopy, and multimodal
structured illumination microscopy, which enables multi-color, long-term,
super-resolution 2D/3D imaging of subcellular bioprocesses from mitotic
single cells to multicellular embryos of mouse and C. elegans.

Optical fluorescence microscopy is an essential tool for biological
research. The recent developments of super-resolution (SR) techni-
ques provide unprecedented resolvability to visualize the finedynamic
structures of diverse bioprocesses1. However, the gain in spatial reso-
lution via any SR method comes with trade-offs in other imaging
metrics, e.g., duration or speed, which are equally important for dis-
secting bioprocesses1,2. Recently, computational SR methods have

gained considerable attention for their ability to instantly enhance
the image resolution in silico3–12, enabling a significant upgrade of
existing fluorescence microscopy systems and extension of their
application range.

In general, existing computational SR methods can be classified
into two categories: analytical model-based methods such as decon-
volution algorithms4–6, and deep learning-based methods, for
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example, SR neural networks7–12. The former category often employs
analyticalmodels prescribing certain assumptions about the specimen
and imageproperties, e.g., sparsity5 and local symmetry13,14, to improve
the image resolution with multiple tuneable parameters. Parameter
tuning is experience-dependent and time-consuming, and the outputs
of analytical models greatly depend on the parameter sets5,13,15,16.
Moreover, in practical experiments, handcrafted models with certain
assumptions cannot address the full statistical complexity of micro-
scope imaging, thus lacking robustness and are prone to generate
artifacts, especially under low signal-to-noise ratio (SNR) conditions9.
On the other hand, deep learning-based SR (DLSR) methods have
achieved stunning success in learning the end-to-end image transfor-
mation relationship according to large amounts of exemplary data
without the need for an explicit analytical model7–12. Of note, the data-
driven inversion scheme via deep learning can approximate not only
the pseudoinverse function of the image degradation process but also
the stochastic characteristics of the SR solutions. Nevertheless, the
training of DLSR models requires acquiring large amounts of paired
low-resolution input images and high-quality ground truth (GT) SR
images, which are extremely laborious and sometimes even imprac-
tical due to the rapid dynamics or the low fluorescence SNR in biology
specimens3,8,17. In addition, the performanceofDLSRmethods strongly
depends on the quality and quantity of training data17. These factors
significantly hinder the wide application of DLSR methods in daily
imaging experiments despite their compelling SR performance com-
pared to analytical model-based methods3,17.

Here, we present a zero-shot deconvolution deep neural network
(ZS-DeconvNet) framework that is able to train a DLSR network in an
unsupervised manner using as few as only one single planar image or
volumetric image stack of low-resolution and low-SNR,which results in a
zero-shot implementation18. As such, compared to state-of-the-art DLSR
methods7–12,19–23, the ZS-DeconvNet can adapt to diverse bioimaging
circumstances, where the bioprocesses are too dynamic, too light-
sensitive to acquire the ground-truth SR images, or the image acquisi-
tion process is affected by unknown and nonideal factors. We char-
acterized that ZS-DeconvNet can improve the resolution by more than
1.5-fold over the diffraction limits with high fidelity and quantifiability,
even when trained on a single low SNR input image and without the
need for image-specific parameter-tuning5,13. We demonstrated that the
properly trained ZS-DeconvNet could infer the high-resolution image on
millisecond timescale, achieving high throughput long-term SR 2D/3D
imaging of multiple organelle interactions, cytoskeletal and organellar
dynamics during the light sensitive processes of migration and mitosis,
and subcellular structures and dynamics in developing C. elegans and
mouse embryos. Furthermore, to allow the ZS-DeconvNet to be widely
accessible for biology research community, we built up a Fiji plugin
toolbox24 and a tutorial homepage for ZS-DeconvNet methods.

Results
Development and characterization of ZS-DeconvNet
The concept of ZS-DeconvNet is based on the optical imaging forward
model informed unsupervised inverse problem solver:

argminθ
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where y denotes the noisy low-resolution image, PSF is the points
spread function (PSF), f θ represents a deep neural network (DNN)with
trainable parameters θ, and ð�Þ# indicates downsampling operation. If
the DNN is trained directly via the above objective function, it will
undesirably amplify the photon noise contained in the biological
images, which will substantially contaminate the real specimen
information at low SNR conditions25 (Supplementary Fig. 1a). To
improve the noise robustness of ZS-DeconvNet while maintaining its
unsupervised characteristic, we adopted an image recorrupting

scheme26 that generates two noise-independent recorrupted images
from the original image, which are then used as inputs and GTs in the
network training (Methods). We theoretically demonstrated the
validity of the Gaussian approximation to the mixed Poisson-
Gaussian noise model for ordinary sCMOS images and proved the
convergency of incorporating the recorrupting scheme into the
unsupervised inverse problem solver (SupplementaryNote 1). Further-
more, we introduced the Hessian regularization term, which has been
demonstrated to be useful for mitigating reconstruction artifacts in
microscopy images27,28, to regulate the network convergence (Supple-
mentary Fig. 1b–e). Taken together, the overall objective function of
ZS-DeconvNet can be formulated as:

argminθ
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where N is the total number of images to be processed, D is an inver-
tiblenoise controlmatrix that can be calculated according to the signal
and noise levels (Methods), and g is a random noise map that is sam-
pled from a standard normal distribution. We refer to the first part of
the objective function as the degradation term,which accounts for the
inference fidelity, and the second part as the regularization term,
rationalizing the SR outputs.

After defining the objective function, we adopted a dual-stage
DNNarchitecture composed of two sequentially connectedU-Nets29 as
a simple but effective backbone for ZS-DeconvNet (Fig. 1a, b and
Supplementary Fig. 2a). The first stage serves as a denoiser to generate
noise-free images according to the denoising loss (Methods), and the
second stage enhances the image resolution according to the unsu-
pervised deconvolution loss described above. We empirically found
that the dual-stage architecture and the physical model-regulated loss
function stabilize the training procedures and endow interpretability
for the overall network model.

To characterize and evaluate ZS-DeconvNet, we first simulated the
microscopy images of punctate and tubular structures contaminated by
Gaussian-Poisson noise at escalating signal levels from 5 to 25 average
photon counts, which allowed us to systematically test how the recor-
rupting hyperparameter settings at different imaging conditions influ-
ence the final outputs (Supplementary Note 2). We found that the
optimal hyperparameters are theoretically independent of the image
contents and signal levels (Supplementary Figs. 3–5), thus enabling a
robust application of ZS-DeconvNet onto various biological specimens
and imaging configurations (Supplementary Note 4). Next, we com-
pared the performance of the ZS-DeconvNet models trained with the
data augmented by recorrupting a single noisy image with analytical
deconvolution algorithms or the models trained with numbers of
simulated or independently acquired images. To do so, we employed
the total internal reflective fluorescence (TIRF) illuminationmode of our
home-built multimodal structured illumination microscopy (Multi-
SIM)8,30 to acquire ~20 sets of diffraction-limited TIRF images at low- and
high-SNR for each subcellular structure of lysosomes (Lyso) and
microtubules (MTs), ofwhich the low-SNR imageswere used for training
and testing, while their high-SNR counterparts served as reference
(Methods). We found that the peak signal-to-noise ratio (PSNR) and
resolution of ZS-DeconvNet images were substantially better than those
generated by analytical algorithms, such as the classic Richardson-Lucy
(RL) and the latest developed sparse deconvolution5 (Fig. 1c–e) and the
throughput rate of a well-trained ZS-DeconvNet is >100-fold higher than
that of the sparse deconvolution algorithm (Fig. 1f). In particular, even if
the ZS-DeconvNet was trained with the augmented data from a single
input image, the perceptual quality and quantified metrics of its output
images were comparable with the images from the model trained with
larger amounts of data (Supplementary Fig. 6). Furthermore, we vali-
dated the resolution improvement, quantifiability, and the general-
ization capability of ZS-DeconvNet (Supplementary Figs. 7–10), and
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compared it with the supervised DFCANmodel8 (Supplementary Fig. 11)
on synthetic and experimental data. These characterizations demon-
strate that ZS-DeconvNet is able to generate high-quality DLSR images
of 1.5-fold resolution improvement relative to the diffraction limit while
using the least training data, which holds great potential to upgrade the
imaging performance of diverse microscope systems, and extend their
applicability into a wide variety of bioprocesses that are challenging for
conventional methods.

Long-term observation of bioprocesses sensitive to
phototoxicity
Cell adhesion andmigration are essential in morphogenetic processes
and contribute tomany diseases31. Visualizing cytoskeletal dynamics at
high resolution during the adhesion/migration process is critical for

elucidating the underlying mechanism. However, due to severe pho-
tosensitivity, the whole processes of cell adhesion and migration are
typically recorded at low framerates, i.e., several seconds per frame,
and low light intensities9,32. Under these imaging conditions, either RL
deconvolution or temporal continuity-based self-supervised learning33

(Methods) fails to recover and sharpen the intricate structure of F-actin
and myosin-II (Fig. 2a, Supplementary Fig. 12, and Supplementary
Video 1). In contrast, the ZS-DeconvNet model effectively improves
both the SNR and resolution of the two-color time-lapse recordings
of cell

spreading processes after dropping a cell coexpressing
mEmerald-Lifeact and mCherry-myosin- IIA onto a coverslip (Fig. 2b
and Supplementary Video 2). Intriguingly, we observed that in certain
substances cells crawled around the contact site to explore the

Fig. 1 | Zero-shot deconvolution networks. a The dual-stage architecture of ZS-
DeconvNet and the schematic of its training phase. b The schematic of the infer-
ence phase of ZS-DeconvNet. c Representative SR images of Lyso and MTs recon-
structed by RL deconvolution (second column), sparse deconvolution (third
column) and ZS-DeconvNet (fourth column). The clearWF images are displayed for
reference. d Statistical comparisons of RL deconvolution, sparse deconvolution
and ZS-DeconvNet in terms of PSNR and resolution (n = 100 regions of interest).
e Full width at half maximum (FWHM) comparisons of clear WF images and pro-
cessed images via RL deconvolution, sparse deconvolution and ZS-DeconvNet

(n = 30 microtubules). The theoretical diffraction limit is labeled with the gray
dashed line for reference. f Testing time comparison between GPU-based sparse
deconvolution and ZS-DeconvNet (average from 25 testing images of 1024 × 1024
pixels). Center line, medians; limits, 75% and 25%; whiskers, the larger value
between the largest data point and the 75th percentiles plus 1.5× the interquartile
range (IQR), and the smaller value between the smallest data point and the 25th
percentiles minus 1.5× the IQR; outliers, data points larger than the upper whisker
or smaller than the lower whisker. Source data are provided as a Source Data file.
Scale bar, 1.5μm (a), 5μm (c), 2μm (zoom-in regions in (c)).
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neighborhood before spreading and adhering (Fig. 2c and Supple-
mentary Video 3). The cell crawling was preceded by the polarized
accumulation of myosin-II at the cell rear, leading to cell migration in
the opposite direction driven by posterior myosin-II contractility.
Moreover, the migration direction could be swiftly changed in
response to the dynamic redistribution of myosin-II within the cell
(Fig. 2d). These results demonstrate that the kinetics of cell adhesion

and migration can be faithfully recorded by ZS-DeconvNet-assisted
imaging without perturbing this lengthy and vulnerable process.

Visualizing the rapid dynamics of the endolysosomal system
The endolysosomal system includes diverse types of vesicles that
function in a highly dynamic, yet well-organized manner. Although
live-cell fluorescence imaging has remarkably improved our
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understanding of the endolysosomal system, most studies had to
overexpress the proteins of interest to record their rapid dynamics30,
which often resulted in artifact morphologies or behaviors. With ZS-
DeconvNet, we were able to image the knock-in SUM-159 cell line
endogenously expressing EGFP-Rab11 and mCherry-Lamp1 for 1,500
frames at ~150nm resolution and 3 frames per second in two colors
(Fig. 2e and Supplementary Video 4), thereby allowing us to visualize
and track the rapid motion of recycling-endosomes (REs) and lyso-
somes or late endosomes (LEs) on a substantially finer spatiotemporal
scale and longer observation window than previously achieved34. As
exemplified in Fig. 2f–h, we found that the majority of REs (n = 505
tracks) experienced a directionalmovement, with a total displacement
of 6.7 ± 5.4 µm at a high speed of 2.2 ± 1.2 µm/s (instantaneous speed
exceeding 5.3 µm/s), with a rare intermediate pause, then stopped at
specific sites for a period of 13.5 ± 10.3 sec before fusing with the
plasma membrane. This observation suggests that REs might be effi-
ciently transported over long ranges to regions near the plasma
membrane to facilitate subsequent exocytosis. Unexpectedly, ZS-
DeconvNet captured multiple fission events of the Rab11-positive REs,
in which both separated REs underwent exocytosis sequentially
(Supplementary Fig. 13a) or one RE moved away (Supplementary
Fig. 13b). This observation indicates that the highly specialized Rab11-
positive REs may be subject to further cargo sorting right before
exocytosis.

In contrast, the movements of LEs were typically discontinuous
and proceeded in a bidirectional stop-and-go manner at a relatively
slow speed of 1.6 ± 0.6 µm/s (n = 230 tracks) (Fig. 2f, g, i). Although the
transportation of LEs seemed inefficient, the LEs often persisted for a
long period of 91.8 s with a total displacement as long as 23.6 µm
(averaged from n= 230 tracks) (Fig. 2h). Interestingly, we noticed that
two or more LEs sometimes tended to tether each other in a kiss-and-
stay fashion and migrate for a certain distance before splitting into
individual LEs again (Fig. 2i and Supplementary Fig. 13c), which might
facilitate the directional movement of LEs without sufficient motor-
protein-adaptors for long-range transportation. These complex
dynamics of LEs suggest that their positioning and mobility are deli-
cately regulated by multiple factors, such as MT-based motors and
membrane contacts.

3D ZS-DeconvNet for lattice light-sheet microscopy
Volumetric live-cell imaging conveysmore biological information than
2D observations; however, it is subject to much severer phototoxicity,
photobleaching and out-of-focus fluorescence contamination. To
extend the superior capability of ZS-DeconvNet to volumetric SR
imaging, we upgraded the backbone of the dual-stage network archi-
tecture into a 3D RCAN, which has been demonstrated to be suitable
for volumetric image restoration9,35 (Fig. 3a, b and Supplementary
Fig. 2b). Next, we integrated our previously proposed spatially

interleaved self-supervised learning scheme9 with the physical model-
informed self-supervised inverse problem solver to construct the 3D
ZS-DeconvNet. The 3D ZS-DeconvNet with spatially interleaved self-
supervised scheme follows a simpler data augmentation procedure
(Methods), while achieving comparative or even better performance
than the recorruption-based strategy (Supplementary Fig. 14).

We systematically assessed the 3D ZS-DeconvNet model with
datasets of three different biological specimens acquired via our
home-built lattice light-sheet structured illumination microscopy36

(LLS-SIM), in which the diffraction-limited data acquired by the
lattice light-sheetmicroscopy (LLSM)modewasused for trainingwhile
the SR counterparts acquired by the LLS-SIM mode served as refer-
ences (Methods). We found that 3D ZS-DeconvNet successfully
reconstructed the elaborate filaments of F-actin, the hollow structure
of the mitochondrial (Mito) outer membrane, and the intricate
networks of the endoplasmic reticulum (ER) with high fidelity
and resolution comparable to LLS-SIM images acquired under
high-SNR conditions (Fig. 3c). The quantifications of PSNR and reso-
lution illustrate that the 3D ZS-DeconvNet model substantially out-
performs conventional analytical model-based approaches in diverse
biological specimens (Fig. 3d). We demonstrate that by training with
the noisy image stacks themselves, the dual-stage 3D ZS-DeconvNet
not only generated denoised results comparable to state-of-the-art
self-supervised denoising techniques37,38 (Supplementary Fig. 15),
but also provided super-resolved image stacks with significant
resolution improvement byover 1.5-fold both laterally (Supplementary
Fig. 16) and axially (Supplementary Fig. 17). Moreover, by sequentially
incorporating self-learning-based axial resolution-enhancement
methods39,40, the axial resolution can be improved further (Supple-
mentary Fig. 17g–i).

Long-term volumetric super-resolution imaging enabled by 3D
ZS-DeconvNet
Volumetric observation of cell division at high spatiotemporal resolu-
tion is of vital importance for exploring mitosis-related biological
mechanisms, such as the mechanism that allocates the numerous dis-
tinct organelles in the cytoplasm into each daughter cell41,42. Due to the
extreme light sensitivity and vulnerability of mitotic cells, previous
volumetric SR imaging of this process has relied on the low-light LLS-
SIM systemand supervised learning-based SR reconstruction9. However,
collecting high-quality training data is extremely laborious and some-
times impractical because the morphology and distribution of orga-
nelles usually undergo dramatic changes during mitosis41. Here, we
demonstrate that the self-supervised 3D ZS-DeconvNet model can be
generally applied to superresolve the fine subcellular structures of the
ER,Mito, and chromosomes fromnoisy LLSMvolumeswithout the need
for additional training data, thus enabling fast and long-term volumetric
SR observation of multiple organelles for 1,000 timepoints at 10 sec

Fig. 2 | Long-term SR imaging of rapid and photo-sensitive bioprocesses via ZS-
DeconvNet. a Representative SR images reconstructed by ZS-DeconvNet of F-actin
cytoskeleton and myosin-II in a COS-7 cell co-expressing mEmerald-lifeact and
mCherry-myosin-IIA. Comparisons of raw noisy TIRF image and images processed
by RL deconvolution, DeepCAD-based deconvolution and ZS-DeconvNet are dis-
played.b Two-color time-lapse SR images enhanced via ZS-DeconvNet showing the
coordinated dynamics of F-actin (cyan) and myosin-II (yellow) over the whole
spreading process after placing a COS-7 cell onto a coverslip (Supplementary
Video 2). c, d Two-color time-lapse SR images enhanced via ZS-DeconvNet of
F-actin and myosin-II in a crawling COS-7 cell showing that myosin-II preferentially
concentrates to the rear of the cell (outlined by yellow dashed lines in d), opposite
to crawling direction (indicated by the white arrows ind) (Supplementary Video 3).
e Representative SR image generated via ZS-DeconvNet of recycling endosomes
(REs, green) and late endosomes (LEs, magenta) in a gene-edited SUM-159 cell
endogenously expressing EGFP-Rab11 and mCherry-Lamp1 (Supplementary
Video 4). fTypical trajectories of RE (top) and LE (bottom)movements showing the

rapid directional motility of RE, and the bidirectional nature of LE. g Comparisons
of the speed, displacement, and traveling time between Lyso/LEs and REs, and
quantification of the residence time of REs near their exocytosis sites before fusing
with plasma membrane (n = 505 tracks for REs and n = 230 tracks for LEs). A small
number of data points exceeding transportation time of 150 s or displacement of
60 μmwere not displayed for better presentation of the distributions. Center line,
medians; limits, 75% and 25%. Statistical significance was determined using
unpairedMann-Whitney test (p = 1:38 × 10�7, 5:65× 10�35, and 6:26× 10�40 for tests
of the moving speed, transportation time, and displacement, respectively).
****p <0.0001. Source data are provided as a Source Data file. h Time-lapse images
illustrate the directional movement of a RE in rod-like shape, and the subsequent
fusion with plasmamembrane. i Time-lapse images illustrate three LEs tether each
other and co-migrate for certain distance before splitting into individual LEs. Scale
bar, 5μm (a, c, d), 2μm (zoom-in regions in a), 8μm (b), 3μm (e), 0.5 μm (zoom-in
region in e), 1μm (g, f, i).
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intervals in a mitotic HeLa cell (Fig. 3e and Supplementary Video 5).
Moreover, the unsupervised property of ZS-DeconvNet allows us to
integrate a test-time adaptation learning strategy43 to fully exploit the
structural content in each noisy volume, which yielded the best 3D SR
performance (Methods). In contrast, the conventional prior-dependent

deconvolution algorithm5 and temporally interleaved self-supervised
learning9,33,44 method both failed to restore the high-frequency details of
the specimens because of the low SNR condition and weak temporal
consistency between adjacent timepoints (Fig. 3f and Methods). Fur-
thermore, according to the low invasiveness provided by 3D ZS-

Fig. 3 | Characterizations and demonstrations of 3D ZS-DeconvNet. a The net-
work architecture of 3D ZS-DeconvNet and the schematic of its training phase.
b The schematic of the inference phase of 3D ZS-DeconvNet. c Representative
maximum intensity projection (MIP) SR images of F-actin, Mito outer membrane,
and ER reconstructed by sparse deconvolution (second column), 3D ZS-DeconvNet
(third column), and LLS-SIM (fourth column). Average sCMOScounts of the highest
1% pixels for raw images before processing are labeled on the top right corner.
d Statistical comparisons of RL deconvolution, sparse deconvolution and ZS-
DeconvNet in terms of PSNR and resolution on different specimens (n = 40 regions
of interest). The resolutionwasmeasuredby Fourier ring correlation analysis74 with

F-actin image stacks. Center line,medians; limits, 75% and 25%; whiskers, maximum
and minimum. Source data are provided as a Source Data file. e Time-lapse three-
color 3D rendering images reconstructed via 3D ZS-DeconvNet of ER, H2B, and
Mito, showing their transformations in morphology and distribution as well as
interaction dynamics during mitosis (Supplementary Video 5). f Representative
three-color images obtained with conventional LLSM (first column), sparse
deconvolution (second column), DeepCAD based deconvolution (third column)
(Methods), and 3D ZS-DeconvNet (fourth column). The comparisons are per-
formed on two typical timepoints of the time-lapse data shown in (e). Scale bar,
5μm (c, e, f), 1.5μm (zoom-in regions of c), 2μm (zoom-in regions of f).
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DeconvNet, a group ofmitotic HeLa cells labeledwithH2B-mCherry and
HeLa-mEmerald-SC35 were imaged in a large field of view (FOV) of
100×50×25 μm3 for more than 300 timepoints, thereby recording the
entire disassembly and reassembly processes of nuclear speckles at a
high spatiotemporal resolution (Supplementary Fig. 18 and Supple-
mentary Video 6). In brief, 3D ZS-DeconvNet allows biologists to easily
explore various light-sensitive bioprocesses with low invasiveness at
substantially higher spatiotemporal resolution without the need for any
additional datasets or optical setup modifications.

ZS-DeconvNet for confocal and wide-field microscopy
TheZS-DeconvNet relies on the randomnessofnoises and the low-pass
filter characteristic of optical microscopes, which are common for
various types of microscopy modalities. On this basis, we expect that
ZS-DeconvNet can be generally applied to all microscopy, e.g., the
most commonly used confocal microscopy and wide-field (WF)
microscopy. To investigate the performance of 3D ZS-DeconvNet on
confocal data, we employed our home-built confocal microscope to
acquire a four-color volume of the mouse early embryo immunos-
tained for the microtubule, chromosomes, actin, and apical domain
(Methods), which play key roles in the first cell fate decision and are
critical for embryo development45–47. We then trained 3D ZS-
DeconvNet models on this single noisy volume and processed the
original data with the trained models. As shown in Figs. 4a, b, 3D ZS-
DeconvNet significantly enhances the SNR, contrast, and resolution of

the confocal data volume and resolves the fine structures of micro-
tubule bridges and actin rings (Fig. 4c, d, Supplementary Fig. 19, and
Supplementary Video 7). These results indicate that ZS-DeconvNet
enables a higher spatial resolution at a lower photon budget for con-
focal microscopy in imaging specimens on large scale, e.g., mouse
early embryos, which is critical to research on cell polarity47, intracel-
lular transport and blastocyst formation46.

We next imaged Caenorhabditis elegans embryos with apical
junctions, cell membranes and lysosomes marked using the 3D WF
mode of our Multi-SIM system (Methods). To ensure that C. elegans
embryodevelopmentwas not disturbed,weacquired raw image stacks
at relatively low light excitation in intervals of 30 s for more than 200
timepoints. However, under such conditions, the WF images are
heavily contaminated by both out-of-focus background and noise
(Fig. 4e, f). Even in this challenging situation, 3D ZS-DeconvNet images
presented considerable suppressionuponnoise andbackgroundwhile
enhancing the spatial resolution of the subcellular details (Fig. 4e, g
and Supplementary Video 8), thus allowing us to investigate the ela-
borate process of embryonic development, e.g., hypodermal cell
fusion48 (Fig. 4h), even via a simple WF microscope.

ZS denoising and resolution enhancement in multimodal
SIM images
Among the various forms of SR microscopy, structured illumination
microscopy (SIM) is often recognized as a balanced option for SR
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Fig. 4 | Generalization of ZS-DeconvNet to multiple imaging modalities.
a, b Representative confocal (top left), sparse deconvolution (bottom left), and 3D
ZS-DeconvNet enhanced (right) images of an early mouse embryo immunostained
for microtubule (cyan), chromosomes (orange), actin rings (magenta), and apical
domain (green). c, d Magnified regions of microtubule bridges (c) and actin rings
(d) labeled with white dashed boxes in (a) and (b) acquired via confocal micro-
scopy, sparse deconvolution, and 3D ZS-DeconvNet. e Representative WF (center
region) and 3D ZS-DeconvNet enhanced (surrounding region) images of a C.

elegans embryo with apical junction, cell membrane (cyan) and lysosomes (red)
labeled. f, g Lysosome channel of the central region in (e) color-coded for distance
from the substrate. Both WF (f) and 3D ZS-DeconvNet processed images (g) are
shown for comparison. h Time-lapse 3D ZS-DeconvNet enhanced images showing
the process of hypodermal cell fusion (red arrows) during the development of a C.
elegans embryo. Scale bar, 5μm (a, b, e), 2μm (c, d), 3μm (g, h), 1μm (zoom-in
region of g). Gamma value, 0.7 for cytomembrane and lysosomes in the C. elegans
embryo.
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live-cell imaging because it needs less than ten raw modulated ima-
ges to provide a twofold improvement in spatial resolution1,2.
Nevertheless, conventional SIM has two critical limitations: first,
further resolution enhancement requires considerably more raw
data, i.e., at least 25 raw images are needed for nonlinear SIM to
obtain a sub-80 nm resolution49,50; second, the postreconstruction of
SIM images generally requires raw images with a high SNR to elim-
inate noise-induced reconstructed artifacts, thus impairing fast, low-
light, and long-term live-cell imaging51. Recent studies have explored
supervised learning approaches by either denoising SIM images9,52

or reconstructing SR SIM images directly from noisy raw images8,22 to
achieve low-light SIM reconstruction; however, these methods
require abundant training data and do not further enhance
the resolution. In light of the superb denoising and SR capability of
ZS-DeconvNet, we integrated the zero-shot learning scheme with
the conventional SIM reconstruction algorithm, and theoretically
proved that ZS-DeconvNet is suitable for processing the SR-SIM
images (Supplementary Note 1). We designed the ZS-DeconvNet
enhanced SIM (ZS-DeconvNet-SIM) model to simultaneously denoise

and sharpen SR SIM images in an unsupervised manner (Fig. 5a,
Supplementary Fig. 20a, and Methods). Resorting to the remarkable
improvement in both SNR and resolution provided by ZS-
DeconvNet-SIM (Supplementary Figs. 21, 22), the hollow structure
of clathrin-coated pits (CCPs) in a SUM-159 cell and the densely
interlaced cytoskeletons in a COS-7 cell, which are indistinguishable
inWF and conventional SIM images, were clearly resolved (Fig. 5b, c).
Moreover, we demonstrated that the ZS-DeconvNet-SIM can be
applied in 3D-SIM modality to simultaneously denoise and
sharpen the 3D-SIM images in both lateral and axial axes (Methods,
Supplementary Fig. 23).

Furthermore, we integrated 3D ZS-DeconvNet with LLS-SIM to
develop the 3DZS-DeconvNet-SIMmodality (Supplementary Fig. 20b).
By incorporating the anisotropic PSF of conventional LLS-SIM36 into
the training process, 3D ZS-DeconvNet LLS-SIM not only prominently
enhanced the contrast and resolution in all three dimensions but also
provided an approximately isotropic lateral resolution of ~150nm
(Fig. 5d, e, and Supplementary Fig. 22). These successful applications
of ZS-DeconvNet to multimodal SIM systems demonstrate its
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Fig. 5 | Zero-shot denoising and resolution enhancement in multimodal
SIM data. a Schematic of the training procedure of ZS-DeconvNet for SIM.
b Progression of SNR and resolution improvement across the CCPs in a SUM-159
cell, from raw SIM images (left), conventional SIM image (right), and ZS-DeconvNet
enhanced SIM image (middle). c Progression of SNR and resolution improvement
across the microtubules in a COS-7 cell, from raw SIM images (left), conventional
SIM image (right), and ZS-DeconvNet enhanced SIM image (middle).

d Representative maximum intensity projection (MIP) images of F-actin in a HeLa
cell obtained via LLSM, LLS-SIM, and LLS-SIMenhancedby 3DZS-DeconvNet across
three dimensions. e, Representative MIP images ofmitochondrial outer membrane
labeled with TOMM20 in a 293 T cell obtained via LLSM, LLS-SIM, and LLS-SIM
enhanced by 3D ZS-DeconvNet across three dimensions. Scale bar, 1μm (a), 2μm
(b, c), 0.5μm (zoom-in regions in b, c), 3μm (d, e).
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capability to further extend the spatiotemporal resolution bandwidth
of existing SR techniques.

Discussion
The ultimate goal of live imaging is to collect the most spatiotemporal
information about bioprocesses with the least invasiveness to biolo-
gical specimens. However, the mutual restrictions between imaging
speed, duration, resolution, and SNR in fluorescence microscopy
together result in the spatiotemporal bandwidth limitation53, which
limits the synergistic improvement in all these aspects. For instance, to
obtain higher spatial resolution, conventional SR techniques have to
rely on repetitive acquisitions or additional excitation1, which aggra-
vates phototoxicity and photobleaching, impeding fast, long-term
observations of bioprocesses. To address the spatiotemporal band-
width limitations inmicroscopy, wemade an in-depth analysis of noise
propagation in the optical imaging model and SIM reconstruction
(Supplementary Note 1), proved the convergence of the recorruption-
integrated self-supervised loss function in both ordinary and SIM
scenarios based on the linearity of PSF convolution, and proposed the
versatile ZS-DeconvNet framework, which can be incorporated with
various optical fluorescence microscope to instantly enhance image
SNR and resolution without compromising other imaging properties.
We emphasize that the application of ZS-DeconvNet is robust to the
hyperparameters in image recorruption process (Supplementary
Fig. 24) and that ZS-DeconvNet can be well trained with only one slice
or stack of raw images (Supplementary Figs. 6, 16) without using
assumptions of structural sparsity5 and temporal continuity28,33,44. The
qualitative and quantitative evaluations on both simulated and
experimental data show that our methods substantially enhance the
image quality and resolution by more than 1.5-fold with high fidelity
and quantifiability even under low-light conditions, thereby permitting
fast, long-term, super-resolution observations of multiple subcellular
dynamics.

The proposed ZS-DeconvNet method has wide functionality for
various types of imagingmodalities, from scanning-basedmicroscopy,
e.g., confocal microscopy and two-photon microscopy (Supplemen-
tary Fig. 25), to wide-field detection-based microscopy, e.g., TIRF, 3D
WF microscopy, LLSM, and multimodal SIM. We demonstrate its cap-
abilities withmore than 10 distinct fixed- or live- specimens imaged via
six different microscopy setups, including planar and volumetric
imaging of multiple organelles in single cells, observations of sub-
cellular dynamics and interactions during cell mitosis, and multi-color
3D imaging of early mouse embryos and C. elegans embryos. To make
ourmethodsmore accessible and convenient to use, we integrated ZS-
DeconvNet and 3D ZS-DeconvNet into a user-friendly Fiji plugin
(Supplementary Figs. 26, 27, Supplementary Notes 3, 4, and Supple-
mentary Video 9), allowing users even without deep learning experi-
ence to easily train their own ZS-DeconvNet models and enhance
microscopy images opened in Fiji in some mouse clicks. The func-
tionality and convenience of ZS-DeconvNet demonstrate its great
potential in upgrading the performance of existing optical
microscopy.

Despite its general robustness and applicability, users of ZS-
DeconvNet should carefully consider the potential appearance of
hallucinations and its limitations. First, ZS-DeconvNet may mistake
extremely low fluorescence signals as photon noise, thereby weaken-
ing them in the output images (Supplementary Fig. 28a). This kind of
errors could be detected to some extent via image quality-check
tools such as SQUIRREL54. Second, if a well-trained ZS-DeconvNet
model is applied to processing images significantly different from the
training data, e.g., acquired with a different imaging modality, there
might be noticeable performance degradation and higher risk of hal-
lucination generation (Supplementary Fig. 28b). Third, ZS-DeconvNet
models should be trained using matched PSFs to the dataset,
otherwise improper training with mismatched PSFs might result in

inconspicuous resolution improvement or ringing artifacts (Supple-
mentary Fig. 28c). Finally, we do not expect the unsupervised ZS-
DeconvNet to generate SR images as good as supervised DLSRmodels
trained with high-quality dataset (Supplementary Fig. 11). However,
in imaging experiments when such dataset is not available,
ZS-DeconvNet will be a powerful and convenient tool to resolve
biological details as fine as possible.

Several improvements and extensions of ZS-DeconvNet can be
envisioned. First, we adopted commonly used U-Net and RCAN as the
backbone models in our experiments for conceptual demonstration.
Combining the ZS-DeconvNet framework with more advanced net-
work architectures such as Richardson-Lucy network, which incorpo-
rates the image formation process to accelerate SR information
extraction12, may further improve the SR capability with higher com-
putation efficiency. Second, although we only presented the applica-
tions of ZS-DeconvNet on SIM, it can be reasonably speculated that
other optics-based SR techniques, such as photoactivated localization
microscopy55, stimulated emission depletion microscopy56, and image
scanningmicroscopy57, can be improved by integrating ZS-DeconvNet
into their image processing pipelines. Third, due to the lack of gen-
eralization, users need to train a specialized model for each type of
specimen to achieve the best performance. Incorporating domain
adaptation43 or domain generalization58 techniques with our methods
may effectively alleviate the burden of applying trained models into
unseen domains. Finally, we used a spatially invariant PSF for the well-
calibrated imaging systems in this work.With spatially varying PSF, the
functionality of ZS-DeconvNet can be further extended to various
image processing tasks, such as phase space light-field reconstruction
and digital adaptive optics59.

Methods
Multi-SIM system
The Multi-SIM system was built based on an invented fluorescence
microscope (Ti2E, Nikon). Three laser beams of 488 nm (Genesis-MX-
SLM, Coherent), 560 nm (2RU-VFL-P-500-560, MPB Communications),
and 640 nm (LBX-640-500, Oxxius), were combined collinearly, and
then passed through an acousto-optic tunable filter (AOTF, AOTFnC-
400.650, AA Quanta Tech), which serves to select the desired laser
wavelength and control its power and exposure time. Afterwards the
selected laser light was expanded and sent into an illumination mod-
ulator, which is composed of a ferroelectric spatial light modulator
(SLM, QXGA-3DM, Forth Dimension Display), a polarization beam
splitter, and an achromatic half-wave plate. Different illumination
modeswere generatedby adjusting the patterns displayedon the SLM,
e.g., grating patterns of 3-phase × 3-orientation at 1.41 NA for TIRF-SIM
or 1.35 NA for GI-SIM. Next, the modulated light was passed through a
polarization rotator consisting of a liquid crystal cell (Meadowlark,
LRC-200) and a quarter-wave plate, which rotated the linear polariza-
tion to maintain the necessary s-polarization, thus maximizing the
pattern contrast for all pattern orientations. The diffraction orders,
except for ±1 orders for TIRF/GI-SIM, were filtered out by a spatial
mask, and then relayed onto the back focal plane of the objectives
(1.49 NA, Nikon). The raw SIM images excited by different illumination
patterns were sequentially collected by the same objective, then
separated by a dichroic beam splitter (Chroma, ZT405/488/560/
647tpc), finally captured with an sCMOS camera (Hamamatsu, Orca
Flash 4.0 v3). For live imaging, cells were held in a stage top incubator
equipped on themicroscopy (OkO Lab, H301) tomaintain condition at
37°C with 5%CO2. TheMulti-SIM systemworked in the TIRFmode and
3D WF mode in the experiments shown in Figs. 1, 2 and 4e–h by
adjusting the patterns displayed on the SLM to generate uniform TIRF
or WF illumination, and worked in the TIRF/GI-SIM mode and 3D-SIM
mode in Fig. 5b, c and Supplementary Figs 21-24. Besides TIRF, 3DWF,
TIRF/GI-SIM, and 3D-SIM modes used in this work, the Multi-SIM sys-
tem integrated diverse SIM modalities including nonlinear-SIM and
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stacked slice-SIM into a single setup, which has been commercially
available from NanoInsights Inc. (nanoinsights-tech.com).

LLS-SIM system
The home-built LLS-SIM system was developed from the original
design36. Similar to the laser combinator and pattern modulator used
in our Multi-SIM system, three lasers of 488 nm, 560nm, and 640nm
(MPBCommunications) were selected and controlled by anAOTF, and
then modulated by the lattice patterns displayed on the SLM. The
excitation light was then filtered by an annular mask equivalent to 0.5
outer NA and 0.375 inner NA for the excitation objective (Special
Optics). Subsequently, the filtered excitation light passed through a
pair of galvomirrors (x- and z-galvo) (Cambridge Technology, 6210H).
In LLS-SIM mode, the lattice patterns of 3-phase were sequentially
displayed on the SLM and synchronized with the programmed “ON”
time of AOTF, and then scanned by the sample piezo in a step size of
0.39 μm, which equals to a z-interval of 0.2 μm, to acquire the volu-
metric LLSM images. In LLSMmode, a fixed lattice pattern was quickly
dithered by x-galvo, and then scanned by the sample piezo. In parti-
cular, we used the triangle wavewhen reversing the scanning direction
of the piezo stage tominimize the flyback time to an extreme. Live cell
specimenswere held in a customizedmicroscope incubator (OKO Lab,
H301-LLSM-SS316) to maintain the physiology condition of 37°C and
5% CO2 during imaging. The emission light was collected by the
detection objective (Nikon, CFI Apo LWD 25XW, 1.1NA) and captured
by a sCMOS camera (Hamamatsu, Orca Fusion).

Confocal system
The home-built confocal microscopy was developed as a modification
of the image-scanning microscopy system60 based on a commercial
invented fluorescence microscope (Ti2E, Nikon). Four laser beams of
405nm, 488nm, 561 nm, and 640nm (BDL-405-SMN, BDL-488-SMN,
BDS-561-SMY-FBE, and BDL-640-SMN, Becker & Hickel) were collinearly
combined and then expended by 6.25 times. After being reflected by a
multi-band dichroic mirror (Di03-R405/488/561/635, Semrock), the
lasers were passed through two galvanometer scanners (8315k, CT
Cambridge Technology) and then directed toward the objective (CFI SR
HP Plan Apo Lambda S 100XC/1.35NA, Sil, Nikon) via a scan lens and a
tube lens. The emission fluorescence was collected by the same objec-
tive, descanned, and passed through themulti-band dichroicmirror and
then separated into the green channel and then red channel by a
dichroic beam splitter (FF573-DI01, Semrock). The green-channel signals
(filtered by FF02-447/60, FF03-525/50, Semrock) were collected by a
single photon counting module (SPCM-AQRH-44, Excelitas) and finally
counted by a digital counter (BNC-2121, National Instruments). The red-
channel signals (filtered by FF01-609/57, FF01-679/41, Semrock) were
collected by a fiber bundle and then captured by a multi-channel pho-
tomultiplier tube (PML-16-GASP) and quantified by a single photon
counter (SPC-164-PCI, Becker & Hickel). The pinhole was kept open
during image acquisition and the overall magnification factor was 333×
for the green channel and 666× for the red channel. The data acquisi-
tion/visualization/processing was operated by a home-developed soft-
ware based on LabView (National Instruments) and the software also
controlled all microscope devices during the image acquisition, such as
the galvanometer scanners, the axial piezo stage, and the laser power by
sending analog signals via a field-programmable-gate-array card (NI
PXIe-7868R, National Instruments).

Architectures and objective functions of ZS-DeconvNet
ZS-DeconvNet adopts a dual-stage architecture, which factorizes low-
SNR super-resolution task into two sequential subdivisions of denois-
ing and deconvolution, and each stage is responsible for one subtask,
respectively. The dual-stage design is helpful to regulating the training
procedures and eliminating the noise-induced artifacts in the final
outputs11. For 2D images, a simplified U-Net model29 with four down-

and up-sampling modules is used as the backbone of each stage. The
overall networkarchitecture of ZS-DeconvNetweused for 2D imageSR
in this work is shown in Supplementary Fig. 2a. In the training phase,
we designed a combined loss function consisting of a denoising term
and a deconvolution term, which respectively corresponds to the
denoising stage and the deconvolution stage:

L ŷ,ey
� �

=μLden ŷ,ey
� �

+ 1� μð ÞLdec ŷ,ey
� � ð3Þ

where ŷ,ey
� �

indicates the recorrupted image pair (see next section for
the details of image recorruption), and μ is a scalar weighting factor to
balance the two terms, which we empirically set as 0.5 in our experi-
ments. We have also validated that the performance of ZS-DeconvNet
is stable on all the samples for a large range of μ (Supplementary
Fig. 29). The denoising loss Ldenðŷ,eyÞ and the deconvolution loss
Ldec ŷ,ey
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are defined as follows:
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where PSF denotes the point spread function of the optical system, ð�Þ#
is the down-sampling operator, f θ0 ŷ

� �
and f θ ŷ

� �
are the output images

of the denoising stage and the deconvolution stage, RHessianð�Þ is the
Hessian regularization term used to regulate the solution space, and λ
is the weighting scalar to balance the impact of the regularization,
which we empirically set as 0.02 for the best performance in
implementations of 2D ZS-DeconvNet.

For 3DZS-DeconvNet,wedeploy 3DRCANas the backbonemodel
for the two stages, each of which includes two residual groups con-
sisting of two channel attention blocks. The overall architecture is
illustrated in Supplementary Fig. 2b. During training procedures, the
3D ZS-DeconvNet is optimized iteratively following a similar loss
function to its 2D versions, nevertheless, with twomajormodifications
in detail: first, the image pairs used for trainingwere generated by axial
sampling rather than via recorruption, resulting in a totally parameter-
free data augmentation strategy; second, the gap amending regular-
ization (GAR)9 was implemented in both denoising term and decon-
volution term to correct the inconsistency between the inputs and
targets which are originally interleaved in the same noisy image stack.
The loss function can be formulated as:
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where z is the 3D noisy image stack, Soddð�Þ and Sevenð�Þ represent the
axial sampling operatorwhich takes an image stack and returns its odd
slices or even slices, respectively, stacked in the same order as the
original stack, γ and λ are weighting scalars of the GAR term and the
Hessian regularization term, which are set to γ = 1, λ=0:1 for the
implementation of 3D ZS-DeconvNet.
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It is noteworthy that since the theoretical basis of ZS-DeconvNet is
model-agnostic, both U-Net and RCAN are not the only applicative
backbone models but the widely adopted and efficient ones. Equip-
ping ZS-DeconvNet with other state-of-the-art network architectures,
e.g., DFCAN8 and RLN12, may further improve its denoising and SR
capability.

Implementation of 2D ZS-DeconvNet
The image pairs ðŷ,eyÞ used for training 2D ZS-DeconvNet models were
generated following a modified scheme from the original recorrupted
to recorrupted strategy26 under the assumption of mixed Poisson-
Gaussian noise distributions, where three hyperparameters β1, β2, α
needed to be pre-characterized. The recorruption procedure from a
single noisy image y can be represented in matrix form as:

ŷ= y+Dg ð9Þ

ey=y� D�1g ð10Þ

where D=αI is an invertible matrix defined as a magnified unit matrix
by a factor of α, which controls the overallmagnitude of added noises,
and g is a random noise map sampled from a Gaussian distribution
with zero means:

g∼N 0,σ2I
� � ð11Þ

σ2 =β1H y� bð Þ+ β2 ð12Þ

where β1 is the Poissonian factor affecting the variance of the signal-
dependent shot noise, and β2 is the Gaussian factor representing the
variance of additive Gaussian noises. b is the background, approxi-
mately regarded as a fixed value related to the camera, by subtracting
which we extracted fluorescence signals from the sample. Hð�Þ is a
linear low-pass filter used to preliminarily smooth the image and
reduce the noise, and we adopted an averaging filter with a size of 5
pixels in our experiments.

As is proved in Supplementary Note 1, the theoretically optimal
value of both β1 andα is 1, while β2 is dependent to the camera and can
be estimated from the sample-free region of the image itself or pre-
calibrated following standard protocols61. Evaluations on simulated
data has shown that the best denoising and SR performance are
achieved at the theoretically optimal values of these hyperparameters
regardless of the structure and SNR of the testing images (Supple-
mentary Figs. 3, 4).

Implementation of 3D ZS-DeconvNet
The training scheme of 3D ZS-DeconvNet integrates the spatially
interleaved self-supervised learning scheme9 with the self-supervised
inverse problem solver. In the training process, each noisy image stack
was divided into odd slices and even slices, which were then used as
input and targets, respectively, after augmentation by random rotat-
ing, cropping, and flipping. To amend the expectation gap between
odd and even slices, we introduced the gap amending regularization
(GAR) term intobothdenoising loss anddeconvolution loss,whichwas
calculatedwith the denoised stack (labeledwith the red box in Fig. 3a),
noisy even slices, and network outputs (detailed in Supplementary
Note 1b).

Implementation of 2D/3D ZS-DeconvNet-SIM
For ZS-DeconvNet-SIM implementations on 2D-SIM and 3D-SIM, every
set of raw SIM images were first augmented into two sets of recor-
rupted raw images through Eq. 9 and 10, and reconstructed into a pair
of SR SIM images via the conventional SIM reconstruction algorithm.

The generated SIM image pairs were then used for self-supervised
training in a similar manner to training the ZS-DeconvNet models. For
3D ZS-DeconvNet-SIM applied on LLS-SIM (Fig. 5d, e), post-
reconstructed volumetric SIM data instead of the raw images were
axially sampled into two SIM stacks respectively containing odd and
even slices, which were used in subsequent training procedures of 3D
ZS-DeconvNet models with loss functions described in Eq. 6-8. The
schematic workflow of ZS-DeconvNet-SIM is shown in Fig. 5a and
Supplementary Fig. 20.

PSF usage and generation
In the training procedure of ZS-DeconvNet, we used experimentally
acquired or simulated PSFs (with PSF Generator Fiji plugin licensed by
EPFL) that are corresponding to the imaging configurations. Inde-
pendent ZS-DeconvNet models were trained for each biological
structure and emission wavelength for best performance.

Model training and test-time adaptation
In this work, ZS-DeconvNet models were trained on a PC with an Intel
Core i7-11700 processor and an RTX 3090 graphic processing card
(NVIDIA) under the software environment of TensorFlow 2.5.0 and
python 3.9.7. Before training, the paired input/GT images were first
augmented into several patch pairs via random cropping, horizontal/
vertical flipping and rotation transformation to further enrich the
training dataset, which eventually generated ~20,000 pairs of 2D pat-
ches (128× 128 pixels) or ~10,000 pairs of 3D patches (64×64× 13
voxels). Trainingwas typically conductedwith theAdamoptimizer and
an initial learning rate of 0:5 × 10�4, whichwould decaywith a factor of
0.5 every 10,000 iterations. Training batch size was 4 for 2D images
and 3 for 3D stacks. The entire training process usually required
50,000 iterations for 2D images and 10,000 iterations for 3D stacks.
Elapsed time of training 50,000 iterations for 2D models and 10,000
iterations for 3D models was ~1 h and ~2 h, respectively. As is often the
case with most deep learning-based methods, the training of ZS-
DeconvNet is a one-time procedure in most live-cell imaging cases,
where users train the ZS-DeconvNet model with all frames, then the
well-trained models are applicable for all data of the same biological
specimen at a high processing speed. To eliminate the edge artifacts
induced by deconvolution, we typically padded 2 blank slices at the
top and bottom of 3D stacks and a margin of 8 pixels for each xy-slice
in both training and inference processes (Supplementary Fig. 30a).
Particularly, when processing the time-lapsing data of cell mitosis
(Fig. 3e, f), the unsupervised property of ZS-DeconvNet enabled a test-
time adaptation learning strategy43 in which we first trained a general
model for each biological structurewith data of the entire process and
then finetuned the pre-trained model for each timepoint with a small
number of training steps (typically 50 iterations taking ~1min) to fully
exploit the structural information of the raw data and obtain the
optimal SR performance. Of note, the test-time adaptation is not
necessary but an optional technique to improve the performance of
ZS-DeconvNet especially under circumstances where there are huge
morphological changes on biological specimens during the observa-
tion window, e.g., the chromosomes during mitosis (Supplemen-
tary Fig. 31).

Data post-processing and SR image evaluation
For imaging modalities employing wide-filed detection such as LLSM,
the fixed pattern noise (FPN) which are induced by the nonuniformity
in the pixel sensitivity of the camera cannot be removed by
noise2noise-based schemes62. In our implementation of ZS-Deconv-
Net, the FPN would be enhanced in the deconvolution stage and
became nonnegligible especially at imaging conditions of extremely
low SNR. For sCMOS sensors, which are the most common in fluor-
escence microscopy, the fixed pattern usually presents a regular
appearance of horizontal or vertical stripes attributed to the column
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amplifier. To this end, we simply applied an apodization mask in
Fourier domain to suppress the stripy artifacts while preserving other
frequency components of the samples (Supplementary Fig. 30b). It is
noted that the fixed pattern noise can also be fundamentally removed
by pre-calibration for the acquired raw images before sent into the
network model following the well-established procedures61,63,64.

Other computational SR approaches compared in this work,
i.e., the sparse deconvolution5, DeepCAD-based deconvolution33,
and SRRF13 are implemented following the instructions in the
original papers. Specifically, we tried our best to select the opti-
mal hyperparameters for sparse deconvolution to obtain a
reconstructed image with the least artifacts and the highest
resolution. And the DeepCAD-based deconvolution (Figs. 2a and
3f) was carried out by integrating the temporally sampling
scheme into our ZS-DeconvNet framework, that was, using images
temporally sampled from the time-lapsing data for training our
dual-stage network models, ensuring the same model size and
computational cost for a fair comparison.

To quantitatively evaluate the SR performance of 2D ZS-
DeconvNet and other computational SR approaches with only dif-
fraction limited references, we calculated PSNR between clear WF
targets and SR images degraded with the PSF by following three steps:
(1) Convolving the SR image with the corresponding PSF and down-
sampling the convolved image I to the size of GT; (2) Normalizing the
GT image x to the range of [0, 1] and then applying a linear
transformation8,53 to the convolved image I tomatch its dynamic range
with x:

Itrans =aI+b ð13Þ

a,bð Þ=argmin θ1 ,θ2ð Þ2R2 jjθ1I+ θ2 � xjj22
� �

ð14Þ

The linear transformation is applied to all methods for a fair
comparison; (3) Calculating the PSNR between the normalized GT
image x and linearly transformed image Itrans.

For PSNR evaluation of 3D ZS-DeconvNet (Fig. 3d), we directly
leveraged the LLS-SIM images as the reference in that both LLS-SIM
and our 3D ZS-DeconvNet provided a resolution improvement by ~1.5-
fold theoretically. The overall calculation process is similar to the 2D
cases, except that the SR stacks were not convolved and the PSNR was
only calculatedwithin the feature-only regionswith a threshold of 0.02
to avoid obtaining an abnormally high value of PSNR.

To provide better contrast and visualization, we equally per-
formed percentile normalization for the deconvolution images gen-
eratedbyRLdeconvolution, sparsedeconvolution, andZS-DeconvNet,
which is formulated as:

Normp Y,plow,phigh

� �
=

Y� percentile Y,plow

� �

percentile Y,phigh

� �
� percentile Y,plow

� � ,

ð15Þ

where percentile(Y,p) outputs the intensity value ranking p% in image
Y. plow and phigh are typically set as 3 and 100 in our figure and videos.

Cell culture, transfection, and staining
Cos7, HeLa, 293 T cells as well as their stable cell lines were cultured in
DMEM (Gibco, cat. no. 11965092), supplemented with 10% fetal bovine
serum (Gibco, cat. no. 10099141C) and 1× penicillin-streptomycin
(ThermoFisher, 15140122) under 37°C inThermoScientific™Heracell™
150i CO2 incubator. SUM159 cells were cultured in DMEM/F12K med-
ium supplementarywith 5%Fetal Bovine Serum (FBS) and 1% Penicillin-
Streptomycin solution.

For live cell imaging, the 35mm coverslips were pre-coated with
50μgml-1 of collagen and 1×105 cells were seeded onto coverslips. For
transient transfection, cells were transfected with plasmids using
Lipofectamine 3000 (Invitrogen, cat. no. L3000150) according to the
manufacturer’s protocol 12 h post plating. Cells were imaged for 12 h
after transfection.Where indicated, the cells transfectedwith Halo Tag
plasmids were labeled with 10 nM JF549 ligand for 15min according to
the published protocol65. The cells were rinsed with fresh medium to
remove unbound ligand and imaged immediately afterward. The
plasmids used in transient transfection include Lifeact-mEmerald,
Clathrin-mEmerald, 3×mEmerald-Ensconsin, Lamp1-Halo, 2×mEmer-
ald-Tomm20, Myosin2-Halo, KDEL-mCherry, and Halo-Calnexin.

For lentivirus packaging, 1μg lentiviral transfer vector DNA,
together with 0.5μg psPAX2 packaging and 0.5μg pMD2.G envelope
plasmid DNA were co-transfected to 90% confluence HEK293T cells in
a 6 cm petri dish using Lipofectamine 3000 following the manu-
facturer’s protocol. After 2 days, supernatant was harvested and fil-
tered with a 0.22-μm filter (Millipore). For construction of stable cells,
HeLa and Cos7 cells were infected with lentiviruses encoding endo-
plasmic reticulum marker Calnexin-mEmerald and F-actin marker
Lifeact-mEmerald66. Forty-eight hours after, the cells were enriched by
flow cytometer (FACSAria III, BD Biosciences) and then plated one cell
per well into 96-well plates, Monoclonal cells were used for our
experiments. Specifically, Lifeact-mEmerald for COS7 used in
Figs. 3 and 5; Calnexin-mEmerald, Mito-dsRed and Halo-H2B for HeLa
cells used in Fig. 3; H2B-mCherry for HeLa-mEmerald-SC35 used in
Supplementary Fig. 18.

Genome edited cell lines
SUM159 cells were genome edited sequentially to incorporate EGFP to
the N-terminus of Rab11A and then Halo to the C-terminus of Lamp1
using the CRISPR/Cas9 approach67,68. The single-guide RNA (sgRNA)
targeting sequences are 5’-TCGCTCCTCGGCCGCGCAAT-3’ for RAB11A
and 5’-CTATCTAGCCTGGTGCACGC-3’ for LAMP1. SUM159 were
transfected with the EGFP-Rab11A donor plasmid, the plasmid coding
for the spCas9 and the free PCR product containing the sgRNA tar-
geting sequence using Lipofectamin 3000 (Invitrogen) according to
the manufacturer’s instruction. The cells expressing EGFP were enri-
ched by fluorescence-activated cell sorting (FACS) (FACSAria II, BD
Biosciences), and further subjected to single cell sorting to 96-well
plates. The monoclonal cells with successful EGFP incorporation were
identified by PCR screening using GoTaq Polymerase (Promega).
The clonal SUM159 cells expressing EGFP-Rab11A + /+ were subjected
to the second round of genome editing to incorporate Lamp1-Halo in
the genome as described above. The transfected cells were stained by
10 nM Janelia Fluor 646 HaloTag Ligands (Promega) for 15min. To
wash the unbound dye, samples were rinsed with fresh medium, and
then enriched by FACS. Themonoclonal SUM159 cells expressing both
EGFP-Rab11A + /+ and Lamp1-Halo + /+ were confirmed by PCR and
Western blot analysis.

SUM159 cells were genome edited to incorporate EGFP to the
C-terminus of clathrin light chain A (clathrin-EGFP) using the TALEN-
based approach69. The clathrin-EGFP expressing cells were enriched by
two sequential bulk sorting.

HeLa cells lines were genome edited to incorporate mEmerald
into the C- terminus of human genomic SC35 using CRISPR-Cas9 gene
editing system. The sgRNA targeting sequence is 5’-CGAGCAGCA
CTCCTAATGAT-3’, and the sgRNA was ligated into pX330A-1×2
(Addgene, 58766). The resulting plasmid was named pX330-SC35-
gRNA hereafter. To construct donor vector p-SC35-doner, mEmerald
flankedwith about 1800bphomology arms complementary to the stop
codon of human genomic SC35 locus were ligated to pEASY-blunt
(Transgene, CB101). 2 × 105 HeLa cells grown in 6 cm petri dish were
transfected with 1.2μg of pX330-SC35-gRNA and 0.4μg of p-SC35-
doner. 48 h post transfection, mEmerald-positive cells were sorted
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using FACS (FACSAria III, BD Biosciences). After one week, H2B-
mCherry lentiviruswere infected sorted cells and then single cellswere
seeded into 96-well. After two weeks, genomic DNA of different single
cell clones were extracted and validated by PCR and western blot.
Homozygous SC35 knock-in cells were selected for the study. The
successful SC35 knock-in was verified by PCR and Western blot
analysis.

C. elegans embryo preparation
C. elegans strains were cultured at 20 °C on nematode growthmedium
(NGM) plates seeded with OP50 following standard protocols70.
TV52712[wyEx51119[dlg-1p::GFP::PLCdPH]; jcIs1[ajm-1::GFP +UNC-29(+)
+rol-6(su1006)]; qxIs257 [ced-1p::nuc-1::mCherry + unc-76(+)]] was used
in this study. The plasmid dlg-1p::GFP::PLCdPH was constructed fol-
lowing theClontech In-Fusion PCRCloning System71 andmicroinjected
to jcIs1;qxIs257. Extrachromosomal arraywyEx51119marked epidermal
cell membrane. jcIs1 marked the apical junctional domain of C.
elegans71. qxIs257 marked lysosomes in epidermal cells72.

About 50 L4 stage transgenic worms were put onto NGM plates
with freshly OP50 48 to 60h before experiments. Transgenic eggs
were collected under the dissecting fluorescent microscope (Olympus
MVX10), and mounted on 3% agarose pads. Lima bean to 2-fold stage
embryos were then imaged using the 3D WF mode of our Multi-SIM
system.

Mouse embryo preparation
Mice used in this study were of C57BL/6 J background. All animal
experiments were approved by the Animal Care and Use Committees
(IACUC) of the Institute of Biophysics, Chinese Academy of Sciences,
Beijing, China. Pre-implantation embryos were isolated from 5-6-week-
old females, superovulated by intraperitoneal injection of 5 interna-
tional units (IU) of pregnant mares’ serum gonadotropin (PMSG; LEE
BIOSOLUTIONS) and 5 IU human chorionic gonadotropin (hCG; Milli-
pore) 48 h later, andmated withmalemice. Zygotes were recovered at
E0.5 in M2 medium (Millipore) and cultured in KSOM medium (Milli-
pore) in CO2 incubator (Thermo Scientific) at 37°C with 5% CO2 until
the late 8-cell stage.

For immunofluorescence, embryos were fixed with 4% paraf-
ormaldehyde in PBS for 30min at room temperature (RT) and washed
with PBS three times. Embryos were then permeabilized in 0.5%
TritonX-100 (Sigma) in PBS for 20min at RT, washed in PBS three
times, blocked in 1% bovine serum albumin in PBS for 1 h at RT and
incubated with anti-pERM antibody (Abcam, ab76247), anti-alpha-
tubulin-FITC (Sigma, F2168-.2ML) and Phalloidin-Rhodamine (Mole-
cular Probes, R415) overnight at 4°C. Then, embryos were washed in
PBS three times, incubated with secondary antibodies (Life technolo-
gies) for 1 h at RT, stained with Hoescht 33342 (Thermo) for 15min at
RT, washed in PBS three times and imaged by the home-built confocal
microscope.

3D image visualization
The axially color-coded images of lysosomes shown in Fig. 4f, g were
generatedwith Fiji. The 3D rendering images ofmitosis cell andmouse
embryos shown in Fig. 3e, f were visualized and generated by using of
the commercial software Amira.

Statistics and reproducibility
Experiments in Figs. 2a–i, 3f, 4a–h, and 5b–e were independently
repeated with at least 3 specimens, i.e., cells or embryos, all achieving
similar results.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The SIM data of CCPs and MTs used for evaluating ZS-DeconvNet is
from the publicly accessible dataset BioSR (https://doi.org/10.6084/
m9.figshare.13264793).Other data that are generated andpresented in
Figs. 1–5, Supplementary Figs. 1-34, and Supplementary Videos 1–9 in
this study are available upon requests. Source data are provided with
this paper.

Code availability
The python codes of ZS-DeconvNet, the Fiji plugin, several repre-
sentative pre-trained models, as well as some example data for
training and testing are already publicly accessible on the tutorial
homepage (https://tristazeng.github.io/ZS-DeconvNet-page/) of ZS-
DeconvNet and Github repository73 (https://github.com/TristaZeng/
ZS-DeconvNet).
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