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Medical history predicts phenome-wide
disease onset and enables the rapid response
to emerging health threats

Jakob Steinfeldt 1,2,3,4,5,18, Benjamin Wild 6,18, Thore Buergel5,6,18,
Maik Pietzner 3,7,8, Julius Upmeier zu Belzen 6, Andre Vauvelle9,
Stefan Hegselmann 10,11, Spiros Denaxas9,12,13,14, Harry Hemingway 9,13,14,
Claudia Langenberg 3,7,8, Ulf Landmesser 1,2,4,15,16,19, John Deanfield5,19 &
Roland Eils 6,17,19

The COVID-19 pandemic exposed a global deficiency of systematic, data-
driven guidance to identify high-risk individuals. Here, we illustrate the utility
of routinely recorded medical history to predict the risk for 1883 diseases
across clinical specialties and support the rapid response to emerging health
threats such as COVID-19.We developed a neural network to learn from health
records of 502,460 UK Biobank. Importantly, we observed discriminative
improvements over basic demographic predictors for 1774 (94.3%) endpoints.
After transferring the unmodified risk models to the All of US cohort, we
replicated these improvements for 1347 (89.8%) of 1500 investigated end-
points, demonstrating generalizability across healthcare systems and histori-
cally underrepresented groups. Ultimately, we showed how this approach
could have been used to identify individuals vulnerable to severe COVID-19.
Our study demonstrates the potential of medical history to support guidance
for emerging pandemics by systematically estimating risk for thousands of
diseases at once at minimal cost.

The early phase of the COVID-19 pandemic exposed a global deficiency
in delivering systematic, data-driven guidance for individual patients
and healthcare providers with critical implications for pandemic pre-
paredness. The assessment of an individual’s risk for future disease is
central to guiding preventive interventions, early detection of disease,
and the initiation of treatments. However, bespoke risk scores are only
available for a subset of common diseases1–4, leaving healthcare pro-
viders and individuals with little to no guidance on most relevant
diseases. Even fordiseaseswith established risk scores, little consensus
exists on which score to use and associated physical or laboratory
measurements to obtain, leading to highly fragmented practice in
routine care5. Importantly, in the early phases of emerging pandemics
such as COVID-19, it is necessary to allocate sparse resources, but risk
scores to identify vulnerable subpopulations are not available due to
the lack of available data.

At the same time,mostmedical decisions ondiagnosis, treatment,
and prevention of diseases are fundamentally based on an individual’s
medical history6. With the widespread digitalization, this information
is routinely collected by healthcare providers, insurance, and govern-
mental organizations at a population scale in the form of electronic
health records7–12. These readily accessible records, which include
diseases, medications, and procedures, are potentially informative
about future risk trajectories, but their potential to improve medical
decision-making is limited by the human ability to process and
understand vast amounts of data13.

To date, routine health records have been used to guide clinical
decision-making with etiological14–17, diagnostic18,19, and prognostic
research15,16,20–22. Existing efforts often extract and leverage known
clinical predictors with new methodologies19, augment them with
additionally extracteddatamodalities such as clinical notes23, or aim to
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identify novel predictors among the recorded concepts14–17. Prior work
on the prediction of disease onset has mainly focused on single dis-
eases, including dementia15,24, cardiovascular conditions23,25 such as
heart failure26 and atrial fibrillation27,28. In contrast, phenome-wide
association studies (PheWAS) quantifying the associations of genetic
variants with comprehensive phenotypic traits are emerging in genetic
epidemiology29,30. While approaches have been developed for high-
throughput phenotyping31,32 and to extract information from long-
itudinal health records33,34, no studies have investigated the predictive
potential and potential utility over the entire human phenome. Con-
sequently, the predictive information in routinely collected health
records and its potential to systematically guide medical decision-
making is largely unexplored.

Here, we examined the predictive potential of an individual’s
entire medical history and propose a systematic approach for
phenome-wide risk stratification.Wedeveloped, trained, and validated
a neural network in the UK Biobank cohort35 to estimate disease risk
from routinely collected health records. Unlike alternative methods,
such as linear models or survival trees, which require separate models
for each disease, our approach employs a multi-layer perceptron that
predicts multiple endpoints concurrently, resulting in a significantly
simplified model architecture. These endpoints include preventable
diseases (e.g., coronary heart disease), diseases that are not currently
preventable, but the early diagnosis has been shown to substantially
slow down the progression and development of complications (e.g.,
heart failure), and outcomes, which are currently neither entirely
preventable nor treatable (e.g., death). They also include both diseases
with risk prediction models recommended in guidelines and used in
practice (e.g., cardiovascular diseases or breast cancer) as well as dis-
eases without current risk prediction models (e.g., psoriasis and
rheumatoid arthritis).

We evaluated our approach by integrating the endpoint-specific
risk states estimated by the neural network in Cox Proportional Hazard
models36, investigating the phenome-wide predictive potential over
basic demographic predictors, selected comorbidities, and estab-
lished modifiable risk factors, and illustrating how phenome-wide risk
stratification could benefit individuals by providing risk estimates,
facilitating early disease diagnosis, and guiding preventive interven-
tions. Furthermore, by externally validating in the All Of Us cohort37,
we show that ourmodels cangeneralize across healthcare systems and

populations, including communities historically underrepresented in
biomedical research.

Finally, we assessed the potential of our approach to aid risk
stratification for the primary prevention of cardiovascular disease and
to respond to emerging health threats at the example of COVID-19.We
then show that the risk states of pneumonia, sepsis & all-cause death
can be used to calculate a combined severity risk score using primary
and secondary care records available before the global spread of the
COVID-19 pandemic. Our results demonstrate the currently unused
potential of routine health records to guide medical practice by pro-
viding comprehensive phenome-wide risk estimates.

Results
Characteristics of the study population and integration of rou-
tine health records
This study is based on the UK Biobank cohort35,38, a longitudinal
population cohort of 502,460 relatively healthy individuals of pri-
marily British descent, with a median age of 58 (IQR 50, 63) years,
54.4% biological females, 11% current smokers, and a median BMI of
26.7 (IQR 24.1, 29.9) at recruitment (Table 1 for detailed information).
Individuals recruited between 2006 and 2010 were followed for a
median of 12.6 years, resulting in ~6.2M overall person-years on 1883
phenome-wide endpoints39 with ≥ 100 incident events (>0.02% of
individuals having the event in the observation time). We externally
validated our findings in individuals from the All of Us cohort, a
longitudinal cohort of 229,830 individuals with linked health records
recruited from all over the United States. Individuals in the All of Us
cohort are of diverse descent, with 46% of reportedly non-white eth-
nicity and 78% of groups historically underrepresented in biomedical
research37,40, and have a median age of 54 (IQR 38, 65) years with 61.1%
biological females (see Table 1 for detailed information). Individuals
were recruited from 2019 on and followed for a median of 3.5 years,
resulting in ~787,300 person-years on 1568 endpoints.

Central to this study is the prior medical history, defined as the
entirety of routine health records before recruitment. Before further
analysis, we mapped all health records to the OMOP vocabulary. While
most records originate from primary care and, to a lesser extent, sec-
ondary care (Suppl. Figure 1a), the predominant record domains are
drugs and observations, followed by conditions, procedures, and devi-
ces (Supplementary Fig. 1b). Interestingly, while rare medical concepts

Table 1 | The study population

UK Biobank All Of Us

Male,
N = 229,107

Female,
N = 273,353

Overall,
N = 502,460

Male,
N = 83,013

Female,
N = 140,371

Diverse/
Unknown,
N = 6446

Overall,
N = 229,830

Age (years) 58 (50, 64) 57 (50, 63) 58 (50, 63) 57 (42, 67) 52 (36, 64) 58 (44, 68) 54 (38, 65)

Unknown 1,804 3503 188 5495

Ethnicity Asian 5878 (2.6%) 5575 (2.0%) 11,453 (2.3%) 2201 (2.7%) 3742 (2.7%) 42 (0.7%) 5985 (2.6%)

Black 3407 (1.5%) 4653 (1.7%) 8060 (1.6%) 17,487 (21%) 27,812 (20%) 779 (12%) 46,078 (20%)

Mixed 1105 (0.5%) 1851 (0.7%) 2956 (0.6%) 2,852 (3.4%) 4883 (3.5%) 111 (1.7%) 7846 (3.4%)

White 215,244 (95%) 257,413 (96%) 472,657 (95%) 47,467 (57%) 75,613 (54%) 1078 (17%) 124,158 (54%)

Unknown 3473 (1.5%) 3861 (1.4%) 7334 (1.5%) 13,006 (16%) 28,321 (20%) 4436 (69%) 45,763 (20%)

Smoking status Current 28,607 (13%) 24,364 (9.0%) 52,971 (11%) 12,553 (15%) 12,562 (8.9%) 668 (10%) 25,783 (11%)

Previous 87,604 (38%) 85,440 (31%) 173,044 (35%) 21,789 (26%) 29,679 (21%) 1606 (25%) 53,074 (23%)

Never 111,460 (49%) 162,037 (60%) 273,497 (55%) 39,621 (48%) 87,996 (63%) 3398 (53%) 130,985 (57%)

Unknown 1436 (0.6%) 1512 (0.7%) 2948 (0.5%) 9050 (11%) 10,164 (7.2%) 774 (12%) 19,988 (8.7%)

Body Mass Index 27.3 (25.0, 30.1) 26.1 (23.5, 29.7) 26.7 (24.1, 29.9) 28 (25, 32) 29 (24, 35) 29 (25, 34) 29 (25, 34)

Unknown 1646 (0.7%) 1458 (0.6%) 3104 (0.6%) 2802 (3.4%) 5711 (4.1%) 387 (6.0%) 8900 (3.9%)

Systolic Blood Pres-
sure (mmHg)

139 (128, 152) 133 (121, 147) 136 (124, 150) 129 (119, 141) 123 (112, 136) 127 (115, 140) 125 (114, 138)

Unknown 13,579 (5.9%) 16,536 (6.0%) 30,115 (6.0%) 1804 (2.2%) 3503 (2.5%) 188 (2.9%) 5495 (2.4%)

Median (IQR); n (%)
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(with a record in <1% of individuals in the study population) are not
commonly included in prediction models21, they are often associated
with high incident event rates (exemplified by the mortality rate in
Supplementary Fig. 1c) compared to common concepts (a record pre-
sent in >= 1% of the study population). For example, the concept code
for “portal hypertension” (OMOP 34742003) is only recorded in 0.04%
(203) of individuals at recruitment, but 48.7% (99 individuals) will die
over the course of the observation period. Importantly, there are many
distinct rare concepts, and thus 91.7% of individuals have at least one
rare record before recruitment, compared with 92.5% for common
records. In addition, 60.7% of individuals have ≥ 10 rare records com-
paredwith 78.4% for common records, and individuals have only slightly
fewer rare than common records (Supplementary Fig. 1d).

After excluding very rare concepts (<0.01%, less than 50 individuals
with the record in this study), we integrated the remaining 15,595 unique
concepts (Supplementary Data 2) with a multi-task multi-layer percep-
tron (with 88.4M parameters) to predict the phenome-wide onset of
1883 endpoints (Supplementary Data 1) simultaneously (Fig. 1a). For
comparison, we also include additional comparisons with a linear
baseline (with 29.4Mparameters, Supplementary Fig. 2), demonstrating
superior performance at a minimal increase of complexity.

To ensure that our findings are generalizable and transferable, we
spatially validate our models in 22 recruitment centers (Fig. 1b) across
England, Wales, and Scotland. We developed 22 models, each trained
on individuals from 21 recruitment centers at recruitment, randomly
split into training and validation sets (Fig. 1c). We subsequently tested
the models on individuals from the additional recruitment center
unseen for model development for internal spatial validation. After
checkpoint selection on the validation data sets and obtaining the
selected models’ final predictions on the individual test sets, the test
set predictions were aggregated for downstream analysis (Fig. 1d).
Subsequently, disease-specific exclusions of prior events and sex-
specificity were respected in all downstream analyses. After develop-
ment, the models were externally validated in the All of Us cohort37.

Routine health records stratify phenome-wide disease onset
Central to the utility of any predictor is its potential to stratify risk. The
better the stratification of low and high-risk individuals, the more
effective targeted interventions and disease diagnoses are.

To investigate whether health records can be used to identify
high-risk individuals, we assessed the relationship between the risk
states estimated by the neural network for each endpoint and the risk
of future disease (Fig. 2). For illustration, we first aggregated the inci-
dent events over the percentiles of the risk states for each endpoint
and subsequently calculated ratios between the top and bottom 10%of
risk states over the entire phenome (Fig. 2a).We found that fewer than
10% of the individuals had an incident hypertension diagnosis in the
observation window if they were estimated to be in the bottom risk
percentile of the medical history, compared to more than 60% if they
were estimated to be in the top risk percentile. Subsequently, the
incident event ratio between the top and bottom deciles was ~5.23.
Importantly, we found differences in the event rates, reflecting a
stratification of high and low-risk individuals for almost all endpoints
covering a broad range of disease categories and etiologies: For 1341of
1883 endpoints (71.2%), we observed >10-times as many events for
individuals in the top 10% of the predicted risk states compared to the
bottom 10%. For instance, these endpoints included rheumatoid
arthritis (Ratio ~11.3), ischemic heart disease (Ratio ~23.5), or chronic
obstructive pulmonary disease (Ratio ~65.4). For 230 (12.2%) of the
1883 conditions, including abdominal aortic aneurysm (Ratio ~163.4),
more than 100 times the number of individuals in the top 10% of
predicted risk states had incident events compared to the bottom 10%.
For 542 (28.8%) endpoints, the separation between high and low-risk
individuals was smaller (Ratio <10), which included hypertension
(Ratio ~5.2) and anemia (Ratio ~6.7), often diagnosed earlier in life or

precursors for future comorbidities. Notably, the ratios were >1 for all
but one of the 1883 investigated endpoints, even though all models
were developed in spatially segregated assessment centers. To illus-
trate how high-risk individuals differ from themoderate cases, we also
provide additional ratios comparing the top 10% to individuals in the
median 20% of the population. The complete list of all endpoints and
corresponding statistics can be found in Supplementary Data 4.

In addition to the phenome-wide analysis of 1883 endpoints, we
also provide detailed associations between the risk percentiles and
incident event ratios (Fig. 2b), as well as cumulative event rates for up
to 15 years (Fig. 2c) of follow-up for the top, median, and bottom
percentiles for a subset of 24 selected endpoints. This set was selected
to comprise actionable endpoints and common diseases with sig-
nificant societal burdens, specific cardiovascular conditions with
pharmacological and surgical interventions, as well as endpoints
without established tools to stratify risk to date. To exemplify the
potential of our approach, among individuals in the top risk decile for
heart failure, 8018 (16.06%) experienced an event, in contrast to 178
(0.35%) individuals in the bottom decile, resulting in a risk ratio of
46.35 (Fig. 2a, b, Supplementary Data 4). Consequently, those at high
risk of heart failure could be prioritized for echocardiographic
screening and, if necessary, prescribed effective guideline-directed
medical therapy. Similarly, individuals with a high risk of developing
COPD—where the top 10% face over 65 times the risk compared to the
bottom 10%—may be considered for spirometry, an approach already
established in the CAPTURE trial41. If confirmed, they could benefit
from interventions such as long-acting bronchodilators. As a third
example, a high-risk estimate for less common diseases, such as mul-
tiple sclerosis (risk ratio ~8.3), could further support referring indivi-
duals to a specialist and potentially shorten the often extensive patient
journey before a final diagnosis is reached.

In summary, the disease-specific states stratify the risk ofonset for
all 1883 investigated endpoints across clinical specialties. This indi-
cates that routine health records provide a large and widely unused
potential for the systematic risk estimation of disease onset in the
general population.

Discriminative performance indicates potential utility
While routine health records can stratify incident event rates, this does
not prove utility. To test whether the risk state derived from the rou-
tine health records could provide utility and information beyond
ubiquitously available predictors, we investigated the predictive
information over age and biological sex, selected comorbidities from
the Charlson Comorbidity Index42, and established modifiable risk
factors from the AHA ASCVD pooled cohort equation3. We modeled
the riskof disease onset usingCoxProportional-Hazards (CPH)models
for all 1883 endpoints, which allowed us to estimate adjusted hazard
ratios (denoted as HR in Supplementary Data 6) and 10-year dis-
criminative improvements (indicated as Delta C-index in Fig. 3a).

We found significant improvements over the baseline model (age
and biological sex only) for 1774 (94.2%) of the 1883 investigated
endpoints (Fig. 3, SupplementaryData 5). Formanyof these endpoints,
the discriminative improvements were considerable (Delta C-Index
Q25%: 0.094, Q50: 0.116, Q75: 0.141). We found significant improve-
ments for 23 of the highlighted subset of 24 endpoints (indicated in
Fig. 2a),with the largest increases for the prediction of backpain (Delta
C-Index: +0.238 (CI 0.236, 0.241)), suicide attempts (Delta C-Index:
+0.224 (CI 0.213, 0.235)), psoriasis (Delta C-Index: +0.171 (CI 0.161,
0.178)), all-cause mortality (Delta C-Index: +0.171 (0.169, 0.174)) and
chronic obstructive pulmonary disease (Delta C-Index: +0.156 (0.151,
0.159)). In contrast, we did not find significant improvements in the
prediction of 86 (4.6%) of the 1883 endpoints, including, e.g., Parkin-
son’s disease (Delta C-Index: −0.006 (CI −0.013, 0)) or even dete-
riorations in the prediction of 23 (1.2%) of the endpoints, including
neoplasm like cervical cancer (Delta C-Index: −0.025 (−0.059,−0.004))
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Fig. 1 | Overview of the study. a The medical history captures encounters with
primary and secondary care, including diagnoses, medications, and procedures
(ideally) from birth. Here we train a multi-layer perceptron on data before
recruitment to predict phenome-wide incident disease onset for 1883 endpoints.
b Location and size of the 22 assessment centers of the UK Biobank cohort across
England, Wales, and Scotland. c To learn risk states from individual medical his-
tories, the UK Biobank population was partitioned by their respective assessment
center at recruitment. d For each of the 22 partitions, the RiskModel was trained to
predict phenome-wide incident disease onset for 1883 endpoints. Subsequently,

for each endpoint, Cox proportional hazard (CPH) models were developed on the
risk states in combination with sets of commonly available predictors to model
disease risk. Predictions of the CPH model on the test set were aggregated for
downstreamanalysis. e External validation in the All of US cohort. Aftermapping to
theOMOP vocabulary, we transferred the trained riskmodel to the All of US cohort
and calculated the risk state for all endpoints. To validate these risk states, we
compared the unchanged CPH models developed in the UK Biobank with refitted
CPH models for age and sex. Source data are provided. The Icons are made by
Freepik from www.flaticon.com.
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Fig. 2 | Routine health records stratify phenome-wide disease onset. a Ratio of
incident events in the Top 10%comparedwith the Bottom10%of the estimated risk
states. Event rates in the Top 10% are higher than in the Bottom 10% for all but one
of the 1883 investigated endpoints. Red dots indicate 24 selected endpoints
detailed in Fig. 2b. To illustrate, 1198 (2.39%) individuals in the top risk decile for
cardiac arrest experienced an event compared with only 30 (0.06%) in the bottom

decile, with a risk ratio of 39.93. b Incident event rates for eachmedical history risk
percentile (if medical history was available) for a selection of 24 endpoints.
cCumulative event rates with 95% confidence intervals for the Top 1%,median, and
Bottom1%of risk percentiles inb) over 15ys. Statisticalmeasureswerederived from
502.460 individuals. Individuals with prevalent diseases were excluded from the
endpoints-specific analysis. Source data are provided.
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Fig. 3 | Discriminative performance indicates potential utility. a Differences in
discriminatory performance quantified by the C-Index between CPH models
trained on Age+Sex and Age+Sex+MedicalHistory for all 1883 endpoints. We found
significant improvements over the baseline model (Age+Sex, age, and biological
sex only) for 1774 (94.2%) of the 1883 investigated endpoints. Red dots indicate
selected endpoints in Fig. 3b. b Absolute discriminatory performance in terms of
C-Index comparing the baseline (Age+Sex, black point) with the added routine
health records risk state (Age+Sex+RiskState, red point) for a selection of 24 end-
points. cThedirectC-indexdifferences for the samemodels. Dots indicatemedians

and whiskers extend to the Bonferroni-corrected 95% confidence interval for a
distribution bootstrapped over 100 iterations. d Example of individual predicted
phenome-wide risk profile. Predisposition (10-year risk estimated by Age+Sex
+RiskState compared to risk estimated by Age+Sex alone) is displayed in the inner
circle, and absolute 10-year risk estimated by Age+Sex+RiskState can be found in
the outer circle. Labels indicate endpoints with a high individual predisposition (>2
times higher than the Age+Sex-based reference estimate) and absolute 10-year risk
> 10%. e Top 5 highest attributed records for selected endpoints. Statistical mea-
sures were derived from 502.460 individuals. Source data are provided.
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and gastrointestinal diseases as chronic hepatitis (Delta C-Index:
−0.032 (−0.064, −0.007)).

We also present a comparison between our approach and the
CharlsonComorbidity Index’s42 predictive performance, both ofwhich
can be automated. Additionally, we compare our method to the well-
established ASCVD predictors, which are widely accessible but require
an additional blood draw. Notably, incorporating the comorbidities
from the Charlson Comorbidity Index enhances the discriminative
capacity beyond age and sex; however, adding medical history proves
to be significantly more effective in improving performance (Supple-
mentary Fig. 3, Supplementary Data 5). Likewise, while supplementing
ASCVD predictors to age and sex augments the performance for most
endpoints, it remains inferior to the combination of age, sex, and
medical history alone. Incorporating themedical history alongside the
comorbidities or ASCVD predictors further improves the predictive
performance for the vast majority of endpoints (AgeSex+Comorbid-
ities augmented by the MedicalHistory: +1726/1883 (91.7%), ASCVD
+MedicalHistory: +1727/1883 (91.7%), demonstrating complementary
nature of these information sources.

For illustration, we also present individual phenome-wide risk pro-
files (Fig. 3c, Supplementary Fig. 4a+b and 5a+b). The risk profiles varied
substantially in the predispositions relative to the age and sex reference
(the inner circle, see methods for details) and the absolute 10-year risk
estimates (the outer circle). The first individual (Fig. 3c), a 60-year-old
man, is predicted to be at a particularly high 10-year risk of metabolic,
cardiovascular, respiratory, and genitourinary conditions, including
diabetes mellitus (19.4%), heart failure (22%), COPD (14.9%), and chronic
kidney disease (16.8%). Increased risk of neoplastic, dermatological, and
musculoskeletal conditions was not predicted by the prior health
records of this individual. In contrast, another individual, a 48-year-old
woman (Supplementary Fig. 5b), is not estimated at increased cardio-
vascular risk but conversely to have almost 10x the risk for suicide
ideation and attempt or self-harm compared to the reference group.

Importantly, the model performance is robust to the removal of
recent information, indicating that the model effectively incorporates
both the individuals’ long-termmedical history and recent interactions
with the healthcare system in order to predict future disease onset
(Supplementary Fig. 6).We provide Shapley attributions43 for themost
important records (Fig. 3d, Suppl. Figure 4c, Suppl. Figure 5c) and all
records for the 24 highlighted endpoints (Supplementary Data 9) in
the study population, enhancing the interpretability of our findings.

These findings indicate that health records contain substantial
predictive information over established predictors for the majority of
disease endpoints from across clinical specialties.

Predictivemodels can generalize across healthcare systems and
populations
While our findings indicate potential utility in the UK Biobank, health
records vary substantially across healthcare systems andover timedue
to differences in medical and coding practices (“distribution shift”)
andunderlyingdifferences in thepopulations.Thus, predictivemodels
can fail to learn robust and generalizable information44–46.

To better understand the generalisability across different health-
care systems, we predicted risk states and absolute risk estimates for
all individuals in the All of Us cohort with linked medical records
(N = 229,830; see Table 1). Importantly, we found significant
improvements over the baseline model (age and biological sex only)
for 1347 (85.9%) of the 1568 investigated endpoints with at least 100
incident events (Fig. 4a, Supplementary Data 8), replicating 1347/1500
(89.8%) of all significant improvements in the UK Biobank (Fig. 4b,
Supplementary Data 8). Generally, larger improvements in the UK
Biobank were replicated in the All of Us cohort. It’s noteworthy that
smaller improvements in the UK Biobank often corresponded to pro-
portionately larger improvements in All of Us, while larger improve-
ments in the UK Biobank were attenuated in All of Us (Fig. 4c).

As the risk states were largely derived from white, middle-aged,
and generally affluent and healthy individuals from the UK, it was cri-
tical to validate the discriminative performance in diverse and his-
torically underserved and underrepresented groups and ethnicities.
Generally, we found comparable discriminative performances (Fig. 4d)
and substantial benefits over basic demographic predictors (example
of cardiac arrest in Fig. 4e) across all investigated groups.

To illustrate these improvements further, we replicated sig-
nificant improvements for all of the 24 apriori selected endpoints,with
improvements ranging from modest for hypertension (Delta C-Index:
+0.021 (0.016, 0.024)) and Parkinson’s disease (Delta C-Index: +0.035
(0.021, 0.05)) to substantial for, e.g., All-Cause Death (Delta C-Index:
+0.116 (0.104, 0.127), Pulmonary embolism (Delta C-Index: +0.125
(0.112, 0.137)), andCardiac arrest (DeltaC-Index: +0.176 (0.146, 0.206))
(Fig. 4f, g and Supplementary Data 8). Only for a subset of 54 (3.44%)
significantly improved endpoints in theUKBiobank, the discriminative
performance in All Of Us deteriorated significantly upon transferring
the pre-trained medical history risk model and integrating the infor-
mation beyond age and biological sex alone, including hepatitis (Delta
C-Index: −0.226 (−0.251, −0.2)), substance abuse (Delta C-Index:
−0.037 (−0.05, −0.026)) and osteoporosis (Delta C-Index: −0.015
(−0.021, −0.008)).

Taken together, our findings suggest that predictive models
based onmedical history can generalize across health systems and are
robust to diverse populations.

Predictions can support cardiovascular disease prevention and
the response to emerging health threats
While comprehensive phenome-wide risk profiles provide opportu-
nities to guide medical decision-making, not all of the predictions are
actionable. To illustrate the potential clinical utility, we focused on the
primary prevention of cardiovascular disease and the response to
newly emerging health threats at the example of COVID-19.

Risk scores are well established in the primary prevention of car-
diovascular events and have been recommended to guide preventive
lipid-lowering interventions47. While cardiovascular predictors are
accessible at a low cost, dedicated visits and resources from healthcare
providers for physical and laboratory measurements are required.
Therefore, we compared our phenome-wide risk score, based only on
age, sex, and routine health records, to models based on established
cardiovascular risk scores, the SCORE248, the ASCVD3, and the British
QRISK34 score. Interestingly, the discriminative performance of our
phenome-widemodel is competitivewith the established cardiovascular
risk scores for all investigated cardiovascular endpoints (Fig. 5a, Sup-
plementary Data 7): we found comparable C-Indices with differences
+0.001 (CI −0.002, 0.005) for ischemic stroke, +0.002 (CI 0.002, 0.005)
for ischemic heart disease and +0.006 (CI 0.003, 0.009) for myocardial
infarction compared with the comprehensive QRISK3 score. It is note-
worthy that these discriminative improvements are substantially better
for later-stage diseases, including heart failure (+0.018 (CI 0.015, 0.021)),
cardiac arrest (+0.05 (CI 0.042, 0.059)), and all-cause mortality (+0.13
(CI 0.128, 0.132)) when prior health records are considered.

To further illustrate potential utility, we look at newly emerging
pathogenic health threats, where rapid and reliable risk stratification is
required to protect high-risk groups and prioritize preventive inter-
ventions. We investigated how our phenome-wide risk states could
have been used in the context of COVID-19, a respiratory infectionwith
pneumonia and sepsis as common, life-threatening complications of
severe cases.We repurposed the risk states for pneumonia, sepsis, and
all-cause mortality to calculate a combined COVID-19 severity risk
score using information available at the end of 2019 before the global
spread of the COVID-19 pandemic (see Methods for details). The
COVID-19 severity risk score resembles the risk for developing severe
or fatal COVID-19 and illustrates how health records could have helped
to identify individuals at high risk and to prioritize individuals in initial
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vaccination campaigns better. Augmenting age with the COVID-19
severity risk score, we found substantially improved discriminative
performance for both severe and fatal COVID-19 outcomes (Severe:
C-Index (age) 0.597 (CI 0.591, 0.604)→C-Index (age + COVID-19
severity risk score) 0.647 (CI 0.641, 0.654); Fatal: C-Index (age) 0.720
(CI 0.710, 0.731)→C-Index (age + COVID-19 severity risk score) 0.780
(CI 0.772, 0.789). These discriminative improvements translate into
higher cumulative incidence in the Top 5% population compared to
age alone (Suppl. Figure 6C, age (left), COVID-19 severity score (right),

severe COVID-19 (top), fatal COVID-19 (bottom)): In the top 5% of the
age-based risk group (~79 (IQR 77, 81) years old), 0.42% (CI 0.34%,0.5%,
n = 105) have been hospitalized, and 0.26% (CI 0.2%, 0.33%, n = 66) had
died by the end of the first wave. By the end of the second wave,
around 0.96% (CI 0.83%, 1.08%, n = 240) had been hospitalized, and
0.44% (0.36%, 0.52%,n = 111) haddied. In contrast, for individuals in the
top 5% of the COVID-19 severity risk score, by the end of the first wave,
around 0.64% (CI 0.54%, 0.74%, n = 160) had been hospitalized, and
0.32% (0.25%, 0.39%, n = 80) had died, while by the end of the second
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wave, 1.74% (CI 1.57%, 1.9%, n = 436) had been hospitalized and 0.68%
(0.58%, 0.79%, n = 172) had died.

In summary, our findings illustrate the clinical utility of medical
history for primarypreventionof cardiovascular diseases and the rapid
response to emerging health threats.

Discussion
Current clinical practice lacks systematic, data-driven guidance for
individuals and care providers. Our study demonstrated that medical
history can systematically inform on phenome-wide risk across clinical
specialties, as shown in the British UK Biobank cohort. Subsequently,
we showthat these risk states canbe repurposed to identify individuals
vulnerable to severe COVID-19 and mortality. Importantly, we found
significant improvements in the discriminated performance for the
vast majority of disease endpoints, of which almost 90% could be
replicated in the US All of US cohort. Our results indicated utility
beyond age, sex, selected comorbidities, and established cardiovas-
cular risk factors commonly considered in clinical practice for pre-
ventable diseases, treatablediseases, anddiseaseswithout existing risk
stratification tools. We anticipate that our approach has the potential
to facilitate population health at scale.

Designed for outpatient settings and focused on patients without
acute complaints, our approach identifies incident disease onset from
early (e.g., hypertension) and later (e.g., bypass surgery) health system
contacts. We identified three primary scenarios of potential utility:
Firstly,medical history canbe exploited in diseases that are preventable
with effective interventions, such as the prescription of lipid-lowering
medication for primary prevention of coronary heart disease47. Low-
ering LDL cholesterol in 10,000 individuals at increased risk by 2mmol/
L with atorvastatin 40mg daily (~2€ per month) for 5 years is estimated
to prevent 500 vascular events, reducing the individual relative risk by
more than a third49,50. Secondly, in conditions that are not preventable
anymore individuals can benefit from early detection and treatment,
like in type 2 diabetes or systolic heart failure. In individuals with heart
failure with reduced ejection fraction, a comprehensive treatment
regime (including ARNI, beta-blockers, MRA, and SGLT2 inhibitors)
compared to a conventional regime (ACEi or ARB and beta blockers)
reduced the hospital admissions for heart failure by more than two
thirds, all-cause mortality by almost half 51. For a 55-year-old male, this
translated into an estimated 8.3 additional years free from cardiovas-
cular death or readmission for heart failure. Lastly, in cases where
outcomes are neither preventable nor treatable, estimates of pro-
spective individual risk may be of high importance for personal deci-
sions or the planning of advanced care, e.g., a high short-termmortality
could identify patients needing to transition from curative to palliative
strategies for optimal care52,53. Multiple studies have shown that pallia-
tive care services can improve patients’ symptoms and life quality and
may even increase survival54. Overall, our approach could facilitate the
identification of high-risk populations for specific screening programs,
potentially improving the value of national health programs.

Importantly, our approach, based on routine health records, shows
large discriminative improvements for the majority of diseases com-
pared with conventionally tested biomarkers55–57 and can generalize
across diverse health systems, populations, and ethnicities. However, we
also see that including themedical history over age and sex deteriorated
the performance for a subset of 1.2% (UK Biobank) and 4.9% (All Of Us
cohort), respectively. Three central challenges remain: First, health
records, being products of interactions with the medical system, are
subject to biological, procedural, and socio-economic biases58, as well as
being dependent on the evolving nature of medical knowledge and
policies. Furthermore, certain measurements and laboratory values are
often inaccessible at the point of care, and harmonization in and across
health systems presents a significant barrier to implementation59. Inte-
grating these measures into the model holds considerable promise to
improve the predictive performance further. While our approach is
based on the standardized OMOP vocabulary, implementation requires
a robust harmonization infrastructure, and data drift might necessitate
model updates. Second, research cohorts often comprise healthier
individuals with lower disease prevalence than the general population60,
potentially leading to underestimating absolute risks. While dis-
criminative improvements provide evidence of the potential clinical
utility, they are insufficient to prove it, as it is highly context-dependent
on the population, the disease, and the interventions available. This is
particularly relevant for very rare diseases, where screening the general
population poses the risk of false positive findings. Future randomized
implementation studies must investigate how this discriminatory infor-
mation can translate into improved clinical outcomes in the respective
target populations. The third challenge concerns ensuring the inter-
pretability of our approach on such complex data. Our approach pro-
vided unique insights into how themodel used patients’medical history
to make risk predictions. The Shapley value attributions highlighted
features the model found most informative for inference on both indi-
vidual and population levels. These attributions are reflective of the
model’s decision-making process, and while they aligned with our clin-
ical understanding, they should not replace clinician judgment or other
forms of evidence. As we refine and deploy this approach, we must
remain vigilant in evaluating its performance and understanding the
interpretational limitations. Interestingly, the attributions also expose
the challenges of implementing predictive models across primary care
and clinical specialties. For example, statins and chest pain are among
the most highly attributed records for a high future likelihood of
developing heart disease, indicating that in some cases, prior healthcare
providers have already considered or even acted upon a high suspected
risk of the disease, without entering the actual diagnosis into the
records. Consequently, employing the model for such patients, when
low-density lipoprotein (LDL) cholesterol levels are already managed,
may not lead to further preventive actions if the patient’s care aligns
with established standards. Importantly, we find that such cases do not
drive themodel’s predictive performance by assessing the robustness of
the model performance to the removal of recent information

Fig. 4 | Predictive models can generalize across healthcare systems and
populations. a External validation of the differences in discriminatory perfor-
mance quantified by the C-Index between CPH models trained on age and biolo-
gical sex and age, biological sex, and the risk state for 1.568 endpoints in the All of
Us cohort. We find significant improvements over the baseline model (age and
biological sex only) for 1.347 (85.9%) of the 1.568 investigated endpoints. b Direct
comparison of the absolute C-Index in the UK Biobank (x-axis) and the All Of Us
cohort (y-axis). Significant improvements can be replicated for 1347 (89.8%, green
points) of 1500 endpoints in the All Of Us cohort. c Comparison of mean delta
C-Index per delta percentile (derived from the UK Biobank from the 1.568 end-
points available in All Of Us). Improvements in the All Of Us cohort are consistent
with the UK Biobank cohort: Small improvements in the UK Biobank tend to be
larger in All Of Us, while large improvements in the UK Biobank tend to be atte-
nuated in All Of Us. dDistribution of C-Indices for the 1.568 investigated endpoints

stratified by communities historically underrepresented in biomedical research
(UPD)73. Dots indicate medians and whiskers extend to the Bonferroni-corrected
95% confidence interval for a distribution bootstrapped over 100 iterations. e For
the samegroups, confidence intervals for the additive performance asmeasured by
the C-Index compared to the baseline model. Dots indicate medians and whiskers
extend to the Bonferroni-corrected 95% confidence interval for a distribution
bootstrapped over 100 iterations. f Absolute discriminatory performance in terms
of C-Index comparing the baseline (age and biological sex, black point) with the
added routine health records risk state (red points) for a selection of 24 endpoints.
g The differences in C-index for the same models. Statistical measures for UKB (in
b and c))were derived from 502.460 individuals and for AoU (in a–g) were derived
from 229.830 individuals. Dots indicate medians and whiskers extend to the
Bonferroni-corrected 95% confidence interval for a distribution bootstrapped over
100 iterations. Source data are provided.
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Fig. 5 | Predictions can support cardiovascular disease prevention and the
response to emerging health threats. a Discriminatory performances in terms of
absolute C-Indices comparing risk scores (Age+Sex, SCORE2, ASCVD, andQRISK as
indicated, black point) with the risk model based on Age+Sex+RiskState (red seg-
ment). b Direct differences between risk scores (Age+Sex, SCORE2, ASCVD, and
QRISK as indicated) and the risk model based on Age+Sex+RiskState in terms of
C-index. Dots indicate medians and whiskers extend to the Bonferroni-corrected

95% confidence interval for a distribution bootstrapped over 100 iterations.
c Estimated cumulative event trajectories, including 95% confidence intervals of
severe (with hospitalization) and fatal (death registry) COVID-19 outcomes strati-
fied by the Top, Median, and Bottom 5% based on age (left) or risk states of
pneumonia, sepsis, and all-cause mortality as estimated by Kaplan-Meier analysis.
Statistical measures were derived from 502.460 individuals. Source data are
provided.
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(Supplementary Fig. 6). Ultimately, if routine health records are to be
used for risk prediction, robust governance rules to protect individuals,
such as opt-out and usage reports, need to be implemented. Withmany
national initiativesemerging tocurate routinehealth records formillions
of individuals in the general population, future studies will allow us to
better understand how to overcome these challenges.

Our study presents a systematic approach to simultaneous risk
stratification for thousands of diseases across clinical specialties based
on readily availablemedical history. These risk states can then be used
to rapidly respond to emerging health threats such as COVID-19. Our
findings demonstrate the potential to link clinical practice with already
collected data to inform and guide preventive interventions, early
diagnosis, and treatment of disease.

Methods
Data source and definitions of predictors and endpoints
To derive risk states, we analyzed data from the UK Biobank cohort.
Participants were enrolled from 2006 to 2010 in 22 recruitment cen-
ters across England, Scotland, andWales; the follow-up is ongoing, and
records until the 24th of September 2021 are included in this analysis.
The UK Biobank cohort comprises 273.353 women and 229.107 men
aged between 37-73 years at the time of their assessment visit. Parti-
cipants are linked to routinely collected records from primary care
(GP), hospital records (HES, PEDW, and SMR), and death registries
(ONS), providing longitudinal information on diagnosis, procedures,
and prescriptions for the entire cohort from Scotland, Wales, and
England. Routine health records were mapped to the OMOP CDM and
represented as a 71.036-dimensional binary vector, indicating whether
a concept has been recorded at least once in an individual prior to
recruitment. A subset of 15.595 unique concepts, all found in at least 50
individuals, was chosen for model development. Endpoints were
defined as the set of PheCodes X39,61, and after the exclusion of very
rare endpoints (recorded in <100 individuals), 1883 PheCodes X end-
points were included in the development of the models. Due to the
adult population, congenital, developmental, and neonatal endpoints
were excluded. For each endpoint, subsequently, time-to-event out-
comes were extracted, defined by the first occurrence after recruit-
ment in primary care, hospital, or death records. Detailed information
on the predictors and endpoints is provided in Supplementary
Data 1-2.

While all individuals in the UK Biobank were used to integrate the
routine health records, develop the model, and estimate phenome-
wide log partial hazards, individuals were excluded from endpoint-
specific downstream analysis if they were already diagnosed with a
disease (defined by a prior record of the respective endpoint) or are
generally not eligible for the specific endpoint (females were excluded
from the risk estimation for prostate cancer).

To externally validate our risk states, we investigate individuals
from the All of Us cohort37, containing information on 229,830 indi-
viduals of diverse descent and from minorities historically under-
represented in biomedical research40. Becauseweonlyuse theAll ofUs
cohort for validation, we evaluate the predictive performance for the
subset of 1568 endpoints with at least 100 incident events in the All of
Us cohort.

The study adhered to the TRIPOD (Transparent Reporting of a
multivariable prediction model for Individual Prognosis Or Diagnosis)
statement for reporting62. The completed checklist can be found in the
Supplementary Information.

Extraction and preparation of the routine health records
To extract the routine health records of each individual, we first
aggregated the linked primary care, hospital records, and mortality
records and mapped the aggregated records to the OMOP CDM
(mostly SNOMED and RxNorm). Specifically, we used mapping tables
provided by the UK Biobank, the OHDSI community, and SNOMED

International to map concepts from the provider and country-specific
non-standard vocabularies to OMOP standard vocabularies.

We restricted the analysis to the domains “Observation”, “Condi-
tion”, “Procedure”, “Drug” and “Device”. To reduce the complexity, we
did not include any laboratorymeasures. The PheCode X endpoints39,61

were derived from either mapping directly from ICD-10 (hospital and
death records) or mapping from SNOMED to ICD-10 (using the official
mapping table) and subsequently to Phecodes X.

To ensure the accuracy and integrity of our data, we implemented
multiple validation steps. After each stage in the extraction and map-
ping process, we conducted plausibility and sanity checks on the dis-
tribution of the mapped records, along with spot checks of individual
records. This approach was critical in verifying the validity of the data.
Additionally, post-model training, the data underwent further ver-
ification. This included analyzing the calculated record attributions
and removing recent records, as detailed in Supplementary Fig. 6.
These steps were essential to identify andmitigate any potential issues
of record leakage. In the accompanying code release, we have pro-
vided the exact code used to extract and prepare the health records.

Spatial validation and data preprocessing
For model development and testing, we split the data set into 22 spa-
tially separated partitions based on the location of the assessment
center at recruitment. We analyzed the data in 22-fold nested cross-
validation, setting aside one of the spatially separated partitions as a
test set, aggregating the remaining partitions, and randomly selecting
10% of the aggregated data for the validation set. Within each of the 22
cross-validation loops, the individual test set (i.e., the spatially sepa-
rated partition) remained untouched throughoutmodel development,
and the validation set was used to validate the fitting progress and
checkpoint selection. All 22 obtained models were then evaluated on
their respective test sets.We assumedmissing data occurred randomly
and performed multiple imputations using chained equations with
gradient boosting machines63,64. Imputation models were fitted on the
training sets and applied to the respective validation and test sets.
Continuous variables were standardized; Categorical variables were
one-hot encoded.

Development of the phenome-wide risk model
The risk model is a multi-task neural network that uses the binary
representations of an individual’s prior health records before recruit-
ment to simultaneously predict log partial hazards65 for a set of 1883
endpoints. The model consists of three fully connected linear layers
with 4096 hidden units, each with layer normalisation66, dropout67,
and leaky ReLU activations. The last latent representation serves as a
regulariser as it incentives the extraction of robust features for mul-
tiple diseases. For comparison,we alsobenchmarked the linear version
of our model with 29.4M instead of 88.4M parameters (see Suppl.
Figure 2). The model subsequently computes the log partial hazard
(the risk state) for each endpoint with an adapted proportional hazard
loss65, resulting in a 1,883-dimensional output representation. The
individual losses are averaged and then summed toderive thefinal loss
of the model. We subsequently tuned hyperparameters (via Bayesian
Optimization) on train and validation splits over a constrained para-
meter space, tuning batch size, learning rate, weight decay, number of
nodes in the layers of the endpoint heads, number of hidden layers,
dropout rates, and sizeof the output vector of the sharednetwork. The
final models were trained with batch size 512 using the Adam
optimiser68 with a learning rate of 0.0006 andweight decay of 0.3, and
early stopping tracking of the performance on the validation set. We
implemented the model in Python 3.9 using PyTorch 1.1169 and
PyTorch-lightning 1.5.5 (for code availability, see below). The training
of a singlemodel on an NVIDIA A100 GPU node for 18 epochs required
approximately 11 hours, equating to the emission of approximately
1.08 kgCO2eq, 4.36 kmdriven by anaverage ICE caror0.54 kgs of coal
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burned as calculated by themlco2 calculator70. The external validation
of these models, conducted within the All of Us cloud computing
environment and including data preprocessing, inference, and eva-
luation, incurred a total compute cost of approximately 150 USD.

Downstream analysis and performance comparisons
We fitted Cox proportional hazards models36 (CPH) to derive absolute
risk predictions from the endpoint-specific risk states for the indivi-
dual endpoints. For each endpoint, we developedmodels with distinct
covariate sets: for all endpoints, we investigated age, biological sex,
and the risk states from the health records. For cardiovascular end-
points, we additionally investigated predictors from established and
guideline-recommended scores for the primary prevention of cardio-
vascular diseases, the SCORE2, ASCVD, and QRISK3. Model develop-
mentwas repeated independently for each assessment center thus, for
each cross-validation split, modelswere trained on the respective train
set, and checkpointswere selectedon the respective validation set. For
the final evaluation, test set predictions from the spatially separate
recruitment centers were aggregated. Event risk rates were calculated
over the full observation period. Harrell’s C-Index71 was calculatedwith
the lifelines package72 by bootstrapping both the aggregated test set
and individual assessment centerswithin ten years after recruitment to
control for right-censoring. The C-Index is a measure of rank correla-
tion that quantifies the agreement between predicted and observed
outcomes. It ranges between0.5 (nobetter than randomprediction) to
1 (perfect prediction). Statistical inferences about model differences
were based on the distribution of bootstrapped differences in the C-
Index; models were considered different whenever the Bonferroni-
corrected 95% CI of the difference did not overlap cross zero, to
account for multiple testing. CPH models were fitted with the
CoxPHFitter from the Python package lifelines72 with default para-
meters and a step size of 0.5, 0.1, or 0.01 to facilitate model con-
vergence. Confidence intervals for all statistical analyses were
calculated over 1000 bootstrapping iterations.

Response to emerging health threats
We retrained our models using data limited to records until the end of
December 2019, keeping the setting (in particular time zero for train-
ing) unchanged. Using these updated models, we then predicted the
risk states using all data available at the end of 2019, just as the first
cases of COVID-19 were reported. We then manually selected specific
risk states associated with pneumonia, sepsis, and all-cause mortality
to create an unweighted COVID-19 severity risk score. This risk score
was subsequently tested against age for the identification of incident
severe and fatal COVID-19 cases.

Independent validation in the All Of Us cohort
After mapping the linked health records from All Of Us to the OMOP
vocabulary, we transferred the neural networks developed in the UK
Biobank to the All Of Us research environment. We then used the
models to predict the disease-specific risk states for all individuals.
Subsequently, we predicted absolute risks with the CPH models
developed in the UK Biobank. Finally, we calculated the mean of the
predictions from the models for each individual and disease. For
baseline comparison with Age and Sex, we fitted new CPH models in
the All Of Us cohort.

Calculation of record attributions
To determinewhich records aremost important on an individual level,
we calculated attributions for the selection of 24 endpoints based on
Shapley values. For computational efficiency, we approximated
Shapley values via sampling for only 17,236 individuals unseen to the
model during development43. Please refer to Supplementary Data 9 for
the aggregated attributions from individuals without prior events.
Shapley values in the table are provided in two forms: averaged (so-

called local attributions to quantify importance for affected indivi-
duals) and summed (global attributions to quantify importance for
population ranking). The average Shapley attributions, presented in
the main text and figures, closely reflect our understanding of
importance for affected individuals.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
UK Biobank data, including all linked routine health records, are
publicly available to bona fide researchers upon application at http://
www.ukbiobank.ac.uk/using-the-resource/. In this study, primary care
data was used following the COPI regulations. The All Of Us cohort
data were provided by the All Of Us Research Program by permission
that can be sought by scientists and the public alike. Currently, how-
ever, data access requires affiliation with a US institution. All patient
data used throughout this study has been subject to patient consent as
covered by the UK Biobank and All Of Us. Detailed information on the
predictors and endpoints is presented in Supplementary Data 1-3.
Source data are provided with this paper.

Code availability
All code developed and used throughout this study has been made
open source and is available on GitHub. The code to train the medical
historymodel can be found here: github.com/nebw/medhist, while the
code to run analysis on trainedmodels can be found here: github.com/
JakobSteinfeldt/MedicalHistoryPhenomeWide.
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