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High spin axion insulator

Shuai Li 1,2, MingGong 3, Yu-Hang Li 4 , Hua Jiang 2,5,6 & X. C. Xie3,5,6,7

Axion insulators possess a quantized axion field θ =π protected by combined
lattice and time-reversal symmetry, holding great potential for device appli-
cations in layertronics and quantum computing. Here, we propose a high-spin
axion insulator (HSAI) defined in large spin-s representation, which maintains
the same inherent symmetry but possesses a notable axion field θ = (s + 1/2)2π.
Such distinct axion field is confirmed independently by the direct calculation
of the axion term using hybrid Wannier functions, layer-resolved Chern
numbers, as well as the topological magneto-electric effect. We show that the
guaranteed gapless quasi-particle excitation is absent at the boundary of the
HSAI despite its integer surface Chern number, hinting an unusual quantum
anomaly violating the conventional bulk-boundary correspondence. Further-
more, we ascertain that the axion field θ can be precisely tuned through an
external magnetic field, enabling the manipulation of bonded transport
properties. The HSAI proposed here can be experimentally verified in ultra-
cold atoms by the quantized non-reciprocal conductance or topological
magnetoelectric response. Our work enriches the understanding of axion
insulators in condensed matter physics, paving the way for future device
applications.

Symmetry plays an essential role in understanding the behavior of
condensed materials1–4. For example, in the presence of time-reversal
symmetry, threedimensional insulator typically falls into two categories:
one is trivial insulator while the other is topological insulator5,6. These
divergent categories can be well described within the framework of the
Chern-Simons theory, where the Lagrangian incorporates an additional
symmetry allowed term Lθ =

R
dtdr3αθ=ð4π2ÞE � B with E and B the

conventional electric and magnetic fields, α the fine structure constant,
and θ the gauge dependent axion term7. Because of the 2π periodicity
under agauge transformation8, theaxion termhere iswell definedwithin
the region ð 0, 2π½ Þ. Besides, as the quantity E ⋅B flips sign under time-
reversal (T ) operation, the axion fieldmanifests only twodistinct values,
that is, θ=0 for normal insulator and θ=π for topological insulator7.
Furthermore, the non-vanishing axion term in the Lagrangian would
introduce additional magneto-electric responses to the Maxwell equa-
tions and in turn, results in a distinctive topological magneto-electric
effect9–11, furnishing a hallmark to the quantized axion field.

In addition to the time-reversal (T ) symmetry, the quantized
axion field θ =π can also be protected by combined lattice and time-
reversal symmetry (for example S = T τ1=2 with τ1/2 the half translation
operator)12, as the quantity E ⋅B undergoes the same sign reversal. This
kind of materials, termed axion insulator13–24, holds significant poten-
tial in layertronics25–29 and quantum computing30,31. MnBi2Te4 and its
family have recently been proposed as axion insulators in the anti-
ferromagnetic state13,32–36, which finds a concise description with an
effective Hamiltonian defined on the orbital and spin-1/2 spaces33.
Because the symmetry transformations of high spin representations
and spin-1/2 are identical (see Supplementary Table 1), in this work, we
generalize this model to other spin species and thus propose a high
spin axion insulator (HSAI) preserving the same symmetry. We find
that the HSAI with spin-s possesses a notable axion field θHSAI = (s + 1/
2)2π. It carries amultiplequantizedhelical hinge current (QHHC) that is
robust against disorders even in the absence of the topologically
protected gapless exciations, which contradicts the integer surface
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Chern number. Consequently, HSAI exhibits an unusual quantum
anomaly that violates the conventional bulk-boundary correspon-
dence. In contrast to the case of spin-1/2 axion insulator, the direct
calculation of the axion term shows that the large axion field in high-
spin case originates mostly from localized surface Wannier functions
while, in the bulk, the axion field is either 0 or π. Strikingly, we show
that the axion field in HSAI can be tuned precisely bymanipulating the
magnetic configuration through an external magnetic field, providing
a pioneering tuning knob to control the QHHC and the quantized
magneto-electric response. Possible experimental realization in ultra-
cold atoms is also discussed.

Results
Effective model for the HSAI
Recalling the effective four-band Hamiltonian for the spin-1/2 axion
insulator33, we consider a genericmodel definedon the high spin space
which can be expressed as

H=
X3

i =0
diΓi +Δms � s� τ0: ð1Þ

Here, d0,1,2,3 = ½m0 � Bk2, Akx , Aky, Akz � with A, B,m0 the system
parameters. Γ0 = s0⊗ τ3 and Γi=1,2,3 = si⊗ τ1 where si and τi are matrices
defined on the high spin space and 2 × 2 orbital space, respectively.
The momentum k = (kx, ky, kz) is defined on a cubic lattice with the
lattice constant a0 inside the first Brillouin zone. This model Hamil-
tonian is given directly from the spin-1/2 axion insulator. A construc-
tion from symmetry perspective is provided in Supplementary Note 2.
It is evident that the first term in Eq. (1) describes a high-spin
topological insulator, which preserves both time-reversal (T ) and
parity (P) symmetries. The second term describes the exchange
interaction between topological electrons and normalized magnetic
spinsms = ðmx

s ,m
y
s ,mz

s Þ with Δ the exchange strength, resembling that

in MnBi2Te4, hence explicitly breaks the time-reversal symmetry while
preserves theS symmetry in the infinite size limit along z-direction.We
consider the antiferromagnetic phase of an even-layer slab involving
only the antiparallel (or canted) spins in the top and bottom layers as
illustrated in Fig. 1a, which restores the combined parity and time-
reversal (PT ) symmetry. Unless otherwise specified, we adopt the
typical model parameters as follows: A =m0 = 1, B =Δ =0.6, a0 = 1.

Figure 1 (b) displays the two dimensional energy spectra of the
spin-3/2 HSAI in the absence (blue dashed lines) and presence (red
solid lines) of the magnetic exchange term. In the former case, the
time-reversal symmetry is present, where the energy spectrum is
gapped in the bulk but has two conducting surface states on each side
(bluedashed lines). These twosurface states canbe accuratelyfittedby
a massless Dirac band E1 ~ k and a cubic band E2 ~ k3 (inset in Fig. 1b).
Turning on the exchange term in the latter case opens a band gap as
indicated by the red solid lines in Fig. 1b. In both cases, the energy
spectra are doubly degenerated because of the inherent (T or PT )
symmetry.

Layer-resolved Chern number, quantized helical hinge current
and quantum anomaly
To explore the topological properties of the HSAI, we calculate the
layer-resolved Chern number Cz along ẑ-direction32,37 along with the
cumulative Chern number ~Cz =

Pz
�Lz=2

Cz . Given the Chern number
C = (s+1/2)2 in odd-layer case38, the system is a high Chern number
insulator as shown in Supplementary Note 6. In the even layer system,
the opposite layer-resolved Chern numbers are overall confined anti-
symmetrically inside few surface (top and bottom) layers as shown in
Fig. 1c, resulting in a vanishing total Chern numberC =0. Nevertheless,
the surface Chern number on one side turns out to be well quantized
[CtopðbotÞ

surf =∓2] when s = 3/2 as long as the Fermi level lies inside the
energy gap (Fig. 1d). Because the layer-resolved Chern number is

y x
z

|s> |s-1> |-s+1> |-s>

Fig. 1 | Model of the HSAI. a Schematic for the HSAI defined on the ∣s,mz

�
space.

The blue arrows represent the electron spin with different magnetic quantum
numbermz, which takes values ranging from −s to s individually.b Energy spectraof
the spin-3/2HSAI alongM→ Γ→Rpath on a slab of thickness Lzwith (red solid lines)
andwithout (blue dashed lines) themagnetic exchange interaction. Here, the black
lines refer to bulk bands. Inset: Energy dispersion for the spin-3/2 HSAI in the
absence of magnetic exchange term near the charge neutral point (solid lines) and

the fitting data (markers). c Layer-resolved Chern number Cz and the cumulative
Chern number ~Cz =

Pz
�Lz=2

Cz versus the layer index z for the spin-3/2 HSAI. The
surface Chern numbers CtopðbotÞ

surf that summarize the layer-resolved Chern number
on the upper (lower) half side is −2 (+ 2). d Surface Chern number as a function of
the Fermi energy EF for the spin-3/2 HSAI. Here, the thickness of the HSAI slab
is Lz = 20.
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related to the axion field through the relation θHSAI = ðCbot
surf � Ctop

surf Þπ39.
The oppositely quantized surface Chern numbers in spin-3/2 HSAI
thereby assure a quadruple axion field θHSAI= 4π. Moreover, since the
Chern number difference between neighboring top (bottom) and side
surfaces is an integer, HSAI supports a possible hinge state that is
absent in spin-1/2 axion insulator26,40, which allows a subsequentQHHC
owing to opposite chiralities on different surfaces. Nonetheless, we
find that this QHHC survives counterintuitively without the existence
of any hinge state.

To clarify this, let usfirst examine the average position〈z/Lz〉on
the front surface of the slab at y/Ly = − 1/2. The results shown in Fig. 2b
reveals two branches (red lines in Fig. 2b) concentrated unexpectedly
around the bottom hinge (z/Lz = − 1/2) and propagating rightwards
because of the positive group velocity. By contrast, we observe two
other branches concentrate oppositely around the top hinge (z/Lz = 1/
2), which, simultaneously, propagate leftwards as depicted by the blue
lines. Note that only the results for the front surface (at y/Ly = − 1/2) are
presented here. In the presence ofPT symmetry, the energy spectrum
in Fig. 2b is doubly degenerated as stated above. There are four
additional branches existing on the other surface at y/Ly = 1/2. Because
the wavefunctions on the diagonal hinges are connected by this PT
symmetry, they must propagate along the same direction, supporting
a helical hinge current.

We then turn to the spectrum density A(kx, E) on a semi-infinite
slab41–43, where the system extends infinitely along + ẑ-direction but
remains unchanged along the lateral directions. A(kx, E) on the front
lower hinge illustrated by the blue dashed line in Fig. 2a are plotted
in Fig. 2c. It shows that A(kx, E) originates mostly from the right-
moving energy bands, agreeing remarkably well with the average
position in Fig. 2b. This spectrum density can be verified

experimentally by using the nano angle-resolved photoemission
spectroscopy and microscopy44–46. Besides, the high spectrum
density on the hinge indicates the presence of a hinge current, the
current density of which can be quantitatively determined by26,43

jxðEF ,rÞ= � e
hπ

Z π

�π
dkx ImfTr½∂HHSAI ðkx ,rÞ

∂kx
GrðEF ; kx ,rÞ�g, ð2Þ

where EF is the Fermi energy labeled by the white line in Fig. 2c,
r = (y, z), HHSAI(kx, r) is the Hamiltonian for the HSAI and Gr(EF; kx, r) is
the retarded Green’s function.

The upper panel in Fig. 2d presents the hinge current density
JxðzÞ=

P0
y=�Ly=2

jxðrÞ as a function of the layer index z. We see that Jx(z)
is verily confined on the hinge, in agreement with〈z/Lz〉 and A(kx, E).
Strikingly, this hinge current decays oscillatively into the side surface,
exhibiting a beating mode (magenta line) in sharp contrast to that in
spin-1/2 axion insulator26. This peculiar behavior can be quantitatively
fitted by the superposition of two power-law decaying edge currents
J1xðzÞ= a1ffiffi

z
p cosð2kF1z +ϕ1Þ and J2xðzÞ= a2ffiffi

z
p cosð2kF2z +ϕ2Þ47, where kF1 and

kF2 are the Fermi momenta for the two distinct modes marked by the
white stars in Fig. 2c, while a1(2) and ϕ1(2) are fitting parameters. The
integral of the current density over the layer index provides the cur-
rent flux IxðzÞ=

R z
0 d~zJxð~zÞ (middle panel in Fig. 2d), which oscillates

around 2e/h and coincides perfectly with the fitting data. Additionally,
the z-averaged current hIxðzÞi=

R z
0 d~zIxð~zÞ=z (red line) quantizes to

2e/h only a few layers away from the hinge. Imposing a finite thickness
along ẑ-direction enables us to calculate the moving average current
hIxðzÞiMA =

R z + 7
z�7 d~zJxð~zÞ. The result displayed in the bottom panel

demonstrates a helical hinge current quantized precisely to ± 2e/h.
Although the HSAI supports a QHHC identical to its integer surface

5 6
1 2 3 4
HSAI
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bird’s eye view

high-angle shot

A(kx ,E)

EF=0.1
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6
1 3

V(t)

2 4
in(out) out(in)

Alternate detection

Cbot=+2CbotC =+2y
x

z

Ctop=-2

HSAI

Fig. 2 | Transport properties of the spin-3/2 HSAI. a Schematic current flow in a
HSAI. The red arrows denote the quantized helical hinge currents. b Energy spec-
trum and the average position〈z/Lz〉 on the front surface for a HSAI nanowire
with Ly = 30, Lz = 16. c Spectrum density A(kx, E) for the front lower hinge as labeled
by the blue line in (a) on the kx − E plane. Here, the system size is Ly = 30, Lz =∞/2.
The white dashed line represents the Fermi energy EF =0.1. The white stars that
mark the intersects between the Fermi energy and the spectrum are the Fermi
momenta kF1 and kF2. d Top andmiddle panels are the current density Jx(z), current
flux Ix(z) and its z-averaged flux〈Ix(z)〉 versus the layer index z for a semi-infinite
system with size Ly = 30, Lz =∞/2. The blue dots are the fitting data. Bottom panel
shows the distribution of the moving averaged current hIx ðzÞiMA on the front

surface with system size Ly = 30, Lz = 150. e Bird’s eye view (top panel) and high-
angle shot (bottom panel) for the six terminal device. f Ensemble-averaged non-
reciprocal conductances versus the Fermi energy in the clean limit (W=0),with non-
magnetic Anderson disorders of strength W = 1 and with magnetic Anderson dis-
orders of strengthWz =0.3. Here, the system size is Lx = 31, Ly = 20, Lz = 21, and the
size of transverse terminals is 10 × 10. g Experimental setup to detect the non-
reciprocal conductance. In this setup, terminals 2, 4, 5, and 6 are grounded. The
voltage is applied alternatively to terminal 1 or terminal 3. h Corresponding tem-
poral dependent current outputwithparametersG13 = 4.5e2/h,G31 = 2.5e2/h. i F(ω) as
a function of the frequency ω.
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Chern number, the topologically protected gapless exciations in lower
dimension are completely absent as plotted in Fig. 2b. It worths note
that the energy gap in Fig. 2b may be induced by the finite size effect.
Our analysis in Supplementary Note 3 shows that the size dependence
of the energy gap comes from the bulk bands, which demonstrates
that this energy gap originates from the magnetic exchange interac-
tion. Consequently, the conventional bulk-boundary correspondence
that an integer Chern number must hold chiral edge states fails in
HSAI, establishing an unusual quantum anomaly.

Non-reciprocal conductance
Owing to the chirality bonded to the quantized surface Chern number,
this QHHC can be unveiled by the non-reciprocal conductance
GN
ij =Gij � Gji in a six-terminal device sketched in Fig. 2e, where Gij is

the differential conductance26,48. In this device, two longitudinal leads
(terminals 5 and 6) are intimately connected to the two ends of the
sample while four transverse leads (terminals 1, 2, 3, and 4) are
attached to different hinges on the front surface. Figure 2f shows three
representative non-reciprocal conductances versus the Fermi energy
EF in the clean limit (solid lines), with non-magnetic Anderson disorder
(dashed lines) and with magnetic Anderson disorder (dashed dotted
lines). In general, GN

65 =0, GN
31 = � 2e2=h and GN

42 = 2e
2=h when the

Fermi level lies inside the band gap for all three cases, consistent with
the current distribution in Fig. 2d as well as the layer-resolved Chern
numbers in Fig. 1d. This verifies that theQHHC is topological protected
as the quantized non-reciprocal conductance is immune to both non-
magnetic and magnetic Anderson disorders that even breaks the glo-
bal PT symmetry5,6.

Since multiple frequency ac current is robust against ambient
perturbation, todetect thisQHHC,we employanalternate detection in
which terminals 2, 4, 5, and 6 are grounded whereas a harmonic vol-
tage V ðtÞ=V0 sinðω0tÞ with a periodicity T = 2π/ω0 is applied alter-
natively to terminal 1 or 3 as illustrated in Fig. 2g. During the first
(second) half period, a positive (negative) voltage is applied to term-
inal 1 (3) as an input while the current flows i3(t) [i1(t)] from terminal 3

(1) is detected as an output. Their combination gives rise to an asym-
metric net current i(t) = i1(t) + i3(t) as shown in Fig. 2h. Performing a
Fourier transform converts i(t) into I(ω). The non-reciprocal con-
ductance can then be determined from the equation FðωÞ= jIðωÞðω2 �
ω2

0Þj=ð2Nω0V0Þ with N the number of periodicity (see Supplementary
Note 4 for details). The result displayed in Fig. 2i shows that FðωÞ=GN

13

when ω = 2ω0. Thus, non-reciprocal conductance measurements offer
a reliable experimental method to visualize the QHHC in HSAI.

Axion term
The HSAI can alternatively be characterized by the axion term7, which
can be evaluated directly from the hybrid Wannier functions (HWFs)
constructed in termsof the Blochwavefunctions49. In this scenario, the
axion term on a slab is defined as49

θslabCS = � 1
Lz

Z
d2k

X
n

znk ~Ω
xy
knn

h i
, ð3Þ

where znk is the hybrid Wannier charge center along ẑ-direction and
~Ω
xy
knn is corresponding non-Abelian Berry curvature.

Figure 3 (a) shows znk in the first Brillouin zone for a six-layer HSAI
with spin-3/2. These znk consist of two different types, those localized
on the top and bottom surfaces as emphasized by the red and blue
lines and those extending into the bulk denoted by black lines. Those
surface Wannier bands will disappear under a periodic boundary
condition when connecting the top and bottom surfaces. The total
axion term of the slab can subsequently be divided into two parts
θslab
CS =θbulk

CS +θsurf
CS with θbulk

CS and θsurf
CS the axion terms corresponding

to the surface and bulk HWFs. The bulk axion term θbulk
CS is identical to

that obtained analytically from the Chern-Simons three form in the
infinite size limit49. In Fig. 3b, we show θbulkCS (red upside down triangle),
θsurf
CS (black circle) together with θslab

CS (blue triangle) versus the inverse
thickness 1/Lz. There are three distinctive features in this figure. First,
the total axion termshows anobvious tendencyquantized to θslab

CS =4π
when the system size approaches infinity (1/Lz→0), which confirms the

Fig. 3 | Axion term and topological magneto-electric effect. a and (f) Hybrid
Wannier charge centers znk along R→ Γ→M→R loop inside the first Brillouin zone
for a six-layer HSAI slab with spin-3/2 (a) and spin-5/2 (f), respectively. b and g are
corresponding axion terms and the surface Chern numbers versus the inverse layer
thickness obtainedby using theHWFs. cMagneticfield induced chargedistribution
along ẑ-direction and the layer-resolved Chern number for a spin-3/2 HSAI with
Lz = 24.Here, the chargepolarization is obtainedonaHSAI slabwith openboundary

condition along ŷ-direction (Ly = 40) but periodic boundary condition along
x̂-direction. The magnetic flux inside one unit cell is ϕ0 =Ba

2
0 =0:01h=e. d Electric

field induced orbital magnetization for a spin-3/2 HSAI with Lz = 20. The black
dashed line shows the ideal case (IC) with an exact axion term θ = 4π. e Size scaling
of the axion term θslab

CS =π, polarization coefficient P/(αϕ), and magnetization
coefficient M/(αδU) at δU =0.001. We have checked that the slight deviation of
P/(αϕ) originates from the finite size effect.
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quadruple axion term in two dimensional HSAI slab. Second, the axion
term originates completely from the surface HWFs although the bulk
HWFs also result in a small value that decreases θbulkCS at finite size.
Third, the axion termθsurfCS obeys the relationθsurfCS = ðCbot

HWF � Ctop
HWF Þπ in

the infinite size limit, where CtopðbotÞ
HWF is the top (bottom) surface Chern

number obtained fromthe surfaceHWFs as indicatedby cyandiamond
(magenta square). Thesepeculiar results reaffirm theunusualquantum
anomaly and also the quadruple axion term θHSAI= 4π in HSAI with
spin-3/2.

Topological magneto-electric effect
Such quadruple axion term implies a unique topological magneto-
electric effect13,32. When applying a magnetic field Bz to the HSAI
along ẑ-direction, the Hamiltonian in Eq. (1) acquires a Peierls
phase32, which redistributes the electron charge Q(z) in accordance
to the confined layer-resolved Chern number Cz as shown in Fig. 3c.
The ensuing charge polarization P =

PLz=2
z =�Lz=2

zQðzÞ=Lz almost
quantizes to P ≈ 4αϕ, where α is the fine structure constant and ϕ is
the total magnetic flux penetrating the HSAI slab. In comparison, a
quantized orbital magnetization can emerge under an external
electric field Ez when incurring a potential drop δU = eEzLz in the
HSAI Hamiltonian50. The red square in Fig. 3(d) shows the orbital
magnetization M as a function of δU, which agrees quantitatively

well with the ideal case benchmarked by the black line. These two
results independently certify the quadruple axion term θHSAI in spin-
3/2 HSAI. The slight deviation from the exactly quadruple value
originates from the finite size effect, which is further revealed by the
size scalings of the axion term θslabCS =π, polarization coefficient P/
(αϕ), and magnetization coefficient M/(αδU) against the inverse
layer thickness 1/Lz in Fig. 3e. We also evaluate the axion term and
the surface Chern numbers for spin-5/2 HSAI in terms of the HWFs
(Fig. 3f). The results displayed in Fig. 3g demonstrate that spin-5/2
HSAI possesses a surface Chern number CtopðbotÞ

HWF = ∓4, a total axion
term θslab

CS =9π, a surface axion term θsurfCS =8π and a bulk axion term
θbulk
CS =π. Systematic results for the spin-5/2 HSAI are provided in

Supplementary Note 5. The topological properties for HSAI with
different spin species are summarized in Table 1, giving a distinct
axion field θ = (s+1/2)2π and Ctop=bot

surf = ∓ð1=2 + 3=2 + � � � + sÞ.

Tunable topological phase transition
In the presence of an in-planemagnetic field, the antiparallel magnetic
moments in the top andbottom layers becomecantedwith the canting
angle γ proportional to the magnetic field strength as illustrated in
Fig. 4a. In this case, the quantized axion field in the infinite size limit is
protected bymxP symmetry wheremx is themirror plane normal to x-
direction. In Fig. 4b, we compare two dimensional band gaps as
functions of γ for spin-1/2 axion insulator and spin-3/2 HSAI. Because
the exchange gap is determined by the perpendicular magnetization
Mz, the band gap for spin-1/2 axion insulator decreases monotonically
as γ is enlarged and finally becomes zerowhen γ =π/2. On the contrary,
the band for spin-3/2 HSAI exhibits a gap close at γ =π/4 as shown in
Fig. 4c, suggesting a possible topological phase transition. Indeed,
Fig. 4e shows that the surface Chern number obtained using both the
Bloch wavefunctions and the HWFs(Fig. 4d) changes from+ 2 ( − 2)
to + 1 ( − 1) when γ =π/4. At this point, the HWFs are connected at the Γ
point (Fig. 4d), therefore the Berry curvature and the surface Chern
number can transfer from one side to the other51, leading to an axionic

Table 1 | Axion terms and surface Chern numbers for axion
insulators with different spins

spin-s θslabCS θsurfCS θbulkCS Ctop
HWF Cbot

HWF Ctop
surf Cbot

surf

1/2 π 0 π 0 0 -1/2 1/2

3/2 4π 4π 0 -2 2 -2 2

5/2 9π 8π π -4 4 -9/2 9/2

7/2 16π 16π 0 -8 8 -8 8

⋮

y

γ

x
z γ

Fig. 4 | Phase transition in spin-3/2 HSAI. a Canted HSAI under an in-plane
magnetic field. γ is the canting angle between themagnetic vector and ẑ-axis (polar
angle). b Energy gaps versus γ for spin-3/2 HSAI and for spin-1/2 axion insulator,
respectively. c Energy spectra for theHSAI with spin-3/2 (black solid lines) and spin-
1/2 (blue dashed lines) at γ =π/4. d Hybrid Wannier charge center znk as a function

of kx for aHSAI slab at γ =π/4. e SurfaceChernnumbers obtained from the effective
Hamiltonian in Eq. (1) and the HWFs versus γ. f Axion term θslabCS =π, polarization
coefficient P/(αϕ) (ϕ0 = 0.01h/e) and magnetization coefficient M/(αδU) (δU =
0.001) versus γ. The thickness of the HSAI is Lz = 20.
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phase transition. Such topological phase transition is further affirmed
by the axion field, the polarization and magnetization coefficients
shown in Fig. 4f.

Discussion
The device application of axion insulators requires the fine-control of
the transport signals such as the magneto-electric response or the
QHHC, which are identical to the axion field. In spin-1/2 axion insula-
tors, the axion term cannot be tuned without disrupting the existing S
symmetry or refabricating the setup52. Nevertheless, because different
surface bands shown in Fig. 1b can be coupled via the in-plane
exchange interaction (Mxsx⊗ τ0), an apparent topological phase tran-
sition between axion insulatorswith different axion fields occurs in the
HSAI. Consequently, the axion term θHSAI (in unit of π), hence the
QHHC GN

ij (in unit of e2/2h) and the magneto-electric effect P/(αB) [M/
(αE)] inHSAI canbeprecisely adjusted from4 to2 via the applicationof
an external magnetic field. Thus, our work opens up an exciting pos-
sibility for the groundbreaking advancement in the practical applica-
tion of axion insulators.

In conclusion, we have proposed a HSAI defined on the high spin
space and shown that this HSAI possesses a multiple axion field pro-
tected by the combined lattice and time-reversal symmetry. Notably,
the axion term in the bulk of aHSAI still quantizes to θ = 0or θ =πwhile
the surface of HSAI possesses a large axion term and a consistent
integer Chern number, which can be tuned by manipulating the mag-
netic configuration through an external magnetic field. These results
extend the scope of recently discovered axion insulator in magnetic
topological materials. In ultra-cold fermions on a honeycomb lattice,
the exchange gap can be introduced by complex next-nearest-
neighbour tunneling terms through circular modulation of the lattice
position53. We thus propose that our theory can be tested in high spin
ultra-cold fermions on a stacked honeycomb lattice, where the non-
reciprocal conductance can be detected by the orthogonal drifts ana-
logous to a Hall current under a constant force to the atoms53,54.

Methods
Caltulations of the layer-resolved Chern number, magnetiza-
tion, and polarization
In a HSAI slab with periodic boundary conditions along the lateral
dimensions, the momenta kx and ky are good quantum numbers
because of the translation symmetry. Therefore, the layer-resolved
Chern number can be calculated by projecting the total Chern number
into specific layer, which can be written as

Cz =
1
π

X
EmðkÞ<EF<EnðkÞ

Z
dkxdkyIm

hmkjP̂z∂kx
HHSAI jnkihnkj∂ky

HHSAI jmki
½EmðkÞ � EnðkÞ�2

:

ð4Þ

Here, EF is the Fermi energy, Em(n)(k) is the eigenenergy of HHSAI with
∣mk

�
(∣nk

�
) the corresponding eigenstates, P̂z = ∣ψz

�
ψz

�
∣ is the pro-

jecting operator. The integral is performed inside the first Bril-
louin zone.

Under an electric field Ez along ẑ-direction, a potential drop
occurs inside the HSAI slab along the same direction. The onsite
energy in each layer acquires an additional value eEzz with z the layer
index and the total potential drop in the HSAI slab is δU = eEzLz. The
orbital magnetization can then be obtained accordingly by using

M =
�e
2πh

X
~Em<EF<~En

Z
dkxdkyIm

ð~Em + ~En � 2EF Þ
ð~Em � ~EnÞ

2 h ~mj∂kx
~HHSAI j~nih~nj∂ky ~HHSAI j ~mi,

ð5Þ

where ~HHSAI =HHSAI + eEzz with ~EmðnÞ and ∣ ~m
�
(∣~n

�
) its eigenenergy and

eigenstate, respectively.

Applying a magnetic field Bz along ẑ-direction introduces a gauge
potential to the HSAI lattice and thus breaks the in-plane translation
symmetry. Inside each unit cell, HSAI acquires a gauge field
ϕ0 = ∫drA ⋅ r/Ψ0 withΨ0 = h/(2e) the magnetic flux quantum. The total
magnetic flux penetrating the HSAI slab is ϕ = BzLxLy. We adopt the
Landau gauge A = (−yBz, 0, 0), so the translation symmetry along
ŷ-direction is broken while that along x̂-direction sustains. In this case,
the charge distribution induced by the magnetic field can be obtained
by using the Green’s function method, yielding

qðzÞ= e
π

X
x,y

Z EF

�1
dEImTrGrðE,rÞ, ð6Þ

where r = (x,y,z) and the Green’s function GrðE,rÞ= ðE + iη� HHSAI Þ�1

with η the imaginary linewidth function. On the other hand, as kx is still
a goodquantumnumber, the charge distribution along ẑ-direction can
be alternatively obtained by using

qðzÞ= e
2π2

X
y

Z EF

�1
dE

Z
dkx ImTrGrðE,kx ,y,zÞ: ð7Þ

Moreover, because only the negative charge originating from elec-
trons are considered here in Eqs. (6) and (7), to derive the unbalanced
charge distribution and in turn the polarization, the uniform back-
ground charge compensating the positive ions in the lattice has to be
removed from the results, which has the form qback = �PLz=2

z =�Lz=2
qðzÞ=Lz because of the charge conservation. As a result, the

charge distribution has the form Q(z) = q(z) + qback. The charge polar-
ization can finally be expressed as P =

PLz=2
z =�Lz=2

zQðzÞ=Lz .

Caltulations of the axion term using the hybrid Wannier
function
In a HSAI slab, the hybrid Wannier wavefunction ∣hn,k

�
can be con-

structed from the Bloch wave function. We thus have
∣hn,k

�
= 1=2π

R π
�π dkz ∣nk

�
e�iðk�r+ kzzÞ. In this case, the hybrid Wannier

charge center takes the form znk
= hhn,kjzjhn,ki49. To calculate the non-

Abelian Berry curvature, we divide the two-dimensional Brillouin zone
into a regular mesh with bx and by being the primitive reciprocal vec-
tors that define the mesh. Then the gauge covariant Berry curvature
has the form55

~Ω
xy
knn = iðh~∂xhn,kj~∂yhn,ki � h:c:Þ, ð8Þ

where ∣~∂ihn,k

E
= ð∣~hn,k+bi

E
� ∣~hn,k�bi

E
Þ=2. The wavefunctions con-

structed by a linear combination of the occupied bands at neighboring
mesh point are ∣~hn,k±bi

E
=
P

n0 ðSnn0k,k±bi
Þ�1 × ∣hn0 ,k ±bi

E
, where the

matrix Snn0k,k0 = hhn,kjhn0 ,k0 i.

Green’s function method for calculating the differential con-
ductance Gij

The differential conductance Gij corresponds to the transmission
coefficient Tij from terminal j to terminal i, which can be derived by
using the non-equilibrium Green’s function method. Based on the
Landauer-Büttiker formula48, the transmission coefficient Tij can
be expressed as Tij =Tr½ΓiGrΓjG

a�, where ΓiðjÞ = i½ΣiðjÞ � Σy
iðjÞ� is the line

width function and Gr = ðGaÞy = ½EF + iη� HHSAI �
P

iΣi��1 with EF
the Fermi energy, η the imaginary line width function and Σi the self
energy due to the coupling to terminal i. To incorporate the disorders,
we generate random potentials δE∈ ( −W/2, W/2) for the non-
magnetic Anderson disorders or δMz∈ ( −Wz/2, Wz/2) for magnetic
Anderson disorders at each site r, then add these randompotentials to
theHamiltonian in theGreen’s functions. The results in the presenceof
disorders are calculated under 10 times average (Fig. 2f).
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Data availability
The data that support the plots within this paper and other findings of
this study are available from the corresponding author upon
request. Source data are provided with this paper.

Code availability
The code that is deemed central to the conclusions is available at
https://doi.org/10.24433/CO.7892923.v1.
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