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Carbon storage through China’s planted
forest expansion

Kai Cheng 1,2,9, Haitao Yang 1,9, Shengli Tao 2, Yanjun Su 3,4,
Hongcan Guan 5, Yu Ren 1,2, Tianyu Hu3,4, Wenkai Li6, Guangcai Xu7,
Mengxi Chen1, Xiancheng Lu 1, Zekun Yang1, Yanhong Tang2, Keping Ma 3,4,
Jingyun Fang2,8 & Qinghua Guo 1,2

China’s extensive planted forests play a crucial role in carbon storage, vital for
climate changemitigation. However, the complex spatiotemporal dynamics of
China’s planted forest area and its carbon storage remain uncaptured. Herewe
reveal such changes in China’s planted forests from 1990 to 2020 using
satellite and field data. Results show a doubling of planted forest area, a trend
that intensified post-2000. These changes lead to China’s planted forest car-
bon storage increasing from 675.6 ± 12.5 Tg C in 1990 to 1,873.1 ± 16.2 Tg C in
2020, with an average rate of ~ 40 Tg C yr−1. The area expansion of planted
forests contributed ~ 53% (637.2 ± 5.4 TgC) of the total above increased carbon
storage in planted forests compared with planted forest growth. This proac-
tive policy-driven expansion of planted forests has catalyzed a swift increase in
carbon storage, aligning with China’s Carbon Neutrality Target for 2060.

Forests function as important carbon (C) sinks1–6 and offer a natural
solution to address climate change and ecological issues7–9. The
expansion of planted forest areas is considered an effective solution to
achieve the main objectives of the UN’s Global Forest Goals under
continuous decrease in natural forest area10. However, the decrease in
natural forest area outweighs the increase in planted forest area,
resulting in a global net decline of forest area by 178 million ha and a
reduction in the global forest C stock from 668 Petagram (Pg) to 662
Pg between 1990 and 202011. Achieving the goals of the 2030 Agenda12

relies on credible monitoring and verification of the C storage of
planted forests. This task needs to take into account land spatio-
temporal dynamics and forest types, distinguishing between planted
and natural forests due to different species composition, stand struc-
ture, age, andmanagement context13–16. In China, which has theworld’s
largest planted forest area, accounting for over 1/4 of global planted
forest area17, a comprehensive analysis of its planted forests C storage
needs investigation.

China’s achievement in expanding planted forest area is a
remarkable accomplishment both domestically and in the global
context18. Despite this global reduction of forest area, China’s planted
forest area expansion hasmade significant contributions to increasing
China’s forest area for several consecutive years19,20. As of 2020, Chi-
na’s forest area reached approximately 220 million ha, accounting for
5% of the world’s forest area11. This expansion is a result of conducted
government efforts to convert croplands, shrublands, and grasslands
into planted forests17,18,21,22. This effort to grow the planted forest area
not only increased China’s total forest extent but also resulted in
drastic changes in land use and land cover (LULC), impacting China’s
forests C storage capacity5,11,23–26. Based on the National Forest Man-
agement Plan (2016–2050), China’s forest area will continue to
account for ~26% of China’s total land area by 2050, requiring an
additional conversion of over 2.8 million ha from other LULC to
forests20. This has highlighted the urgent need for accurately quanti-
fying the spatiotemporal dynamics of planted forest conversion from
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other LULC types13,27 anddevising anoptimal C storage strategy to take
advantage of the planted forest expansion28,29.

However, currently availablemaps of China’s planted forests have
limitations in both spatial and temporal coverage30,31. These existing
nationalmaps and datasets were created through forest inventories or
the digitization of forest inventory maps for specific years with coarse
spatial resolutions21,32 or only pertain to specific subtypes23,33,34, and are
thus inadequate for tracking China’s multi-decadal efforts in the
planted forest area expansion13,35,36. Consequently, there is an urgent
need to conduct high spatial resolution, national-scale research, and
long-time-series assessments of C storage associated with the planted
forest area expansion in China.

For this purpose, leveraging all available Landsat-4/5/7/8/9 sur-
face reflectance images from 1990 to 2020 in the Google Earth Engine
(GEE) cloud computing platform together with field samples, we
generated the high-resolution wall-to-wall planted forest maps for
China. These efforts yielded the ability to capture the dynamics of
planted forest coverage at five-year intervals from 1990 to 2020 at 30-
m spatial resolution (see Methods and Supplementary Information).
Integrating the data on China’s planted forests’ spatiotemporal
dynamics, LULC conversions, vegetation C densities, and vegetation
type maps, we then analyzed China’s planted forest C storage from
1990 to 2020. The resulting comprehensive dataset not only con-
tributes to the understanding of the impact of China’s planted forest

expansion but also serves as a valuable tool for evaluating its impli-
cations on climate change and sustainable development within the
country.

Results
Mapping planted forest spatiotemporal dynamics in China
Quinquennialmaps of China’s planted forest from 1990 to 2020 reveal
that the area of planted forests expanded at an annual rate of
14,613 km2, representing a 94.33% net increase from 464,715 km2 in
1990 to 903,099 km2 by 2020 (Fig. 1a, b, e). This increase in planted
forest area was the combined result of a gain of 479,681 km2 and a loss
of 41,297 km2, leading to a net increase of 438,384 km2 (Fig. 1e and
Supplementary Fig. 1). Our maps were compared with planted forest
map of National Forest Inventory and the reported National Forestry
Statistical Yearbook, showing minor differences in the area and sig-
nificantly positive relationships (R2 ranged from 0.8 to 0.9, P <0.01)
(Supplementary Figs. 2 and 3). The overall accuracies for the generated
quinquennial maps ranged from 77.3% to 81.8% from 1990 to 2020
(Supplementary Fig. 4). These accuracy assessments support the
reliability of the generated maps of China’s planted forests, providing
confidence that our maps align with existing datasets and fulfill the
aims of this study.

China’s planted forests adhere to typical forest distribution
patterns in terms of latitudinal, longitudinal, and elevational
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Fig. 1 | Spatiotemporal dynamics of planted forest area from 1990 to 2020.
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distribution32. In 2020, planted forests were predominantly con-
centrated in regions with elevations below 1,500m (Fig. 1c). The
majority of planted forests were located in the southern region,
accounting for 32.6% of the total area of planted forests, followed by
the eastern region (20.1%) and the southwestern region (16.6%)
(Fig. 1a, b). The northwestern region, on the other hand, had the
smallest proportion of planted forest area, covering only 5.5% of its
total area (Fig. 1 and Supplementary Fig. 5), but had the fastest rate of
planted forest area expansion, growing by 266.5% from 1990 to 2020
(Fig. 1f). Overall, all regions showed a net increase, albeit with sig-
nificant fluctuations around 2005 (Fig. 1f and Supplementary Fig. 6b).
The south experienced the highest increase rate, with a total increase
of 150,088km2 and an average increase rate of 5,003 km2 per year
(Fig. 1f). The southwest (103,729 km2) and the east (73,208 km2) also
exhibited substantial expansion (Fig. 1f). By aggregating the 30-meter
resolution planted forest map into 0.1° grid cells, we analyzed the
characteristics of planted forest area changes at the grid scale. We
found that 91% of the changed pixels from 1990 to 2020 showed
positive trends, with 84.0% of them being statistically significant
(P < 0.01) (Supplementary Fig. 7a). These positive trends were mostly
observed in the east and south (Supplementary Fig. 7a). In terms of the
changing trends in the expansion rate of planted forest areas, we
observed that only 7.4% of the changed pixels exhibited positive
trends, with 24.4% being statistically significant (P <0.01)

(Supplementary Fig. 7b), which were mainly distributed in the south-
western, northwestern, and northern regions (Supplementary Fig. 7b).
In most regions of China, the rate of planted forest area expansion
showed a decline, which is consistent with the trend observed in Chi-
na’s annual afforestation and reforestation area from 1990 to 2020, as
reported in the National Forestry Statistical Yearbook (Supplementary
Fig. 8), particularly in the eastern, southern, and northern regions29,
where the suitable area for plantation is nearing saturation (Supple-
mentary Fig. 8).

Changes in planted forest C storage
Thedynamics ofChina’s planted forest C storage in biomass from 1990
to 2020 exhibited marked spatiotemporal variations (Fig. 2). Overall,
we found a trend of increasing C storage in China’s planted forest,
increasing from 675.6 ± 12.5 (mean± standard deviation) Teragram
(Tg) C in 1990 to 1,873.1 ± 16.2 Tg C in 2020, with an annual increment
of approximately 40.0 Tg C (Fig. 3a and Supplementary Table 1). The
increase inC storage of China’s planted forests closely alignedwith the
spatiotemporal dynamics of planted forest distribution and expansion
(Figs. 1d and 2c). Since 1990, the most substantial increases in C sto-
rage within China’s planted forests have been observed in regions with
extensive forest cover (Figs. 1 and 2). The increased C storage was
primarily attributed to the ongoing expansion of the planted forest
area. However, the growth of young planted forests also significantly
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Fig. 2 | Spatiotemporal changes of planted forest C storage in China. a Map of
China’s planted forest C storage in biomass in 1990 in a 0.1° grid scale. b Map of
China’s planted forest C storage in biomass in 2020 in a 0.1° grid scale. c Map of

China’s planted forest C storage changes in a0.1° grid scale (The changes in planted
forest C storagewithin the grid in 2020 compared to the planted forest C storage in
the same grid in 1990).
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contributed to the increase of C storage (Fig. 3). Despite observed
regional declines (Fig. 2c), the overarching trend of increasing C sto-
rage remains unabated (Figs. 2 and 3).

The C storage in planted forests in southern, eastern, and south-
western China increased the most, with respective gains of
386.4 ± 20.6 Tg C, 272.6 ± 18.1 Tg C, and 237.9 ± 15.8 Tg C from 1990 to
2020 (Fig. 3e–g). Despite an initial decline in C storage in the north-
eastern region between 1990 to 1995, there was an overall increase of
103.1 ± 20.4 Tg C by 2020 (Figs. 2c and 3d). The historically forest-
scarce northern and northwestern (Fig. 1) regions exhibited increasing
trends in C storage of planted forests, attributable to the expansion of
planted forests, with increases from 43.3 ± 4.2 Tg C to147.8 ± 5.0 Tg C
and from 29.2 ± 2.6 Tg C to 122.2 ± 4.2 Tg C in 1990 and 2020,
respectively. Overall, the rate of increase inC storage in planted forests
before 2005 was comparatively modest compared to the period fol-
lowing 2005 (Fig. 3a), averaging approximately 20 Tg C/a between
1990 and 2005 (Fig. 3a and Supplementary Table 1). However, the C
storage rates in planted forests across different regions experienced a
marked acceleration after 2005 (Fig. 3b–g), with an average storage
rate of almost 60 Tg C/a from 2005 to 2020 and peaking at a
sequestration rate of approximately 73 TgC/a between 2005 and 2010
(Fig. 3a and Supplementary Table 1).

Attributions of LULC transformationonplanted forest C storage
The spatiotemporal analysis revealed a synchronization between the
expansion of planted forests fromLULC conversion and the associated
increase in planted forest C storage (Fig. 4). An analysis of LULC
transformation between 1990 and 2020 indicated that 438,787 km2 of
planted forests originated from the conversion of croplands, shrub-
lands, grasslands, andnatural forests, representing 98.3%of the overall
increase in planted forest area (Fig. 4a). During the same period, the
conversion of different LULC to planted forests resulted in 637.2 ± 5.4
Tg C, approximately 53.2% of the overall increase of planted forest C
storage (Supplementary Table 2). Nonetheless, the contribution from
LULC conversion to the C storage of planted forests varied across
different periods, with the highest C storage contribution occurring
from 1990 to 1995, reaching 81.4%, and declining to mere a 17.2% from
2000 to 2005 (Supplementary Table 2). This variability can be attrib-
uted to the expansion rate of China’s planted forests in distinct peri-
ods, along with the spatiotemporal variations in the types of LULC

converted intoplanted forests (Fig. 4b, c).Until 2000, expansionswere
mainly from natural forests, shrublands, and croplands (Fig.4a, c).
Post-2000, conversions from cropland, shrublands, and grasslands
emerged as the principal contributors (Fig. 4a, c). The classification of
conversion events indicated that over one-third of single-change
events involved transitions from croplands to planted forests, suc-
ceeded by conversions from shrublands, grasslands, and natural for-
ests (see Methods and Supplementary Figs. 9 and 10). Multi-change
events, accounting for 7.2% of all transitions, predominantly occurred
in the southern and southwestern regions (Supplementary
Figs. 9 and 10). The prevalent cropland-to-planted forest conversions
in both single-change and multi-change events (Supplementary
Figs. 9 and 10) highlight the impact of the Grain for Green (GFG)
program initiated in 1999. Consequently, between 1990 and 2020, C
storage gains from cropland-to-planted forest conversions amounted
to 191.7 ± 2.6 Tg C, with shrubland and grassland conversions con-
tributing 176.4 ± 2.3 Tg C and 135.9 ± 2.0 Tg C to planted forest C
storage, respectively (Supplementary Table 2). C storage gains from
the conversion of natural forests to planted forests were relatively
lower, with an estimated 121.7 ± 3.5 Tg C, constituting about 19.1% of
the total increase in C storage from LULC conversion (Supplementary
Table 2).

We conducted a more detailed analysis of C storage changes due
to LULC conversion into planted forests across various regions in
China, revealing substantial regional disparities in the contributions of
these conversions to augmenting C storage in planted forests (Fig. 5).
In both the northwestern and northern regions, grassland conversion
emerged as the predominant factor driving the increase in C storage
within planted forests (Fig. 5). In the northwestern region, 34.5% of the
C storage increase in planted forests from 1990 to 2020 was con-
tributed by the conversion of grassland, while in the northern region,
the contribution of grassland was 25.9% (Fig. 5 and Supplementary
Table 3). In the northeastern region, conversions from cropland and
natural forests to planted forests significantly contributed to the
region’s planted forest C storage increase, accounting for 27.4% and
19.1% of the total increase, respectively (Fig. 5 and Supplementary
Table 3). The eastern region witnessed a notable increase in C storage
in its planted forests, with cropland and natural forest conversions
contributing 11.9% and 13.0% to the overall increase, respectively (Fig. 5
and Supplementary Table 3). In southern and southwestern China, the
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main conversions were from cropland and shrubland, especially in the
southwestern region, where the conversion of shrubland contributed
25.3% to the increase in C storage of planted forests in this region, and
might be themain reason for the sharp increase inC storage of planted
forests from 2010 to 2015 (Fig. 5 and Supplementary Table 3).

Discussion
Our high-resolution, quinquennial maps of China’s planted forests
unveiled the spatiotemporal dynamics of China’s planted forests from
1990 to 2020, enabling an assessment of their ecological benefits,
particularly the role in climate change mitigation through enhance-
ment of terrestrial C storage through planted forests.

The expansion of China’s planted forests has been widely attrib-
uted to China’s policies18. China’s economic boom has placed a heavy
burden on the environment, with negative consequences on impo-
verished rural communities37 and natural disasters such as floods and
droughts38. These challenges have prompted the implementation of
extensive afforestation/reforestation programs18. While there are
regional differences in planted forest projects, their shared goal is to
protect fragile environments and forests against water runoff, soil
erosion, landslides, flooding, and desertification17,19,20. For example,
from 1999, the implementation of the GFG program has led to an
increase in forest and grass types on cropped hillslopes (>15°) and the
conversion of croplands, barren hills, and wasteland to forests19. Until
2019, 40.5% of the planted forest area was a result of the GFG
program19. Other programs, including the Three-North Shelterbelt
Development Program (SDP-TN) and the Shelterbelt Development
Program in Five Regions (SDP-FR), also have had significant effects on
expansion of China’s planted forest in different spatial and temporal
scales18,30.

However, we also need to acknowledge that large-scale mapping
based on remote sensing, while powerful, may introduce some
uncertainties due to the existing technology’s limitation in recognizing
smaller patches39. Additionally, the time it takes for planted forests to
develop detectable canopy cover from seeds (~5-7 years) or seedlings
(~3-5 years) is a factor to consider40. Therefore, the spatiotemporal
dynamics of planted forests estimated based on our study may have a
certain time lag, which could explain the rapid expansion of planted
forests after 2005, as the policy-driven expansion of planted forests
around 2000 may have been just detected and analyzed during this
period. Overall, according to the National Forest Management Plan
(2016–2050), the overall increasing trends of China’s planted forest
area are expected to persist20, but the rate of increasemay decline due
to limitations in available land area for planted forests29. Our maps of
China’s planted forests timely capture the spatiotemporal dynamics of
China’s planted forests over the past three decades and can facilitate
future forest protection and expansion.

Studies have demonstrated the reliability of forest C storage
estimations when based on remote sensing techniques41. By integrat-
ing a combined approach of remote sensing and field surveys, we have
not only accounted for the C storage brought about by the expansion
of planted forest area from LULC conversion but also focused on the
contribution of planted forest growth to C storage (seeMethods). This
further enhances the accuracy of China’s planted forests C storage
estimates13–16. The potential estimation errors in C storage arise from
the C density and vegetation map used in this study. For example, the
classification of planted forest types over various periods with the
same vegetation map may present a challenge to our study because
vegetation types have the potential to change. However, our previous
studies have indicated that vegetation types in China are stable23,24,
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justifying our use of the same vegetationmap to classify planted forest
types across different periods. Recognizing that C density changes
with forest age, we constructed a C density database based on the
national forest inventory data, considering age-dependent C density
variations (see Methods). Furthermore, the results of this study are
consistent with those of previous research (e. g. Fang et al.42) on Chi-
na’s planted forest C storage, supporting the accuracy of our
estimates.

From 1990 to 2020, the increase in China’s planted forests C
storage due to area expansion exceeded 50% of the total C storage
increment in China’s planted forests (Figs. 2 and 3). However, the
growth contribution of young and newly established planted forests to
C storage requiresmore attention5,13. The increase inC storagebrought
about by the growth of planted forest was also significant, especially in
the eastern, southern, and northern regions, where the contribution of
planted forest growth to C storage amounts to 60.4%, 46.8%, and
47.6% of the total C storage in these regions, respectively (Fig. 3).
Results in the northeastern and southern regions were not surprising,
due to the widespread distribution of planted forests from 1990 to
2020 (Fig. 1). The increase in C storage in the northern region may be
attributed to growth of planted forests, which afforested by the SDP-
TN30. In contrast, other regionsmainly relied on LULC to planted forest
conversions to gain C storage, particularly in the southwestern region,
where a large amount of LULC conversion contributed to a 63.9%
increase in C storage (Figs. 4 and 5).

Over the period from 1990 to 2020, planted forests in the eastern,
southern, and southwestern regions of China accounted for about 75%
(896.9 Tg C) of the total C storage by planted forests (Fig. 3). A con-
tributing factor is the favorable climatic conditions in these regions,

including ample water availability, which have accelerated both
expansion and growth of planted forests43,44. Previous research indi-
cated that in regions with high evaporation and transpiration rates
(water-stressed regions), the survival rate and growth status of planted
forests may be inadequate45. This explains why the distribution of
planted forests in the northwestern andnorthern regions, despite their
large geographical area, is not as extensive (Fig. 1). Another factor is
the implementation of ecological restoration projects has significantly
alleviated ecological issues in these areas, leading to a positive cycle
and further promoting the expansion of planted forests in those
regions. Notably, despite the conversion of over 4.1 million ha of
croplands to planted forests19, domestic crop production in China
increased by 44.0% between 2000 and 201846. A third possible con-
tributing factor is the potential capacity of young planted forests to
promote rapid increases in C storage5,6,13. The net C storage of forest
shows a distinctive trend, with a rapid increase in young age, a peak in
middle age, and a decline in old age47. This characteristic of forests
explains why China’s planted forests have been experiencing a period
of a rapid C storage increment over the past three decades, which has
become more pronounced since 2005 (Figs. 3 and 5).

Compared to the eastern, southern, and southwestern regions of
China, the increase in C storage of the planted forests in the north-
western and northern regions has been relatively slow, with increase
rates of only 3.1 Tg C/a and 3.5 Tg C/a, respectively (Fig. 3). Despite
innovative afforestation techniques such as runoff forestry and deep
planting, which integrate seedling and container-based methods, are
actively being pursued to enhance the drought resistance and survival
rates of planted forests48, the potential C storage capacity of planted
forests in northern and northwestern regions is still lower than in
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Fig. 5 | Changes in C storage causedby the conversionof cropland, shrubland, grassland, and natural forest to planted forests at the regional scale.The error bars
are one standard deviation of the estimated mean C storage.
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eastern, southern, and southwestern regions26,31. Concern about Chi-
na’s planted forests in the northern and northwestern regions have
persisted for many years, as the rapid and extensive expansion of
planted forests in certain regions may come at the expense of other
ecological functions39 and could lead to water shortages49. Given these
concerns, further research is warranted to comprehensively address
the negative impacts brought about by the expansion of planted for-
ests in these areas. As a result, we recommend that management
strategies should evolve frommere afforestation to a holistic approach
that encompasses protection, management, and utilization, with an
emphasis on the importance of planted forest tending.

Our study characterized the spatiotemporal dynamics of C sto-
rage in the biomass of China’s planted forests over a thirty-year period,
from 1990 to 2020. We found that the increase in C storage within
China’s planted forests can be primarily attributed to the expansion of
planted forest areas. This expansion has largely occurred through the
conversion of croplands, shrublands, and grasslands into planted
forest areas. In addition to area expansion, the growth of China’s
planted forests themselves represents another significant factor con-
tributing to C storage. Post-2000, a policy-driven push for expanding
planted forest areas has led to rapid increase, with the majority of
these planted forests currently in their young or middle age. Based on
these results, we anticipate that the newly expanded planted forests
will possess substantial C storage potential in the future, potentially
playing a key role in helping China meet its Carbon Neutrality Target
by 2060.

Methods
Definitions of natural and planted forests in this study
In this study, forests are defined as areas with tree height exceeding 5
meters and canopy cover exceeding 15% within a 30-meter resolution
pixel, planted forests refer to a forest ecosystem established by arti-
ficial treeplanting or seeding for the provisionof income andgoods, as
well as for climate changemitigation and the restoration of ecosystem
services and processes17,50. Natural forests refer to a forest that
regenerates naturally, with trees growing from naturally dispersed
seeds or seedlings, and is typically composed of indigenous tree spe-
cies and genotypes11,51. In this study, we only focused on the spatio-
temporal dynamic of China’s planted forest and resultant C storage in
aboveground biomass from 1990 to 2020.

Landsat data
Weutilized all available Landsat TM/ETM/OLI/OLI-2 surface reflectance
images for China from January 1, 1988, to December 31, 2021, lever-
aging the GEE cloud-processing platform. A total of 447,730 atmo-
spherically corrected Landsat scenes, with a cloud cover of less than
30%, were selected from Landsat-4 (1,186 scenes), Landsat-5
(160,830 scenes), Landsat-7 (192,645 scenes), Landsat-8
(91,468 scenes), and Landsat-9 (1,601 scenes). These scenes were
used to generate wall-to-wall planted forest maps at five-year intervals
from 1990 to 2020 (Supplementary Table 4). At each time step, we
created a stack of images for the target year ± two years (e.g., images
from 1988 to 1992 were used for compositing the 1990 mosaic) to
minimize missing data and mitigate cloud interference52. Finally, we
applied the C function of mask (CFMASK) algorithm, implemented in
the GEE platform, to every stack to mask out clouds, cloud shadows,
and snow53.

Field samples
The annotated samples of planted forests at various periods formed
the basis for generating time-series maps of planted forests in this
research. Initially, this research acquired more than 600,000 vegeta-
tion survey samples through crowdsourcing, field surveys, and
national forest inventories. These samples contain information such as
geographic coordinates and vegetation types36, covering the period

from 2003 to 2022. With the aid of these samples, our research
employed a time-series changedetectionmethod to establish adataset
for the recognition of planted forests at different time intervals by
evaluating if each sample experienced changes during different time
periods. First, based on the vegetation type information of each sam-
ple, we selected samples of planted and natural forests. Second, we
employed the spatial analysis tool in ArcGIS Pro 3.0 to analyze the
forest mask data from the annual China Land Cover Dataset (CLCD)54

from 1990 to 2020 (Supplementary Note 1), resulting in the identifi-
cation of forest regions that remained unchanged during this period.
Third, using the identified unchanged forest regions, we applied spa-
tial filtering to all planted and natural forest samples, preserving only
the samples that intersected with the unchanged forest areas, thereby
obtaining an initial set of field samples suitable for different time
intervals. Fourth, we used the Normalized Difference Vegetation Index
(NDVI) time series from Landsat to determine if the minimum NDVI
value for each sample in the created dataset from 1990 to 2020 was
equal to or greater than 0.655, retaining samples that satisfied this
condition. By following these procedures, we acquired a dataset con-
taining 124,407 samples of planted and natural forests, with 70%
allocated for model training and 30% for validation (Supplemen-
tary Fig. 11).

Mapping planted forests and validation
Significant differences exist in textural and temporal features between
natural and planted forests. Previous research has demonstrated that
planted forest mapping can be achieved by utilizing these differences
in conjunction with a large number of samples at the national scale36.
Therefore, we first derived five widely used vegetation indices from
Landsat-based surface reflectance data, including the NDVI, enhanced
vegetation index (EVI), bare soil index (BSI), soil-adjusted vegetation
index (SAVI), and modified soil-adjusted vegetation index (MSAVI).
These indices were appended to the cloud-free image stacks, along
with the spectral bands (blue, green, red, near-infrared, shortwave
infrared-1, and shortwave infrared-2), to facilitate planted forest
extraction (Supplementary Note 2). Second, we computed the median
value of each pixel to composite the final image (11 bands). According
to the final composite image, textural information was calculated
through the gray-level co-occurrence matrix method in GEE, which
generated 18 features for each band. The temporal features were cal-
culated by analyzing Landsat NDVI and EVI time series from 1990 to
2020 through harmonic analysis56. Specifically, the magnitude, phase,
amplitude, and root mean square error (RMSE) of the fitted NDVI and
EVI time series were extracted to constitute a temporal feature set56,57

(Supplementary Note 2). Additionally, topographic information (ele-
vation, slope, and aspect) was retrieved through digital elevation
model (DEM) data from the Shuttle Radar Topography Mission (Sup-
plementary Note 2). In summary, 220 features were used for mapping
planted forests, including 11 spectral bands, 198 textural features, 8
temporal features, and 3 topographic features (Supplementary Data 1).
To reduce the number of features used for planted forestmapping, we
applied the recursive feature elimination cross-validation (RFE-CV)
feature selectionmethod at the regional scale (Supplementary Note 3)
and established the optimal feature collection for the northeastern,
northern, northwestern, southern, and southwestern regions at dif-
ferent periods (Supplementary Fig. 12). Third, a classification model
adapted to each region (Supplementary Data 1) and period was con-
structed according to a random forest classifier and used to identify
planted forests, respectively. Finally, we generated planted forest
maps for the years 1990, 1995, 2000, 2005, 2010, 2015, and 2020
(Supplementary Fig. 1).

The resultant time-series planted forest maps were validated
through four data sources (Supplementary Note 4). First, we used 30%
of the independent field samples to evaluate themaps (Supplementary
Note 4 and Supplementary Fig. 11). Second, a systematic random
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sampling was implemented to verify the generated planted forest
maps (Supplementary Note 4 and Supplementary Fig. 13). We also
collected statistical data on planted forest area at national and pro-
vincial scales for the period 2000-2020 and compared resultant maps
with the statistical data (Supplementary Note 4). Furthermore, the
digitized planted forest map based on the Seventh National Forest
Resource Inventory conducted from 2004 to 200821 was further
obtained and used to compare themapped results for the years 2000,
2005, and 2010 (Supplementary Note 4). The validation results indi-
cated that the generated planted forest maps had a comparable
accuracy and exhibited a high degree of concordance with existing
maps and statistical data at national and provincial scales (Supple-
mentary Figs. 2, 3, and 4).

Planted forest spatiotemporal dynamic analysis
To gain a comprehensive understanding of the spatiotemporal
dynamics of planted forests in China, this research initially aggregated
the planted forest areas for each period into a 0.1° grid and subse-
quently analyzed the changes of planted forest area, the area added
every five years, and their trends at national, regional and grid scales
using simple linear regression with a t-test at the 5% significance level
based on the “lm” function in the R software.

Furthermore, we employed the image change detection tool in
ArcGIS Pro 3.0, based on the CLCD land cover data corresponding to
1990, 1995, 2000, 2005, 2010, 2015, and 2020, to analyze land cover
changes resulting from the expansion of planted forest area. The focus
was to identify the land cover types (e.g., cropland, grassland, etc.) that
underwent conversion to planted forests in each period.

Lastly, we conducted a statistical analysis of the change frequency
for each pixel within the changing areas, dividing them into single-
change events andmultiple-change events. Single-change events refer
to occurrences in which a pixel experienced only one change during
the six periods of 1990-1995, 1995-2000, 2000-2005, 2005-2010,
2010-2015, and 2015-2020, whilemultiple-change events involvepixels
that underwent two or more changes. This analysis aids in identifying
hotspots of planted forest change in China during the last 30 years.

Planted forest C storage
This study used China’s 1:1,000,000 vegetation type map to estimate
theC storageof planted forests inbiomassusing theCdensitymethod.
To accurately estimate C storage in planted forests over different
periods, we collected the seventh national forest inventory data
(representing 2005 in this study), which records tree species, geo-
graphical location, and age information. Based on the forest inventory
data, we determined C densities for various types of planted forests at
different periods. We then estimated changes in C storage in above-
ground biomass of planted forests by comparing C storage in patch
locations with the same vegetation type (see Fig. 2), following the
process outlined below:

(1) Acquisition of planted forest inventory samples for different
forest types. We extracted planted forest samples from the forest
inventory data based on forest type annotations. The planted forest
samples were divided into 17 subsets (Supplementary Table 5)
according to the forest types reported in China’s vegetation map.

(2) Acquisition of planted forest samples across various periods.
We used the age information from the forest inventory data and
remote sensing time-series analysis to construct planted forest
inventory samples for the various vegetation types corresponding to
different periods. Since the forest inventory data used in this study
represent 2005, for 1990 to 2000, the samples were directly acquired
according to the age variation in the inventory data. For instance, the
inventory samples with a tree age exceeding 15 years represent they
did not have a disturbance between 1990 and 2005, and can therefore
be used to represent the 1990 sample, whose age is obtained by sub-
tracting 15 years. For 2010 to 2020, we first used NDVI and forest time-

series masks to assess the changes in each sample from 2005 to 2010,
2005 to 2015, and 2005 to 2020, preserving those that remained
unchanged and discarding any that had altered. By employing these
methodologies, we acquired inventory samples for each period,
inclusive of information about the tree species and age.

(3) Estimation of C density. With the inventory sample collections
established for each period, the age-biomass density equation (Eq. 1) at
the tree species scale crafted by Xu, et al.58 was applied to compute the
biomass density for each sample in all forest types, and the C density
value for each sample was determined using the 0.5 biomass-carbon
conversion factor suggested for China’s forests by Ma, et al.59. Subse-
quently, the average C density and its standard deviation for each type
were calculated. It is important to note that this approach might over-
state the C density of newly established planted forests between 2005-
2020, as their ages ranged from 1-15 years, and the sample ages for
2010, 2015, and 2020 determined were all above 5 years. Consequently,
for the newly added planted forests in this period, the study adopted
the widely used space-for-time substitution approach60, selecting
2005 samples aged 1-15 years to estimate the C density of these new
types of planted forests using the age-biomass equation (Eq. 1):

B=
w

1 + ke�at
ð1Þ

in whichB is the biomassdensity (MgC/ha), t is the forest age,w, k, and
a are constants that were determined by Xu, et al.58.

(4) Calculation of C storage in planted forests. According to the
forest types of the vegetationmap, we first classified the planted forest
area into 17 forest types based on the nearest neighbor principle.
Utilizing the C densities of these vegetation types corresponding to
disparate periods established (Supplementary Table 5), the C storage
of China’s planted forests for these periods was calculated as (Eq. 2):

C =
XN

i = 1

Di ×Areai ð2Þ

where C is the total C storage in the biomass of the planted forests
whereasDi andAreai are theCdensity and area of the ist planted forest
type. N is the number of types.

(5) Validation. To demonstrate the reasonableness of the calcu-
lated C storage in the planted forests, we used publicly accessible field
survey samples created by Xu, et al.61 (download from the National
Ecological Data Center resource sharing service platform of http://
www.nesdc.org.cn/) to validate the estimated C storage in 2010,
because these sampleswere collected around in 2010. Additionally, we
downloaded China’s forest biomass data for the year 2019 generated
by Yang, et al.62 (https://www.3decology.org/2023/08/02/china-forest-
agb-map2019/) and the Global dataset of forest aboveground biomass
for the year 2020 (https://climate.esa.int/en/projects/biomass/data/)
to validate the estimated C storage in 2020. The comparison results
indicated an R2 ranging from 0.50 to 0.68(Supplementary Fig. 14).

Sources of errors and uncertainties
This research, together with our previous works23,24,36,62,63, revealed the
dynamics of China’s planted forests and their C storage. However,
some uncertainties remain in the results, mainly associated with
mapped planted forest area and C density derived for vegetation
types. Identifying them can help clarify the caveats associated with
this study.

Errors in planted forest mapping originate from various sources.
First, while the Landsat time series covers our study period adequately,
the presence of cloud cover and shadows, combined with the exten-
sive study area, made it difficult to obtain high-quality, cloud-free
images for the entire country. This is the primary reasonwhy our study
could not generate annual planted forest maps. Therefore, to
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maximize mapping accuracy, we created cloud-free and shadow-free
composites every five years. Nevertheless, even after cloud and sha-
dow removal, some gaps still exist, with the largest being only 0.2%
(Supplementary Fig. 15), which is almost certain not to affect the
classification results. Second, our classification process constructed
the optimal feature set for each period out of the 220 features we
established using the feature selection method (Supplementary
Note 3). Although our classification features encompassed spectral,
textural, and terrain information, we may have overlooked variables
that could impact thefinal classification outcome. Furthermore,wedid
not conduct a comparative analysis of different classification algo-
rithms and chose to use the widely accepted RF algorithm. However,
there might be other machine learning algorithms better suited for
planted forest identification. Third, our classification samples origi-
nated from three sources: national forest inventory, field sample, and
crowdsourcing. National forest inventory data are widely recognized
as the most authoritative source1,58. Field samples were collected by
forestry experts from various provinces, and the accuracy of their
labels is generally reliable and commonly used for remote sensing
mapping62. However, the crowdsourced data collection method pre-
sented challenges for our classification process. Although each
crowdsourced sample underwent expert verification63, the subjectivity
involved in determining pixel reference classes through photo inter-
pretation by different experts may have introduced noise into the
training and validation datasets52. However, this noise is expected to
have aminimal impact on thefinal classification results64. Furthermore,
we established samples for each period based on the NDVI time series
of each sample, which may be affected by NDVI noise. To quantify the
uncertainties of our resultant maps, we mapped the distribution of
pixel uncertainty (Supplementary Note 5 and Supplementary Fig. 16),
revealing that low andmedium uncertainties exist in large areas of the
dataset (>80%) (Supplementary Fig. 16). Less than 20% of the total area
in the southwestern and northeastern regions was classified with
relatively high uncertainties (Supplementary Fig. 16).

Errors in C storage estimation primarily stem from the following
aspects. First, we used a 1:1,000,000 scale vegetation map of China to
classify planted forests into 17 types for each period. However, the
vegetation map used in this study was created between the 1980s and
the 2000s, and over several decades, China’s vegetation formations
have undergone significant changes24. Therefore, theremight be some
misclassification when using this map for vegetation type classifica-
tion. Nevertheless, the 1:1,000,000 scale China vegetation map
represents the potential distribution regions of Chinese vegetation65.
Although some species may have changed over the years, vegetation
types and their general distribution have remained relatively stable
compared to the 2020 updated vegetationmap23. Hence, in this study,
we employed a nearest-neighbor approach to classify planted forests
into 17 types according to the forest types of vegetationmap and then
calculated the C storage. We also compared the classification results
with the updated 2020 China vegetation map23, which revealed that
over 80% of grids had the same vegetation types (Supplementary
Fig. 17). For C storage estimates, only 2% had a difference greater than
0.1 (Supplementary Fig. 17). Second, we estimated C densities for dif-
ferent forest types using national forest inventory data and referring to
the age-biomass density equations developed by Xu, et al.58. We gen-
erated vegetation type C density datasets for different periods by
considering forest age and change detection methods based on the
forest inventory data. Although the forest inventory data used in our
studywere collectedbetween2004 and2008, for consistencywithour
research data, we treated them as representative of the year 2005. As a
result, this may introduce an error of 1-3 years in forest age, impacting
the C density estimation. Additionally, this method might have resul-
ted in an overestimation of C density for newly established planted
forests after 2005. This is because, after 2005, theminimum forest age

for each period (including 2010, 2015, and 2020) exceeded 5 years.
Therefore, we adopted a space-for-time approach to select samples
with forest ages between 1 and 15 years in 2005 and calculated the C
density for these newly established planted forests after 2005.

Finally, to quantify the uncertainty of C estimation, we calculated
the mean and standard deviation of the C density of each forest type
based on the forest inventory samples. The mean value was used to
estimate C storage, and then we calculated the total uncertainty by
calculating the C storage in planted forests using the lower and upper
standard deviation values to provide a measure of uncertainty asso-
ciated with the total C storage of planted forests66.

Data availability
The planted forest area mapped in this study is available from https://
www.3decology.org/2024/04/15/chinas-planted-forest-maps-from-
1990-to-2020/. The forest masks used are extracted from the China
land cover dataset (CLCD), which can be downloaded from https://
zenodo.org/records/5210928. The vegetation map of China can be
obtained from the Data Center for Resources and Environmental Sci-
ences, Chinese Academy of Sciences: http://www.resdc.cn.

Code availability
The code for the statistical analysis of planted forest area dynamics is
accessible on https://github.com/ChenYL2021/GuoLab.git.
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