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Heuristics in risky decision-making relate to
preferential representation of information

Evan M. Russek 1,2,8 , Rani Moran 1,2,3, Yunzhe Liu 4,5,
Raymond J. Dolan 1,2 & Quentin J. M. Huys1,2,6,7

When making choices, individuals differ from one another, as well as from
normativity, in how they weigh different types of information. One expla-
nation for this relates to idiosyncratic preferences in what information
individuals represent when evaluating choice options. Here, we test this
explanation with a simple risky-decision making task, combined with mag-
netoencephalography (MEG). We examine the relationship between indivi-
dual differences in behavioral markers of information weighting and neural
representation of stimuli pertinent to incorporating that information. We
find that the extent to which individuals (N = 19) behaviorally weight prob-
ability versus reward information is related to how preferentially they neu-
rally represent stimuli most informative for making probability and reward
comparisons. These results are further validated in an additional behavioral
experiment (N = 88) that measures stimulus representation as the latency of
perceptual detection following priming. Overall, the results suggest that
differences in the information individuals consider during choice relate to
their risk-taking tendencies.

When faced with a choice among actions that can lead to multiple
outcomes, decision theory postulates that individuals should compute
choice values by taking the expectation over the utility of outcomes,
each weighted by their probability1–3. However, psychologists have
long shown that, instead of deploying this strategy, participants
exploit several heuristics, including inappropriately weighting either
utility or probability information4–7. Although some models have
offered parameterizations of heuristic reliance on either type of
information8–11, the precise neurocognitive mechanisms that underlie
individual use of these heuristics remains unknown. In this work, we
exploit magnetoencephelopgraphy (MEG) to test a specific hypothesis
– namely, that underlying heuristic reliance on either source of infor-
mation reflects a preferential representation of stimuli that are most
informative for using such information during evaluation.

Recent research has pointed to selective consideration of infor-
mation as a source of bias in decision making. This work has analyzed
eye-tracking, mouse-tracking, and response-times to reveal that selec-
tive consideration of choice options, attributes, or other information
can explain biases in value-based consumer choice12,13, multi-attribute
choice14, social choice15, intertemporal choice16, and risky decision-
making17–19. Here, we expand on this work by first providing two addi-
tional forms of evidence, based on neural decoding and behavioral
priming, for a relationship between selective consideration of infor-
mation and heuristic strategy in decision-making under risk. Addition-
ally, we show an example where such selective consideration is applied
to potential outcomes of a choice – thus linking this research with work
on model-based simulation in planning that has looked at what out-
comes of a choice individuals tend to consider when they decide20–26.
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In a typical risky-choice task, individuals choose between a safe
option with a known, fixed outcome, and a gamble option which can
lead probabilistically to one of two possible outcomes. Normative
choice in such settings requires evaluating the gamble by summing the
utility of each uncertain outcome, weighted by its probability, and
comparing this expected utility to the utility of a known safe option1–3.
One explanation for deviations from normativity, as well as variability,
is the need for individuals to employ heuristics that reduce the com-
putational burden entailed in this rational approach to choice27–31.
Whereas the normative choice strategy requires independent con-
sideration of each possible task outcome, individuals can reduce the
number of outcomes they consider through preferential reliance on a
particular type of information during evaluation9,10. For example,
individuals could prioritize probability information, and selectively
ignore the safe outcome as well as the unlikely gamble outcome,
leading to a decision solely based on whether the more likely gamble
outcome is attractive. Alternatively, they could prioritize reward
information, and solely represent outcomes useful for comparison
along this dimension.

We hypothesized that prioritization of distinct types of informa-
tion during choice evaluation – and more specifically preferential
representation of outcome stimuli relevant for comparing choices
alongside the type of information prioritized –would explain heuristic
weightings of probability and reward information. We leveraged indi-
vidual differences in heuristic reliance on reward or probability infor-
mation in choice behavior and examined whether this variability
related to inter-participant variability in a disposition to represent
outcomes which support a prioritization of a one or the other type of
information. If heuristic reliance on probability or reward information
in behavior is related to prioritization of probability or reward infor-
mation during choice evaluation, then we would expect individuals
who weigh probability or reward information more in choice to pre-
ferentially represent outcome stimuli useful for comparing choices
according to that information dimension. At a higher level, we sought
to determine whether the outcomes that an individual tends to con-
sider when deciding underpin the type of information their choices
reflect a heuristic reliance upon.

We present affirmative evidence for this hypothesis by examin-
ing relationships between choice behavior and markers of outcome
representation. Specifically, we use both MEG decoding and priming
effects to determine which outcomes are preferentially represented
during choice and use choice behavior to measure risk-taking heur-
istics. In our primary experiment, we utilize recent advances in mul-
tivariate methods for MEG21,32–34 to decode which outcome stimuli
participants represent while they make a risky choice. This involves,
first, the identification of MEG signatures of visual stimuli associated
with different outcomes; and, second, the examination of these sig-
natures during choice. This data show that individual differences in
outcome representation during decisions are systematically related
to the individual differences in choice behavior. The secondary
experiment validates this using a behavioral priming manipulation
involving interruption of the choice evaluation period with a per-
ceptual detection task (c.f.24,35). Consistent with our MEG experiment,
this shows that faster detection of a stimulus is related to increased
behavioral weighting of the information representated by that sti-
mulus. Finally, we find that a neural marker of preferential repre-
sentation is related to the real-world self-reported behavioral trait of
impulsivity.

In summary, individual differences in heuristic weightings of
probability and reward information during choice relate to differ-
ential tendencies related to which outcomes are prioritized for
representation during option evaluation. The findings establish a link
between a representation of different sources of choice relevant
information and the types of decision patterns individuals manifest
in risky choice.

Results
MEG decision-making task
Participants (n = 19) completed a risky decision-making task while we
acquired simultaneous neural data using MEG (Fig. 1). On each trial,
participants were presented with a gamble that required an accept or
reject choice (Fig. 1A). Rejecting the gamble led to collection of a safe
outcome, OS. Accepting led to collection of one of two gamble out-
comes, O1 or O2. The chances of encountering O1 versus O2 upon
acceptance of the gamble was signaled by presentation of one of four
probability stimuli (P1, P2, P3, or P4; Fig. 1B). The probabilities implied
by eachof these stimuli wereboth instructed, extensively experienced,
and tested prior to task commencement (Supplementary Fig. 1). On
each trial, the points paired with each outcome changed and partici-
pantswerenotifiedof the rewardpairedwith eachoutcome at the start
(Fig. 1C). The points pairedwith each stimuluswas structured such that
one of the two outcomes (randomly assigned on each trial to O1 or O2
in a counterbalancedmanner) referred to as the trigger outcomehad a
reward with high absolute value, while the other gamble outcome had
points close to 0. We use the term safe outcome, OS, to refer to the
certain outcome whose value lay between O1 and O2. Note that for
blocks involving loss trials the safe option was paired with negative
points.

Critically, to facilitate MEG analysis, the time course by which
information was presented was structured so as to enforce evaluation
of choice options at an identifiable timepoint. Participants were first
informed of the number of points paired with each outcome (Fig. 1A,
left). However, this informationwas insufficient tomake choices as the
probabilities relevant to that trial were unknown at this timepoint.
Choice evaluation involving the integration of outcomes O1 and O2
with their probability and comparison with the safe value could only
start when the probability stimulus appeared on the screen following
this (Fig. 1A, middle). Note that at this point, the outcome stimuli were
no longer on the screen. Hence, we aimed to decode the neural sig-
natures of the outcome stimuli at this time-point to determine how
stimuli were represented during evaluation and how this related to the
ensuing choice.

A parameterization of heuristic reliance on probability and
reward information in choice
We hypothesized that heuristic reliance on reward and probability
information reflects different approaches for deciding which infor-
mation to represent during evaluation. Testing this hypothesis
required us to parameterize, for each participant, the extent to which
choices reflected a heuristic reliance on probability versus reward
information. We obtained such a parameterization using a model
inspired by prior additive models fit to choices9,10, which we refer to as
the Additive Heuristic model (Fig. 2A). Applied to the current task, the
Additive Heuristic model decides by computing two distinct compo-
nents (Methods). A probability information component computes the
relative chances that the choice stimulus will lead to the better versus
worse gamble outcome. A reward information component computes
the reward difference between the gamble reward midpoint and the
safe reward. Note that we use the term reward to refer to number of
points not only forgain trials, but also for loss trials,wherea loss canbe
viewed as a negative reward. Importantly, because of how rewards
were structured in the task (Fig. 1C), following baseline subtraction of
the number of points closest to zero (so that all outcome’s points are
the distance from the lowest absolute point number), the difference
between gamble rewardmidpoint and safe reward could be computed
by considering just the trigger reward, which had higher absolute
reward value, and the safe reward. The probability information and
reward information components are respectively weighted by para-
meters, βprob and βreward and then added to a frame (gain or loss)
specific intercept to form a choice probability (see Supplementary
Fig. 2a for analysis of which parameters should be split between gain
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and loss trials and Supplementary Fig. 2b for necessity of both reward
and probability information components).

The additive heuristic model captured participants’ aggregate
choices in the task. It captured both deviations from a model that
decided by computing expected values (Fig. 2B) and the extent to
which individual participants relied on either probability or reward
information in choice (Fig. 2C). The Additive Heuristicmodel provides
two parameters for each participant, βs

prob and βs
reward . These para-

meters measure behavioral choice reliance on probability versus
reward information respectively and will henceforth be referred to as
Choice Probability Weight βs

probðchoiceÞ and and Choice Reward
Weight βs

rewardðchoiceÞ.
Note that we do not consider this model itself provides a strong

claim that valuation is additive rather than multiplicative. The choice
to use the additive heuristic model is solely based on it providing a
more parsimonious fit to behavior (Supplementary Fig. 3) and superior
parameter identifiability (Supplementary Tables 1 and 2) compared to
alternative models (see Supplementary Note 1).

Behavioral reliance on reward versus probability information
are related to distinct patterns of preferential outcome
reactivation
At the group level, participants made use of both the reward and
probability components of the Additive Heuristic model (Supple-
mentary Fig. 2b). However, individuals differed substantially in their
tendency to rely on one or the other component (Fig. 2C). We hypo-
thesized that this variability reflected tendencies to consider different
classes of information when evaluating choices. For example, one

means to compute the probability component of the additive heur-
istic model is to selectively consider the gamble outcome with higher
probability, and then decide whether it was attractive. Because of
the reward structure in the task (Fig. 1C) this could be determined by
comparison to a fixed threshold without consideration of the other
outcomes. Such a strategy could be beneficial because it could arrive
at choices by forgoing consideration of both the gamble outcome
with low probability, as well as the safe outcome. Conversely, the
reward component could be computed by selectively considering the
gamble outcome with higher absolute reward (the trigger outcome)
and the safe outcome to take the reward difference between
these items.

We used decoding of MEG data during choice deliberation to test
whether individual variation in choice behavior was driven by differ-
ences inwhich outcomes individuals tended to consider. Following the
above reasoning, we conjectured that individuals whose behavior
reflected a greater reliance on probability information (indexed by
higher Choice Probability Weight) would also tend to neurally repre-
sent gamble outcomeswith higher probability. By contrast, individuals
whose behavior reflected greater reliance on reward information
(indexed by higher Choice Reward Weight) would tend to represent
the gamble outcome with higher absolute reward and the safe out-
come as this would enable them to make a comparison between the
rewards of these items. Note that we will test for activation of the
gamble outcomewith higher probability and the gamble outcomewith
relative higher absolute reward in a graded manner, looking for
respective effects of either probability or absolute reward on a ten-
dency to reactivate those outcomes.
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Fig. 1 | Task. A Example task trial. Participants chose between a safe stimulus (OS)
or a gamble which probabilistically led to one of two outcome stimuli (O1 or O2).
Information required for value computation was provided in discrete stages to
require computation to occur at a specified time-point. Participants were first
informed of the point values for all the three outcomes. Participants were then
presented with one of four possible probability stimuli (P1, P2, P3 or P4) on which
they had been pretrained, indicating four different probability combinations. They
then decided whether to accept or reject the gamble. Rejecting led to collection of
the safe outcomeOS along with its trial-specific associated points. Accepting led to
collecting either O1 or O2 along with the trial-specific associated points. All out-
come and choice stimuli were represented by decodable visual stimuli. Note that in
the example trial, the gamble was accepted. Stimuli in the real experiment were
photographs. B Outcome probabilities. The chances of collecting O1 versus O2

upon accepting the gamble depended on which probability stimulus was pre-
sented. Probability of reaching O1 was .2, .4, .6, and .8 for P1, P2, P3 and P4
respectively, and p(O2) = 1 - p(O1). These probabilities were extensively pretrained.
COutcome rewards. On each trial either O1 or O2was designated to be the ‘trigger’
outcome, whose value was selected from three levels (45, 65, or 75 during gain
blocks or −45 −65 or −75 on loss blocks). The non-trigger outcomewas always 0.OS
was selected from 4 levels (20, 32, 44, 56 during gain blocks or −20, −32, −44, −56
during loss blocks). To discourage habitual responding on repeated choices, a
variable amount of common noise (between 0 and 20) was added to all outcomes.
Finally, a random value (between −6 and 6) was added to each outcome separately.
A, C House and scissor images were obtained from svgrepo.com where they are
published under MIT licenses. They were respectively created by Adam Whitcroft
and scarlab.
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To identify neural representations of outcome stimuli, we trained
classifiers on data collected prior to the decision-making task (Fig. 3A)
(see Methods). Each classifier outputted an Activation Probability,
reflecting the probability that the sensor data reflected reactivation of
the outcome stimulus on which it was trained (Fig. 3B; note that in the
experiment stimuli were photographs). Previous research has
demonstrated that different components of a stimulus
representation32, corresponding to activity at different timepoints
following stimulus presentation, can reflect distinct aspects of a sti-
mulus’s representation at retrieval. On this basis we trained multiple
classifiers separately on data fromeach 10ms timebin, τ, following the
stimulus presentations. Cross-validation accuracy was quantified as
the proportion of held-out trials for which the classifier corresponding
to the presented outcome stimulus had the highest activation prob-
ability. We found that classifiers trained on data from τ = 20 to
τ = 500ms obtained above chance accuracy when tested on held out
data from the same timepoint (Fig. 3C). Additionally, such classifiers
were selectively accurate when tested on timepoints when they were
trained (Fig. 3D). This enabled us to then investigatewhich aspectof an
outcome’s representation are reinstated during choice evaluation.
Note that for further analysis, we rely on the activation probability

measure, as it is it is amore sensitivemetric thandiscrete accuracy and
can identify changes in representation even if an item is not judged to
be the most likely. Finally, we additionally verified that classifiers
trained to decode outcome stimuli on the localizer task maintained
good accuracy at decoding outcome stimuli in the decision-making
task (Supplementary Fig. 13).

We next asked which outcome representations were reinstated
during choice evaluation, and related this to behavioral markers
reflecting consideration of either probability or reward information.
For each training timepoint from 20 to 500ms, over which we
obtained above chance classification, we applied each of the three
outcome classifiers to task data from each trial from 0 to 500ms fol-
lowing the presentation of the probability stimulus (Fig. 4A). This
produced, for each trial, and for each outcome, a 2-d image (train
timepoint τ, by task/test timepoint τ0), reflecting the probability that
the corresponding outcome representation (at τ), was reactivated at τ0
following probability stimulus onset.

We first asked whether participants who relied on probability
information prioritized reactivation of gamble outcomes based on
their probability. We computed the difference between the (re)acti-
vation probability (ΔRPO) of O1 and O2 (Δs,t,τ,τ0

RPO
for each participant s,

Fig. 2 | Additive heuristicmodel. AAdditiveHeuristicModel parameterizes use of
reward and probability information. The probability information component
measures thedifference inprobability between reaching thebetter (higher reward)
versus worse gamble outcome, contingent on accepting the choice stimulus. The
reward information componentmeasures the difference in reward associatedwith
themidpoint between the gamble and safe reward. Note that because of the actual
reward used in the task (Fig. 1C) this difference can be computed by considering
the trigger and safe rewards, without needing to refer to the non-trigger reward. R*
refers to the reward after the non-trigger reward (which simply amounts to com-
mon noise along with noise specific to that outcome) has been subtracted from all
rewards. Working with R*, the difference between the gamble midpoint and safe
reward is computed by dividing the trigger reward by two and subtracting the safe
reward. B Additive Heuristic Model captures aggregate patterns in choice data.

Each data error bar (gray) shows the across-participant (n = 19) mean (+/− s.e.m.)
proportion acceptance for each combination of whether a trial is gain or loss (row),
whether the safe reward is higher or lower than the midpoint between the two
gamble rewards (column) and the trigger outcome probability contingent on
acceptance (x-axis). Values reflect outcome rewards prior to adding common and
other noise. Blue and orange lines showpredictions of the additive heuristicmodel
and expected value models, at best fit parameters. C Additive Heuristic Model
indexes individual differences in weighting of probability and reward information.
Left) Model-predictions for individual participants that either rely exclusively on
probability information (left) or reward information (right). Right) Parameteriza-
tion of reward and Probability Weighting (βProb and βrew) place these two partici-
pants at extreme ends of continuum over which participants (n = 19) vary in these
two strategies.
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trial t, train timepoint, τ, and task timepoint, τ0; Fig. 4B). We then fit a
linear model to predict the relative reactivation measure (separately
for each s, τ, and τ0) as a function of the relative probability for O1
versus O2 indicated by the choice stimulus (Δs,t

PO
; Fig. 4C). The estimate

of this effect, βs,τ,τ0
probðneuralÞ reflects a tendency of a participant, s, to

prioritize reactivation of outcome representations (elicited τ following
their direct presentation) according to their probability (measured at
τ0 following probability stimulus presentation; Fig. 4D). We refer to
βs,τ,τ0
probðneuralÞ as Neural Probability Prioritization.

To test whether a tendency to reactivate outcomes according to
their probability is reflected in a behavioral choice weighting of out-
come probability information, we computed the between-participant
relationship between Neural Probability Prioritization, βs,τ,τ0

probðneuralÞ and
Choice Probability Weight, βs

probðchoiceÞ (Fig. 4E). The peak of this effect
was significantly positive (Fig. 4F, G τ = 420ms, τ0 = 420ms;

tpeak =3:024,PFWE = .010, one-tailed non-parametric permutation test
on image peak; see Methods; see Discussion for consideration of
identified peak significant timepoints; see Supplementary Note 2,
Supplementary Figs. 8, 9a for estimation of unbiasedbehavioral-neural
correlations), supporting the hypothesis that the more an individual’s
reactivation reflected differences in outcome probabilities, the more
that individual showedbehavioral evidence of sensitivity to probability
information. Importantly, the relationship between βs,τ,τ0

probðneuralÞ and
βs
rewðchoiceÞ was not statistically significant (Supplementary Fig. 7a).

In a similar manner, we investigated the reward component,
which calls for consideration of the trigger outcome (gamble outcome
with higher absolute reward) and safe outcome value (Fig. 2A). Thus,
we asked whether individuals who weremore behaviorally sensitive to
reward information preferentially reinstated these outcomes. To
measure a tendency to reactivate gamble outcomes with higher
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Fig. 3 | Decoding stimulus representations from MEG. A Localizer Task. The
Localizer Task was completed prior to the risky-decision task and to learning
choice-outcome probabilities. On each trial participants were shown an outcome
or choice stimulus, and, on the next screen, selected a word corresponding to the
stimulus they had just observed. B Activation Probability measure. We trained
lasso-regularized logistic regression classifiers to discriminate MEG data from
when a given outcome stimulus was presented compared to data from presenta-
tion of all other images and inter-trial intervals. Each classifier output an estimated
probability that its stimulus was being presented (Activation Probability). Separate
classifiers were trained at successive 10ms bins of MEG data around stimulus
presentation. In the example, lines display the group-mean (+/− s.e.m.) activation
probability measure for the classifier corresponding to O2, for each training
timepoint, applied to held out data from the same corresponding test timepoint.

Color designates the true outcome stimulus presented. C Decoding accuracy.
Cross-validation accuracy is the proportion of trials for which the classifier corre-
sponding to the presented outcome (for held-out data) had the highest activation
probability. Lines denote mean accuracy (+/− s.e.m.) for each set of 10ms time-
binned outcome classifiers, applied to the same time-bin on held out examples.
Dashed line designates permutation threshold corresponding to the 95 percentile
peak threshold for accuracy lines generated with shuffled labels. D Temporal
specificity. Classifiers trainedon each 10ms timebinwere also tested on every time
bin from −350 to 800ms following presentation of stimuli from held out data. The
resulting accuracy image demonstrates temporal selectivity. Classifiers identify
with good accuracy representations of stimuli specific to the timepoint on which
theywere trained.B–DValues reflect groupmeans across 19 participants.A Scissor
imagewas created by scarlab and published on svgrepo.comunder anMIT license.
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absolute reward values, we measured the between-trial effect of the
difference between the absolute rewards for O1 and O2,Δs,t

jRO j, on
the difference in (re)activation probability for O1 and O2, Δs,t,τ,τ0

RPO

(Fig. 5A–C). This effect, βs,τ,τ0
rewðneuralÞ, Neural Reward Prioritization, mea-

sures a participant’s tendency to prioritize reactivation of an out-
come’s representation (at specific τ and τ0) based on its trial-varying
absolute reward value (Fig. 5D). Regressing βs,τ,τ0

rewðneuralÞ onto Choice
Reward Weight (βs

rewðbehaviorÞ; Fig. 5E), revealed a significant positive
effect (Fig. 5F–G τ = 480ms, τ0 = 110ms; tpeak = 2.974,PFWE = .034, one-
tailed non-parametric permutation test on image peak; see Supple-
mentary Fig. 9b for estimation of unbiased behavior-neural correla-
tion). This association was specific as the relationship between
βs,τ,τ0
rewðneuralÞ and βs

probðchoiceÞ (Supplementary Fig. 7b) was not statistically
significant.

We additionally computed participant specific tendencies to
reactivate the safe outcome OS, RPs,τ,τ0

OS
, as the mean reactivation

probability of the safe outcome classifier across trials (Supplementary
Fig. 6a) and regressed this onto Choice Reward Weight (βs

rewðchoiceÞ;
Supplementary Fig. 6b). Although the peak of this effect was also sig-
nificantly positive (τ = 350ms τ0 = 270ms; tpeak = 5.464, PFWE = .011,
one-tailed non-parametric permutation test on image peak; Supple-
mentary Fig. 6c, d), we found that this effectwas dependent on a single
participant which warrants caution in interpretation (Supplementary
Fig. 9c). As with the above, we did not observe a statistically significant

positive relationship between RPs,τ,τ0
OS

and βs
probðchoiceÞ (Supplemen-

tary Fig. 7c).
These effects suggest that the more an individual relied on a

simple comparison between the rewards from a gamble and safe
options, themore they reactivated the high absolute reward outcome.
Additionally, we find weak evidence that these individuals also acti-
vated the safe outcome, as would be expected for a comparison.

We additionally employed an approach previously used in Ref. 32
to determine the sensors responsible for driving reactivation events
responsible for both relationships between Neural Probability Prior-
itization and Choice Probability Weight, and between Neural Reward
Reactivation and Choice Reward Weight. Specifically, we repeated
each of these analyses 5000 times, each time using a subset of 50
randomly drawn sensors, and then performed a regression to deter-
mine weights measuring each sensor’s contribution to the observed
effect. This revealed reactivation events underlying both effects to rely
primarily visual and temporal sensors, with a small number of frontal
sensors contributing as well (Supplementary Fig. 10).

All effects found were specific to locking on the time of the
Probability Stimulus presentation and were not statistically significant
when aligning events to the time of response (Supplementary Fig. 11).
Although our analysis here relies on relating between participant
variability between neural and behavioral markers of prioritization, we
also observe trending evidence for main effects of Neural Probability

Fig. 4 | Behavioral weighting of probability information relates to relative
activation of more probable gamble outcome representation. A–D Neural
Probability Prioritization, βs,τ,τ0

probðneuralÞ, measures dependence of activation prob-
ability on relative outcome probability. A In this example trial, (Trial 2 from Parti-
cipant 11), P2 was presented, indicating that, if accepted, O1 would be reachedwith
.4 probability and O2 would be reached with probability 0.6. B Following prob-
ability stimulus presentation, wemeasure relative activation probability for O1 and
O2, Δs,t,τ,τ0

RPO
, for τ’ =0 to τ’ = 500ms following probability stimulus onset, classifiers

trained on MEG sensor data from τ = 20 to τ = 500ms following outcome stimulus
onset in the localizer task. Image demonstrates the results of this computation for
the example trial in (A).CNeural Probability Prioritization, βs,τ,τ0

probðneuralÞ, is computed
by regressing relative trial-varying activation probability of O1 versus O2, Δs,t,τ,τ0

RPO
,

onto the trial-varying probability of encounteringO1 versus O2,Δs,t
PO

(seeMethods).

D Image denotes βs,τ,τ0
probðneuralÞ for every classifier train timepoint,τ, following out-

come stimulus onset and test timepoint,τ’, following probability stimulus onset, for
an example participant (s = 11). E–G Choice Probability Weight relates to Neural
Probability Prioritization. E We measured the between-participant relationship
between βs,τ,τ0

probðneuralÞ and behavioral evidence for consideration of probability
information, βs

probðchoiceÞ by regressing βs,τ,τ0
probðneuralÞ onto βs

probðchoiceÞ, separately for
each train and test timepoint, τ and,τ0. F T-statistic for this regression (applied to 19
participants), for each train and test timepoint, smoothed with a Gaussian kernel
(σ = 1.5 timebins). *PFWE = .010, one-sided non-parametric permutation test on
imagepeak.GHistogramshowsnull distributionofmaximumt-statistics over 5000
2-dmaps, each generated by randomly shufflingβs

probðchoiceÞ between participants, s.
Dashed line shows measured maximum t-statistic. A Scissor image was created by
scarlab and published on svgrepo.com under an MIT license.
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Prioritization and Neural Reward Prioritization in participants with
high Choice Probability Weights and Choice Reward Weights respec-
tively (Supplementary Fig. 12). Finally, these behavioral-neural effects
were robust to different choices for data preprocessing and to the
addition of covariates controlling for between session changes in
decoding accuracy (Supplementary Figs. 15 and 17).

Altogether, these results support the idea that individual differ-
ences in outcome reactivation prioritization relate to individual dif-
ferences in choices. Participants who were behaviorally reliant on
probability information were also more likely to reactivate gamble
outcomes based on their probability. Conversely, participants who
were behaviorally reliant on reward information tended to reactivate
gamble outcomes based on their absolute reward. Hence, whether
probability and reward information influenced behavior related to
preferential neural reactivation for the relevant dimension of
information.

Perceptual detection task
We next sought to conceptually replicate these findings using a
robust behavioral measure. Inspired by work on priming, as well
as work which has used response times to identify prospective
representations of stimuli24,35, we reasoned that the active repre-
sentation of stimuli (as identified in theMEG study) should influence
the speed at which those stimuli are perceptually detected.
Based on this reasoning we devised a new version of the task where
we used a priming and perceptual detection manipulation to index
representation.

The task was equivalent to the decision task used in the MEG
study, except for the use of perceptual detection rather than MEG
decoding to index which outcomes were represented during choice.
The key departure was that on one-third of trials participants per-
formed a perceptual detection task rather than a choice task (Fig. 6A).
Specifically, following presentation of the probability stimulus, parti-
cipants were presented with a screen showing the three outcome sti-
muli. One of the stimuli contained a probe – an arrowhead symbol –
and participants were required to report, as quickly as possible, the
direction of the arrow.

Similar to MEG decoding, the detection of the arrowhead direc-
tion amongst the stimuli offers an opportunity to ascertain the extent
to which the probed stimulus was being actively represented during
presentation of the Probability stimulus. If participants were actively
representing a stimulus, then processing of that stimulus would be
prioritized and this would result in faster detection of the probe
direction when the probe was placed on that stimulus. Using this
approach, we tested whether a tendency to use probability versus
reward information in choice was accompanied by a tendency to
prioritize outcomes for reactivation based on either their probability
or absolute reward, as indicated by response times.

Analogous to our MEG analysis (Figs. 4 and 5) we measured the
extent to which the probed stimulus’s probability and absolute reward
affected response times in reporting the probe (βprob RTð Þ and βrew RTð Þ
respectively). More negative values of βprob RTð Þ and βrew RTð Þ indicate
that participants were more inclined to represent outcome stimuli
when they had higher probability, or higher absolute reward

Fig. 5 | Behavioral weighting of reward information relates to relative activa-
tion of higher absolute reward gamble outcome representation. A–D Neural
Reward Prioritization, βs,τ,τ0

rewðneuralÞ, measures dependence of reactivation probability
on relative outcome absolute reward.A In this trial, O1 is paired with 89 points and
O2 is paired with 9 points. Note that this is the same trial as in Fig. 4A. B Image
displays Δs,t,τ,τ0

RPO
for example trial in 5a. Replotted from Fig. 4B. C Neural Reward

Prioritization, βs,τ,τ0
rewðneuralÞ, is computed by regressing relative trial-varying reactiva-

tionprobability ofO1 versusO2,Δs,t,τ,τ0
RPO

, onto the trial-varying difference in absolute
points paired with O1 versus O2, Δs,t

jRO j. D Image denotes βs,τ,τ0
rewðneuralÞ for every clas-

sifier train timepoint, τ, following outcome stimulus onset, and test timepoint, τ’,
following probability stimulus onset, for anexampleparticipant (s = 11).E–GChoice
Reward Weight relates to Neural Reward Prioritization. Following computation

βs,τ,τ0
rewðneuralÞ, we measured the between-participant relationship between this and

behavioral sensitivity to reward information, as measured by Choice Reward
Weight, βs

rewðchoiceÞ: This was done by regressing βp,τ,τ0

rewðneuralÞ onto βs
rewðchoiceÞ sepa-

rately for each τ and τ’. F Image shows a t-statistic for this regression (across 19
participants), for each train and task time-bin, smoothed with a Gaussian kernel
(σ = 1.5 time-bins). *: PFWE = .034, one-sided non-parametric permutation test on
imagepeak.GHistogramshowsnull distributionofmaximumt-statistics over 5000
2-d maps, each generated by randomly shuffling βs

rewðchoiceÞ between participants.
Dashed line shows true maximum t-statistic. A House and scissor images were
obtained from svgrepo.com where they are published under MIT licenses. They
were respectively created by Adam Whitcroft and scarlab.
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respectively. We then tested whether these tendencies were related to
use of probability versus reward information in forming decision
variables.

We found that a greater tendency to use probability information
in choice (measured as utilizing a greater Choice Probability Weight,
βprob choiceð Þ) related to a greater tendency to represent outcomes based
on their probability (measured as lower βprob RTð Þ reflecting faster
responses for more probable outcome stimuli; spearman rank corre-
lation, one-tailed; rspearman = -.183, t 86ð Þ= � 1:72, P = :044; Fig. 6B).
This provides a conceptual replication of the MEG results presented
in Fig. 4.

Analogously for reward, a greater tendency to use reward infor-
mation in choice (measured as utilizing a greater Choice Reward
Weight, βrew choiceð Þ) related to a greater tendency to represent out-
comes based on their reward (measured as lower βrew RTð Þ reflecting
faster responses for outcome stimuli with higher absolute reward;
Fig. 6C; spearman rank correlation, one-tailed, rspearman = -.21,
t 86ð Þ= � 2:0, P = :025). This provides a conceptual replication of the
MEG results presented in Fig. 5.

Preferential reactivation of high probability outcomes relates to
a real-life measure of risky decisions
Aberrant valuation and decision making, particularly in risk settings,
are features of multiple psychiatric disorders36–41. Based upon the
finding above, we hypothesized that aberrant decision making and
valuation in the context of behavioral impulsivity tendencies would
relate to a lack of selectivity in reactivation of choice outcomes.
Impulsivity is characterized by a predisposition toward risky behavior
and a predisposition to act without adequate thought42. Items on the
self-report Barratt Impulsivity Scale (BIS) capture a tendency to act
without thinking about the likely future consequences of the action
(e.g. I do things without thinking, I am more interested in the present
than the future). Impulsivity has also previously been associated with
reduced neural signatures of model-based decision making38, while
theoreticalmodels of impulsivity suggest a relationship between it and
noisy simulation of action outcomes43. Based on this, we specifically
hypothesized that impulsivity would relate to failure to reactivate
(consider) outcomes according to their probability. We thus examined

the relationship between impulsivity and Neural Probability Prior-
itization (βs,τ,τ0

probðneuralÞ, Fig. 7A) and identified a significant negative
relationship (Fig. 7B, C, τ = 410ms, τ0 = 370ms, PFWE = .001, one-tailed
non-parametric permutation test on image minimum; see Supple-
mentary Fig. 9d for estimation of unbiased behavior-neural
correlation).

In relation to this result we caution that because probability and
reward information are always presented in the same order, we
cannot entirely rule out that a reduced representation of high
probability outcomes in individuals with higher impulsivity might in
fact reflect it being presented as the second piece of information,
rather than the first. Additionally, we did not identify a similar sig-
nificant relationship in the perceptual detection task. Specifically, the
relationship between (slower) response times for perceptual detec-
tion for higher probability probe items and participant self-reported
BIS score was not significant (spearman rank correlation; one-tailed,
rspearman = -.084, t 86ð Þ= � :78, P = :79).

Discussion
It is widely conjectured that differences in behavioral choice patterns
relate to differences in what information individuals consider during
evaluation. Here, we examined this question behaviorally and
with neural data. Our findings are consistent with a hypothesis that
individual differences in integration of reward and probability infor-
mation into choice, in both a laboratory task and in real life, reflect
differences in the nature of the information that is prioritized during
evaluation.

Our behavioral analysis revealed that participants differed in the
extent to which they relied on either reward versus probability com-
parisons when deciding. By decoding outcome representations using
MEG, we show these distinct decision strategies reflected differences
in what outcomes were neurally represented during evaluation. Parti-
cipants who decided based on a difference in probability between the
better and worse gamble outcomes preferentially reactivated high
probability gamble outcomes, suggesting they primarily considered
probability information. Conversely, participants who decided more
based on the difference in reward between outcomes preferentially
reinstated the high absolute reward gamble outcomes, suggesting

Fig. 6 | Perceptual detection task provides conceptual replication of key find-
ings. A Example task trial. In the perceptual detection task, two thirds of trials were
equivalent to trials in the MEG decision making task (Fig. 1A). In one third of trials,
following presentation of the probability stimulus (750ms), the probability sti-
mulus was removed and the three outcome stimuli were presented. One of the
these (the probed stimulus) had an arrow placed upon it and the participant was
required to respond as quickly as possible to report the arrow direction. B Choice
Probability Weight relates to response time marker of probability prioritization.
Response Time Probability Weight, βprob RTð Þ, measures the effect of the probe sti-
mulus’s probability (conditioned on accepting the gamble presented earlier in the
trial) on the participant’s response time in reporting the arrow’s direction. Negative
values for βprob RTð Þ indicate faster responses when the probed stimulus is more
probable, indicative of the more probable outcome being represented during the

Probability stimulus presentation. We observed a negative relationship between
βprob RTð Þ and βprob choiceð Þ which measures weighting of probability information in
choice. This provides a conceptual replication of the MEG findings in Fig. 4.
C Choice Reward Weight relates to response time marker of reward prioritization.
ResponseTimeRewardWeight,βrew RTð Þ, measures the effect of theprobe stimulus’s
absolute reward (relative to the other gamble outcome) on the participant’s
response time to report the arrow probe. We observed a negative relationship
between βrew RTð Þ and βrew choiceð Þ whichmeasures weighting of reward information in
choice. This provides a conceptual replication of MEG findings from Fig. 5.
B,C P-values reflect one-sided t-test for spearmancorrelation. Tests reflect planned
comparisons and thus arenot corrected.AHouse and scissor imageswereobtained
from svgrepo.com where they are published under MIT licenses. They were
respectively created by Adam Whitcroft and scarlab.
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theymainly considered the relative reward of gamble options with the
safe option.

Our results add to the literature as towhat accounts for individual
differences in the treatment of reward and probability during risky
choice. Although individual differences are ubiquitous in the literature
of risky choice, the full range of factors that determine individual dif-
ferences are unknown. Previous modeling approaches have demon-
strated that models which preferentially integrate either reward or
probability information account for some aspects of commonly
observed variance in risky choice9, though whether such variation
is explainedbydifferences in the types of outcomes considered during
choice evaluation has not been shown. Here, by identifying a
link between outcomes that are represented during choice evaluation
and behavioral signatures that reflect consideration of either reward
or probability information, we provide evidence that this variation
is related to the types of information prioritized during evaluation.
These results add to recent research demonstrating that heuristics
and biases in choice can be explained for by individual differences in
the types of information considered during the decision process12–18

and demonstrate a link between these processes and previous
research demonstrating the role of outcome reactivation in choice
evaluation21,22,24–26,44.

One caveat to our reactivation results is that we only analyzed
choice periods of up to 500 milliseconds following choice stimulus
presentation. This was necessary because participants made fast
responses (Supplementary Fig. 5), limiting the available time window
over which activations could be averaged. However,most participant’s
choice evaluations lasted longer than this time period, suggesting that
we only examined reactivation data corresponding to a fraction of the
possible evaluation time used by participants. One explanation for an
apparent success in identifying relationships between reactivation and
behavior, despite not including the entire evaluation period, is that
outcome consideration at a neural level unfolded immediately upon
choice stimulus onset, possibly at stereotyped time-points, and then
continued beyond that until a choice was made. Notably, the same
behavioral-neural relationships were not statistically significant when
locking events to response times (Supplementary Fig. 11). Although we
were limited to examination of the fastest reactivation measures that
cohered across participants, future studies might avail of other
methods. For example, identification of transitions in reactivation
events between stimuli33 may enable aggregation of reactivation
events across trials that may have different response times, thus
availing of all evaluation data.

Although our results support a hypothesis that heuristic reliance
on probability versus reward information is driven by which outcomes
are represented during choice, a major caveat is that our evidence is
correlational and does not support a causal conclusion. Future work
could assess the latter by causally manipulating which outcomes are
represented during choice, perhaps by priming participants to attend
to one or other outcome by including additional outcome features.

An additional aspect of our design is that probability versus
reward information was always presented in the same order. This does
not impact interpretation of our results because we did not seek to
determine whether probability versus reward information is repre-
sented to a greater degree in general. Instead, our goalwas to ascertain
whether individual differences in representation of such information
relates to individual differences in use of either source of information
at choice. One potential exception to this is our finding that self-
reported impulsivity relates to a lesser representation of outcomes
based on their probability. We acknowledge that a reduced repre-
sentation of high probability outcomes in individuals with greater BIS
scores could be explained by it being presented as the second piece of
information, rather than the first, if individuals with greater BIS scores
preferentially represented earlier compared to later information.

A key aspect of our design was its inclusion of only two gamble
outcomes. This was motivated by two considerations. Firstly, we
wanted to render our task directly comparable to prior workwhich has
characterized choice biases using two outcomes8–11. Secondly, we
wanted to enable the simplest possible decoding analysis of outcome
representation reactivations, such that two gamble outcomes can be
compared. Although including two outcomes was beneficial for the
decoding analysis, future work might utilize tasks with additional
outcomes to enable amorefine-grained examination of howoutcomes
are prioritized for representation, and how this relates to choice
heuristics.

A final limitation of the MEG study is that due to interference of
the Covid-19 pandemic the sample size (N = 19) is relatively low.
Although this number of participants is less than intended at study
inception, we note that it is close to the range for similar studies in the
field22,45,46. Recent work examining power in between-participant neu-
roimaging analysis has shown that amount of per-participant data
contributes equally to power as number of participants47. In this
regard, the amount of per-participant data in this study is relatively
high, with 288 decision trials per participant. Finally, we note that the
additional behavioral perceptual detection study provides a con-
ceptual replication of the MEG results. Regardless however, the

Fig. 7 | Higher behavioral impulsivity is associated with less relative activation
of high probability outcomes. A Measuring the relationship between Behavioral
Impulsivity and Neural Probability Prioritization. To measure the between-
participant relationship between behavioral impulsivity and neural probability
prioritization, we regressed between participant neural probability prioritization
βp,τ,τ0
probðneuralÞ onto Behavioral Impulsivity Scale (BIS) scores, separately for each train

and test timepoint (τ and τ'). B, C Behavioral Impulsivity relates to Neural

Probability Prioritization. B Image of t-statistic of relationship (for 18 participants)
between Behavioral Impulsivity Scale (BIS) score and neural probability prior-
itization, βprobðneuralÞ, computed for each train and test timepoint, smoothed with a
Gaussian kernel (σ = 1.5 time-bins). *: PFWE = .001, one-sided non-parametric per-
mutation test on imageminimum.CHistogramshowsnull distributionofminimum
t-statistics over 5000 2-d maps, each generated by randomly shuffling BIS scores
between participants. Dashed line shows true minimum t-statistic.
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relatively low number of participants warrants some caution in inter-
pretation of the MEG results. Further work on this topic with higher
between-participant power would be valuable.

Several previous studies have investigated outcome reactivation
in the context of model-based reinforcement learning
algorithms22,24–26,44. Typical model-based algorithms postulate that
choices are evaluated by simulating potential consequential outcomes
and by adding rewards from these outcomes to a running average48,49.
Evidence that outcome reactivation functions to simulate outcomes in
this manner comes from studies demonstrating that variation in a
tendency to reactivate the deterministic outcome of a chosen action
predicts a propensity for behavior to reflect model-based choice
evaluation21,22. Thismechanism for outcome reactivation also accounts
for within participant variation of what is simulated to ultimate
valuation of a choice option26,44. Our results add to this work by
revealing that outcome reactivation can support functions beyond
typical model-based simulation, such as comparison of reward values
between choice outcomes (as used in the reward component of the
choice model identified here). Furthermore, our results show that
individual variation in reactivation tendencies relate to individual dif-
ferences in choice. The results point toward a more general flexibility
in the computational function of outcome reactivation and emphasize
a close link between the processes determining reactivation and ulti-
mate behavior.

Relatedly, a recent body of work has examined how the brain
solves the meta-decision problem as to which potential outcomes of a
choice should be simulated. Although standard formulations of
simulation in model-based choice postulate that outcomes should be
simulated proportionally to their probability48 theoretical analyses
have demonstrated that in situations where the total number of
simulations is limited, it is possible to arrive atmore accurate estimates
of choice utility by a consideration of outcome utilities in the decision
of what to simulate50,51. With MEG, tendencies to reactivate outcomes
either proportionally to their utility or inverse utility have also been
reported26,52.

Our use ofMEG rather than fMRI permitted an analysis of not only
which outcomes were reactivated, but also the temporal structure of
when such reactivations occur and what temporal component of a
representation, in terms of time following direct presentation of the
stimulus, was reactivated. Such temporal structure has previously
been demonstrated as important for integration of rewards with non-
directly paired stimuli in a sensory pre-conditioning task32. Our find-
ings as to when reactivation events occur bears similarities to that
previous study. Notably, our identification of reactivation related to
integration of reward and probability information, occurred at two
distinct timepoints (110ms and 420ms following choice stimulus
onset), approximately resembling time-points32 when a non-direct
rewarded stimulus was re-activated following a paired stimulus onset
(400ms) or a reward (70ms). Relatedly, we found that activated
representations were those corresponding to classifiers trained
around 400ms following stimulus onset. Previous work32 has identi-
fied such classification time-points corresponded to representations
that load on temporal cortex topographies, suggesting these areas
may support decision-relevant outcome representations. In our ana-
lysis of sensors responsible for reactivation events underlying
behavioral-neural relationships, we also found that reactivation
involved visual and temporal sensors, with some frontal sensors
involved as well (Supplementary Fig. 10).

Finally, we identified that participants with higher behavioral
impulsivity demonstrated relatively reducedprioritized reactivationof
higher probability outcome representations. This reactivation result
matches recent theoretical proposals that impulsive choice may
result from a noisy simulation of future events43. Given the separate,
positive relationship of this pattern of reactivation with integration of
probability information, this points toward a potential mechanism to

explain real-life aberrant risky choice, potentially a neglect of prob-
ability information53. More generally, our finding here opens line of
research that disorders of choice may relate to what information
should be prioritized. However, we note that our failure to replicate
this significant result in a perceptual detection study suggests that it
needs to be further investigated.

In summary, we demonstrate a relationship between the nature of
the information individuals tend to consider during evaluation, and
how they decide. This implies that one could learn to make better
choices by learning to change what information is prioritized for
consideration and points toward a research direction for treatment of
mental health disorders characterized by aberrant choice.

Methods
MEG study experimental procedures
This study was approved by the UCL ethics board (ID: 9929/002).

Participants. We recruited 21 participants (mean (std) age: 23.67
(4.33), 13 female) from University College London participant data-
bases. Participants provided informed consent prior to beginning the
study. 13were female. Themean agewas 23.67, with a range of 18 to 36.
No statistical method was used to predetermine sample size. Based on
consideration from prior literature, we chose a sample of 30 partici-
pants, however, due to the coronavirus pandemic and the UK lock-
down, we were required to stop collecting data at 21 participants. Two
participants were removed from analysis for choosing the same action
on greater than 80% of trials (89% and 83%), thus leaving 19 partici-
pants included in themain analysis (Figs. 2–5).We additionally failed to
collect questionnaire data for one participant. Thus the neural-
questionnaire analysis (Fig. 7) reflects data from 18 participants. For
completing the entire study, participants were paid 40 GBP with a
performance dependent bonus of up to 20 GBP.

Task overview. The entire task took place over two consecutive days.
On day 1, participants completed the task instructions. Following this,
using different stimuli than used in the actual task, participants com-
pleted the entire probability learning task, and then completed three
randomly selected blocks from the risky decision-making task. Fol-
lowing this they completed a number of Questionnaires. Note that
participants completed day 1 from their own personal computers and
that behavior from practice trials on day 1 was not analyzed and is not
reported here.

On day 2, in the MEG scanner, participants completed the func-
tional localizer task, the probability learning task, and the risky
decision-making task. Different task stimuli were used on Day 1 and
Day 2. The full MEG session lasted about 90minutes and consisted of
13 runs of scanning sessions. This included 3 runs of the localizer task
(each lasting about 5minutes), 2 runs of probability learning task (each
less than 5minutes, not analyzed), and 8 runs of the decision-making
task (each lasting about 7minutes).

In the main task, participants were required to make decisions
about whether to accept or reject a gamble (Fig. 1A). Rejecting the
gamble led to collecting a safe outcome (OS). Accepting, in contrast,
led to collecting one of twogamble outcomes (O1 orO2). On each trial,
each of the three outcomes were associated with a distinct number of
points, which the participantwasmade aware of at the start of the trial,
and which, if collected, contributed toward a bonus. The task con-
tained four probability stimuli (P1, P2, P3 and P4). Each probability
stimulus determined, whether, if accepting the gamble, the probability
that O1 versus O2 would be encountered. The probability of gamble
acceptance leading to O1 was. 2, .4, .6, and .8, for P1, P2, P3 and P4
respectively (Fig. 1B).

Note that our decision to include two potential gamble outcomes
in the task was based on two reasons. The first was to make our task
directly comparable to prior work which has characterized choice
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biases in tasks using two outcomes8–11. The second was to enable the
simplest possible decoding analysis of representation reactivations,
such that activations of two gamble outcomes could simply be com-
pared. Although this decision to include two outcomes was beneficial
toward making decoding analysis simpler, future work might utilize
tasks with additional outcomes so as to study in a more fine-grained
manner how outcomes are prioritized for representation and how this
relates to choice heuristics.

The task consisted of eight blocks, which alternated between gain
and loss blocks (four of each). To construct each trial, either O1 or O2
was selected to be the trigger option. The reward value of the trigger
option was selected from {47.5, 60, 75} on gain trials, or {-47.5, -60, -75}
on loss trials, and the non-trigger option value was 0 (Fig. 1C). The
valueof the safe optionwas selected from{20, 40, 60, 80} ongain trials
and {-20, -40, -60, -80} on loss trials. Following this, a single random
value drawn from uniform(0,20) for gain trials, or uniform(-20,0) for
loss trials was added to each outcome. Finally, three separate random
values drawn from uniform(0,5) for gain trials and uniform(0,-5) for
loss trials were added to each value separately.

Trials consisted of each combination of trigger value, and safe
value, such that the absolute value of the trigger valuewasgreater than
the absolute value of the safe value, for both O1 and O2 occurring as
the trigger value, for each level of P(O1|Cn). Finally, each exact trial
repeated twice in the task.

Participants were instructed that their bonus would be computed
by randomly selecting one trial from each block of the task and adding
the points they collected on these trials. The bonus was proportional
to this sum.

Functional localizer task. For the functional localizer, each task sti-
mulus was represented using a decodable visual stimulus. These con-
sisted of photographs whose categories are pictorially represented in
Fig. 1A. Our analysis of the task relied ondecoding fromMEGdatawhat
outcome stimulus was represented during choice evaluation. In order
to collect data with which to train a classifier to detect stimulus
representations, participants completed a functional localizer task,
consisting of three blocks. Each block, the seven images representing
each task state were each presented 20 times, in randomized order.
For each presentation, the image was presented for 800ms. Following
a 200ms ISI, twowords appeared on the screen, one corresponding to
the name of the image just presented and one corresponding to the
nameof a different image. Participantsweregiven 600ms to select the
word corresponding to the image just seen.

Probability learning task. To learn the probabilities that each choice
stimulus, if accepted, led to either gamble outcome stimulus, partici-
pants completed four blocks of a probability learning task. In each
block, for each probability stimulus, participants were first shown a
screen instructing them on the probabilities that that probability sti-
mulus (if as part of a gamble that was accepted) would lead to either
gamble outcome stimulus. Following this, the participants experi-
enced 10 trials in which they were required to play that probability
stimulus. For each play, the participant experienced that stimulus,
followed by one of the two gamble outcomes. For the 10 trials, it was
guaranteed that the number of either outcome experienced matched
the instructed probability, however in randomized order (e.g. if the
probability stimulus led to O1, 40% of the time, the participant
experienced O1 4 out of the 10 times following the choice stimulus). In
order to ensure attention, following 25% of these trials, participants
were required to report either which choice stimulus, or which out-
come stimulus they had just experienced. After experiencing two
roundsof instructedprobabilities and experienced transitions for each
probability stimulus, the participant was then required to respond to a
number of queries about the probability that each probability stimulus
led to each outcome. For each query, the participant was shown an

image of one of outcome stimuli as well as two of the probability
stimuli, andwas required to reportwhichof the twoprobability stimuli
was more likely to lead to that outcome. The proportion correct for
these queries across rounds is reported in Supplementary Fig. 1.

Risky decision-making task. For themain, risky decision-making task,
on each trial participants were first shown howmany points would be
earned if they were to encounter either of the three types of outcomes
(O1, O2 or OS). This was displayed on a screen, presented for 2.5 s,
containing three separate banknote-like images, with each banknote
containing one of the outcome stimuli and the number of points
(Fig. 1A). The position of the two gamble outcomes was randomly
counter-balanced. Following a 1.5 s ISI, participants were then pre-
sented with one of the four probability stimuli, and were required to
either accept or reject the gamble. Rejecting the gamble would lead to
encountering the safe stimulus and collecting the number of points
associatedwith it for that trial. Conversely accepting the gamblewould
lead to encountering either O1 or O2, and collecting the number of
points associated with that outcome for that trial. The probability
stimulus remainedon the screenuntil theparticipantmade a response,
up to a maximum of 6 s. Then, following a 1.5 s ISI participants
observed a banknote corresponding to the outcome they received,
along with the number of points they collected. To encourage parti-
cipants to decide at the time of probability stimulus onset, on 10% of
trials, participants were not presented with a probability stimulus, and
were instead required to report the reward paired with one of the
outcome stimuli.

Questionnaires. Participants completed the following questionnaire:
The Barratt Impulsivity Scale, The State-Trait Anxiety Inventory (STAI),
the Penn StateWorryQuestionnaire (PSWQ), and theMASQanhedonia
scale. Prior to administering the task, we expected that we would
identify differences in how participants treated loss and gain blocks of
the task, and that this difference would be relevant for relating to the
STAI, PSWQ. However, after failing to observe relevant differential
behavioral treatment of gain and loss blocks, we focused only on the
BIS measure and MASQ. We hypothesized that BIS would be related
negatively probability prioritization. We additionally tested whether
MASQ would relate negatively to reward prioritization, however did
not observe this effect to be significant. Because these were planned
comparisons, we do not present correction for multiple comparisons
(acrossmultiple tests), however,we note that the strength of the effect
relating BIS to neural probability prioritization would survive Bonfer-
roni correction for the two tests performed. Note that, due to an error
in recording data, we failed to collect questionnaire data for one par-
ticipant. Thus, Neural-Questionnaire analysis was examined for 18
participants.

Computational models of choice data
All behavioral analysis was implemented using the Julia (version 1.5)
programming language54. In order to gain an algorithmic description
of participants decision making we fit a number of computational
models to their choices. The following models are compared in Fig. 3.

For each model, we describe how it determines the probability of
accepting anoffer basedon trial information alongwithmodel-specific
free parameters.

Expected Value Model. The expected value model decides based on
the difference in expected value for accepting and rejecting the gam-
ble,

Paccept = logit�1ðβ½PO1RO1 +PO2RO2 � ROS�Þ ð1Þ

Here, PO1 and PO2 are the respective probabilities of O1 and O2
being received conditioned on accepting the gamble. RO1,RO2
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and ROS are the number of points paired with O1, O2 and OS for
that trial. logit�1 is the standard sigmoid logistic sigmoid function. β
is a free parameter, th inverse temperature, and controls
decision noise.

Additive heuristic model. The additive heuristic model, based on
additive integration models9,10, yet adapted for features of this task,
simply does a linear integration of two features: one related to the
probability of reaching the better outcome, and one related to the
difference in reward between the trigger outcome and the safe out-
come:

Paccept = logit
�1ðβ0 +βprob PObetter

� POworse

h i
+ βrew½

R*
Otrig

2
� R*

OSaf e
�Þ ð2Þ

β0 = βgain, on gain trials and β0 = βloss on loss trials and controls
baseline tendencies to accept or reject gambles independently of trial
information. βgain, βloss, βprob, andβrew are free parameters. PObetter

and
POworse

are the respective probabilities of reaching the better andworse
gamble outcomes (e.g. PObetter

=PO1 when O1 has more points). R*
Otrig

is
the reward of the trigger outcome (the gamble outcome – O1 or O2 –

with higher absolute value), baseline corrected such that the common
noise added to each item is subtracted (Fig. 1C). R*

Osaf e
is the reward of

the safe outcome, baseline corrected such that the common noise
added to each item is subtracted.

The following models are compared additionally in Supplemen-
tary Fig. 3:

Prospect theory. The prospect theory model (Kahneman & Tversky,
1979) allows expectations to be taken using a Probability Weighting
function, w, and subjective utility function, v,

Paccept = logit
�1ðβ½wðPO1ÞvðRO1Þ+wðPO2ÞvðRO2Þ � vðROSÞ�Þ ð3Þ

We used standard utility functions, v xð Þ= xαgain when
x ≥0,v xð Þ=�ðxα

lossÞ when x<0, and. We use the log odds linear Prob-

ability Weighting function, w pð Þ= δpγ

δpγ + 1�pð Þγ. β, αgain, αloss, δ, and γ are

free parameters.

Sampling models. We additionally fit two sampling models. Accord-
ing to our samplingmodels, the participant uses importance sampling
to estimate the difference in utility between accepting and rejecting
the gamble outcome. Both models assume participants first select a
number of samples to take, S, which we assume is drawn from an
ordered probit distribution, OrderedProbitðS j n,cÞ. n sets the center
of the distribution and is a free parameter. The scale parameter, c is set
to 2. Following this, the participant draws S samples where each
sample corresponds to either O1 or O2, from the distribution qðOiÞ,
which is defined below. Given S samples, the participant computes an
estimate of the value difference between the gamble option and safe
option:

Ê =
1PS

j = 1 wj

XS

i= 1
wi½vðRoi

Þ � vðROSÞ� ð4Þ

wi reflects the importanceweights,wi =
POi
qðoiÞ. v is defined the same

as it is for the prospect theorymodels, with two free parameters, αgain,
and αloss. Roi

is the number of points paired with the outcome that was
drawn on sample i.

The participant’s probability of accepting is then 1 if Ê > 0, 0 if
E <0 and .5 if E =0.We define Ê as a functionof the number of samples

taken S, and the number of samples drawn as O1, nO1
,

Ê nO1
,S

� �
=

1

nO1
w1 + 1� nO1

� �
w2

½nO1
wO1

vðRo1
Þ � vðRosaf e

Þ
h i

+ ½1� nO1
�wO2

vðRo2
Þ � vðRosaf e

Þ
h i

�
ð5Þ

Then the probability of acceptance then marginalizes over the
number of samples taken, S, as well as the number of samples drawn as
O1 nO1

:

Paccept =
XS

S= 1
OrderedProbitðSjn,cÞ

XnO1
= S

nO1
= 0

BinomialðnO1
,s,q O1

� �ÞPðacceptjÊðnO1
,SÞÞ

ð6Þ

where we took the maximum number of samples, S , to be 7. Here, we
assume the number of samples taken, S, is selected from an Ordered
Probit distribution, with scale parameter, c = 2, and center parameter,
n, a free parameter.

We considered two samplingmodels, which differ with regards to
the sampling distribution qðOiÞ. For probability sampling55,
q Oi

� � / POi
. For utility weighted sampling50, q Oi

� � / POi
vðROi

Þ�
���

vðRSaf eÞj. Both models have a 3 free parameters: n, αgain, and αloss.

Model fitting procedure. For each participant, we estimated the free
parameters of each model by maximizing the likelihood of choices,
jointly with group-level distributions over the entire population using
an Expectation Maximization (EM) procedure56. Models were com-
pared by computing the integrated Bayesian information criterion
over the entire group of participants for each model. In order to
comparemodel predictions to data points,we computed for each trial,
for each participant, the probability of acceptance under that partici-
pant’s best fitting parameters.

MEG acquisition
MEGdatawas acquired on aCTF275-channel axial gradiometer system
(CTF Omega, VSM MedTech) sampling at 1200Hz. No online filters
were applied during collection. The taskwasdivided intomultipleMEG
sessions, with each session lasting less then 10minutes. Participants
were asked to remain still during the scanning session. Participants
were able to take a rest between sessions, however they were required
to remain in place in the scanner and encouraged not to move. At the
start of each scanning session participant’s head positions were
registered.

MEG analysis
AllMEGanalyseswerecompletedusing customMatlab (version 2019a)
scripts.

Preprocessing. Preprocessing was performed using OSL (OHBA Ana-
lysis Group, OHBA, Oxford, UK). Preprocessing steps included high-
pass filtering, at 0.5 Hz, followed by down sampling to 100Hz. After
identification and removal of excessively noisy sensors (using standard
artifact rejection in OSL with default parameters – mean 8 + /−
6.01 sensors per participant), independent component analysis (ICA)
was applied to denoise the data. We applied fastica, part of the AFRICA
ICA procedure within the OSL software package. ICA was run with
default parameters, which sets the maximum number of components
that can be removed due to kurtosis to 10, and flagged components
were removed automatically. Components were rejected where the
kurtosis exceeded a threshold of .5. Our approach to handle eye
movements is to additionally remove components that are correlated
with recorded EOG channel eye movement data. The mean and stan-
dard deviation number of components removed per run is reported in
Supplementary Table 3.
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A set of example components removed for kurtosis is displayed in
Supplementary Fig. 14. Note that to maximize power in estimating
neuralmarkers of preferential reactivation, no trials were removeddue
to preprocessing. We verified that this does not harm decoding
accuracy (Supplementary Fig. 16). Additionally, our results are robust
to altering this decision and hold under trial removal (Supplemen-
tary Fig. 17).

Data from the functional localizer task was epoched between 0
and 500 milliseconds following stimulus onset. We trained binary
classifiers on data from the functional localizer task. Our decision to
train classifiers from 0ms to 500ms post image onset was motivated
by three factors. First, our analysis of classifier cross-validation accu-
racy revealed that we only had significant decoding (testing on the
same time-point as was trained on) for train time-points from 0ms to
560ms post image onset. Second, prior evidence has shown that
relevant reactivation events occur for classifiers trained on a time-
point less than 500ms post image onset32. Third, using an a priori
hypothesis for which representations would be reactive allowed us to
increase power for our key tests of relationships between behavioral
and neural reactivation events.

Decoding outcome stimuli. In order to decode outcome representa-
tions, while minimizing correlations between decoded reactivations,
we followed an approach recommended in34 of training models to
discriminate one state against a mixture of other states and null data.
Thus, for each 10ms timepoint following stimulus onset, three binary
classifierswere trained, one for each outcome stimulus to discriminate
between sensor data associated with that stimulus, and sensor data
associated with each of the 6 other stimuli, along with null data cor-
responding to the intertrial interval (equal in number to 100% of
training examples). The classification pipeline consisted of scaling the
data by dividing by its 95th (absolute) percentile. Following this, data
from all sensors for a given timepoint was used as training examples to
train a lasso logistic regression classifier (using matlab function las-
soglm). Figure 3B–Dwere generated by doing a 7-fold cross validation,
training the three classifiers on each time-point (out of 50) using 6/7 of
the training data and then testing using remaining 1/7 examples on
each timepoint. The regularization hyperparameter of the logistic
regression selected as the parameter whichmaximized themean cross
validation accuracy along the diagonal of the 2-D map in Fig. 3D
(matching train and test timepoints). A given test example was con-
sidered correct if its classifier had the highest activation (out of the
three). This identified .002 as the best regularization parameter, which
was used for further analysis (Supplementary Fig. 4).

After choosing a lasso penalty, we trained the three classifiers on
all the localizer data, on each 10-ms binned timepoint, τ, following
outcome stimulus onset. This generated three classifiers, one for each
outcome, for each of 50 timepoints, corresponding to each 10-ms bin
between 10ms and 500ms following outcome stimulus presentation
in the localizer task. Given the task response times in addition to prior
hypothesis about when relevant reactivation events occur (Ref. 32;
Supplementary Fig. 5), we epoched the decision-making taskdata from
0 to 500ms following the onset of the probability stimulus in each
trial. We then applied each outcome classifier, for each training time-
point, τ, to each task timepoint, τ0, following probability stimulus
onset. Note that, for a given trial, we only analyzed task-time points
that occurred prior to a response being made (dropping time-points
that occurred after this). We use RPp,t,τ,τ0

Ox
to represent the reactivation

probability output by the classifier, trained to activate for stimulus OX

(either O1, O2, or OS) at timepoint τ ms following its presentation, for
participant s, on trial t, at timepoint τ0 following presentation of the
probability stimulus.

Relating behavioral weighting of information to preferential repre-
sentation of stimuli. To examine the question of how prioritization of

reactivated outcomes relates to behavioral evidence for reliance on
probability versus reward information, we used a two-stage analysis. In
the first stage, we fit, separately, for each participant, s, train timepoint
τ, and test timepoint τ0, a linear model to predict the difference in
reactivation probabilities between the two gamble out-
comes, Δs,t,τ,τ0

RPO
=RPs,t,τ,τ0

O1
� RPs,t,τ,τ0

O2
.

For each participant, s, train timepoint, and test timepoint, we
predict this difference as a function of the participant and trial specific
difference in probability, Ps,t

O1
� Ps,t

O2
, as well as absolute rewards, jRs,t

O1
j �

Rs,t
O2

���
��� between the two gamble outcomes:

Δs,t,τ,τ0
RPO

∼β0 +β
s,τ,τ0
probðneuralÞ Ps,t

O1
� Ps,t

O2

h i
+ βs,τ,τ0

rewðneuralÞ½jRs,t
O1
j � jRs,t

O2
j� ð7Þ

This provides an estimate of βs,τ,τ0
probðneuralÞ, and βs,τ,τ0

rewðneuralÞ, for each
participant, s, train timepoint, τ, and test timepoint, τ0. βs,τ,τ0

probðneuralÞ
measures the extent to which, a tendency to reactivate O1 over O2 is
driven by the probability of O1 relative to O2 (and vice-versa). Con-
versely, βs,τ,τ0

rewðneuralÞ measures the extent to which a tendency to reac-
tivate O1 over O2 is driven by the relative absolute reward of O1
compared to O2.

We next sought to determine whether these differences in reac-
tivation tendencies related to behavioral reliance on reward versus
probability information in choice. To examine this, in a second level,
we related βs,τ,τ0

probðneuralÞ and βs,τ,τ0
rewðneuralÞ to fitted parameters from the

Additive Heuristic model, βprob andβreward , which we now refer to as
βs
probðchoiceÞ and βs

rewðchoiceÞ. We predicted that behavioral reliance on
probability information, indexed by βs

probðchoiceÞ would be related to
preferential reactivation of more probable gamble outcomes, as
indexed by βs,τ,τ0

probðneuralÞ, and that behavioral reliance on reward infor-
mation, indexed by βs

rewðchoiceÞ would be related to preferential reacti-
vation of outcomes with higher absolute reward, as indexed
by βs,τ,τ0

rewðneuralÞ.
We thus performed two between participant regressions: one

relating βs
probðchoiceÞ to βs,τ,τ0

probðchoiceÞ (Fig. 4) and one relating βs
rewðchoiceÞ to

βs,τ,τ0
rewðneuralÞ (Fig. 5). In order to mitigate the impact of potential outliers,

following previous work (Eldar et al., 2018), all between-participant
behavioral-neural regressions and associated t-statistics were com-
puted using robust linear regression, (Matlab function robustfit, with
default settings). Note that this approach has been shown to both
increase power and reduce false positive rates in the presence of
outliers57. Additionally note that significance (p-values) of computed
t-statistics were computed by non-parametric permutation test, thus
additionally ensuring appropriate false positive rates. Specifically,
these permutation tests only assume exchangeability of participants
under the null distribution, which is appropriate given that partici-
pant’s behavioral and neural measurements are independent of one
another.

Specifically, each between participant regression was applied
separately for each train timepoint, τ and test timepoint, τ0, thus
providing a 2-d map (τ by τ’) of t-statistics for each regression. Fol-
lowing Ref. 32, this map was then smoothed with a Gaussian kernel
(σ = 1.5 timebins). Significance for eachbetweenparticipant regression
was computed over the peak (max) t-statistic of this smoothedmapby
non-parametric permutation test32. For this, the 2-d map was re-
computed 5000 times, each time shuffling which participant was
assigned to which behavioral parameter (e.g. assigning the behavioral
parameter for participant 11, βs11

probðbehaviorÞ, to participant 15) according
to a random permutation. A null distribution over max-t-statistics was
created by taking the peak of each of the 5000 t-statistic maps (over τ
and τ’). Family wise error corrected p-values (PFWE) were computed as
the proportion of permutations greater than the peak of the true
observed map. We note that because all of our analysis are based on
clear directional predictions, to test for these and all relationships, we
employ one-tailed tests. However, we note that most reported results
would still be significant under two-tailed tests.
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Because theChoiceRewardWeight in the additive heuristicmodel
requires comparison of the gamble outcome with higher reward
absolute value to the safe outcome, we also predicted that behavioral
reward consideration would be related to reactivation of the safe
outcome (Supplementary Fig. 6). As a measure of safe outcome reac-
tivation, we computed, for each participant, s, train timepoint, τ, and
test timepoint, τ0, the mean reactivation probability across trials,
RPs,τ,τ0

OS
. We then related this to βs

rewðchoiceÞ and computed significance
equivalently as was done for the above between participant
regressions.

In order to relate behavioral reactivation to a tendency to rein-
state outcomes based on their probability (Fig. 7), we repeated the
previous between participant regression involving βs,τ,τ0

probðneuralÞ, how-
ever replacing the βs

probðchoiceÞ with the BIS score of participant s. Sig-
nificance of this regression was computed equivalently to the above,
except here PFWE was computed as proportion of permutations less
than the observed minimum (since a negative effect was predicted).

Perceptual detection task procedures
This online study was approved by UCL ethics (ID: 16639/001).

Participants. We recruited 100 participants (mean (std) age: 27.6 (8.1),
35 female) on Prolific to perform the task online in their browser.
Participants provided informed consent prior to starting the study.
Data from 3 participants was lost due to errors in recording. Using an
equivalent exclusion criterion asused in theMEG study, an additional 5
participants were excluded due to selection of the same action on
more than 80% of trials. Finally, an additional 4 participants were
removed due to failure to make responses to perceptual detection
trials, leaving 88 participants for analysis. For completing the study,
which took approximately 65minutes, participants were paid 9.34
GBP, with a performance dependent bonus between 0 and 3 GBP.

Task. After completing instructions and passing a quiz on their con-
tents, participants completed the BIS questionnaire followed by a
probability learning task which was identical to that used in the MEG
task, however only had three rather than four blocks. They then
completed the risky decision-making task, consisting of 288 trials. Two
thirds of trials were identical to the decision trials in the MEG task,
however, were run slightly faster: with inter-stimulus intervals of
1 second and inter-trial intervals also of 1 second. Additionally, parti-
cipants were only allowed to make a choice following observing the
probability stimulus for 1 second.

On one third of trials, instead of being allowed to make a choice,
the probability stimulus disappeared, and participants were shown the
three outcome stimuli, one of which contained an arrow stimulus
placed over it (Fig. 6A). Participants were then required to press an
arrowkey indicating thedirection of the arrowasquickly as they could.

Perceptual detection task analysis
We sought to estimate the extent to which individual participants
represented outcome stimuli based on either their probability or
absolute rewards. If participants tended to represent outcome stimuli
based on their probability, they would make faster responses when
higher probability outcome stimuli were the probed stimulus com-
pared to when lower probability stimuli were the probe stimulus.
Conversely, if participants tended to represent outcome stimuli based
on their absolute rewards, they would make faster responses when
higher absolute reward outcome stimuli were the probed stimulus
compared to when lower absolute-reward stimuli were the probe
stimulus.

We thus sought to estimate the effect of relative outcome prob-
ability and relative outcome absolute reward on log response times to

the perceptual detection probe:

log rts,t
� �

∼β0 + β
s
probðRT Þ Ps,t

Oprobed
� Ps,t

Onon�probed

h i

+βs
rewðRT Þ½jRs,t

Oprobed
j � jRs,t

Onon�probed
j�

ð8Þ

Here, rts,t is the response time of participant s on trial t. Ps,t
Oprobed

and Ps,t
Onon�probed

are the respective probabilities of the probed and non-

probed gamble stimuli on trial for participant s, trial t. Note that this
regression was only applied to trials where one of the gamble stimuli
was the probe. Negative values of βs

probðRT Þ reflect faster responses for

more probable probed stimuli, reflecting a tendency to represent

outcomes based on their probability. Rs,t
Oprobed

���
��� and jRs,t

Onon�probed
j are the

respective absolute rewards paired with the probed and non-probed
gamble outcomes for participant s on trial t. Negative values of
βs
rewðprimeÞ reflect faster responses for probed stimuli with higher

absolute reward, reflecting a tendency to represent outcomes based
on their absolute reward.

To determine if tendencies to represent outcomes based on
probability or absolute reward were related to heuristic reliance of
reward and probability information in choice, we fit the additive
heuristic model to participants behavior andmeasured spearman rank
correlations to test for a relationship between βs

probðRTÞ and βs
probðchoiceÞ,

and between βs
rewðRT Þ and βs

rewðchoiceÞ. Spearman rank correlation
assumes a monotonic relationship between variables, which is appar-
ent in Fig. 6B and C.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw and preprocessed MEG data have been deposited in the Open-
Neuro database58, under accession code https://doi.org/10.18112/
openneuro.ds005065.v1.0.0. Behavioral data for both tasks is depos-
ited at zenodo59, https://doi.org/10.5281/zenodo.10950132.

Code availability
Analysis code on github is deposited at zenodo59: https://doi.org/10.
5281/zenodo.10950132.
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