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Sustained IFN signaling is associated with
delayed development of SARS-CoV-2-specific
immunity

A list of authors and their affiliations appears at the end of the paper

Plasma RNAemia, delayed antibody responses and inflammation predict
COVID-19 outcomes, but themechanisms underlying these immunovirological
patterns are poorly understood. We profile 782 longitudinal plasma samples
from 318 hospitalized patients with COVID-19. Integrated analysis using
k-means reveals four patient clusters in a discovery cohort: mechanically
ventilated critically-ill cases are subdivided into good prognosis and high-
fatality clusters (reproduced in a validation cohort), while non-critical survi-
vors segregate into high and low early antibody responders. Only the high-
fatality cluster is enriched for transcriptomic signatures associated with
COVID-19 severity, and each cluster has distinct RBD-specific antibody elici-
tation kinetics. Both critical and non-critical clusters with delayed antibody
responses exhibit sustained IFN signatures, which negatively correlate with
contemporaneous RBD-specific IgG levels and absolute SARS-CoV-2-specific B
and CD4+ T cell frequencies. These data suggest that the “Interferon paradox”
previously described in murine LCMV models is operative in COVID-19, with
excessive IFN signaling delaying development of adaptive virus-specific
immunity.

Coronavirus disease 2019 (COVID-19) caused by severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) infection is a hetero-
geneous disease that ranges from asymptomatic infection to fatal
outcome. Qualitative and kinetic differences in viral loads and immune
responses have been associatedwith clinical severity: we1 and others2–5

have shown that SARS-CoV-2 plasma viral RNA (vRNA) levels predict
fatality in patients with COVID-19. However, some patients succumbed
to their infection in the absence of high plasma vRNA, while other
individuals with high vRNA survived1, indicating a role for additional
factors.

High amounts of inflammatory cytokines have also been linked
with fatal outcome6–8. These cytokines are implicated in immuno-
pathology since immunomodulatory treatments such as IL-6R
antagonists9,10, systemic corticosteroids11, and Janus kinase inhibitors4

improve COVID-19+ patients’ survival. Despite the well-established
roles of interferon (IFN) pathways in priming of antiviral immunity and
evidence that pre-existing defects of type I IFN responses are

associated with adverse prognosis12,13, recombinant type I IFN therapy
failed to improve COVID-19 outcomes14 and may even be detrimental
in severe disease15. This apparent paradox is consistent with observa-
tions that sustained IFN levels impair lung healing16, while their impact
on adaptive immunity remains to be determined. In addition, delayed
antibody responses17,18, possibly linked to disrupted coordination
between virus-specific T and B cells19, have been observed in patients
with fatal disease.

Given the highly dynamic nature of COVID-19, binning patients
based on clinical characteristics across the duration of their hospita-
lization can blur our understanding of the disease course. Although
several studies have shown outcome associations with immunovir-
ological feature7,8,20, we still lack a global understanding of the immu-
novirological kinetics associated with disease heterogeneity.
Endotypes, in which patients are grouped based on molecular rather
than clinical characteristics, allow a more accurate identification of
high-risk patient subsets21. The interplay between these molecular
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signatures can be visualized and explored through dimensionality
reduction. Potential of Heat-diffusion for Affinity-based Trajectory
Embedding (PHATE) is a manifold learning algorithm that computes a
nonlinear transformation of the data to represent the latent structure
of a dataset in lowdimensions22. In parallel, a k-means algorithmcan be
used to group patients into defined clusters sharing similar features.

Using this type of integrative approach on cross-sectional mea-
surements of plasma vRNA, Spike Receptor Binding Domain (RBD)-
specific antibody responses, and plasma levels of cytokines and tissue
damage markers, we identified four patient clusters corresponding to
different systemic responses to acute SARS-CoV-2 infection. These
endotypes closely associated with clinical severity. Longitudinal pro-
filing and computational modeling of the antibody responses showed
that delayed RBD-specific antibody response was a central feature in
two clusters. Usingwhole-blood transcriptional profiling, we show that
patients with this delay have sustained IFN signatures. These sig-
natureswere also negatively associatedwith SARS-CoV-2-specific CD4+

T cell and B cell responses, but not CD8+ T cell responses. These results
highlight a role for excessive IFN signaling in disrupting adaptive
humoral and cellular immune responses to a human viral infection.

Results
Study design, patient characteristics and classification
We investigated prospectively enrolled hospitalized COVID-19+
patients with symptomatic infection and a positive SARS-CoV-2 naso-
pharyngeal swab (NSW) PCR from two hospitals in Montreal, Quebec,
Canada (n = 242, discovery cohort) and one in Uppsala, Sweden (n = 76,
validation cohort). Blood draws were serially done throughout their
stay in-hospital at enrollment (day 0) and at 2, 7, 14, and 30 days. Only
acute samples, defined as those collected within 30 days of symptom
onset (n =630 in the discovery cohort; 152 in the validation cohort),
were considered. We previously observed that plasma vRNA, RBD-
specific IgG antibodies, cytokines (TNFα, CXCL13, IL-6, IL-23, CXCL8,
CCL2 and IL1Ra), and tissue damage markers [Receptor for Advanced
Glycation Endproducts (RAGE), Angiopoietin-2 (Ang-2) and surfactant
protein D (SP-D)] were associated to fatal outcome when measured
11 days after symptom onset (DSO11)1, while associations with RBD-
specific IgM and IgA levels did not reach statistical significance1. For
unsupervised data characterization, we considered these 14 measure-
ments in cross-sectional samples taken at DSO11 (+/− 4 days, n = 242)
(Fig. 1A). We first visualized samples on a 2D scatter plot using the
PHATE dimensionality reduction algorithm22. In parallel, we performed
a k-means clustering on the same data. We chose a cluster count of
four, as running k-means with a higher number of clusters led to over-
fragmentation and small clusters (n < 20), preventing adequate sub-
group characterization. The clustering resulted in two smaller clusters
(1: n = 38 and 2: n = 49) and two larger ones (3: n = 73 and 4: n = 82),
which strongly aligned with regions of the PHATE embedding (Fig. 1B).
No clinical or demographic data was used for computing the PHATE
embedding and clustering.

Hospitalized patients display four distinct endotypes of early
plasma immunovirological profiles following SARS-CoV-2
infection
We examined how the parameters used to create the PHATE embed-
ding differed between patient clusters at DSO11. Nearly all patients in
cluster 1 had detectable vRNA and at higher amounts than the other
clusters, with cluster 3 having the second-highest levels (Fig. 1C). As
previously described1, we observed a strong association between
cytokines and most of the tissue damage markers across our cohort
(Fig S1A). To integrate the overall quantities of cytokines, we created a
cytokine score through the linear combination of the 7 cytokines
surveyed (see “Methods” for details). This score followed a stepwise
decrease between clusters 1, 2, 3, and 4 (Fig. 1D). A second score cre-
atedwith the threemarkers of tissue damage (TD score) also showed a

stepwise decrease from cluster 1 to 4, although there were no statis-
tically significant differences between clusters 3 and 4 (Fig. 1E). Both
scoreswere strongly correlatedwith one another (Fig. S1B), in linewith
the association between tissue damage and inflammation. At this
DSO11 timepoint, the RBD-specific IgG response was high in clusters 2
and 4, low in cluster 1, and undetectable inmost participants of cluster
3 (Fig. 1F), with analogous patterns observed for RBD-specific IgM (Fig.
S1C) and IgA (Fig. S1D).

To assess how these different immunovirological patterns asso-
ciated with disease severity, we examined the contemporaneous
patient status based on the level of respiratory support received
(Moderate = no supplemental oxygen; Severe = oxygen on nasal can-
nula; Critical = non-invasive or invasive mechanical ventilation). Clus-
ters 1 and 2 were enriched for critical patients, while clusters 3 and 4
mainly contained non-critical patients (Figs. 1G, S1E). Cluster 1 identi-
fied themost severe cases, as reflected by outcome: 50% of patients in
cluster 1 died within 60 days of symptom onset, while fatal outcome
was observed in a minority of the other three clusters (Figs. 1H, S1F).
This was also reflected in the duration of hospitalization (S1G). Age
distribution was similar between clusters (Table 1, Fig. S1H) and across
the embedding (Fig. S1l). A similar observation was made for sex (Fig.
S1JKL). The distributions of ethnicities were comparable across the
four cluster (Fig. S1M). Other demographics were similar between
cohorts, except for the enrichment of pre-existing renal failure in
cluster 1 (Table 1).

Our analytical approach therefore identified four immunovir-
ological endotypes in SARS-CoV-2 infection at DSO11 (Fig. 1I) that not
only aligned with contemporaneous disease severity but also deli-
neated probability of survival among critical cases.

Replication of the high fatality cluster 1 in an external
validation cohort
The distinct validation cohort, recruited in a Swedish hospital, differed
from clusters 1 and 2 of the discovery cohort for age, sex, and pre-
valence of some pre-existing conditions (Table 2). The validation
cohort had a greater incidence of mechanical respiratory support, in
line with recruitment of this cohort exclusively from the ICU (Table 2).
Despite these differences, the incidence of fatal outcome was similar.
The PHATE and k-mean analyses were performed using a subset of
measurements common between both the discovery and validation
cohorts, including the 3 antibody measurements, plasma vRNA, 5 of 7
cytokines, and 1 of 3 tissue damage markers (see “Methods” for
details). PHATE produced two natural clusters that again aligned with
k-means analysis (Clusters V1 and V2) (Fig. 1J). The two clusters reca-
pitulated the immunovirological patterns identified in clusters 1 and 2
in the discovery dataset. Cluster V1 showed higher viral load (Fig. 1K),
inflammation (Fig. 1L), and tissue damage (Fig. 1M). The differences in
vRNA and tissue damage markers were less pronounced, likely due to
differences in measurement methods and the use of a subset of ana-
lytes compared to the discovery cohort. Cluster V1 also had lower
N-specific antibodies at DSO11 (Fig. 1N) than cluster V2. Nonetheless,
cluster V1 was strongly enriched in fatal outcome (Fig. 1O). The strong
reproducibility between both cohorts, despite differences in some
clinical parameters between cohorts, the use of a subset of the original
set of analytes and differences in the SARS-CoV-2 target of the anti-
bodies measured, validates the use of the PHATE/k-means analysis of
early plasma profile to classify patient heterogeneity.

Delayed antibody kinetics is associated with protracted plasma
vRNA over a wide range of disease severity
Given the differences in antibody levels among the discovery clusters
at DSO11, we examined whether these resulted from either a delay or
an inability in generating anti-RBD antibodies. We compared antibody
levels at a later timepoint (DSO20 + /− 4 days) and saw no significant
difference between patient clusters (Fig S2A), indicating a late, but
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ultimately comparable, response. To compute the antibody kinetics,
we combined the RBD-specific antibody measurements of all samples
within a cluster and modeled a logistic curve on the quantity of anti-
bodies per patient cluster per day (Fig. 2A). Statistical comparison
using bootstrap analysis (see “Methods” for details) revealed that
patient clusters had significantly distinct timings in the generation of
RBD-specific IgG responses. Both clusters 2 and 4 reached 50% of
maximum RBD-specific IgG amount (DSO50%) before DSO11 (Fig. 2A),

which is why they had already high levels of antibodies at DSO11.
Conversely, cluster 1 reached DSO50% around DSO13, and cluster 3 was
latest, with a DSO50% reached at 17 days. This delayed antibody
response was also observed in the validation cohort (Fig. S2BC). We
also measured the evolution of RBD-specific IgM (Fig. S2D) and IgA
(Fig. S2E) and observed delayed responses in Clusters 1 and 3 thatwere
similar to those observed for IgG. Thus, this delayed kinetics cannot be
selectively attributed to impaired class switching.
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Fig. 1 | Hospitalized patients display four distinct endotypes of early plasma
immunovirological profiles following SARS-CoV-2 infection. A Study design.
Serial blood samples were collected among hospitalized NSW PCR-confirmed
COVID-19+ patients. Samples were assessed for plasma viral RNA, seven cytokines,
three tissue damage markers, and three SARS-CoV-2 RBD-specific antibody iso-
types. On samples collected 11 (+/−4) days after symptom onset (DSO11), all 14
parameters were combined for visualization by PHATE and used to calculate
patient clusters by k-means. Patient cluster was then used to color-code PHATE
embedding. B DSO11 samples identified four patient clusters across 242 hospita-
lized COVID-19+ patients. C–F At DSO11, plasma concentration across four patient
clusters of (C) viral RNA; (D) Cytokine Score obtained from the linear combination
of all seven cytokines; (E) score of tissue damage obtained from the linear com-
bination of all three markers of tissue damage, and (F) SARS-CoV-2 RBD-specific
IgG. G, H Percentage of the whole cohort or per patient cluster (G) with critical

(hashed), severe (saturated), or moderate (faint) disease; (H) with fatal outcome
(hashed). I Summary table of four patient clusters in the discovery cohort.
J Validation cohort of 76 hospitalized COVID-19+ patients. SARS-CoV-2-specific IgG,
IgM and IgA, vRNA and cytokines and tissue damage markers were measured at
DSO11. PHATE embedding and k-means clustering were performed as for the dis-
covery cohort.K–O Comparison, between validation cluster (V)1 and V2, of plasma
levels of (K) SARS-CoV-2 vRNA; (L) IL-6; (M) RAGE or (N) N-specific IgG.OOutcome
at DSO60 (hashed being fatal outcome). N discovery cohort: 1 = 38; 2 = 49; 3 = 73;
4 = 82 (242 in total). N validation cohort: V1 = 37; V2 = 39 (76 in total). C–F Kruskal-
Wallis with Dunn’s multiple comparison tests. Adjusted p values are shown.
G, H Two-sided Fisher’s exact test compares the proportion of hashed groups in
one cluster versus all others. For (G), statistical comparison is between critical and
non-critical.K–O Two-sidedMann-Whitney tests. Medians are shown in bar charts.
Source data are provided as Source_Data_File.xlsx.

Table 1 | Demographics and characteristics of hospital stay per patient cluster of the Discovery cohort

Variable Entries All 1 2 3 4 Stats

n 242 38 49 73 82

Age [median (IQR#)] 66.4 (52.4 − 78.8) 71.8 (64.4 − 78.8) 66.9 (58.3 − 79.5) 64.8 (54.1 − 82.0) 57.6 (48.2 − 74.3) 0.032

Sex

Male 141 (58%) 25 (66%) 27 (55%) 38 (52%) 51 (62%) 0.43

Female 101 (42%) 13 (34%) 22 (45%) 35 (48%) 31 (38%)

Max respiratory Support throughout hospital stay

No O2 86 (36%) 5 (13%) 10 (20%) 36 (49%) 35 (43%) 0.0001

NC 63 (26%) 5 (13%) 8 (16%) 22 (30%) 28 (34%) 0.028

NIV 32 (13%) 7 (18%) 9 (18%) 5 (7%) 11 (13%) 0.20

ETI 59 (24%) 20 (53%) 22 (45%) 10 (14%) 7 (9%) <0.0001

ECMO 2 (1%) 1 (3%) 0 (9%) 0 (0%) 1 (1%) 0.44

Days of hospitalization [median (IQR)] 14 (8.0 − 27.0) 24 (10.0 − 36.0) 19 (12 − 41.5) 14 (7.0 − 25.0) 9 (5.3 − 15.8) <0.0001

ICU admission 89 (37%) 27 (71%) 29 (59%) 15 (21%) 18 (22%) <0.0001

Days in ICU [median (IQR)] 14 (5.0 − 31.0) 24 (8.5 − 34.0) 19 (7.0 − 35.0) 14 (9.0 − 25.5) 4.5 (3.3 − 6.8) 0.0003

Metabolic risk factors

None 75 (31%) 10 (26%) 14 (29%) 24 (33%) 27 (33%) 0.85

One or more 167 (69%) 28 (74%) 35 (71%) 49 (67%) 55 (67%)

Obese 33 (14%) 5 (13%) 12 (24%) 10 (14%) 6 (7%) 0.053

Hypertension 139 (57%) 26 (68%) 30 (61%) 41 (56%) 42 (51%) 0.32

Dyslipidemia 57 (24%) 11 (29%) 16 (33%) 14 (19%) 16 (20%) 0.22

Diabetes 86 (36%) 15 (39%) 19 (39%) 27 (37%) 25 (30%) 0.69

Chronic diseases

None 99 (41%) 9 (24%) 19 (39%) 32 (44%) 39 (48%) 0.089

One or more 143 (59%) 29 (76%) 30 (61%) 41 (56%) 43 (52%)

Chronic Kidney Disease 41 (17%) 13 (34%) 9 (18%) 10 (14%) 9 (11%) 0.013

Heart Failure 51 (21%) 11 (29%) 11 (22%) 15 (21%) 14 (17%) 0.52

Respiratory Disease 42 (17%) 12 (32%) 8 (16%) 9 (12%) 13 (16%) 0.078

Liver Disease 21 (9%) 7 (18%) 5 (10%) 6 (8%) 3 (4%) 0.63

Immunosuppressed 20 (8%) 4 (11%) 6 (12%) 6 (8%) 4 (5%) 0.47

Malignancy 35 (14%) 5 (13%) 7 (14%) 10 (14%) 13 (16%) 0.98

HIV 5 (2%) 2 (5%) 1 (2%) 1 (1%) 1 (1%) 0.50

Neurological disorder 30 (12%) 3 (8%) 8 (16%) 8 (11%) 11 (13%) 0.65

Risk factors (Metabolic + Chronic)

None 40 (17%) 4 (11%) 9 (18%) 13 (18%) 14 (17%) 0.75

One or more 202 (83%) 34 (89%) 40 (83%) 60 (82%) 68 (83%)

Outcome

Fatality DSO60 34 (14%) 18 (47%) 6 (12%) 7 (10%) 3 (4%) <0.0001

Values displayed aremedians,with IQR in parentheses for continuousvariables, or percentages for categorical variables. Percentageswere rounded to thenearest unit. Statistical comparisonacross
all four patient clusters, with Kruskal Wallis test for continuous variables, and two-sided χ2 test for categorical variables. Source data provided.
Bold values indicate statistical significance p <0.05.
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We next investigated whether there were also differences in
plasma viral RNAemia throughout infection (herein referred to as
vRNA exposure). 97% of cluster 1’s patients had detectable plasma
vRNA at least once during their hospital stay, compared to 65% of
cluster 2 patients, 55% of cluster 3, and 41% of cluster 4 (Fig. S2F). We
fitted a 4-knot spline curve onto the average vRNA per day per cluster
and calculated the area under the curve (AUC) per clusters, as ametric
for overall exposure (Fig. 2B). Cluster 1’s vRNA AUC was significantly
greater than that of clusters 2 and 4. Cluster 3 also had significantly
greater vRNA exposure compared to cluster 4. Taken together, these
results indicate that, among patients with detectable plasma vRNA,
those with delayed antibody generation had greater overall exposure
to plasma vRNA compared to their severity-matched counterparts.

To better understand how the plasma cytokine and tissue damage
profiles evolved, we created a PHATE embedding using the 10 cytokine
and tissue damage variables, with days since symptom onset
(upweighted, see “Methods” for details) for all available data points

within DSO28 of the discovery cohort (n = 242 participants, 630 data
points, Fig. 2C). Marker color (gradient bar, right) reflects the average
cytokines and tissue damagemarkers concentration of a given sample,
unveiling a gradient from the low-concentration region (bottom) to a
high concentration one (top). The average trajectories per clusterwere
plotted atop the embedding (see “Methods” for details). They differed
the most in the DSO8-15 interval, with cluster 1 exhibiting the highest
cytokine levels and cluster 4 the lowest. We observed convergence of
clusters 2,3 and 4 to a common region of the embedding by DSO28,
consistent with transition to convalescence. Cluster 1 stood out as
maintaining a high concentration of cytokines and tissue damage
markers throughout the considered time period, in line with that
cluster’s greater severity and higher ongoing inflammatory profile
compared to the other three clusters.

Therefore longitudinal plasma profiling of hospitalized COVID-19
patients revealed that a delayed generation of RBD-specific antibodies
coincided with greater viral exposure throughout the acute phase,
suggesting that this delayed antibody response is important to COVID-
19 pathogenesis. High and sustained levels of cytokine and tissue
damage markers were hallmarks of critical disease.

Fatal outcome among cluster 1 defined by specific tran-
scriptomic signatures
To understand the molecular features behind the patient endotypes,
we analyzed bulk RNA sequencing data from369whole blood samples
collected within 30 days of symptom onset, 174 of which were col-
lected in the DSO11 timeframe (Supplementary Data 1). Principal
component analysis (PCA) on significant differentially expressed genes
(DEG—False Discovery Rate (FDR) < 0.01, n = 3 271, Supplementary
Data 2) between all pairwise comparisons of the four clusters’ DSO11-
samples revealed segregation of low (1 and 3) and high (2 and 4)
antibody clusters along PC1 (Fig. 3A).

PHATE embedding of cluster 1 showed the homogeneous dis-
tribution of fatal outcome (Fig. S3A), in line with the absence of dif-
ferences in plasma levels of vRNA (Fig. S3B), cytokines (Fig. S3C), tissue
damage markers (Fig. S3D), and in antibody responses (Fig. S3E)
between deceased and survivors of this cluster. PCA on the tran-
scriptomic profiles of the survivor and deceased patients of cluster
1 showed substantial overlap (Fig. 3B), although contrasting both
outcomes revealed thousands of DEG (n = 1537, FDR <0.05, |logFC | >
0.5) (Fig. 3C, Supplementary Data 2). Our previously published COVID
severity signature23, aggregated into a single “score” per sample [single
sample gene set enrichment analysis (GSEA)—ssCOVID] did not differ
between outcomes (Fig. S3F). These results suggest that additional
processes, rather than exacerbationof those associatedwith COVID-19
severity, contributed to fatalities in cluster 1. GSEA using Hallmark
gene sets24 revealed that, within cluster 1, deceased patients had
increased signatures of TGFβ andmTOR signaling, while survivors had
increased signatures of oxidative phosphorylation, MYC targets, coa-
gulation, DNA repair and fatty acid metabolism (Fig. S3G, Supple-
mentary Data 3). Thus, our results suggest that exacerbated
inflammatory responses, when coupled with other mechanisms that
include cell metabolism dysregulation, immunosuppression and
fibrosis-related signaling (both roles of TGFβ), increase COIVD-19
fatality risk.

Patients with delayed SARS-CoV-2-specific antibody responses
display sustained IFN signaling
To uncover the molecular mechanisms underlying the delayed anti-
body response, we compared whole blood transcriptomes between
clusters according to anti-RBD antibody responses at DSO11. To
account for the impact of disease severity on transcriptomic profiles,
we performed pairwise comparisons between low and high-antibody
patient clusters stratified by clinical status: we compared critical
clusters 1 versus 2, and non-critical clusters 3 versus 4. Hundreds of

Table 2 | Comparison of demographics and characteristics of
hospital stay between critical clusters 1 and 2 of Discovery
cohort with the validation cohort

Variables Entries Cluster
1 + 2—
Discovery

Validation
(entire
cohort)

p

N 87 76

Age (mean (SD)) 68.8 (13.72) 59.42 (13.75) <0.001

Sex (male (%)) 52 (59.8%) 60 (78.9) 0.0084

Max respiratory support throughout hospital stay

No O2 15 (17.2%) 0 (0%) <0.001

NC/HFNC 13 (14.9%) 0 (0%) <0.001

NIV 16 (18.4%) 25 (32.9%) 0.033

ETI 42 (48.3%) 49 (65.3%) 0.038

ECMO 1 (1.2%) 2 (2.6%) 0.48

ICU admission 56 (64.4%) 76 (100%) <0.001

Days in ICU (mean (SD)) 20.5 (20.55) 14.54 (10.04) 0.023

Metabolic risk factors

Any metabolic risk
factor

63 (72.4%) 50 (75.8%) 0.36

Obese (%) 17 (19.5%) 27 (40.9%) 0.022

Hypertension (%) 56 (64.3%) 40 (52.6%) 0.13

Diabetes (%) 34 (39.1%) 21 (27.6%) 0.12

Chronic diseases

One or more (%) 59 (67.8%) 38 (50.7%) 0.12

Chronic Kidney Dis-
ease (%)

22 (25.3%) 17 (22.4%) 0.66

Heart Failure (%) 22 (25.3%) 3 (3.9%) <0.001

Respiratory Disease (%) 20 (23.0%) 19 (25.0%) 0.76

Liver Disease (%) 12 (13.8%) 0 (0%) <0.001

Immunosuppressed
(%)

10 (11.5%) 10 (13.3%) 0.75

Malignancy (%) 12 (13.8%) 3 (3.9%) 0.03

HIV (%) 3 (3.4%) 0 (0%) 0.10

Neurological dis-
order (%)

11 (12.6%) 4 (5.3%) 0.10

Risk factors metabolic or chronic

One or more (%) 74 (85.1%) 58 (89.2%) 0.16

Outcome

Fatality DSO60 (%) 24 (27.8%) 18 (23.7%) 0.57

Values displayed are medians, with standard deviation in parentheses for continuous variables,
or percentages for categorical variables. Percentages were rounded to the nearest unit.
Unpaired t test for continuous variables, and two-sided χ2 test for categorical variables.
Bold values indicate statistical significance p <0.05.
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genes were differently associated (FDR <0.05, |logFC | > 0.5) with
antibody status for both comparisons (clusters 1 vs 2 DEGs = 400;
clusters 3 vs 4 n DEGs = 674, Fig. 3D, E, Supplementary Data 2). The
COVID severity score was increased in cluster 1 compared to all other
clusters (Fig. 3F). Various immune signatures were enriched among
genes displaying higher expression in the low-antibody response
clusters 1 and 3, most notably the IFN gamma response and IFN alpha
response pathways (FDR< 2e-4, Fig. 3G, Supplementary Data 3).

Compared to its high-antibody counterpart, cluster 3 had increased
signatures of complement and TNFα signaling, and cluster 1 had
increased oxidative phosphorylation (Fig. 3G). Gene ontology enrich-
ments on the Biological processes25 similarly showed that patient
clusters with delayed antibody responses were enriched for pathways
related to IFN signaling and to the defense against invading pathogens
(Fig. S3H, Supplementary Data 3), with cluster 3 further enriched for
pathways related to regulation of cytokine production and
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Fig. 2 | Delayed antibody kinetics is associated with protracted plasma vRNA
over a wide range of disease severity. A Sigmoidal curve fitted to the average
per day per patient cluster of RBD-specific IgG responses. The center of the error
bars (corresponding to the squares) represent coordinates where 50% of max IgG
level is reached per cluster (DSO50%). The 95% confidence intervals (shaded area on
graph) and P values (table at bottom right) were calculated using bootstrap com-
parison of DSO50%. Extrapolated DSO50% and 95% CI values are on the right of the
graph. BModel of plasma vRNA detection, fitted to the average per day per patient
cluster, among viremic patients only. Bootstrap on the area under the curve (AUC)
wasused to compare clusters, with p values provided in the table on the right of the
graph. Faded dots represent raw data points per DSO. C Average trajectory per

color-coded patient cluster when the PHATE embedding was performed using
cytokines7, tissue damage markers3 and DSO across all acute samples. Numbers in
large circles represent the day of symptom onset at that coordinate. Shaded area
represents confidence interval. Smaller circles in background are datapoints, color-
coded by average analytes expression. A, C N = 630 data points. B 224 datapoints
(only RNAemia+ participants were considered). A, B Two-stage bootstrap, with
1000 simulations. Pairwise comparison between all four clusters. C Bootstrapping
at the patient level was used to visualize the confidence ellipses representing
3 standard deviations around the average. See material and methods for details.
Source data are provided as Source_Data_File.xlsx.
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TLR7 signaling (Fig. S3I, Supplementary Data 3). Overall, the tran-
scriptomic profile of low-antibody clusters was characterized by
heightened defense pathways against pathogens and type I and II IFN
signatures.

To see whether the association between these pathways were
reproducibly associated to delayed antibody production, we per-
formed bulk whole blood RNA Sequencing on a subset of samples

prospectively collected within the validation cohort (V1 n = 18; V2
n = 14). We identified 48 DEG (FDR <0.05, |logFC | > 0.5) between both
clusters, the lower number being in line with the smaller size of the
clusters. The high fatality cluster was again enriched in the interferon
response pathways (Fig. S3J). It was also enriched in other pathways
associated to the discovery clusters with delayed antibody responses:
TNFa signaling via NFkB, inflammatory response and IL6 JAK
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STAT3 signaling. These results further support and validate the asso-
ciation between the IFN signatures and the delayed antibody response.

Within these interferon signatures, we found that certain
interferon-related genes aremore associatedwith severity than others.
Genes known to be involved in MHC class II antigen presentation and
processing, such as CD74, CD86, HLA-DRB1, and genes coding for
interleukin receptors that serve to inhibit proinflammatory cytokines,
such as IL10RA and IL18BP, are more highly expressed in less severe
patients (Fig. S3K). In contrast, other genes, including CD274 (PD-L1),
FCGR1A, SOCS3, TNFAIP6, and UPP1, display higher expression in cri-
tical patients compared to less severe patients (Fig. S3L). Most of these
latter genes are involved in immune- or inflammation-related pro-
cesses, highlighting that, within interferon signaling, it is those asso-
ciated with inflammation that are related to disease severity.

To further investigate these IFN signatures, we next performed
single sample (ss)GSEA combining all genes of both IFN gamma/alpha
response pathways into a single score (ssIFN, Fig. 3H). In line with the
enrichment analyses, clusters 1 and 3 had significantly higher ssIFN
scores than clusters 2 and 4, respectively. The ssIFN score showed a
strong negative correlation with contemporaneous RBD-specific IgG
levels (Fig. 3I), and showed weaker positive correlations with con-
temporaneous plasma vRNA (Fig. S3M), cytokine scores (Fig. S3N), and
tissue damage scores (Fig. S3O). Thus, sustained IFN responses are
associated with multiple immunopathological traits in COVID-19.

We next plotted the IFN score over days since symptomonset per
patient cluster (Fig. 3J). This analysis revealed that clusters 1 and 3 had
high and sustained IFN for a longer period than the two other patient
clusters, although all clusters converged around DSO15.

These results show that sustained upregulation of IFN pathways
was associated with the delayed generation of SARS-CoV-2-specific
antibody responses, this in patients exhibiting a wide range of disease
severity.

High IFN signaling is negatively associated with blood RBD-
specific B cell and plasmablast frequencies
To investigate the cellular basis of poor antibody responses in the low-
antibody patient clusters, we examined the blood SARS-CoV-2-specific
B cell and plasmablast (PB) populations (Fig. S4A). Staining peripheral
blood mononuclear cells (PBMCs) with two fluorescently-labeled
recombinant RBD probes identified RBD-specific B cells (Fig. 4A) and
PB (Fig. S4B). While RBD-specific B cells were detectable in con-
valescent patients (Fig. S4CD), RBD-specific PB were only detectable
during acute infection (Fig. S4EF), in linewith the kinetics of circulating
PB in COVID-1926. To account for lymphopenia in patients with
COVID-1926, weused contemporaneous clinical complete blood counts
(CBC) to calculate the absolute frequencies of RBD-specific B cells and
PB per mL of blood. Both populations correlated positively with each
other (Fig. 4B) and with RBD-specific IgG levels (Fig. 4C, D), consistent

with their role in antibody production. B cell frequencies negatively
correlated with the contemporaneous ssIFN score (Fig. 4E), but no
significant correlation was found for the PB (Fig. 4F). Neither popula-
tion correlated with the ssCOVID severity score (Fig. S4GH). The
cluster-level patterns were consistent with the strength of the IFN
signatures (Fig. 4G): cluster 3 had lower counts, and clusters 2 and 4
greater counts of SARS-CoV-2-specific B cells. For PB, differences did
not reach statistical significance, as the spread within clusters was
more pronounced (Fig. 4H). There were no differences between acute
infection clusters in isotype expression by RBD-specific B cells, which
were mostly IgM+ and/or IgG+ (Fig. S4I). This pattern differed from a
separate cohort of convalescent outpatients (DSO> 100), in whom
RBD-specific B cells were almost exclusively IgG+. RBD-specific PB
displayed similar trends, albeitwith a greater representationof IgG/IgA
double-positive than their B cell counterparts (Fig. S4J).

Taken together, these results suggest that the sustained IFN sig-
naling may hamper the generation of SARS-CoV-2-specific B cells, and
consequentlydelay antibody responses in patientswith various clinical
presentations.

High IFN signaling is negatively associated with Spike-specific
CD4+ T cell responses
As persistent IFN signaling impairs adaptive virus-specific T helper
immunity in murine models27,28, we next examined the links between
IFN transcriptional signatures and development of SARS-CoV-2-
specific T cell responses. During acute SARS-CoV-2 infection, immu-
nodominant peptides recognized by CD4+ T cells were mainly in the
Spike-derived peptide pool, which also elicited CD8+ T cell responses
in amajority of patients (Fig S5A–C).Wemeasured the T cell responses
against Spike using an activation-induced marker (AIM) assay we pre-
viously described29. Spike-specific CD4+ T cells were detected by co-
upregulation of CD69 with CD40L or OX40. We used a Boolean OR
gating strategy to include overlapping populations (Figs. 5A, S5D). We
again calculated absolute counts of Spike-specific CD4+ T cells by
using CBC.

Spike-specific CD4+ T cells were detectable in most acute and all
convalescent samples (Fig. S5E). These frequencies correlated
negatively with the ssIFN score (Fig. 5B), suggesting a negative
impact of IFN signaling on T helper responses. There was no corre-
lation between CD4+ T cell responses and ssCOVID severity scores
(Fig. 5C). Spike-specific CD4+ T cells counts positively correlatedwith
RBD-specific B cells counts (Fig. 5D), in line with the role of CD4+ T
cell help in B cell immunity. No significant correlation was observed
between T helper responses and RBD-specific PB (Fig. 5E). Spike-
specific CD4+ T cell responses were detected in most patients in all
clusters, except for cluster 3 (Fig. 5F), underscoring a defect in
adaptive T helper responses and paralleling the defects identified for
RBD-specific B cells.

Fig. 3 | Patients with delayed SARS-CoV-2-specific antibody responses display
sustained IFN signaling. A Principal component analysis (PCA) based on sig-
nificant DEG (FDR<0.01, n = 1346 genes) from all pairwise comparisons across the
4 patient clusters. Each dot represents a separate patient, sampled at DSO11, and
color-coded to their respective cluster. B PCA on whole transcriptome (n = 10,236
genes) of patients in cluster 1 only at DSO11, color coded by survival or fatal out-
come at DSO60. C Volcano plot of differentially expressed genes (DEG) based on
outcome, with significant genes color-coded (FDR <0.05; |logFC | > 0.5). Dashed
lines represent the nominal p-values corresponding to an FDR=0.05, and points
with an FDR <0.05 are highlighted in color. Mauve dots represent genes increased
in fatal outcome, and pink, genes increased in survivors. Relevant genes are tagged.
D, E Volcano plots of contrasts (D) 1 vs 2 or (E) 3 vs 4, with significant genes
(FDR<0.05; |logFC | > 0.5) color-coded and relevant genes tagged. F Single sample
(ss)GSEA of published COVID-19 severity score23 across patient clusters. G GSEA
using Hallmark dataset on t-statistics from aforementioned contrasts. Red dots are
pathways enriched in the low antibody clusters 1 and 3 compared to 2 and 4,

respectively, while blue dots are pathways enriched in high antibody clusters.
Significant hits are colored. Size of the circle is representative of significance of
enrichment.H ssGSEA IFN score calculated from the combinationof the “interferon
gamma response” and “interferon alpha response” Hallmark gene sets across
patient clusters. I Correlation between IFN score and contemporaneous RBD-
specific IgG levels at DSO11. J ssGSEA IFN score over time (DSO< 40) per patient
cluster, with confidence intervals shaded. R and p values of each cluster are
annotated at the bottomof the figure.N: 1 = 100; 2 = 93; 3 = 86, 4 = 98 (377 in total).
C, D, E P-values were obtained from least squares linear regression models (two-
tailed). False discovery rates were calculated using a permutation-based approach
that derives the null empirically. F, H Kruskal-Wallis with Dunn’s multiple com-
parison tests. Adjusted p-values are shown.G fgsea p-values were calculated using a
permutation-based approach. Multiple testing correction was performed using the
Benjamini-Hochberg method. I, J Two-tailed Spearman correlations. Medians are
shown in bar charts. Source data are provided as Source_Data_File.xlsx (ssGSEA
scores), as well as in Supplementary Data 1, 2 and 3.
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Wemeasured Spike-specific CD8+ T cells by their co-upregulation
of CD69 and 41BB (Fig. 5G). Spike-specific CD8+ T cells were also
detectable in most acute and all convalescent samples, although they
were less frequent than their CD4+ T counterparts (Fig. S5F). They
correlated neither with ssIFN nor with ssCOVID scores (Fig. 5HI), nor
did they differ across clusters (Fig. 5J). Despite the differential asso-
ciation of Spike-specific CD4+ and CD8+ T cell responses with ssIFN
signatures, the two cell populations themselves correlated positively
(Fig. 5K), consistent with the role of CD4+ T cell help in primary CD8+ T
cell responses.

Taken together, these results suggest that sustained IFN signaling
negatively impacts SARS-CoV-2-specific CD4+ T cell responses, which
in turn hamper the generation of SARS-CoV-2-specific B cells.

Discussion
Through a relatively simple immunovirological plasma profile
11 days after symptom onset (14 analytes: RNAemia, seven cyto-
kines, three issue damage markers and three RBD-specific antibody

isotypes), we identified COVID-19 patient endotypes with important
differences not only in disease severity and outcome, but also in the
quantity and timing of innate, antibody, and cellular responses to
SARS-CoV-2. We also found that excessive IFN signaling likely con-
tributes to differential kinetics of virus-specific antibody, B cell and
CD4+ T cell responses. Early robust antibody and T cell immunity,
coupled with a low inflammatory profile and low plasma viremia, is
associated with moderate disease and good prognosis (cluster 4).
When robust SARS-CoV-2-specific immune responses are main-
tained in the setting of a higher inflammatory profile, as typically
observed in critical disease, the prognosis is still good (cluster 2).
Patients with sustained IFN signaling also have delayed antibody
and CD4+ T cell responses, which can be associated with a good
prognosis if viremia and inflammation are low or moderate (cluster
3). However, sustained IFN signaling coupled with high viremia,
exacerbated inflammatory profile and low SARS-COV-2-specific B
cell and CD4+ T cell responses is associated with the distinctively
high-fatality cluster 1.
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Fig. 4 | Elevated IFN signaling is negatively associated with RBD-specific B cell
and plasmablast frequencies. A Representative flow cytometry plots of RBD-
specific B cells identified per patient cluster at DSO11.B–F Correlation between (B)
absolute counts of RBD-specific B cells and RBD-specific PB; (C) absolute counts of
RBD-specific B cells andRBD-specific plasma IgG levels; (D) absolute counts ofRBD-
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specific B cells and ssGSEA IFN score; (B) absolute counts of RBD-specific PB cells

and ssGSEA IFN score. G,H Per patient cluster, absolute counts of RBD-specific (G)
B cells or (H) PB. n for cluster 1 = 14; 2 = 16; 3 = 12; 4 = 13. B, C, D–F Two-tailed
Spearman correlations. G,H Kruskal-Wallis with Dunn’s multiple comparison tests.
Adjusted p-values are shown. For patients with undetectable RBD-specific B and/or
PB counts, they were assigned value 0.1. Medians are shown in bar charts. Source
data are provided as Source_Data_File.xlsx.

Article https://doi.org/10.1038/s41467-024-48556-y

Nature Communications |         (2024) 15:4177 9



Among critically ill patients, our approach delineated the subset
of individuals at very high risk of fatality from those with unexpect-
edly good prognosis with greater accuracy compared to binning
patients based on clinical severity, underlining the advantage of
using immunovirological endotypes. The cluster-based method
combined with model fitting and bootstrap pairwise comparisons

made up for the sparsity of data points per patient, allowing for
robust comparisons of trajectories in a time-dependent manner. The
findings were highly reproducible in a separate cohort located in a
different country, despite differences in the laboratory methods
used. This robustness of the k-means algorithm, which builds on the
high-dimensional relationships of features rather than absolute
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Fig. 5 | Elevated IFN signaling is negatively associated with Spike-specific CD4+

T cell responses. A Representative flow cytometry gates used to detect Spike-
specific CD4+ T cells following 15 h peptide stimulation. BooleanORgating strategy
used.B–E Correlations between absolute counts of Spike-specific CD4+ T cells with
(B) ssGSEA IFN score; (C) ssGSEA COVID-19 severity score; (D) absolute counts of
RBD-specific B cells or (E) absolute counts of RBD-specific plasma cells.
F Comparison of absolute counts of Spike-specific CD4+ T cells per patient cluster.
G Representative flow cytometry gate used to detect Spike-specific CD8+ T cells

following 15 h peptide stimulation. H, I Correlations between absolute counts of
Spike-specific CD8+ T cells with (H) ssGSEA IFN score and (I) ssGSEA COVID-19
severity score. J Comparison of absolute counts of Spike-specific CD8+ T cells per
patient cluster.K Correlation between the absolute counts of both Spike-specific T
cell populations. n for cluster 1 = 11; 2 = 11; 3 = 9; 4 = 10. B–E, H, I, K Two-tailed
Spearman correlation. F, J Kruskal-Wallis with Dunn’s multiple comparison tests.
Adjusted p-values are shown. Medians are shown in bar charts. Source data are
provided as Source_Data_File.xlsx.
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values, can be a major asset in multicentric translational biomedical
research, where ensuring reproducibility of data can be complicated
by the use of diverse technical platforms (e.g., institutional clinical
lab instruments). For instance, despite measuring antibodies tar-
getting different SARS-CoV-2 proteins (RBD for discovery; N for
validation), both cohorts displayed low responses at DSO11 among
the high fatality clusters. These results suggest an effect on the
antibody response against SARS-CoV-2 as a whole, and underscore
the value of a multiparametric approach in deciphering patient
heterogeneity.

The RBD-specific antibody trajectory analyses revealed that the
low antibody levels observed at DSO11 in clusters 1 and 3 were due to a
delayed initiation of the antibody response to RBD, rather than an
inability to do so. Indeed, the modeled curves converged prior to
DSO30, consistent the robust SARS-CoV-2 specific antibody responses
in convalescent individuals after critical disease. One unavoidable
limitation here is possible survivorship bias, as we cannot determine if
the critical cases who succumbed early in disease course had the
potential to mount this response. These granular analyses also differ-
entiate vRNAkinetics that do notmerely alignwith clinical severity and
were not identified by more traditional statistical tools1,30. While vRNA
loads were highest in the high-fatality cluster 1, they were also sus-
tained in the low-antibody, non-critical cluster 3, whereas both clusters
that rapidly developed RBD-specific antibodies (2 and 4) readily
achieved viral clearance. These results are consistent with the critical
role of antibody responses in controlling viral replication. In out-
patients, anti-Spike neutralizing monoclonal antibodies and antiviral
drugs decrease the risk of disease progression only when given early
after symptom onset31,32. There is also no or limited impact of mono-
clonal antibodies in people hospitalized for COVID-1933, except for a
subset of those who have not yet seroconverted34. These data indicate
that once underway, the pathogenic inflammatory cascades, which
diverge as early as DSO8, have limited sensitivity to these
interventions.

Whole-blood transcriptional profiling provided important insight
into the molecular features underpinning these endotypes. While the
hierarchy of the COVID-19 severity signature we previously
established23 followed the clinical profile, pair-wise comparisons
between the two critical clusters (1 vs 2) and between the non-critical
clusters (3 vs 4) revealed differences in gene expression beyond dis-
ease severity. The pathways upregulated in low-antibody clusters 1 and
3, including IL-6-JAK-STAT3 signaling and other inflammatory path-
ways, are those forwhich blunting through therapies results in survival
benefit (specifically by tocilizumab, sarilumab and baricitinib; and
broadly by dexamethasone)4,9,11, supporting amechanistic explanation
for these interventions. Signatures of complement activation and sig-
naling through TLR7 and TNFα were only upregulated in cluster 3,
suggesting that innate immunitymaycontribute to amoderate disease
course despite sustained IFN signaling. Conversely, fatal cases of
cluster 1 had further upregulation of IL-6-JAK-STAT3 signaling and
inflammation, with exacerbated TNF signaling compared to cluster 1’s
survivors. They also exhibited lower expression of MYC targets, which
include many proliferation and anti-apoptotic pathways, along with
depressed metabolic pathways. These findings suggest a disruption of
key cellular processes in patients who subsequently succumb to their
illness,whichmayhelpguide investigations of new therapeutic targets.

Becauseof potentialmechanistic implications, a key finding of the
transcriptional analyses is the differential kinetics of both type I and II
IFN signatures amongpatient clusters. Althoughpronounced in cluster
1 fatalities, exacerbated IFN signatures did not merely coincide with
disease severity, but rather with impaired generation of SARS-CoV-2-
specific antibody, B cell and CD4+ T cell responses. These defects are
probably causally linked, given the critical role of CD4+ T cell help for B
cells35. In contrast, we observed no significant associations with CD8+ T
cell responses. These patterns suggest that protracted activation of

IFN pathways can adversely affect some anti-SARS-CoV-2-specific
responses, in addition to impairing repair mechanisms of damaged
lung tissues36,37. One potential mechanism would be the decreased
efficacy of antigen presentation in the presence of high interferon
signaling38, in line with the negative association those genes have with
severity in our data. Seminal studies in the murine lymphocytic chor-
iomeningitis virus (LCMV) model support this hypothesis28,39: while
IFNs are critical in the early generationof antiviral responses, sustained
type I IFN signaling in chronic Clone 13 infection was associated with
poor antibody, B cell and CD4+ T cell responses. In this context,
blockade of type I interferon signaling by an anti-IFNAR1 antibody
decreased viral loads and improved immune responses. A similar
benefit has recently been observed though the modulation of type I
IFN in SARS-CoV-2 infection of rhesus macaques40. This dual role of
IFN, where timing, rather than quantity, is central to an appropriate
adaptive response, is dubbed “The Interferon paradox”41, and is also
supported by data in SIV infection of non-human primates42. In con-
junction with data supporting a protective role of IFNs early in COVID-
19 course12,13, our results suggest this paradox is operative in SARS-
COV-2 infection indefinedpatient subgroups (even though, in contrast
to LCMV Clone 13 and SIV, this major human viral disease is—with rare
exceptions—an acute viral infection). This explains discrepancies
around IFN in the literature. Individuals with inborn errors in type I IFN
responses13, genetic variants which lower IFN responsiveness43 or pre-
existing anti-IFN autoantibodies12 are at greater risk of severeCOVID-19
because they never have the initial IFN (key for reducing viral repli-
cation and the generation of an initial anti-viral response). However,
the IFN signature should drop quickly, or it hampers the antiviral
response and causes immunopathology. Patients are often put on
mechanical ventilation around 9 days after symptom onset, so studies
comparing critical and non-critical cases enrich in patients at those
times, which is why high IFN signal was associated to severe disease in
blood transcriptomics44 and lung in situ45 studies. It also explains the
results from the clinical trial with IFN14: it was administered too late to
have any beneficial effect, and only the fewpeoplewith genetic defects
in the IFN pathway would have benefited from it.

In summary, we show that SARS-CoV-2-infected patients experi-
encing high, sustained IFN signaling have a delayed generation of
Spike-specific CD4+ T cells and RBD-specific B cells. This directly links
to a delay in the antibody response against the virus and, in patients
also presenting increased inflammation, tissue damage, and plasma
RNAemia, is associated with a highly fatal profile. Compared to
mechanistic studies in mice, a weakness of the present observational
study is the lack of direct manipulation of the type I IFN pathway.
However, our results can have direct clinical relevance, and at least in
part explainwhy clinical trials of recombinant IFN therapy have yielded
disappointing results in COVID-1946. While our study lacked investi-
gation of the lung compartment, others also support a pathophysio-
logic role of excessive type I IFN in this organ16,36. Hence, excessive type
I IFN signaling is likely detrimental at multiple levels that involves
adaptive immunity, and tissue repair. Whether targeted blockade of
IFN pathways—rather than IFN supplementation—might be beneficial
in specific subgroups of patients with COVID-19 would require further
investigation.

Methods
Participants and samples
We investigated prospectively COVID-19 individuals hospitalized
between April 2020 and August 2021 with symptomatic infection with
a positive SARS-CoV-2 nasopharyngeal swab (NSW) reverse-
transcription polymerase chain reaction (RT-PCR) who were admit-
ted to the Centre Hospitalier de l’Université de Montréal (CHUM) or
the Jewish General Hospital (JGH) and recruited into the Biobanque
Québécoise de la COVID-19 (BQC19)47 Blood draws were performed at
baseline and, when consistent with patient care, at 2, 7, 14 and 30 days
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(±3 days) after enrollment. Exclusion criteria were breakthrough or
reinfection, plasma transfer therapy (could change plasmatic profile),
or vaccination prior to infection. The study was approved by the
Research Ethics Board of the Jewish General Hospital (JGH) and the
Comité d'Éthique à la Recherche (Research Ethics Board) du Centre
Hospitalier de l’Université deMontréal (CHUM) (multicentric protocol
for the BQC19 biobank: MP-02-2020-8929; local protocol for the spe-
cific study: 20.169) and written informed consent obtained from all
participants or, when incapacitated, their legal guardian before
enrollment and sample collection. Research adhered to the standards
indicated by the Declaration of Helsinki. Blood draws were also per-
formed on 50 asymptomatic, SARS-CoV-2 antibody negative unin-
fected controls (UC), early in the pandemic (spring 2020). COVID-19+
hospitalized patients were stratified based on the severity of respira-
tory support at the DSO11 timepoint: critical patients required
mechanical ventilation [noninvasive ventilation, endotracheal intuba-
tion, extracorporeal membrane oxygenation – (ECMO)], and non-
critical patients, encompassing patients with moderate disease
required no supplemental oxygen and patients with severe disease
requiring oxygen supplementation by nasal cannula. Mortality was
followed up to DSO60. Medical charts were reviewed by physicians
and study coordinators for data collection on demographics, co-
morbidities, risk factors, severity state, time of infection, etc. (see
Table 1). Median age of the UC cohort was 37 years (range: 24–57), and
30 individuals were males (60%). Clinical data were collected within
hospital units by the clinical teams and clinical research teams, as part
of standard patient care (and therefore included in the electronic
medical record) or to fill in some specific fields of the case report form.
Patient and sample identifiers were created in our research group and
are not known to anyone outside our research group, as to protect the
identity of the study participants. All samples were biobanked and
conserved at −80 °C (for plasma) or in the gas phase of liquid nitrogen
(for PBMCs).

The validation cohort was recruited at Uppsala University Hospi-
tal in Sweden. The study was approved by the SwedishNational Ethical
Review Agency (Pronmed study; 2017-043, amended 2019-00169,
2020-01623, 2020-05730 and 2022-00526-01) and registered a priori
at ClinicalTrials.gov (NCT03720860). Informed consent was obtained
from the patient or next of kin if the patient was unable to give con-
sent. The Declaration of Helsinki and subsequent revisions were fol-
lowed. The study included 123 adult patients admitted to intensive
care during the first wave of the pandemic between March 15th, 2020,
and July 14th, 2020. All patients had confirmed SARS-CoV-2 by RT-PCR
fromNSW. Exclusion criteria were pregnancy, currently breastfeeding,
and age under 18. A validation cohort of 76 patients was collected from
the Pronmed study biobank with analyses that matched the para-
meters used for PHATE embedding in the discovery cohort. All sam-
pleswerebiobanked and conserved at−80 °C (for plasma)or in the gas
phase of liquid nitrogen (for PBMCs).

Ethics and inclusion statement. Local researchers from Montreal
were included throughout the research process. As it focused on
identification of high-risk cases following COVID-19, it is locally-
relevant research. The expected contributions of each collaborator
was decided upon during study design. This study was done in colla-
boration with the BQC19 biobank (https://www.bqc19.ca/en), and our
citations reflect that.

With the inclusion of a validation cohort, researchers from
Upsalla, Sweden, oversaw recruitment of local collaborators as they
sawfit. Given the urgency of COVID-19 researchduring thepandemic,
agreements between institutions were expedited, which allowed us
to partially share data. Although there was no evidence that SARS-
CoV-2 could be transmitted from blood, all research performed on
blood was performed in BSL2*, with the use of N-95 and protective
splash guards.

The study was approved by local ethics committee, as stated
previously. For both cohorts, patient and sample identifiers were cre-
ated in our research group and are not known to anyone outside our
research group, as to protect the identity of the study participants.

Measurements of plasma analytes
Quantification of plasma SARS-CoV2 RNA. For the discovery cohort,
absolute copy numbers of SARS-CoV-2 RNA (N region) in plasma
samples were measured by real-time PCR. Total RNA was extracted
from 230μL of plasma collected on acid citrate dextrose (ACD) tubes
using the QIAamp Viral RNA Mini Kit (Qiagen Cat. No. 52906). Two
master reactionmixes with specific primers and probes were prepared
for quantification of N gene from SARS-CoV-2 and 18 S (as a control for
efficient extraction and amplification). N SARS-Cov2 quantifications
were performed in quadruplicate and 18 S measurements were per-
formed in duplicate. A positive and no-template negative controls
were included in all experiments. Purified RNA N transcripts (1328 bp)
were quantified by Nanodrop, and the RNA copy numbers were cal-
culated using the ENDMEMO online tool (see “STAR methods” for
details).

For the external validation cohort, plasma viral RNA was deter-
mined by real-time RT-PCR recognizing the SARS-CoV-2 N-gene using
the 2019-nCoV N1 reagent based on the Center for Disease Control
(CDC) of the United States protocol as described previously3.

Measurements of cytokines, chemokines and tissue damage mar-
kers. The analytes measured are listed in Supplementary Table S1. For
the discovery cohort, duplicates of SARS-CoV-2-inactivated plasma
samples were analyzed using a customized Human Luminex Discovery
Assay (LXSAHM-26, R&D Systems). Datasets were acquired on two
separate machines (BioPlex, MagPix), with 30 repeat samples per-
formed on both. Linear regressionwas performed for each analyte and
regressions used for batch correction of samples acquired on the
BioPlex. As PHATE requires complete datasets, some analytes with low
sensitivity that could not be corrected were excluded: CCL20, CCL3,
CCL7, IFNα, GM-CSF, IL-10, IL-17A, IL-1b, IL-2, and IL-33. We retained all
analytes significantly associated with fatal outcome (p < 0.01) in our
previous work1: TNFα, CXCL13, IL-6, IL-23, CXCL8/IL-8, angiopoietin-2,
RAGE, and Surfactant Protein D. For the validation cohort, plasma
cytokines were measured using citrated plasma samples for 27 bio-
markers with the Bio-plex assay using a Luminex MagPix instrument
(Bio-Rad Laboratories AB, Sundbyberg, Sweden) as described
previously6. Of these 27, only the analytes in common with those
measured in the discovery cohort were retained for the clustering and
the PHATE embedding: TNFα, IL-6, CXCL8, IL1Ra, and CCL2. Plasma
RAGE was also measured (and included as input to k-means and
PHATE) using the Proximity extension assay (PEA) at the Clinical Bio-
markers Facility (SciLifeLab, Uppsala, Sweden) using the Cardiovas-
cular panel from OLINK Proteomics® (Uppsala, Sweden).

Antibody measurements. In the discovery cohort, RBD-specific IgG,
IgM and IgA were quantified using an in-house SARS-CoV-2 RBD ELISA
assay, as described elsewhere48. Plasma frompre-pandemic uninfected
donors were used as negative controls to calculate the seropositivity
threshold in the ELISA assay. Themonoclonal antibody CR3022 (RRID:
AB_2848080, from Dr M. Gordon Joyce)49 was used as a positive con-
trol. The seropositivity threshold was established using the following
formula: mean of all COVID-19 negative plasma + (3 standard deviation
of the mean of all COVID-19 negative plasma).

In the validation cohort, nucleocapsid-specific antibody levels at
DSO11 were measured using the NovaLisa® SARS-CoV-2 IgA, IgM, and
IgG kits according to manufacturer’s instructions (COVA0940,
COVM0940, COVG0940, Novatec Immundiagnostica, Dietzenbach,
Germany), and at DSO 20 using by FluoroEnzymeImmunoassay (FEIA),
Phadia AB, Uppsala, Sweden as described previously17.
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Data dimensionality reduction and clustering
PHATE. Dimensionality reduction is a necessary step to visualize and
explore high dimensional datasets. While PCA50 is commonly used,
the resulting components are restricted to a linear projection of the
input data, thereby limiting the expressiveness of the resulting
visualizations. Recent advances in dimensionality reduction techni-
ques instead favor so-called manifold learning algorithms, such as
PHATE (Potential of Heat-diffusion for Affinity-based Trajectory
Embedding), which can compute a nonlinear transformation of the
data to effectively represent the latent structure of a dataset in low
dimensions22. PHATE begins by computing a sample-sample affinity
graph, i.e., a graph connecting pairs of similar samples to form
“neighborhoods”. The graph can then be leveraged to compute
transition probabilities—the probability of a sample “jumping” to one
of its’ graph neighbors in a randomwalk. By iteratively repeating this
operation in a process known as diffusion, transition probabilities
can be derived for any pair of samples in the dataset and therefore
represent a useful notion of pairwise similarity, with probability
transitions being high between close samples in terms of the diffu-
sion geometry. Armed with these similarities, PHATE computes a
two-dimensional embedding where the Euclidean distance reflects
the dataset’s intrinsic structure as captured by diffusion, thus
enabling the interpretation and analysis of high dimensional data
Data samples are subsequently embedded in a lowdimensional space
(usually, 2 dimensions for visualization on scatter plots) by preser-
ving both the local and long-range pairwise similarities, meaning the
distance between “neighborhoods” in the embedding are mean-
ingful. Intuitively, this can be thought as « unfolding » the sample-
sample graph in low dimensions while preserving the graph’s
intrinsic structure, as captured by diffusion affinities.

In practice, only explanatory variables (in our case, plasma con-
centrations) are used as input to PHATE and the structure of the
embedding is therefore entirely unsupervised. PHATE then generates
informative low-dimensional representations of the data and is known
to preserve substructures of interest—such as clusters—while being
robust to noise and non-uniform sampling of the underlying data
manifold. Any variable of interest—such as patient outcome or clinical
data—can be used for coloring. Particularly, explanatory variables can
be used as color gradients to observe how they are distributed on the
visualization (e.g., to identify high antibody and low antibody
neighborhoods).

DSO11 PHATE embeddings. We computed PHATE visualizations of
cross-sectional samples taken 11 days after symptom onset (DSO11 + /
− 4 days) in the discovery cohort (n = 242, 14 measurements) and the
validation cohort (n = 76, 10 measurements). Samples with missing
measurementswere removed, and if a givenpatient hadmore thanone
sample in the considered time period, only the one closest to DSO11
was included. Each 2D marker in the resulting scatter plots therefore
summarizes the plasma profile of a single patient. We use standard
scaled (mean 0, variance 1) log concentrations of each sample as input
to the PHATE Python package (v1.0.9) with a knn parameter of 10 for
the discovery cohort and of 5 for the validationone. Both cohorts use a
diffusion time t parameter of 50.

DSO11 K-means clustering. K-means51 clustering aims to partition
samples into different clusters with high intra-cluster similarity. The
identified clusters can then serve as a basis for comparing typical
groups or sample profiles. The method represents clusters as cen-
troids (cluster centers), and iteratively refines them by alternating two
steps: (1) assign samples to the closest centroids, and (2) replace
centroids with the per-cluster sample means based on current
assignments. To mitigate limitations of K mean relating to local
minima and centroid initialization, our code runs 10 initializations and
picks the best one.

We clustered the same samples as the ones used for the DSO11
PHATE embeddings, using the k-means implementation of the scikit-
learn52 Python package (v1.0.2), using Euclidian distances. We used 4
clusters for the discovery cohort and 2 clusters for the validation
cohort due to the smaller number of samples. Data preprocessing was
identical to the process used for PHATE.

MELD. Of particular interest to visualize binary outcome variables is
the MELD algorithm53, which performs a low-pass filtering of binary
variables over the sample-sample graph to make them “smoother”
over neighborhoods. The resulting values are used to compute relative
likelihoods, thereby indicating if some groups of similar samples are
enriched or depleted in a specific condition. In practice, this can be
used to turn a binary variable into a continuous gradient which can be
visualized on top of a PHATE embedding. We used MELD (v1.0.0) to
obtain smooth visualizations of critical severity and fatal outcome in
the DSO11 discover cohort.

Longitudinal embedding. We visualized the evolution of cytokine and
tissue damage profiles in the discovery cohort using a second PHATE
longitudinal embedding. The time horizonwas increased to include all
samples fromDSO0 toDSO28.Only samples frompatients selected for
the DSO11 analysis were considered to better understand the pro-
gression of the identified DSO11 subgroups in the discovery cohort.
Contrary to the previous embedding, each resulting 2Dmarker reflects
a sample (n = 491) and the same patient can be represented multiple
times. To emphasize temporal structure, DSO was used as an input for
PHATE, in addition to the 10 cytokine and tissue damage log con-
centrations. We again centered the data (mean 0) and apply standard
scaling (variance 1). We then upweighted the time variable by a factor
of √8 in distance computations in PHATE to better visualize time, as
suggested in22. The resulting PHATE embedding is colored by the
average of the 10 standard scaled log concentrations used as input.

To visualize the evolution of theDSO11 clusters, we computedone
multivariate linear regression on the samples of each cluster usingDSO
as the explanatory variable and the 10 log concentrations as a multi-
variate response. The linear model of each cluster was used to obtain
continuous log concentration predictions for the DSO0-28 range. The
resulting log concentration curves were projected onto the 2D pre-
computed longitudinal embedding using interpolation with existing
samples, as implemented in the PHATE Python package. Two-stage
bootstrap (see “Statistical analyses”) was used to visualize the con-
fidence ellipses representing 3 standard deviations around the
average.

Statistical analyses
Statistical comparisons of single variables. The type of statistical
test is specified in the figure legends. Given the size of the cohorts, we
opted for conservative non-parametric tests. Mann–Whitney U test
(MW) was performed on unpaired contrasts of interest (ex: within
cluster 1, survivor vs deceased). If multiple MW were performed in a
samepanel, wefirst performed aKruskal-Wallis (KW) test, then theMW
was corrected for multiple comparisons with Dunn’s multiple com-
parison test. For the comparison of categorical values (demographics
table, Table 1), we applied Chi2 test. For comparisons between three
paired values (measurement of cytokine+ S-specific T cell response),
we performed a Friedman test, with correction using Dunn’s multiple
comparison test. Participants with missing data (for example, who did
not enough cells to perform stimulation with all three peptide pools)
were excluded from both the panels and statistical analysis.

In the setting of pie charts, permutation tests (10,000 permuta-
tions) were calculated using the SPICE software (https://niaid.github.
io/spice/). All other statistical tests were performed with Prism v9.5.0
(GraphPad). Statistical tests were considered two-sided and p <0.05
was considered significant (bolded in the panels).
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Two-stage bootstrap. The two-stage bootstrap [sometimes called
Hierarchical Bootstrap54] is a resampling method that accounts for
intra-patient correlation in instances of repeated measures. For a
sample containing n patients, possibly having repeated measures, it
first creates a bootstrap sample, by randomly sampling with replace-
ment n patients. This entails that patients may be sampled more than
once, or even bemissing from the bootstrap sample. Then, for a given
patient in the bootstrap sample, the second stage consists in randomly
sampling its observations with replacement, generating a patient sub-
sample with the same number of observations the patient had in the
original sample. Again, in this stage, someof the patient’s observations
can be sampled multiple times, or missing, owing to the fact that
sampling is done with replacement. All such patient sub-samples are
aggregated into a full bootstrap sample. Typically, one generates a
large amount of bootstrap samples anduses the distribution of the test
statistic across these bootstrap samples as an estimate of the true
underlying distribution, which can be hard, or even impossible, to
derive analytically55. This method was used to compare, among the
four patient clusters of the discovery cohort, (i) antibody kinetics; (ii)
AUC for vRNA, and (iii) PHATE cytokine trajectories.

Model of RBD-specific IgG, IgM, and IgAkinetics. Kinetics of IgG, IgA
and IgMantibodyproductionweremodeled using a logistic curvefit of
log(antibody) ~ DSOwith the drm function of the drcR package56 set to
the L.4 function (i.e. the 4-parameter logistic curve). While the lower
limit of detection was that of the assay, we did not set any upper limit
of detection; yielding in effect 3 parameters of estimation (the location
parameter, the upper limit of detection, and the slope of the curve at
the location parameter value). The pairwise differences between
location parameters of these curves, i.e., the DSO at which 50% of
maximal antibody production was reached, were used to compare
clusters’ antibody production kinetics. 1000 two-stage bootstrap
sampleswere used toobtain confidence intervals around the estimates
of pairwise differences between location parameters of the logistic
curves. The main strength of this testing approach is that we need not
rely on strong assumptions to find a suitable distribution for the test
statistic (i.e. the pairwise difference between the DSO at which 50% of
maximal antibody production was reached), thanks to bootstrapping.
As such, this method is robust to misspecification of the
kinetics model.

Area under curve (AUC) on plasma viral RNA quantities over time.
To quantify viral load among viremic patients, we estimate average
Viral Load (copies/ml) * Time (DSO) as an Area Under Curve (AUC) for
eachcluster, the curves beingGeneralizedAdditiveModels (GAM)with
smooth spline estimations of the relationship Viral Load ~ Time over
the period ranging from DSO0 to DSO30. We used the Lower Level of
Quantification (LLOQ) threshold of 65 copies/ml. We chose to not
transform Viral Load to allow for interpretation of the AUC based on
the original units (copies/mL * time). We used the R package mgcv
function gam. Four4 knots and gaussian kernel smoothing gave the
best bias-variance tradeoff. AUC was computed for DSO0 to DSO25 to
eliminate inherent instability at border (DSO30) of smooth spline fits.
The fitted values at DSO0 were all equal to the LLOQ threshold, so no
such instability was present. AUC inter-cluster pairwise differences
were computed for 1000 two-stage bootstrap simulations.

To only consider patients with RNAemia, patient observations
retained were those with at least 1 measurement over the LLOQ
threshold within the DSO0-30 timeframe (Supplementary Table 2).
The results were robust to the presence of outlier patient 268
from CHUM.

Power calculation for the number of samples to test for RBD-
specific B cells. We hypothesized that the frequency of circulating
RBD-specific B cells would be different in the low-antibody clusters

compared to the high-antibody clusters (Cluster 2 vs Cluster 1 and
Cluster 4 vs Cluster 3). To assess this hypothesis, we computed power
curve estimates of RBD-specific B-cell counts (RBD.B) with appropriate
power. As no useful previous estimates of effect sizes were found in
existing literature, we used RBD-specific IgG relative light unit (RLU)
(RBD.IgG) as a proxy of RBD-specific B cells (RBD.B), basedonprevious
evidence of their association29. Relationship between RBD.B and
RBD.IgGwas determined basedon a linear regressionfit on a sample of
n = 14 patients for which both measures were available; variability in
this relationship was simulated using 1000 vanilla bootstrap simula-
tions of the above sample. These 1000 regressions all at once were
used to predict the values of RBD.B from RBD.IgG for 1000 distinct
bootstrap samples of n = 216 patients during the acute phase of the
infection (~DSO11). In each of these simulated samples, an effect size
measure (Cohen’s d) was computed for RBD.B. We thus obtain a dis-
tribution of effect sizes for both inter-cluster differences, from which
we computed proper sample size according to a conservative estimate
based on 97.5th percentile of the effect size distributions and a stan-
dard power of 0.8. The sample sizes obtainedwere n = 32 and n = 9 per
cluster for inter-cluster differences Cluster 2 vs Cluster 1 and Cluster 4
vs Cluster 3, respectively.

Statistical models were generated using the following R packages:
drc (v3.0-1) and mgcv (v1.9-1).

Bulk RNA sequencing
Sample collection, processing and sequencing. For the discovery
cohort, we utilized RNA sequencing data from the “core assays” of the
BQC-19 Biobank. For information about the data access procedure,
refer to https://en.quebeccovidbiobank.ca/analyses-de-bases-bqc19
and the “Data Availability” section. The technical procedures used to
generate the BQC-19 transcriptomic data were as follows. Blood was
collected into PAXgene Blood RNA tubes (BD Biosciences; San Jose,
CA, USA) to ensure stabilization of intracellular RNA. Immediately after
collection, tubes were inverted 10 times, kept at RT for 24 h, −20 °C for
an additional 24 h, and stored at −80 °C. Batches of tubes were thawed
overnight and total RNAwasmanually extracted using PAXgene Blood
RNA Kit (Qiagen; Germantown, MD, USA), as per manufacturer
instructions. Total RNA was quantified, and its integrity assessed on a
LabChip GXII (PerkinElmer) instrument. Libraries were generated from
250ngof total RNAas follows:mRNAenrichmentwasperformedusing
the NEBNext Poly(A) Magnetic Isolation Module (New England Bio-
Labs). cDNA synthesis was achievedwith theNEBNext RNA First Strand
Synthesis andNEBNext Ultra Directional RNA Second Strand Synthesis
Modules (New England BioLabs). The remaining steps of library pre-
parationwere done using theNEBNext Ultra II DNA Library Prep Kit for
Illumina (New England BioLabs). Adapters and PCR primers were
purchased fromNew England BioLabs. Libraries were quantified using
the Kapa Illumina GA with Revised Primers-SYBR Fast Universal kit
(Kapa Biosystems). Average size fragment was determined using a
LabChip GXII (PerkinElmer) instrument. The libraries were normalized
and pooled and then denatured in 0.05N NaOH and neutralized using
the HT1 buffer. The pool was loaded at 225 pM on an Illumina NovaSeq
S4 lane as per the manufacturer’s recommendations. The run was
performed for 2 × 100 cycles (paired-end mode). A phiX library was
used as a control and mixed with libraries at 1% level. Base calling was
performedwithRTAv3.4.4. Programbcl2fastq2 v2.20was thenused to
demultiplex samples and generate fastq reads. The average base
quality score for each sample dataset was verified to be Q33 or above
and the percentage of aligned reads on reference sequence homo
sapiens:hg19 was verified to be 90% or above.

For the validation cohort, we used the bulk RNA sequencing data
that had been generated on PAXgene® Blood RNA tubes (BD, Franklin
Lakes, NJ) prospectively collected in the Pronmed cohort (n = 32).
These samples were distributed across clusters V1 (n = 18) and V2
(n = 14). Samples were allowed to stabilize at room temperature and
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then frozen at −80 °C until used for RNA isolation. RNA extraction was
done with the PAXgene blood RNA kit (Qiagen, Hilden, Germany,
product no: 762174) according to manufacturer’s instructions. RNA
was quantified using a nanoDrop spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA) and quality measured using a BioAna-
lyser (Agilent, Santa Clara, CA, USA). Sequencing libraries were pre-
pared from 400ng (100ng for two samples) total RNA using the
TruSeq stranded mRNA library preparation kit (cat# 20020595, Illu-
mina Inc. San Diego, CA, USA) including polyA selection. Unique dual
indexes (cat# 20022371, Illumina Inc.) were used. The library pre-
paration was performed according to the manufacturer’s protocol
(#1000000040498). Sequencing was performed as paired-end 150 bp
read length on a NovaSeq 6000 system, S4 flowcell using
v1.5 sequencing chemistry.

Data processing and quality control. For the discovery cohort, the
sequencing reads were trimmed using CutAdapt57 and mapped
to the human reference genome (hg19) using 2STAR58 aligner
(version 2.6.1d), with default parameters. In the BQC19 tran-
scriptomics dataset, only samples containing bulk RNA-sequencing
data and assigned to PHATE clusters were retained for downstream
analysis. (n = 445). Expression data was filtered for protein-coding
genes that were sufficiently expressed across all samples (median
logCPM> 1, n = 10,236 genes retained after filtering). After removing
non-coding and lowly-expressed genes, normalization factors to
scale the raw library sizes were calculated using calcNormFactors in
edgeR (v3.26.8)47. The voom59 function in limma (v3.40.6) was used
to apply these size factors, estimate the mean-variance relationship,
and convert counts to logCPM values. The technical effect of col-
lection center (i.e., Centre Hospitalier de l’Université de Montréal vs
JewishGeneralHospital) was regressed using limma (v3.40.6) prior to
downstream modeling.

For the validation cohort, cutAdapt was used for trimming and
STAR for sequence alignment. Feature quantification and classification
was done using Salmon. Scaledmerged gene counts where all samples
had a gene count >0 from Salmon were quantile normalised and log2-
transformed and used for analysis of differentially expressed genes
between cluster 1 and 2 in the Pronmed dataset using a linear model
(limma version 3.54.2 running under R version 4.3.2) without covari-
ates since n = 32 was deemed too low for adjustment.

Modeling PHATE effects. For the discovery cohort, PHATE effects
(i.e., the differential expression effects between individuals in PHATE
clusters of interest) weremodeled in individuals collected at theDSO11
timepoint with expression data (n = 174; n PHATE cluster 1 = 37, n
PHATE cluster 2 = 35, n PHATE cluster 3 = 41, n PHATE cluster 4 = 61
individuals). All pairwise PHATE clusters contrasts were performed
with the main contrasts of interest being cluster 1 vs 2, cluster 3 vs 4,
and, within cluster 1 individuals, survivor (n = 19) vs deceased (n = 18).
To obtain estimates of the PHATE effects, the following linear model
was run for each pairwise PHATE contrast:

M1: E i,jð Þ∼β0 ið Þ+βPHATE ið Þ2PHATE jð Þ+βage ið Þ2age jð Þ
+βBMI ið Þ2BMI jð Þ+ βsex ið Þ2sex jð Þ
+βf lowcell ið Þ2f lowcell jð Þ+βCBC1 ið Þ2CBC1 jð Þ
+βCBC2 ið Þ2CBC2 jð Þ+ ε i,jð Þ

Here, β0ðiÞ is the global intercept accounting for the expected
collection center-corrected expression of gene i in a female individual
in the baseline PHATE cluster, and βPHATE ðiÞ indicates the effect of the
non-baseline PHATE cluster (PHATEðjÞ) on gene i. For example, in the
PHATE cluster contrast 1 vs 2, individuals in PHATE cluster 2 represent
the baseline gene expression signature, and βPHATE ðiÞ represents the
effect of PHATE cluster 1 on gene expression. Further, age represents

the mean-centered, scaled (mean=0, sd = 1) age per individual, body
mass index (BMI) represents the mean-centered, scaled (mean =0,
sd = 1) BMI per individual, sex represents the assigned sex for each
individual (factor levels = “Female”, “Male”), and flow cell represents
the flow cell on which the sample was sequenced (seven factors in
total). If BMI was not reported for an individual, this missing data was
filled with the average BMI value across all individuals. Because we
modeled whole blood expression data, two additional covariates were
included, corresponding to the first two principal components of a
PCA performed on an n x m cell type proportion matrix (where n =
number of samples = 630,m=number of cell types = 5,with thematrix
populated by the cell type proportions derived from clinical complete
blood count [CBC] data) to account for the majority of the variance
introduced by underlying cell type composition (PC1 percent variance
explained (PVE) = 88.3%, PC2 PVE= 7.8%, total = 96.1%). Their corre-
sponding effects on gene expression are represented by βCBC1ðiÞ
andβCBC2ðiÞ. Finally, εði,jÞ represents the residuals for each gene i,
individual j pair.

These models were fit using the lmFit and eBayes functions in
limma60, and the estimates of the PHATE effects βPHATE ðiÞ were
extracted across all genes along with their corresponding p-values. We
controlled for false discovery rates (FDR) using an approachanalogous
to that of Storey and Tibshirani61,62, which makes no explicit assump-
tions regarding the distribution of the null model but insteadderives it
empirically. To obtain a null, we performed 100 permutations, where
PHATE cluster label was permuted across individuals.

Calculation of ssGSEA scores. To construct the IFN and COVID-19
severity score metrics, we calculated single-sample Gene Set Enrich-
ment Analysis (ssGSEA) scores using the Gene Set Variation Analysis
(GSVA) package in R (v1.32.0) with default parameters and method =
“ssgsea”63. For the IFN ssGSEA score, the input genes were those
belonging to the hallmark IFN gamma and alpha response pathways64.
For the COVID-19 severity ssGSEA score, the input genes were those
previously described to be positively associated with increased
COVID-19 susceptibility in peripheral blood mononuclear cells from
COVID-19+ patients23.

Gene set enrichment analyses. Gene set enrichment analyses were
performed using two independent methods, including fgsea (https://
bioconductor.org/packages/release/bioc/html/fgsea.html) and
ClueGO25. The enrichment program specifications and the data in
which they were used to assess enrichments are described below:

The R package fgsea (v1.10.1) was used to perform gene set
enrichment analysis for the cluster 1 vs 2 effects, cluster 3 vs 4 effects,
and cluster 1 survivor vs deceased effects using the H hallmark gene
sets24. T-statistics were obtained directly from the topTable function in
limma60. The background set of genes were those sufficiently expres-
sed (i.e. passed the lowly-expressed gene filter threshold) in the whole
blood expression data. The t-statistics were then ranked, and these
pre-ranked t-statistics were used to perform the enrichment using
fgsea with the following parameters: minSize = 15, maxSize = 500,
nperm= 100,000. Normalized Enrichment Scores (NES) and
Benjamini-Hochberg adjusted p-values output by fgsea were collected
for each analysis, which derives false discovery rates using the
empirical p-value distribution of the data.

Additionally, we performed gene set enrichment analysis sepa-
rately for genes upregulated in cluster 1 and cluster 3 individuals (i.e.,
the low antibody response clusters) relative to all other genes tested
using ClueGO (v2.5.7)25 in functional analysis mode. The target set of
genes was the list of significantly upregulated genes in the cluster 1 or
cluster 3 individuals (in the 1 vs 2 and 3 vs 4 contrasts, respectively)
and the background set was the list of all genes tested. Specifically,
we tested for the enrichment of GO terms related to biological
processes (ontology source: GO_BiologicalProcess-EBI-UniProt-
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GOA_04.09.2018_00h00) using the following parameters: visual
style = Groups, default Network Specificity, GO Term Fusion = TRUE,
min. GO Tree Interval level = 3, max. GO Tree Interval level = 8, min.
number of genes = 3, min. percentage of genes = 4.0, statistical test
used = Enrichment (right-sided hypergeometric test), p-value cor-
rection = Bonferroni step down. For the graphical representation of
the enrichment analysis, ClueGO clustering functionality was used
(kappa threshold score for considering or rejecting term-to-term
links set to 0.4). Only pathways with an FDR <0.05 were reported.

Scripts and processed data: https://github.com/herandolph/
COVID-19_PHATE.

Flow cytometry assessment of PBMCs
Antibodies and reagents. All antibodies are listed in Supplementary
Tables 3, 4 and 5. Antibodies aremonoclonal and raised inmiceor rats.
All antibodies were validated by manufacturer and titrated with bio-
logical and/or isotype controls. SARS-CoV-2 Spike receptor binding
domain (RBD) recombinant protein was expressed in Freestyle 293 F
cells and purified by nickel affinity columns, as directed by the man-
ufacturer (Thermo Fisher Scientific). The RBD preparations were dia-
lyzed against phosphate-buffered saline (PBS) andpuritywas assessed,
by SDS-PAGE andCoomassie Blue staining.We generated B cell probes
by conjugating recombinant RBD proteins with Alexa Fluor 488 dye or
Alexa Fluor 594 dye (Thermo Fisher Scientific) according to the man-
ufacturer’s protocol.

Detection of RBD-specific B cells. Cryopreserved peripheral blood
mononuclear cells (PBMCs) were thawed and rested in cell culture
media (RPMI supplemented with 10% fetal bovine serum (FBS) and
PenStrep – 50U/ml of penicillin and 50 µg/mL of streptomycin) at
37 °C for 3 h at a density of 1 × 107 cells/ml in 24-well plates. Cells were
collected, washed, and stained with LIVE/DEAD™ Fixable Aqua Dead
Cell Stain Kit (20mins, 4 °C; Thermofisher, #L34965). After washing,
cellswere stainedwith a cocktail of surfacemarkers (30mins, 4 °C; See
panel in Supplementary Table 3, including RBD probes). Washed cells
were then fixed with 2% paraformaldehyde (PFA) for 20mins at RT,
then washed and resuspended in PBS-2% FBS for flow acquisition on a
5-laser Symphony (BD). Analyses were performed using FlowJo
(Treestar, V10).

Activation-induced marker (AIM) assay on T cells. Cryopreserved
PBMCs were thawed and rested in cell culture media (RPMI supple-
mented with 10% Human AB serum and PenStrep – 50U/mL of peni-
cillin and 50 µg/mL of streptomycin) at 37 °C for 3 h at a density of
10M/mL in 24-well plates. 15min prior to stimulation, CD40 blocking
antibody (clone HB14, Miltenyi, cat #: 130-094-133) was added to each
well at 0.5 µg/ml, as well as antibodies staining CXCR5, CXCR3 and
CCR6. Cells were either left unstimulated or stimulated with over-
lapping peptide pools of Spike (S1 + S2), at a final concentration of
0.5 µg/mL/peptide. Alternatively, 1 µg/ml of Staphylococcal Enter-
otoxin B (SEB, Toxin Technology) was used to stimulate the cells as a
positive control. Cells were stimulated for 15 h, collected, washed, and
stained with LIVE/DEAD™ Fixable Aqua Dead Cell Stain Kit (20mins,
4 °C; Thermofisher, #L34965). After washing, cellswere incubatedwith
FcR block (10mins, 4 °C; Miltenyi) then stained with a cocktail of sur-
face markers (30mins, 4 °C; See panel in Supplementary Table 4).
Washed cells were then fixed with 2% PFA for 20mins at RT, then
washed and resuspended in PBS-2% FBS for flow acquisition on a
5-laser Symphony (BD).

Intracellular cytokine staining (ICS) in Spike-specific T cells. Cryo-
preserved peripheral blood mononuclear cells (PBMCs) were thawed
and rested for 2 h in cell culture media. Cells were stimulated with
overlapping peptide pools for SARS-CoV-2 spike (S), membrane (M)
and nucleocapsid (NC) (0.5μg/ml per peptide from JPT, Berlin,

Germany) for 6 h in the presence of anti-CD107a BV786 (BD Bios-
ciences), Brefeldin A (BD Biosciences) and monensin-1 (BD Bios-
ciences) at 37 °C and 5% CO2. DMSO-treated cells served as negative
control and SEB-treated cells as positive control. Cells were stained
with LIVE/DEAD™ Fixable Aqua Dead Cell Stain Kit (20mins, 4 °C;
Thermofisher, #L34965) and surfacemarkers (30mins, 4 °C), followed
by detection of intracellular markers using the IC Fixation/Permeabi-
lization kit (Thermo Fisher) according to the manufacturer’s protocol
before acquisition at 5-laser Symphony (BD) (see Supplementary
Table 5 for panel).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The plasma analyte measurements (relating to Figs. 1 and 2) and the
frequency of CoV-2-specific immune cells (relating to Figs. 4 and 5) of
the discovery cohort, following appropriate batch corrections and
normalizations, can be found in Source_Data_File.xlsx. Given that
Tables 1 and 2 describe the demographics of our cohorts, we have
represented age using age brackets instead of exact values for ethical
reasons (to protect participant identities). We accessed raw
sequencing and transcriptomic data upon request from the “Bio-
banque Québécoise de la COVID-19 (BQC19)” (Quebec COVID-19
Biobank) data repository (info@bqc19.ca; website: https://en.
quebeccovidbiobank.ca/analyses-de-bases-bqc19). For more infor-
mation about the access procedure and the data access agreement
for interested investigators, visit https://en.quebeccovidbiobank.ca.
The anonymized dataset of gene expression data, after quality con-
trol and alignment (without any Personally Identifiable Information,
or any information that could allow identification of individuals in
the studies), is available on Zenodo (https://doi.org/10.5281/zenodo.
6963452). Due to the high number of contrasts, we have kept the
results of the RNA Seq analyses (Fig. 3) separate. These can be found
in Supplementary Data 2 and 3, with meta data necessary for its
analysis in Supplementary Data 1. Data from the Pronmed study is
available from the SciLifeLab data repository after appropriate per-
missions and data access agreements (https://doi.org/10.17044/
scilifelab.14229410). The human genome hg19 was used for aligne-
ment and is available at: https://www.ncbi.nlm.nih.gov/datasets/
genome/GCF_000001405.13/. Source data are provided with
this paper.

Code availability
The code we used to perform the PHATE clusters analyses is available
on Github at https://github.com/sachaMorin/covid-plasma-
clusters. The DOI to the deposited notebook is https://doi.org/10.
5281/zenodo.10912522. All code we used for analyzing the bulk RNA-
Seq data can be found on GitHub at https://github.com/herandolph/
COVID-19_PHATE.
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