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Urban development pattern’s influence on
extreme rainfall occurrences

Long Yang 1,2 , Yixin Yang1,2, Ye Shen1,2, Jiachuan Yang3, Guang Zheng4,
James Smith5 & Dev Niyogi6,7

Growing urban population and the distinct strategies to accommodate them
lead to diverse urban development patterns worldwide. While local evidence
suggests the presence of urban signatures in rainfall anomalies, there is limited
understanding of how rainfall responds to divergent urban development
patterns worldwide. Here we unveil a divergence in the exposure to extreme
rainfall for 1790 inland cities globally, attributable to their respective urban
development patterns. Cities that experience compact development tend to
witness larger increases in extreme rainfall frequency over downtown than
their rural surroundings, while the anomalies in extreme rainfall frequency
diminish for cities with dispersed development. Convection-permitting
simulations further suggest compact urban footprints lead to more pro-
nounced urban-rural thermal contrasts and aerodynamic disturbances. This is
directly responsible for the divergent rainfall responses to urban development
patterns. Our analyses offer significant insights pertaining to the priorities and
potential of city-level efforts tomitigate the emerging climate-related hazards,
particularly for countries experiencing rapid urbanization.

Rapid growth of urban population stimulates significant urban
expansions across the globe1, resulting in multisector environmental
changes that extend beyond urban boundaries2. One of the prominent
effects of urban expansion is the alternation of thermodynamic (e.g.,
albedo, specific heat capacity) and aerodynamic (e.g., surface rough-
ness) properties of land surface, along with concentrations of micro-
physical ingredients (e.g., anthropogenic aerosols) for cloud
formation3. These modifications exert distinct influences on rainfall
patterns both spatially and temporally4, and subsequently, the
potential of water-related hazards such as flooding over urban areas5.

Predictive understanding of urban-induced rainfall anomalies, in
terms of both their magnitudes and positions, remain challenging6.
This ismainly due to the variant natureof cities, including size7, shape8,
and geographical context (e.g., in the vicinity of land/water boundaries

and complex terrain)9,10, as well as the intricate dependence of rainfall
variability on synoptic forcings11, background climate12,13, and micro-
physical properties of urban aerosols14. In addition, cities vary in how
urban elements such as buildings and roads are spatially organized in
horizontal dimension, referred to as urban footprints. The spatial
disparity of urban footprints has become notable due to the emerging
urban agglomerations worldwide but has not been considered in
comprehending urban-induced rainfall anomalies.

Contrasting urban footprints are the result of different urban
development histories and strategies. For instance, compact urban
development pattern, premised on efficient land use, leads to urban
intensification and the aggregation of urban elements into a single
cluster. By contrast, urban footprint from dispersed urban develop-
ment pattern, also known as “urban sprawl”, comprises scattered
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residential regions and the disaggregation of urban elements into
multiple clusters15. The synergies between different urban develop-
ment patterns and environmental (e.g., energy consumption, CO2

emissions)16,17 and social sustainability (e.g., subjective well-being)18

have received considerable attention. However, much less is known
regarding the role of different urban development patterns in altering
extreme rainfall and the resultant flood risks, especially with repre-
sentations of global cities at various development levels. This may
undermine several global initiatives (e.g., the Urban Climate Change
Research Network)19,20 aimed at sustainable urban development, par-
ticularly considering that urban regions are particularly vulnerable to
extreme rainfall and flooding under a changing climate21,22.

Here we reveal contrasting urban development patterns (in terms
of areal changes in urban coverage and the spatial aggregation of
urban elements) for 1790 inland cities (i.e., free of land-water bound-
aries and complex terrain) globally during the period 2003-2018 (see
Methods). Cities in high- and upper middle-income countries
(according to theWorld Bank classification system by income level for
FY24, same below) tend to experience compact urban development.
Cities in low-income countries show faster expansion in impervious
areas, but this expansion tends to be characterized by dispersed urban
development. The magnitudes and spatial patterns of rainfall changes
varied across city groups with different urban development patterns.
Convection-permitting modeling analysis shows that spatially aggre-
gated urban footprints (i.e., compact cities) pose strong thermo-
dynamic and aerodynamic disturbances to synoptic forcings. These
disturbances are responsible for more pronounced changes in
extreme rainfall occurrence and increased rainfall accumulationwithin
the urban boundaries of compact cities than in their surrounding rural
areas. Weak urban-rural contrast in rainfall anomalies, however, imply
extended exposure to flood hazards for both urban and rural residents

under dispersed urban development. Our analyses provide notable
evidence tourbanplanners andpolicymakers for prioritizingmeasures
in sustainable urban development, particularly for countries experi-
encing rapid urbanization.

Results
Global urban development patterns
From 2003 to 2018, all 1790 cities experienced expansion in urban
coverage; however, they exhibit distinct development patterns in
terms of themagnitude of areal expansion and the spatial aggregation
of urban elements (Fig. 1). Here we only consider inland cities without
complex terrain or notable land-water boundaries so that urban
development pattern is less likely to be constrained by their physio-
graphic environments. We focus on a 1° × 1° domain, with its center
aligned to the geographic coordinates of each respective city. The
choice of 1° × 1° domain is the compromise of high-resolution data
availability and the practicality of encompassing most metropolitan
regions worldwide in our analysis. When cities are small in size, the
1° × 1° domain represents the aggregation patten of several urban
clusters.

The 1790 cities can be categorized into three groups according to
their development patterns (see Methods). Cities in Group I (N = 1105)
are characterized by relatively low urban ratios (with a mean value of
5%, i.e., the percentage of urban area in the 1° × 1° domain) and low
urbanization rates (with a mean value of 7%, i.e., relative changes in
urban coverage). These cities exhibit a broad spatial distribution
across the globe. Although cities in Group III (N = 268) are character-
ized by comparable urban ratios (with a mean value of 4%), they
demonstrate pronounced urbanization rates (with a mean value of
27%, Supplementary Fig. 1). Urban elements tend to be developed in a
more spatially disaggregated way, i.e., a dispersed urban development

Fig. 1 | Divergent urban development patterns and the associated anomalies in
spatial rainfall patterns. a Spatial distribution of cities with three different
development patterns; (b–d) composite mean change ratios in extreme rainfall
frequencies (i.e., exceeding the 99th percentile daily rainfall of rainy days, repre-
sented by the shade) for different city groups with diverse development patterns
between the period 2000–2005 and 2016–2020. b Group I (include cities with low
urban coverage), low increases in urban area and slight increase in landscape shape

index, i.e., “Low-Low-Disperse” cluster, (c) Group II (include cities with high urban
coverage), low increases in urban area and slight decreases in landscape shape
index, i.e., “High-Low-Compact” cluster, (d) Group III (include cities with low urban
coverage, high increases in urban area and notable increases in landscape shape
index, i.e., “Low-High-Disperse” cluster). The contour shows the normalized num-
ber of urban pixels (i.e., by diving the maxima within the domain, in percentage),
providing an approximation of the city boundary.
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pattern. This is evidenced by the increased landscape shape index (an
urban morphological metric characterizing the extent of aggregation
of urban elements, see Methods). These cities are mainly situated in
low- and middle-income regions, including southeastern South
America, western Africa, and northeastern India (Fig. 1).

Cities in Group II (N = 417) exhibit the highest urban ratio (mean
value of 43%) among the three groups, while maintaining similar
urbanization rates (mean value of 6.8%) to Group I (Supplementary
Fig. 1). These cities tend to adopt a compact urban development pat-
tern, with new urban elements more spatially aggregated towards
existing urban coverage, compared to the other two city groups. These
cities are clustered in upper middle/high-income countries or densely
populated regions, including eastern US (i.e., east of the Rocky
Mountains), western Europe, south Asia, and northern China (Fig. 1).
Analysis of urban development patterns highlights globally distinct
strategies to accommodate the growing urban population over the
past two decades.

Contrast urban signatures in rainfall anomaly
Diverse urban development patterns further lead to varying urban
signatures in rainfall anomalies. Composite analyses show that
expansions in urban coverage overall contributes to increased fre-
quencies of extreme rainfall (i.e., exceeding 99th percentile daily rain
rate over all rainy days) over global cities (see “Methods”). The most
significant increase in extreme rainfall frequency is observed near the
city center, gradually decreasing as one moves outward (Fig. 1). The
pronounced gradients of rainfall anomalies highlight urban influences,
as we anticipate that climate effects will exhibit consistent behavior
across the entire city domain. This finding echoes urban rainfall
anomalies revealed from previous continental-scale studies23–25.

Changes in rainfall patterns show notable variations among the
three city groups. The maximum change ratio of extreme rainfall fre-
quency is 1.9% for Group III, only slightly larger than 1.5% for Group I.
However, the domain-average change ratio for Group III (i.e., 1.5%) is
three times as large as that for Group I (i.e., 0.5%). This corresponds to
approximately three times larger urbanization rates for Group III, even
though the two groups have similar types of urban footprints (Sup-
plementary Fig. 1). A notable feature is that there are multiple “hot-
spots” of large rainfall increments across the city domain for Group III
(Fig. 1). This pattern could potentially be linked to the inclination of
urban development to occur in a spatially disaggregated manner. The
establishment of newly developed residential or commercial clusters
can result in heightened frequencies of extreme rainfall in the vicinity.

Both the maximum (i.e., 2.7%) and domain-average (i.e., 1.8%)
changes in extreme rainfall frequency are notably larger for Group II
thanGroup I. This is becauseGroup II exhibits a larger spatial coverage
of built-up area, thus a larger percentage of transitions from “non-
urban” to urban pixels are required to sustain similar urbanization
rates as seen in Group I. These new urban pixels tend to aggregate to
the existing urban patches (i.e., a compact urban development). This
contributes to increased occurrences of extreme rainfall within cities,
contrasting with the dispersed “hotspots” observed in Group III. The
rainfall contrasts among the three city groups persist using the 90th
percentile of daily rainfall as the extreme rainfall threshold (Supple-
mentary Fig. 2). The contrasting rainfall patterns across three city
groups persist in different climate zones, indicating little impacts of
background climate on divergent rainfall responses to different urban
development patterns (see Methods and Supplementary Fig. 3).

Impacts of urban footprint on rainfall
To understand the impacts of different urban development patterns
on rainfall, we carry out a series of numerical simulations based on the
Real Atmosphere, Ideal Land surface (RAIL) approach (see Methods).
We configure five urban scenarios (i.e., Circular, Ribbon, Satellite,
Edge, and Scatter, Supplementary Fig. 4) and one “no-city” scenario

(i.e., only cropland). The configurations of urban scenarios are mod-
eled after real-world cities, so that different urban footprints can be
realistically represented in numerical simulations (see Methods). Cir-
cular and Ribbon scenarios represent compact cities (i.e., outcomes of
compact urban development), while Satellite, Edge, and Scatter sce-
narios represent dispersed cities (i.e., outcomes of dispersed urban
development).

The spatial distributions of rainfall accumulation are similar
across various scenarios, suggesting that there is limited disturbance
from urban canopy processes on synoptic forcings (Supplementary
Fig. 5). Distinct urban rainfall signatures become evident throughout
the city domain. The presence of urban coverage leads to decreased
rainfall accumulation over the city domain, but the extent of this
reduction varies among different urban scenarios, approximately
0.8mm–2.6mm (Supplementary Fig. 6), that is 3–10% (i.e., the mean
rainfall over the urban domain is about 25mm). Specifically, in the
Circular city andRibboncity scenarios, there is a statistically significant
reduction in domain-average rainfall of –2.3 ± 0.65mm (P < 0.01) and
−2.6 ± 0.69mm (P <0.01), respectively (Supplementary Fig. 6). For the
other three urban scenarios, changes in domain-average rainfall are
not statistically significant. It is worth mentioning, however, that total
rainfall is increased over the urban grids in the Circular city
(0.8 ± 0.3mm, P < 0.05) and Ribbon city scenarios (3.5 ± 1.2mm,
P <0.05, Supplementary Fig. 7).

In contrast to the spatial anomalies in rainfall accumulation, we
observe a rise in the frequency of extreme rainfall occurrences (i.e.,
measured by the total number of hourly rain rates exceeding 10mm/h)
in all urban scenarios. The increases are particularly pronounced in the
two compact city scenarios, i.e., Circular and Ribbon, with distinct
“hotspots” of elevated occurrences (~2 h) emerging along the urban-
rural interface (Fig. 2). The spatial pattern persists using 2mm/h as the
threshold for extreme rainfall (Supplementary Fig. 8). Elevated
occurrences of extreme rainfall are more spatially disaggregated and
tend to spread across the domain for the Satellite, Edge, and Scatter
city scenario (Supplementary Fig. 9). This is consistent with how the
urban elements are spatially organized for the three urban scenarios.
More frequent extreme rainfall is directly responsible for increased
rainfall accumulation over urban grids in the two compact city sce-
narios (i.e., Circular and Ribbon, Supplementary Fig. 7).

To further highlight contrast urban signatures in spatial rainfall
anomalies, we carry out buffer analysis (see “Methods”). Urban sig-
natures in extreme rainfall occurrences rapidly fade for the two com-
pact city scenarios (i.e., Circular and Ribbon) as the buffer distance is
gradually increased outward (Fig. 2f). The increase in extreme rainfall
frequency over the two compact city scenarios (Circular and Ribbon,
i.e., 0.30), relative to the “no-city” scenario, is approximately three
times faster than that in the three dispersed cities, i.e., 0.10 (Fig. 2f).
The rainfall anomalies induced by urban footprints become incon-
spicuous when the buffer region size is approximately five times as
large as the urban footprint (i.e., city size). A similar rule applies for
total rainfall (Supplementary Fig. 10). The contrasts across different
scenarios become insignificant when the buffer region extends to the
entire model domain, due to the dominance of synoptic forcing in
rainfall at regional scales. These analyses suggest that compact urban
development (i.e., Circular and Ribbon) tends to amplify rainfall
accumulation and extreme rainfall occurrences over cities, whereas
dispersed urban development (i.e., Satellite, Edge, and Scatter) may
lead to more scattered disturbances in rainfall distribution, as also
reflected in the satellite-retrieved rainfall anomalies for cities that
experience fast urbanization (Fig. 1).

Contrasting urban signatures in rainfall anomalies are intricately
linked to the thermodynamic and dynamic disturbances caused by
different urban footprints (Supplementary Fig. 11). These disturbances
play a critical role in rainfall processes. Compared to the two compact
city scenarios (i.e., Circular and Ribbon), the three dispersed city
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scenarios (i.e., Satellite, Edge, and Scatter) show slightly larger surface
temperature anomalies over the domain, approximately 0.32 °C
compared to 0.29 °C (Supplementary Fig. 12). This is possibly tied to
the enhanced advection of sensible heat from cities to neighboring
rural regions, as urban footprints are more widely distributed across
the domain. However, the urban-rural thermal contrast, also known as
urbanheat island (UHI) intensity, is approximately0.5 °Chigher for the
Circular and Ribbon city scenarios (mean values of 1.4 and 1.2 °C,
respectively) than that for the Satellite (mean value of 0.8 °C), Edge
(mean value of 0.9 °C), and Scatter (mean value of 0.7 °C) city sce-
narios (Supplementary Fig. 12). This is due to sharper contrasts in
aerodynamic resistance between compact urban grids and the

surrounding cropland26. The enhanced urban-rural thermal contrast,
and thus surface pressure gradients subsequently facilitate low-level
moist convergence into cities, represented by vertical velocity at the
level of 850 hPa (Supplementary Fig. 13). Anomalies in extreme rainfall
occurrences over urban grids thus exhibit a correlation with UHI
intensity (r = 0.31, P = 0.10), and demonstrate a statistically significant
correlation with changes in low-level convergence (r = 0.68, P <0.01)
during the storm period, despite variations across different ensemble
members (Fig. 3).

The increased aerodynamic roughness (as represented by chan-
ges in friction velocity) corresponds well with changes in low-level
convergence (r = 0.51, P < 0.01, Supplementary Fig. 14). Compared to

Fig. 3 | Relationship between changes in extreme rainfall occurrences within
the urban boundary (ΔRainFreq, in hours) and responsible variables. a 2-m
temperature (ΔT , in °C) averaged over the pre-stormperiod; (b) vertical velocity at
850 hPa (ΔConv, inm/s) averaged during the storm period. Each circle represents a

single ensemble member of the corresponding urban scenario. The intersected
lines show the standard error for each urban scenario. Pearson correlation coeffi-
cients between the variables and their corresponding statistical significance are
shown in each subplot title.

Fig. 2 | Spatial pattern of differences in extreme rainfall occurrences (repre-
sented by number of hours with rain rate exceeding 10mm/h) between each
urban scenario and the “no-city” scenario. aCircular, (b) Ribbon, (c) Satellite, (d)

Edge, (e) Scatter. The averaged change ratio, i.e., represented as (Rurban-Rno-city)/
(Rurban+Rno-city),withinurbanboundary and its buffering regions is shown in (f). The
contours in (a)–(e) highlight the urban footprint for each scenario.
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the three dispersed city scenarios, surface roughness for the two
compact city scenarios is larger. This is further confirmed by the
agreement between the spatial distribution of enhanced low-level
convergence and the “hotspots” of elevated extreme rainfall occur-
rences in the Circular and Ribbon city scenarios (Supplementary
Fig. 13). These analyses emphasize the significance of interactions
between thermodynamic and dynamic disturbances caused by various
layouts of urban elements in influencing extreme rainfall processes.

Discussion
Figure 4 summarizes the conceptual understanding pertaining to
contrasting rainfall responses to different urban development pat-
terns. Contrasting impacts of different urban development pattern on
rainfall have important implications for sustainable urban planning
and city-level actions for the emerging climate-related hazards. This
significance is particularly pronounced for many worldwide regions
that are undergoing or projected to experience notable urban
expansions. Compared to most high-income regions, such as eastern
US, western Europe, and northeastern China, low- and middle-income
countries in Africa, South America, and South Asia are experiencing
larger urbanization rates and tendencies of dispersed urban develop-
ment. This may offer relief from the impacts of enhanced extreme
rainfall over downtown, but inevitably enhance the exposure of rural
residents to rainfall-related hazards. It is important to note that flood
defense facilities are typically weaker in rural areas compared to
downtown regions. Escalated investments are thus needed for
improved monitoring and forecasting capabilities across the entire
urban agglomeration region. Upper middle- and high-income regions

that experience compact urban development need to cope with the
unintended convergence of increased frequency of extreme rainfall
events and concentration of assets.

A caveat of our analysis is that we use a 1° × 1° domain to char-
acterize urban development patterns. We thus note that our results
offer aggregated characterization of large urban regions globally and
their interactionswith rainfall, butmaybe less applicable for individual
small cities. The choice of a coarsedomain ismainly constrainedby the
limited availability of globally, high-resolution rainfall dataset. The
1-km MRMS radar rainfall products across the continental United
States, can be further utilized for regional analysis. This enables
characterization of urban development patterns in a finer spatial scale.
The emerging satellite-based products of global building footprint
products can additionally provide valuable three-dimensional char-
acterization of global cities as well as their temporal evolution
patterns27. Unveiling the relationship between three-dimensional
urban development patterns and regional climate is worthy to be
investigated in future studies. The climate resiliencyof urban areas can
be accordingly enhanced by fully characterizing how cities develop in
time (as represented by temporal changes in spatial coverage, density,
aggregation pattern, etc.) as well as the interactions of these changing
patterns with regional climate.

Our analyses highlight the importance of fine-scale characteriza-
tion of heterogeneous land surface properties in understanding the
interactions between urban canopy processes and the lower atmo-
sphere. The representation is either absent in most state-of-art global
climate models, or based on bulk parametrizations derived from a
mosaic approach where surface scalar and momentum fluxes are cal-
culated by simply weighting the contributions over urban and non-
urban sub-grid pixels28. The resultant bias over urban areas can poten-
tially influence their rural neighbors through atmospheric “chain” flows
and would be likely expected for rapidly urbanizing regions that are
characterized by diverse strategies of urban development. Our results
call for updates of current city-level projections of climate change
impacts29,30. This emphasizes the utility of high-resolution regional cli-
mate simulations incorporated with improved urban parametrization
schemes31 and advanced geographic products that accurately char-
acterize heterogeneous land surface properties (including urban fab-
rics, anthropogenic activities, etc.)32,33. It is also important to develop
tools that can efficiently assess the amplified climate effect linked to
different urban development strategies, so that urban planners and
policymakers can be better informed for sustainable urban planning.

Methods
Urban development analysis
We analyze global urban development patterns based on the 30-m
resolution Global Artificial Impervious Areas (GAIA) dataset. GAIA has
been evaluated againstother globalurbanproducts, anddemonstrates
good performance34. We aggregate and resample the 30-m product
into a resolution of 0.01° using the Python package GDAL (i.e., con-
sistent with rainfall product used in the following analyses, see details
below). The value of each 0.01° grid is assigned by the total number of
30-m impervious pixels (i.e., 30-m) aggregated into it. We define the
0.01° grid as an urban grid when the impervious ratio, i.e., total num-
ber of impervious pixels divided by total pixels aggregated into a 0.01°
grid, exceeds 0.2 (i.e., similarly adopted by some other land use
datasets, e.g., NLCD, in classifying urban grids). This makes our ana-
lyses less contaminated by variant changes in sparse urban units (e.g.,
parks, golf courses, etc.) that are not for residential or commercial/
industrial purposes.

We examine urban development in the past two decades by
comparing differences in urban coverage between the periods
2001–2005 and 2016–2020. The urban layers from 2003 and 2018 are
used to represent themeanurbanization status during the two distinct
periods, respectively. Our analysis is carried out from a city-centric

Fig. 4 | The conceptual model for divergent rainfall responses to contrasting
urban development patterns. a Compact city scenario, (b) dispersed city sce-
nario. The shade on the ground represents the urban-rural thermal contrast, with
warm (cold) colors indicating high (low) surface temperatures. The vectors
represent both the magnitude and direction of synoptic flows.
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perspective. We obtain a list of global cities from the Natural Earth
archive. We exclude cities from the list if they are close to coasts (with
coastal lines included in their city-center domain) and/ormountainous
terrain (maximum elevation difference exceeds 500m). We analyze
the elevation difference based on the SRTM30+ Global 1-km Digital
Elevation Model (Version 11). A total of 1790 inland cities are selected
for further analysis.We focus on a 1° × 1°domain,with its center aligned
to the geographic coordinates of each respective city. We quantify
urban development patterns based on two landscape metrics within
each domain. The two metrics are total urban coverage (TA) and
landscape shape index (LSI):

TA=
Xn

j

aj ð1Þ

LSI = 0:25
Xm

k = 1

ek

 !
=
ffiffiffiffiffiffiffi
TA

p
ð2Þ

whereaj is the unit area of anurban grid;n is the total number of urban
grids; ek is the total length of edge between an urban grid and its non-
urban neighbors;m is the total number of patches in each city domain.
Urban ratio is represented by TA divided by domain size. Changes in
the two metrics between 2003 and 2018 shed light on how urban
elements are changed in both area and spatial organizations. LSI is a
useful index to represent the degree of aggregation in relation to
shape complexity, especially when comparing a range of sizes35,36. For
instance, larger LSI indicates that urban footprint is more spatially
disaggregated. Increases (decreases) in LSI are then indicative of a
dispersed (compact) urban development pattern.

There are other metrics that characterize degree of aggregation.
We compare LSI with three other dimensionless metrics, i.e., number
of patches, patch density, and splitting index (see Supplementary
Table 1 for details). These metrics are significantly correlated with LSI.
This is because fine-scale characterization of urban aggregation pat-
terns cannot be revealedby the coarse scale of analysis (i.e., 1°).Weuse
LSI in the following analyses due to its capability of characterizing
diverse urban development patterns. All the landscape metrics are
calculated based on the Python package PyLandStats.

We employ the K-means clustering algorithm (ref. 37) to cate-
gorize the 1790 cities into distinct groups according to their urban
development patterns. We assess various combinations of descriptors
for the clustering (Supplementary Table 2). We determine three as the
optimal number of clusters. This choice is informed by the consistent
attainment of the highest Silhouette score and Davies-Bouldin score
(Refs. 38,39, Supplementary Fig. 15). The spatial distributions of three
clusters are remarkably consistent with different combinations of
descriptors. Group I include cities with low urban ratios, relatively low
urbanization rates (i.e., changes inurban coverage), anddemonstrate a
slight tendency for dispersed urban development (i.e., changes in LSI).
Group I is thus termed as the “low-low-disperse” cluster (N = 1105).
Group II includes cities with high urban ratios, relatively low urbani-
zation rates, and demonstrate tendencies for compact urban devel-
opment, termed as the “high-low-compact” cluster (N = 417). Group III
includes cities with low urban ratios but high urbanization rates,
demonstrating notable tendencies for dispersed urban development,
termed as the “low-high-disperse” cluster (N= 268).

We note that only two-dimensional characteristics of urban
development patterns are considered here. This is because develop-
ment of products that capture and characterize the three-dimensional
morphologyof global cities and their dynamics is in its early stages. For
instance, characterizing three-dimension urban morphology of global
cities during early 2000 s is still not feasible. Three-dimensional
characterization of urban development should be a future endeavor in
future studies.

Rainfall analysis
We use the IntegratedMulti-Satellite Retrievals of Global precipitation
measurement (IMERG, Version 06) product. We only focus on pre-
cipitation in liquid form. The spatial and temporal resolutions are 0.1
degree and daily, respectively. We choose the IMERG product for
rainfall analysis due to its quasi-global spatial coverage (60 °S ~ 60 °N).
This enables us to represent changing rainfall patterns for high-
latitude cities (e.g., northern Europe). We do not utilize reanalysis
rainfall products due to their inadequate representation of intricate
urban processes in current climate models. Global rainfall datasets
based on interpolation or merging from rain gauges are neither used
due to the incapability of gauges in capturing the variant urban rainfall
signatures40. Continental or regional scale analyses with rainfall pro-
ducts of higher spatial resolutions, such as the Multi-Radar/Multi-
Sensor precipitation reanalysis over United States (~1 km), can be
pursued in future.

We calculate the total number of extreme rainfall days (RFreq99)
for the two periods, i.e., 2001–2005 and 2016–2020, respectively. An
extreme rainfall day is defined when the daily rain rate exceeds the
99th percentile over all rainy days (>0mm/day) during each respective
five-year period.We do sensitivity tests by using the 90th percentile as
the threshold (RFreq90). The data layers of these rainfall statistics are
consistent with the grid spacing of the aggregated urban product.
Changes in rainfall statistics between two different periods are calcu-
lated as:

ΔX = ðX2016�2020 � X2001�2005Þ=ðX2016�2020 +X2001�2005Þ ð3Þ

Where X can be replaced by different rainfall statistics, i.e., RFreq99,
RFreq90. We composite changes in different rainfall statistics for cities
of each clustering group over the 1° × 1° city-centered domain.

Sensitivity analyses
We choose a 1° × 1° domain (approximately 0.01 million km2), because
it enables us to fully cover most metropolitan areas in the world, as
they cover less than 0.01 million km2. The 1° × 1° domain also repre-
sents the best practice of existing global climate models in terms of
spatial resolution. Using a smaller domain (e.g., 0.5° × 0.5°) can only
include individual cities, and is not sufficient to represent diverse
urban footprints. We also carry out analysis using a larger domain, i.e.,
2° × 2°, with almost identical global patterns found and rainfall
anomalies across the three city groups (Supplementary Fig. 16).

We test the sensitivity of the contrasting rainfall patterns to the
uneven size of eachgroup.We randomly choose400cities fromGroup
I (i.e., comparable size to Group II), and derive the composite mean
rainfall profile along the west-east and south-north direction, respec-
tively. The randomselection is done for 100 times, so thatwe have 100
composite profiles along each direction. We also test by choosing 200
cities from Group I (i.e., comparable size to Group III). Results show
little variance to the rainfall profiles on the changes of group size
(Supplementary Fig. 17).

To examinewhether contrasting rainfall patterns across three city
groups depend on background climates, we classify each city
(according to their locations) into different climate types. We adopt
four climate types (i.e., tropical, dry, temperate, continental) corre-
sponding to the first level of the Köppen climate classification. There
are no cities in polar climate type. The number of cities in each climate
group is 395 (tropical), 384 (dry), 406 (temperate), and 606 (con-
tinental). For each climate type, we compare rainfall patterns with
different urban development patterns. We find that the contrasting
rainfall patterns across different city groups persist in different climate
types (Supplementary Fig. 3). Thismay be partially due to the adoption
of 1° × 1° domain which is insufficient to represent the development
patterns of small cities, but mostly represent large metropolitan
regions.
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Urban footprints
We examine the GAIA impervious product and select five cities as our
prototypes of urban footprints. The five cities are Austin (US), San
Antonio (US), Fuyang (China), Zhoukou (China), and Stuttgart (Ger-
many) (Supplementary Fig. 4). The urban ratios (within the 1° × 1°
domain) for the five cities are comparable, i.e., approximately 14%, but
the spatial arrangements of urban elements (such as buildings and
roads) vary significantly among these cities. The landscape shape
index for the five urban footprints is 7.1, 8.9, 17.2, 17.9, and 22.0,
respectively. Note that larger landscape shape index points to more
spatially disaggregated urban elements.

Austin and San Antonio represent compact cities with a single
prominent city center. There are no sub-centers or small towns sur-
rounding the city’s center (Supplementary Fig. 4a and Fig. 4b). The
difference between Austin and San Antonio lies in city shape. Urban
elements in Austin are arranged in a circular pattern around a central
point (i.e., a Circular city), while these elements are spatially dis-
tributed along a corridor for San Antonio (i.e., a Ribbon city). The
impact of city shape on rainfall patterns has been examined
previously8. Both Fuyang and Stuttgart share a similar urban footprint
characterized by a significant city center encircled by towns and
smaller cities (and comparable landscape shape indexes). The dis-
tinction lies in the placement of the prominent city center; it’s posi-
tioned at the heart of Fuyang (i.e., a Satellite city, Supplementary
Fig. 4c), while it’s situated on the outskirts of Stuttgart (an Edge city,
Supplementary Fig. 4d). The two cities have similar landscape shape
indices as well. For Zhoukou, the patches of urban elements are of
comparable sizes, and are evenly distributed across the domain (i.e., a
Scatter city, Supplementary Fig. 4e). The landscape shape index is the
largest of all five urban footprints. Fuyang, Stuttgart, and Zhoukou
represent the urban footprint of dispersed cities.

The five urban scenarios are chosen by following the suggested
spatial models of city structure in sustainable development (ref. 41) as
well as the existence of these prototypes in real-world cities (through
manually examining the global urban cover map). These selections of
city prototypes are not intended to be exhaustive, but rather to
represent a subset of possible urban footprints. As the domain size
increases, more types of urban footprints may emerge.

Numerical simulations
We examine the impacts of different urban footprints on rainfall pat-
terns through the Real Atmosphere, Ideal Land surface (RAIL) simu-
lations. The RAIL simulations are based on the Weather Research and
Forecasting (WRF) model (version 3.9.1, ref. 42). The atmospheric
component of these simulations is initialized with three-dimension,
heterogeneous variables, while the land component is kept inten-
tionally simple. There are only two land use/land cover types: crop and
urban (i.e., high-density residential) in the innermost model domain
(referred to as model domain). The terrain is set completely flat (32m
above sea level) with spatially uniform soil properties (e.g., soil type,
soil moisture, etc.). The soil type is set to silty clay loam. There is a “no-
city” scenario with homogenous, crop-only land use in the model
domain. Urban scenarios are then configured by replacing crop land
use with different urban footprints (i.e., Circular, Ribbon, Satellite,
Edge, and Scatter) within a central area of 101 × 101 grids (referred to as
the urbandomain) in themodel domain. The cropland type is the same
for all scenarios. We manually choose and remove small patches of
urban grids, to ensure that the urban ratios are exactly the same (i.e.,
14.1%) for the five urban scenarios. The only difference among them is
howurbanelements arehorizontally organized. The single-layerUrban
Canopy Model together with the Noah land surface model is used to
represent exchanges of heat, moisture, and momentum between
urban canopy and lower atmosphere. We set all urban grids as Indus-
trial and Commercial land use. We adopt the default urban canopy
model parameters (see Supplementary Table 3 for details).

We simulate an extreme rainfall event with strong synoptic for-
cings (mostly responsible for extreme rainfall in urban environments)
over central China from 20-21 August 2012. Total rainfall accumulation
exceeds 100mm for 13 in-situ rain gauges, with maximum 1-h rainfall
intensity of 115.8mm. The storm environment is featured with the
passage of a low vortex and a moist southwesterly jet along the shear
line. The difference of equivalent potential temperature between 500
hPa and 850 hPa is −6.2 °C, indicating strong potential for convection.
The maximum convective available potential energy is 751 J kg-1.

Initial and boundary conditions for the simulations are repre-
sented by the NCEP Final Operational Global Analysis product, with a
spatial resolution of 1 degree and a temporal resolution of 6 h. We
configure three one-way nested domains. The horizontal grids are
200× 200, 190 × 190, and 178 × 178, with grid spacing of 9 km, 3 km,
and 1 km, respectively. The 1-km domain centers over 32.9 °N and
115.82 °E. The soil moisture ranges from 0.24 to 0.30 m3 m-3 (vary with
depths) over the model domain at the beginning of the simulations.
We configure 38 vertical levels in the model, with 20 of them below
2 km above the ground. We set 50 hPa as the upper boundary.

The WRF physics options include: The Rapid Radiative Transfer
Model for long-wave radiation and Dudhia’s scheme for short-wave
radiation. The cumulus scheme is turned off for all domains due to the
fine spatial resolution of horizontal grids (less than 10 km). We carry
out ensemble simulations for both the “control” scenario and five
urban scenarios by adopting combinations of three different micro-
physical schemes (WSM6, Thompson graupel, and Morrison double-
moment scheme) and two different planetary boundary layer schemes
(YSU and Mellor-Yamada-Janjic (Eta) TKE scheme), while maintaining
the rest of the physics options. This results in six ensemble members
for each land use scenario. The differences in the ensemble mean
between five urban scenarios and the “no-city” scenario can shed light
on the impacts of different urban footprints on rainfall.

All the simulations are initiated at00UTC 19August 2012, and run
for 72 h. The output interval is 1 h. Rainfall episode spans 24 h, from00
UTC 20 till 00 UTC 21 August. The first 12 h of the simulations are
regarded as the spin-up period. Pre-storm period is from 12 UTC 19
August to 00 UTC 20 August.

Buffer analysis
We highlight distinct rainfall patterns across five urban scenarios
based on buffer analysis (i.e., around the boundary of each individual
urban coverage). The rainfall anomalies between each of the five urban
scenarios and “no-city” scenario are first calculated. The anomalies are
subsequently averaged over the urban grids and their surrounding
regions, with the buffer distance gradually increasing, until the entire
model domain is encompassed.

Data availability
TheGAIA product is available at http://data.starcloud.pcl.ac.cn/zh. The
SRTM30+ Global 1-km Digital Elevation Model is available at https://
catalog.data.gov/dataset/srtm30-global-1-km-digital-elevation-model-
dem-version-11-land-surface. The list of global populated areas is
available at https://www.naturalearthdata.com/downloads/10m-
cultural-vectors/10m-populated-places/. The IMERG (Version 06)
rainfall product is available at https://gpm1.gesdisc.eosdis.nasa.gov/
data/GPM_L3/GPM_3IMERGDF.06/. The NCEP Final Operational Global
Analysis product is available at https://rda.ucar.edu/datasets/ds083.2/.
The RAIL simulation outputs are available from the corresponding
author upon request.

Code availability
The source code for this study is available from https://doi.org/10.
6084/m9.figshare.24303136.v1. The Python packages GDAL and
PyLandStats can be downloaded from https://gdal.org/api/python_
bindings.html and https://pylandstats.readthedocs.io/en/latest/.
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