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We introduce GRouNdGAN, a gene regulatory network (GRN)-guided
reference-based causal implicit generative model for simulating single-cell
RNA-seq data, in silico perturbation experiments, and benchmarking GRN

inference methods. Through the imposition of a user-defined GRN in its
architecture, GROouNdGAN simulates steady-state and transient-state single-
cell datasets where genes are causally expressed under the control of their
regulating transcription factors (TFs). Training on six experimental reference
datasets, we show that our model captures non-linear TF-gene dependencies
and preserves gene identities, cell trajectories, pseudo-time ordering, and
technical and biological noise, with no user manipulation and only implicit
parameterization. GROuNdGAN can synthesize cells under new conditions to
perform in silico TF knockout experiments. Benchmarking various GRN
inference algorithms reveals that GROUNdGAN effectively bridges the existing
gap between simulated and biological data benchmarks of GRN inference
algorithms, providing gold standard ground truth GRNs and realistic cells
corresponding to the biological system of interest.

Unraveling gene regulatory interactions, often represented as a gene
regulatory network (GRN), plays a crucial role in studying biological
processes under different conditions', simulating knockdown and
knockout experiments*®, and identifying therapeutic drug targets®’.
Many algorithms have been proposed for GRN reconstruction using
bulk or single-cell RNA sequencing data (scRNA-seq), alone®*™ or with
other modalities® . While these advances have provided great bio-
logical insights, evaluating the performance of GRN Inference algo-
rithms remains challenging'*?° due to the lack of reliable ground truth
for the biological processes under study. Existing evaluation approa-
ches often resort to curated databases” . However, the regulatory
interactions in these databases are aggregated from a wide range of
datasets and are not specific to a biological system, making them not
ideal benchmarks due to context specificity of gene regulation.
Another strategy is to verify regulatory interactions by conducting
perturbation experiments on the system under study’. However, this
approach is tedious, lengthy, and expensive. Another approach is to

employ scRNA-seq simulators. Despite great progress in this domain,
most simulators lack the essential properties for this task, such as the
preservation of gene identities and simulation based on a user-
provided ground truth GRN. For example, scGAN*, cscGAN*,
scDESIGN2%, and SPARSIM?® capture inter-gene correlations in their
datasets. However, since they do not explicitly impose a known GRN
(that can act as the ground truth), they are not suitable for bench-
marking GRN inference methods.

A small subset of simulators (e.g., BoolODE", SERGIO*, and Gen-
eNetWeaver (GNW)?) explicitly incorporate GRNs capturing tran-
scription factor (TF)-gene dynamics. GNW was used to generate
benchmarks for Dialogue for Reverse Engineering Assessment and
Methods (DREAM) challenges”*°. However, being a bulk RNA-seq tool,
its simulated datasets do not replicate the distribution of experimental
scRNA-seq datasets nor exhibit their statistical properties, despite
attempts to adapt it for this purpose by externally inducing dropout
events'**°. SERGIO and BoolODE were designed to simulate scCRNA-seq
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data using stochastic differential equations (SDEs)*"* and have been

used to benchmark a variety of GRN inference methods. However,
often a mismatch between the benchmarking results based on
experimental and their simulated data have been reported, which may
be attributed to differences between the simulated and experimental
datasets. For example, in the BEELINE study (using BoolODE), some of
the top ranking methods on simulated benchmarks reported near
random performance on curated and experimental benchmarks®.
Both simulators enable the user to simulate more realistic datasets by
carefully selecting the values of the SDE parameters. Moreover, using a
reference dataset, SERGIO allows fine tuning the added technical noise
in an iterative procedure until the generated and reference datasets
are matched*. While these steps can help improve the resemblance to
real datasets, they are often suboptimal and pose an undue burden on
the user: for example, in SERGIO, the user must evaluate the similarity
based on five different statistics and change three parameters itera-
tively until desired resemblance is achieved (which itself can be sub-
jective). In addition, since the GRN is imposed on the “clean” dataset,
but technical noise is added afterwards, this step may change the
encoded causal relationships in a non-trivial way (which may explain
why the performance of GRN inference methods dropped close to
random when applied to the noisy dataset*). Furthermore, SERGIO and
BoolODE do not readily preserve gene identities and make simplifying
assumptions regarding cooperative regulation (see Discussion). These
shortcomings demonstrate the need for simulators capable of gen-
erating realistic SCRNA-seq data that retain the regulatory dynamics
specified by a user-defined GRN. Importantly, with the growing interest
in causal inference, simulators that impose causal GRNs are of
great need.

GROuNdGAN (GRN-guided in silico simulation of single-cell
RNA-seq data using Causal generative adversarial networks) is a cau-
sal implicit generative model for reference-based GRN-guided simu-
lation of scRNA-seq data inspired by CausalGAN®.. Given an input GRN
and a reference scRNA-seq dataset, it can be trained to generate
simulated data that is both indistinguishable from the reference data
and faithful to the causal regulatory interactions of the input GRN.
Unlike model-based simulators that rely on simplifying assumptions
regarding co-regulatory patterns, in GROUNdGAN these patterns are
learned through complex functions. This allows it not to compromise
on the underlying complexity of the system and to model elaborate
regulatory dynamics. GROUNdGAN provides state-of-the-art perfor-
mance in realistic SCRNA-seq data generation, while preserving gene
identities, causal gene regulatory interactions, and cellular dynamics
(e.g., lineage trajectory and pseudo-time ordering). This is achieved
through implicit parameterization without the need for manual fine-
tuning. Using GRouNdGAN, we benchmark eight GRN inference
methods and find the results to be aligned with BEELINE’s experi-
mental results”. Furthermore, the causal structure of GROuNdGAN
enables it to be used for sampling from both interventional and
observational data distributions, enabling in silico knockout
experiments.

Results

GRouNdGAN generates scRNA-seq data using causal generative
adversarial networks

GROUNdGAN is a deep learning model that generates scRNA-seq data
while imposing a user-defined causal GRN to describe the regulatory
relationships of the genes and TFs. Its architecture builds on the causal
generative adversarial network® and includes a causal controller, tar-
get generators, a critic, a labeler and an anti-labeler (Fig. 1). Training
includes two steps. First, the causal controller that generates TF
expression values is pre-trained (Fig. 1B) as the generator of a Was-
serstein GAN (WGAN)* with gradient penalty (WGAN-GP) (Methods).
In the second step (Fig. 1C), TF expression values (generated by the
pre-trained causal controller) and randomly generated noise are

provided as input to the target generators that produce target genes’
expressions, while incorporating the TF-gene relationships of the input
GRN. To achieve this, as input, each target generator only accepts a
noise value and the generated expression values of TFs that causally
regulate it (Fig. 1C, Methods). The generated expression of genes and
TFs are then fed to a library-size normalization (LSN) layer**.

The two steps of training above are performed based on the same
reference experimental scRNA-seq training dataset. The goal of the
first step (pre-training, Fig. 1B) is to train the causal controller to learn
scRNA-seq data distribution and generate realistic data, irrespective of
any GRN. The GRN edges between a set of regulators (e.g., TFs) and
their targets are imposed in the second step of training (Fig. 1C). To
achieve this, in the second step of training, only the expression of
regulators (TFs) outputted by the causal controller are used and its
output of target genes’ expressions are discarded and instead are re-
generated using the target generator neural networks in Fig. 1C to
enable imposition of causal relationships.

The critic’s role (in both steps of training) is to quantify the
Wasserstein distance (Supplementary Notes) between the reference
and simulated data. The target generators are trained in an adversarial
manner to generate realistic datapoints indistinguishable from the
reference datapoints by the critic. The labeler/anti-labeler estimate
the TF expression values only from the target genes’ expressions to
ensure that the generated causal TF-gene dependencies are encoded.
The combination of the model architecture (in that each target gen-
erator only receives a noise value and the simulated expression of its
regulating TFs in the GRN) and the labeler/anti-labeler ensure that the
GRN edges are causally imposed in the simulated data. Details are
provided in Methods, the architectural choices in Supplementary
Tables 1 and 2, and an ablation study in Supplementary Notes and
Supplementary Table 3.

GRouNdGAN generates realistic SCRNA-seq data

We first trained GRouNdGAN on three datasets (results for three
additional datasets will be discussed later). The first dataset contained
scRNA-seq profiles of 68,579 human peripheral blood mononuclear
cells (PBMCs) from 10x Genomics™> corresponding to eleven cell types
(“PBMC-AIl”). We formed a dataset of the most common cell type in the
PBMC-AIl dataset containing 20773 CD8+ Cytotoxic T-cells (“PBMC-
CTL”). Additionally, we obtained the scRNA-seq (MARS-seq) profile of
2730 cells corresponding to differentiation of hematopoietic stem
cells to different lineages from mouse bone marrow** (“BoneMarrow”).
We used GRNBoost2® to identify fifteen TFs for each gene to form the
input GRN. Note that these identified interactions may contain both
spurious correlations and causal relationships in the reference dataset.
However, when they are used as input to GRouNdGAN, they will cor-
respond to causal interactions in the simulated dataset (see Kocaoglu
et al. for theoretical details of causality in this architecture®). For each
dataset, we trained GRouNdGAN on a randomly selected training set
and evaluated on a held-out test set (Methods, Supplementary Data1 -
Sheets 2 and 3). Figure 2A, B and Supplementary Figs. 1-3 show the
t-SNE plots of reference and simulated cells, qualitatively revealing
their similarity.

We quantitatively assessed the resemblance using Euclidean dis-
tance, Cosine distance, maximum mean discrepancy (MMD)*, mean
integration local inverse Simpson’s index (miLISI)*, and the area under
the receiver operating characteristic curve (AUROC) of a random for-
ests (RF) classifier distinguishing simulated and experimental cells
(Methods). As a “control” (and to enable calibration of these scores),
we also calculated these metrics using two halves of the reference test
set (corresponding to real cells). Table 1 shows the performance of
GRouNdGAN, control, and three state-of-the-art simulators for the
PBMC-CTL dataset (see Supplementary Data 1 - Sheet 2 for training set
performance). We did not include BoolODE in these tables since it is a
reference-free simulator and is not designed to match a particular
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Pretrain a WGAN-GP to
generate genes and TFs (Fig. 1B)

Define and impose a
GRN through the target
generators' connections

Train target generators in a WGAN-GP framework
with auxiliary networks (Fig. 1C)
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reference dataset. We tried generating samples using SERGIO to match
the PBMC-CTL dataset, but the simulated dataset did not show high
resemblance to the PBMC-CTL dataset (see Supplementary Notes,
Supplementary Tables 4 and 5 and Supplementary Fig. 4). However, we
decided not to include these results in Table 1, since SERGIO relies on
the user’s judgement for distribution matching and the quality of the
final simulated dataset is user dependent. Instead, we only included

reference-based simulators that automatically generate scRNA-seq
data resembling experimental data, in order to assess data quality
systematically and fairly.

One of the challenges faced by GANs is the possibility of mode
collapse: when applied to heterogenous datasets, they may learn to
generate only a limited set of examples, instead of generating a variety
of examples from the entire distribution of the training data. We
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Fig. 1| Architecture and training procedure of GROUNdGAN. A The flowchart
representing the steps of the training procedure and the overall architecture of the
model in each step. Subscripts G, R, and E represent generated, real, and estimated,
respectively. B A WGAN-GP is pre-trained to generate realistic simulated cells using
the reference (real) training set. C The LSN layer of the generator of the trained
WGAN-GP (panel B) is removed, its weights are frozen, and is used as the causal
controller to generate unnormalized TF expression values (expression of target
genes generated by the causal controller are discarded). These TF expression
values along with a noise vector are provided as input to the target generators,
following the provided causal GRN. The generated gene and TF expression values

are reorganized and passed through the LSN layer. The normalized simulated
expression vectors and experimental reference data (the same training set as B are
then passed to the critic to estimate Wasserstein distance between the reference
and the generated data distributions. The anti-labeler estimates TF values based on
generated target gene expressions. The labeler performs a similar task, but in
addition to receiving generated values, it also utilizes target gene expression values
from the reference data. Labeler and anti-labeler ensure that the causal GRN is
incorporated by the target generators. Details of the model are provided in
Methods.

trained GRouNdGAN using PBMC-All, which contains multiple cell
types, to determine whether it can generate samples from different cell
types present in this dataset, or it will suffer from mode collapse and
only generates samples corresponding to the most represented cell
type. This is particularly important, since many scRNA-seq datasets are
heterogenous and contain different cell types or cells in different
states. If cell type information of the reference dataset is available a
priori, one can easily generate realistic samples of each cell type
separately (similar to the PBMC-CTL analysis) and use either cell type-
specific GRNs, a shared GRN, or a combination of both. However, we
were particularly interested to know whether our model could gen-
erate realistic samples without this knowledge, a more challenging task
and useful for when such information is unavailable. Also, not requir-
ing cell type information reduces the amount of user involvement (to
annotate cell types) and improves model’s usability. We repeated the
analysis using the PBMC-AIl dataset, containing eleven cell types.
Although GRouNdGAN did not receive cell type/cluster information,
we did not observe mode collapse (Supplementary Fig. 2), and it was
able to generate cells from distinct clusters (Fig. 2B, test set miLISI =
1.90). GRouNdGAN outperformed all simulators that did not use cell
cluster information (Table 2) and compared to those that utilized this
information, it was still the top performing based on MMD and RF
AUROC and the second best according to the Euclidean distance (6%
higher than the best) and miLISI (0.5% lower than the best) (Table 2).
Moreover, we observed a high degree of concordance between the cell
type marker expressions in the experimental data and GRouNdGAN-
simulated data (Supplementary Notes and Supplementary Fig. 5).
Finally, GRouNdGAN outperformed all other simulators based on all
metrics when we repeated the analysis using the BoneMarrow dataset,
containing continuous cell states and much fewer cells (Supplemen-
tary Data 1 - Sheet 3). These results show that GROUNdGAN is a stable
simulator of scRNA-seq data and even without extra cell type infor-
mation in heterogenous datasets, it automatically generates realistic
samples reflecting different cell types (while imposing a GRN).
See Supplementary Notes and Supplementary Data 2 for stability
analysis and the effect of different GRN properties (including number
of TFs) on the performance.

GRouNdGAN imposes a causal GRN in the simulated data

To assess the ability of GROuNdGAN in imposing the input causal GRN,
we performed in silico TF knockout experiments (one of GRouNd-
GAN’s capabilities) on the simulated cells (n=1000) from the PBMC-
CTL dataset. We performed a forward pass after setting the expression
of each TF to zero (one at a time) in the causal controller output, while
keeping all other parameters and TF expressions unchanged, ensuring
that the perturbations were performed on the same batch of
cells forming matched case/control experiments. There was no
change in the expression of genes that were not regulated by the
knocked-out TF (as expected), while the expression of the regulated
genes changed. Figure 2F shows the distribution of the adjusted
p-values (Benjamini-Hochberg) for each TF-gene edge in the GRN,
comparing the expression of a gene across all cells before and after the
knockout of one of its regulating TFs (two-sided Wilcoxon signed-rank
tests). In the majority (66.5%) of cases, the knockout of a gene’s

regulating TF significantly (adjusted p-value<0.05) altered its
expression, showcasing that the GRN is indeed imposed in the
expression profiles of simulated cells. Note that since each gene is
regulated by multiple TFs, we cannot expect that knockout of a single
TF result in a significant change in the expression of its target genes in
all cases. The analysis above shows that GROUNdGAN does not simply
ignore the input TF values to instead rely solely on the noise input to
generate realistic cells, and the effect of TF-gene edges are indeed
imposed. Moreover, since each gene is regulated by multiple (15) TFs,
but the knockout experiment is one TF at a time, this further shows
that individual edges are imposed by the model.

GRouNdGAN does not require the input GRN to be the true causal
GRN of the training data (we will discuss this further later). To further
clarify this, we replaced GRNBoost2 with PPCOR* to form the GRN,
which is a method based on (partial) correlation for inferring GRNs
(see Supplementary Data 1 - Sheet 2 for resemblance metrics).
Repeating the knockout experiments above (n =1000 cells) resulted in
similar results showing that in the majority (75.2%) of cases, the
knockout of a gene’s regulating TF significantly altered its expression
(Supplementary Fig. 6). Taken together, these results show that
GRouNdGAN can successfully impose different GRNs in the simulated
data, while generating realistic cells.

The imposed GRN can be reconstructed from the simulated data
To test whether the imposed GRN can be reconstructed from the
generated data, we first applied GRNBoost2® to the reference PBMC-
CTL dataset and recorded the top ten TFs for each gene. For each gene,
we created two sets of five TFs based on their even/odd parity in the
ranked list: TFs ranked 1st, 3rd, 5th, 7th, and 9th were connected to the
gene and were imposed (“positive control GRN”), while the remaining
five TFs were not (“negative control GRN”), resulting in two GRNs with
identical densities and the same number of TFs and target genes. When
considering the positive and negative control GRNs as ground truths
(separately), the GRN reconstructed using GRNBoost2 from the
reference (training) dataset (n =19,773) resulted in comparable AUPRC
(0.28 and 0.24, respectively, Supplementary Data 3 - Sheet 2),
reflecting that they contain edges of comparable importance.

We simulated data (n=19,773 cells) using GRouNdGAN by
imposing only the positive control GRN, and used GRNBoost2, PIDC"
GENIE3’, and PPCOR™ to reconstruct the underlying GRN (Fig. 3,
Supplementary Fig. 7, Supplementary Data 3 - Sheet 2). All methods
reconstructed the imposed edges with a much higher AUPRC com-
pared to the reference dataset, while they did not assign high scores to
the unimposed edges, resulting in close to random AUPRC. Figure 3
shows the performance of GRNBoost2 applied to the reference,
GRouNdGAN-simulated, and scGAN-simulated data (n=19,773 cells).
The performance for scGAN (both GRNs) was lower than the reference
dataset, showcasing that it had not preserved the TF-gene relation-
ships of the experimental dataset well. The performance was
relatively consistent between positive (Fig. 3A, C) and negative control
(Fig. 3B, D) GRNs using the reference and scGAN-simulated data;
however, it was much higher for the positive control GRN (compared
to negative control GRN) using GRouNdGAN-simulated data. Similar
patterns were observed when we repeated these analyses using the
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Table 1| Performance of different simulators in generating
realistic scRNA-seq data using the PBMC-CTL dataset

Simulator Cosine Euclidean MMD RF miLISI
distance distance AUROC

GRouNdGAN 0.00057 182 0.026 0.54 1.891

SCGAN* 0.00095 222 0.031 0.59 1.888

scDESIGN2%® 0.00100 229 0.065 0.76 1.736

SPARsim* 0.00104 235 0.309 0.95 1.625

Control 0.00019 99 0.012 0.50 1.909

The metrics are calculated between a simulated dataset of 1000 cells and the held-out test set of
1000 real cells (see Supplementary Data 1 - Sheet 2 for training set performance). Each gene in
the imposed GRN of GRouNdGAN is regulated by 15 TFs (constructed using GRNBoost2 from the
experimental training set). For the first three metrics, a value closer to zero is preferred, for RF
AUROC a value closer to 0.5 is preferred, and for miLIS| a value closer to 2 is preferred. For the
first two metrics, the values correspond to the distance of the mean centroids of the real and
simulated cells. The RF AUROC of control corresponds to perfect performance (of a random
classifier). The other control metrics are calculated using the two halves of the real test dataset.
Best performance values (excluding control) are in bold-face.

Table 2 | Performance of different simulators in generating
realistic scRNA-seq data using the PBMC-AIll dataset

Simulator Cellclus- Cosine Euclidean MMD RF miLISI
ter labels/ distance distance AUROC
ratios
provided
as input
GRouNdGAN No 0.00028 168 0.017 0.53 1.90
CcsCGAN** Yes 0.00025 242 0.030 0.56 1.91
CcWGAN Yes 0.00053 239 0.027 0.57 1.89
SCGAN* No 0.00081 300 0.035 0.58 1.90
scDESIGN2% Yes 0.00032 181 0.046 0.86 1.81
scDESIGN2% No 0.00057 256 0.124 0.91 1.53
SPARsim”® Yes 0.00019 158 0.287 0.96 1.66
SPARsim?*® No 0.00035 245 0.307 0.96 1.39
Positive NA 0.00022 16 0.012 0.50 1.91
control

Baseline models that enable utilization of cell cluster labels or ratios are run with and without this
information. The metrics are calculated between a simulated dataset of 1000 cells and the held-
out test set of 1000 real cells. Each gene in the imposed GRN of GRouNdGAN is regulated by 15
TFs (constructed using GRNBoost2 from the experimental training set). For the first three
metrics, a value closer to zero is preferred, for RF AUROC a value closer to 0.5 is preferred, and
for miLISI a value closer to 2 is preferred. For the first two metrics, the values correspond to the
distance of the mean centroids of the real and simulated cells. The RF AUROC of control cor-
responds to perfect performance (of a random classifier). The other control metrics are calcu-
lated using the two halves of the real test dataset. Best performance values (excluding control)
are in bold-face.

PBMC-AIl (n=67,579 cells) and BoneMarrow (n =2230 cells) datasets
(Supplementary Data 3 - Sheets 3 and 4, Supplementary Figs. 8 and 9).
These results show that the imposed edges were accentuated by
GRouNdGAN, while the unimposed edges were disrupted and could
not be found by GRN inference methods.

Next, we asked whether GRNBoost2 can reconstruct the imposed
GRN, if GRNs of different densities are used to simulate data. Using
data for which each gene was regulated by 15, 10, 5, and 3 TFs, we
observed that in all cases the GRN imposed by GRouNdGAN could be
inferred from the simulated data (Supplementary Data 3 - Sheets 5 and
6). Finally, we repeated the controlled analysis above, swapping the
role of positive and negative control GRNs. Similar to the results of
Fig. 3, the imposed edges were inferred by GRNBoost2, while the
unimposed edges were not accurately discovered (Supplementary
Data 3 - Sheet 7). These results show that 1) GROuNdGAN imposes the
causal GRN, 2) the GRN inference methods can identify the imposed
edges, and 3) the TF-gene relationships present in the reference

dataset but unimposed by GRouNdGAN are disrupted during simula-
tion. The last property is particularly desirable for benchmarking GRN
inference methods to ensure that the regulatory relationships present
in the reference dataset (but unimposed) do not bias the simulated
data, which could result in an inflated false positive rate.

Next, we repeated the analyses above on the PBMC-CTL dataset,
but this time with input GRNs learned by PPCOR (a GRN inference
based on partial correlation) from the training set. Similar to the results
above, GRNBoost2 could reconstruct the imposed edges, and the
importance of the imposed edges were accentuated by GRouNdGAN
(compared to the original training dataset) (Supplementary Data 3 -
Sheet 8). We also imposed two randomly generated GRNs (with similar
density to the GRNs above in which each gene was regulated by 5 TFs).
Once again, the imposed edges were accentuated by GRouNdGAN,
however imposing a random GRN (whose induced patterns may be
inconsistent with real reference data) came at the cost of lower
resemblance between simulated and reference data. (See Supple-
mentary Notes and the Discussion for more details on why imposing a
GRN that s inconsistent with the reference data (e.g., arandom GRN) is
a contradictory requirement to generating simulated data resembling
the reference data).

GRouNdGAN-simulated data preserves trajectories and can be
used for pseudo-time inference

In addition to deciphering discrete states, sCRNA-seq data is often used
to determine continuous cell transitions during biological processes
such as differentiation, using trajectory and pseudo-time
inference®*™**. We set to determine whether GROuNdGAN-simulated
data conforms to the transitional states and pseudo-time of the
reference data. This is particularly important for benchmarking GRN
inference methods that utilize pseudo-time information?™. For this
purpose, we used the BoneMarrow dataset corresponding to differ-
entiation of hematopoietic stem cells to different lineages and simu-
lated n=2230 cells using GRouNdGAN (same as the number of real
cells in the reference training dataset, to remain consistent).

We used Partition-based graph abstraction (PAGA)*® for trajectory
inference of the reference and GRouNdGAN-simulated data. PAGA
computes graph-like maps of data manifolds faithful to the topology of
data, retaining its continuous and discrete structures. Supplementary
Fig. 10 shows the PAGA graphs, where nodes capture discrete states
and the edges signify transitions between them. To compare the
identified trajectories, we used markers of the cell types present in this
dataset (Supplementary Table 6)*. Figure 4 shows the expression
patterns of two marker genes for erythroid cells (Gatal, KlfI), neu-
trophils (Mpo, Ctsg), and basophils (Mcpt8, Prss34) for PAGA trajectory
graphs of both datasets (Supplementary Figs. 11-17 show marker genes
of all cell types). The comparison showed similar activation patterns
between corresponding regions of PAGA graphs of the experimental
and GRouNdGAN data, revealing several trajectories (e.g., erythroid
and neutrophil branches). Strikingly, even the number of nodes acti-
vated in each figure scaled similarly between the two datasets: e.g., the
markers of basophils were consistently expressed in only one node in
each dataset (Fig. 4E, F).

We annotated different cell types present in both datasets using
these marker genes (following PAGA’s official tutorial) (Fig. 5A, B). The
GRouNdGAN’s annotated graph showed similar topological features to
that of the reference data and captured known biological properties of
hematopoiesis, which were also noted by Wolf et al.*® using the
reference dataset (e.g., proximity between monocytes and neutrophils
or association between megakaryocyte and erythroid progenitors).
These observations show that the key characteristics of the reference
data are retained in GROouNdGAN-simulated data.

We used the diffusion pseudotime algorithm* (in scanpy®) to
infer the progression of cells through geodesic distance (Fig. 5C, D).
We noticed strong concordance when examining pseudo-time values
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(D) when the unimposed edges (negative control GRN) were considered the ground
truth. Precision at k (per gene) refers to the precision when top k TFs for each gene
is used to form the reconstructed GRN. All three datasets had the same number of
cells (n=19,773). Source data are provided as a Source Data file.

assigned to cell subgroups in the reference and GRouNdGAN-
generated data. To track these patterns, we focused on marker
expression changes along erythroid, neutrophil, and monocyte tra-
jectories (Supplementary Figs. 11-13), similar to the analysis performed
by Wolf et al.*®. In both datasets, the activation of neutrophils’ marker,
Elane, and monocytes’ marker, /rf8, were predominantly observed
towards the later stages of their trajectories (Fig. SE, F). Additionally,
we observed the activation of erythroid maturity marker genes Gata2,
Gatal, KIf1, and Hba-a2 roughly in sequential order along the erythroid
trajectory in both datasets (Fig. SE, F), concordant with previous
findings®. The striking similarity between the activation patterns of
these markers in both datasets and the preservation of their ordering
highlights GRouNdGAN’s ability to capture dynamic transcriptional
properties of scRNA-seq data, leading to correct trajectory inference
and pseudo-time ordering.

GRouNdGAN achieves high performance on other datasets
In addition to the datasets discussed earlier, we applied GROUNdGAN
to three other datasets. One corresponded to cells undergoing

hematopoiesis (similar to the BoneMarrow dataset), but with much
larger number of cells (n=44,802)* (which we called Dahlin dataset).
The second dataset corresponded to malignant cells and cells present
in the tumor microenvironment of 20 fresh biopsies from follicular
lymphoma tumors (n=136,147), which we called the Tumor-All
dataset'’. We also formed a dataset containing only the malignant
cells present in this dataset (n=89,203 cells), which we called the
Tumor-malignant dataset. Table 3 and Supplementary Data 1 - Sheet
2 show the performance of GROUNdGAN in generating realistic SCRNA-
seq data, while Supplementary Figs. 18-20 show the tSNE plots of
simulated and real cells. For all three datasets, different metrics show
that the generated data has a high degree of similarity to experimental
data and there is a small difference between the training and test set
performances.

We next repeated the trajectory inference, pseudo-time ordering,
and analysis of cell type marker expression along the pseudo-time axis
on the Dahlin dataset using both GRouNdGAN-simulated data
(n=43,802 cells) and real cells (n=43,802), as we had done using the
BoneMarrow dataset (Supplementary Fig. 21). Similar to the results
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Fig. 4 | PAGA graphs and cell type marker gene activation patterns in experi-
mental and simulated BoneMarrow dataset. In each figure, nodes represent
Louvain clusters (capturing discrete states), edges represent transitions between
states, and edge weights indicate confidence in the presence of connections. Low-
connectivity edges below a threshold of 0.01 were discarded. Left panels (A, C, E)

show the PAGA graph computed on GRouNdGAN-generated cells, and right panels
(B, D, F) show the PAGA graph for the original BoneMarrow dataset. Node colors
represent normalized expression of marker genes for erythroid cells (A, B), neu-

trophils (C, D), and basophils (E, F). Source data are provided as a Source Data file.

from the BoneMarrow dataset, we observed a high degree of con-
cordance between the activation patterns of cell type markers in the
simulated and real datasets and the preservation of their orderings.
Taken together, these results suggest that GROUNdGAN can be used to
generate realistic data from different biological contexts, while
imposing a causal GRN and preserving various biological properties.

Benchmarking GRN inference methods using GROuUNdGAN

confirms prior insights from curated and experimental datasets
The BEELINE study” found conflicting results when benchmarking
GRN inference methods on curated benchmarks and synthetic ones:
top two performing models on synthetic data where among the bot-
tom three on curated benchmarks. We re-investigated this using
GRouNdGAN-simulated data with the BoneMarrow dataset and the
positive and negative control GRNs (described earlier). We used seven
GRN inference methods used by BEELINE, GRNBoost2®, GENIE3’,
PIDC', PPCOR¥, LEAP?, SCODE"”, and SINCERITIES", capturing a wide
range of methods with a broad spread of performances reported on
synthetic and curated benchmarks in the BEELINE study. We also
included CeSpGRN*, which is a cell-specific GRN inference method.
We observed a striking resemblance between the performance pattern
(order) of the methods on GRouNdGAN-simulated data and curated
benchmarks from BEELINE (Fig. 5G, H and Supplementary Data 3 -
Sheet 3 versus Fig. 4 of BEELINE®): the only difference was the swap-
ping of LEAP and SCODE'’s order. We repeated this analysis using the

PBMC-CTL dataset (Supplementary Data 3 - Sheet 2), obtaining similar
patterns. We also tested these methods using the PBMC-AIl dataset
(Supplementary Data 3 - Sheet 4). While the results were generally
consistent, the order of GENIE3 and GRNBoost2 were swapped, which
may be due to their ability in working with datasets containing multiple
distinct cell types (also see Discussion).

Overall, PIDC outperformed all methods using both datasets,
followed by GENIE3’ and GRNBoost2®. LEAP”, SCODE” and
SINCERITIES™ (which use pseudo-time and could only be applied to
the BoneMarrow dataset) performed worse than others, matching
their behavior in the BEELINE study on curated benchmarks (but not
on synthetic benchmarks). All methods performed close to random on
unimposed negative control GRN edges. These results not only show
that GRouNdGAN can be used for benchmarking GRN inference
methods, but also shows that the insights obtained from it matches
those obtained from curated and experimental benchmarks (such as
those used in Figs. 4-6 of the BEELINE study), the formation of which
requires extensive amount of resources and effort.

In silico perturbation experiments using GROuNdGAN

In many studies, one is interested to characterize the relationship
between TFs’ expression and phenotypic labels (e.g., cell types). Dif-
ferential expression (DE) analysis is a common approach to identify
TFs (or other genes) most associated with a specific cell type. However,
to directly test whether perturbing the expression of such candidate
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neutrophil (Elane and Cebpe), and monocyte (Irf8, CsfIr, and Ctsg) branches for
experimental (E) and simulated data (F). The distance refers to the geodesic dis-
tance from a root cell (here a stem cell). A darker shade of gray shows higher
expression. Panels G and H show the performance of different GRN inference
methods on data generated by GROuUNdGAN using the BoneMarrow dataset. The
benchmarking results are based on a dataset with n=2230 simulated cells (except
for CeSpGRN). Source data are provided as a Source Data file. * Due to the high
memory requirement of CeSpGRN, we were only able to run it on a subset of data
containing n=1000 cells and m =100 genes (the set of regulating TFs and the
edges connecting them to these genes remained unchanged).

Nature Communications | (2024)15:4055



Article

https://doi.org/10.1038/s41467-024-48516-6

Table 3 | Performance of GRouNdGAN in generating realistic
scRNA-seq data using the Dahlin, Tumor-All, and Tumor-
malignant datasets

Dahlin Tumor-All Tumor-malignant
Training Testing Training Testing Training Testing
Cosine 0.00011 0.00012 0.00141 0.00061 0.00059 0.00098
distance
Euclidean 51 53 227 145 134 174
distance
MMD 0.014 0.026 0.020 0.021 0.014 0.015
RF AUROC 0.52 0.54 0.53 0.52 0.53 0.57
miLIS| 1.91 1.91 1.90 1.89 1.90 1.89

Each gene in the imposed GRN of GRouNdGAN is regulated by 15 TFs (constructed using
GRNBoost2 from the experimental training set). For the first three metrics, a value closer to zero
is preferred, for RF AUROC a value closer to 0.5 is preferred, and for miLISI a value closer to 2 is
preferred. The metrics are calculated between a simulated dataset of 1000 cells and a set of
1000 real cells (all cells in the test set and 1000 randomly selected cells from the training set).
For the first two metrics, the values correspond to the distance of the mean centroids of the real
and simulated cells.

TFs change the expression of genes representative of a cell type,
perturbation experiments (e.g., TF knockout) are desired. As a causal
implicit generative model, GRouNdGAN provides the capability to
sample from interventional distributions, thereby enabling in silico
perturbation experiments. This functionality is provided at inference
time by enabling manipulation of TFs’ expressions as the outputs of
the causal controller. This change is propagated along the GRN
(through the model architecture), impacting the expression of genes
regulated by the perturbed TF(s). By enabling a deterministic mode of
operation, GROuNdGAN allows for exact comparison of gene expres-
sions before and after perturbation while maintaining the invariance of
other parameters (Methods).

To test this functionality, we asked whether the knockout of top 3
TFs most differentially expressed (Mann Whitney U test) between each
cell type and the rest (identified from the reference dataset) would
result in less cells being generated in the vicinity of the cells of that
type. If positive, this implies that the perturbation in the TFs’ expres-
sion has modified the gene expression profile of generated cells so that
they no longer resemble that particular cell type (confirming our
expectation). Figure 6A shows the UMAP embedding of the reference
dataset (miLISI = 1.94 when compared with simulated data) and Fig. 6B
shows the density plots of the experimental and simulated
data, revealing a high degree of resemblance. We focused on the
changes in the iLISI values of experimentally profiled cells of a specific
type (annotated in the original study), when jointly mapped to
the same embedding space with simulated data, before and
after knockout. For the changes in the iLISI values to be observable, it
was necessary to focus on cell types that occupy relatively distinct
regions of the embedding space: CD14+ monocytes, CD19+ B cells,
Dendritic cells, CD56+ natural killer cells (Supplementary Fig. 22);
otherwise, the presence of other cell types in that region would con-
found the results.

Figure 6C shows the iLISI distributions for each cell type (only for
real cells), calculated along with unperturbed simulated cells (blue)
and perturbed simulated cells (orange). Figure 6D, E show the iLISI
values and the distribution of generated cells after the knockout
experiment for CD19+ B cells as an example (see Supplementary
Figs. 23-26 for other cell types). In all cases, the iLISI values sig-
nificantly reduced after the knockout experiment (Fig. 6C, Supple-
mentary Table 7), showcasing that after the knockout of top
TFs associated with a cell type, GROUNdAGAN generated much fewer
cells resembling that cell type (even though it did not have the
knowledge of the cell type annotations). Instead, the simulated cells
were dispersed into other cell types, yet they retained meaningful
positions within the overall dataset embedding space. Also, the miLISI

of the other cell types remained relatively unchanged (Supplementary
Table 7).

Next, we repeated the analyses above using Tumor-All dataset
that contained different cell types including malignant cells, but also
other cell types present in the tumor microenvironment. We con-
sidered cell types that made up of at least 0.25% of the dataset (Sup-
plementary Table 8). When cells of two or more types populated the
same regions of the embedding space, we kept the cell type containing
more cells. Malignant cells, T cells, B cells, and plasma cells satisfied the
conditions above, which we included in our analyses. Similar to the
previous analyses, we observed that the KO of top 3 TFs of each cell
type results in a significant reduction in the iLISI values (Supplemen-
tary Fig. 27, Supplementary Table 8).

These analyses suggest that in silico TF perturbation experiments
using GRouNdGAN produces results concordant with results directly
obtained from real biological data, a direction that we will explore
further in the future studies.

Discussion

GRouNdGAN is a causal implicit generative model designed to simu-
late realistic sScRNA-seq datasets based on a user-defined GRN and a
reference dataset. By incorporating GRN connections in its archi-
tecture and including auxiliary tasks, it imposes causal TF-gene rela-
tionships in the gene expression profile of simulated cells. These causal
relationships are verifiable by in silico knockout experiments and
identifiable by GRN inference methods. (In addition to the experi-
mental analyses performed in this study, an interested reader should
refer to Kocaoglu et al.*! for theoretical evidence of causality of data
generated by this architecture.)

We demonstrated that GRouNdGAN achieves state-of-the-art
performance on various tasks including realistic sScRNA-seq data gen-
eration, GRN inference benchmarking, and in silico knockout experi-
ments. Even when applied to heterogenous datasets, it generated
realistic datasets without utilizing information regarding cell clusters
or cell types, achieving best or second-best performance compared to
models that used this information. We should note that it is trivially
possible to use cell type/cluster information with GROUNdGAN: one
can simply provide subsets of the experimental dataset corresponding
to a cell type/cluster as a reference, one at a time, with a cell-type
specific (or shared) GRN (similar to our analyses using PBMC-CTL and
PBMC-NaiveT in Supplementary Data 2 - Sheet 2). However, the fact
that this model does not require this information broadens its
applicability. We showed that GRouNdGAN-generated data preserves
complex cellular dynamics and patterns of the reference dataset such
as lineage trajectories, pseudo-time orderings, and patterns of cell
type markers’ activation. One consideration in generating realistic and
generalizable cells is the number of training examples. In the Bone-
Marrow dataset (which had only -2.7k cells), the performance of all
simulators dropped on the test set compared to the training set. When
we generated cells using another similar hematopoiesis dataset (Dah-
lin), but with much larger number of cells (-45k), the testing and
training performance difference significantly reduced (Table 3). Simi-
larly, the training and testing performance on all the other datasets
that had more than ten thousand cells remained on par with each
other, suggesting that a large number of cells improves the realism of
the simulated data (which is expected). In spite of this, the cells gen-
erated by GRouNdGAN could capture trajectories and pseudo-time
orderings not only in the larger Dahlin dataset, but also in the smaller
BoneMarrow dataset.

GRouNdGAN imposes user-defined causal regulatory interactions,
while excluding those present in the reference dataset, but not in the
input GRN. This makes GRouNdGAN-simulated datasets ideal for
benchmarking GRN inference algorithms with the input GRN as the
ground truth. We benchmarked eight GRN inference algorithms on the
simulated BoneMarrow dataset and showed that our results coincide
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Fig. 6 | TF knockout experiments and their effect on cell type generation. A The
UMAP shows the distribution of n=2000 randomly selected cells from the
experimental PBMC-All dataset. The color shows the iLISI value of each cell
(miLISI=1.94) calculated from a UMAP embedding, jointly obtained from the
experimental cells and the same number of GROuUNdGAN-generated cells. TFs were
omitted as features when generating UMAP plots. In the simulated data, each gene
was regulated by 15 TFs, identified using GRNBoost2. B Each plot shows the density
of cells in the embedding space: the left plot (blue) corresponds to the real cells and
the right plot (red) shows the simulated cells. C The boxplots show the distribution
of iLISI values of n=2000 real cells, calculated along with n=2000 unperturbed
simulated cells (blue) and with n=2000 perturbed simulated cells (orange). For
each cell type, top three most differentially expressed TFs were knocked out. The

p-values reported in this figure were calculated using one-sided Wilcoxon signed
rank tests. The center horizontal line corresponds to the median. Each box spans
the interquartile range, and its limits show the upper (Q3) and lower quartiles (Q1).
Whiskers extending from the boxes reach 1.5 times above and below the inter-
quartile range. Outliers are shown individually if they fall outside the whiskers.

D The scatter plot shows the iLISI values of CD19 + B cells calculated along with
unperturbed simulated cells (x-axis) and along with perturbed simulated cells (y-
axis). The circles correspond to real cells and their colors reflect the density of
datapoints in that region. The p-value reported in this figure was calculated using a
one-sided Wilcoxon signed rank test. E The UMAP embedding of real cells (left),
simulated cells after knockout of top TFs of CD19 + B cells (middle), and all together
(right). Source data are provided as a Source Data file.

with results reported by BEELINE” on curated and experimental
benchmarks. This highlights GROUNdGAN’s ability to bridge the gap
between experimental and simulated datasets for GRN benchmarking
without requiring excessive user manipulation. We assessed five of
these methods (that did not require pseudo-time) on the PBMC-CTL
dataset and observed that their ordering was consistent with the

simulated BoneMarrow data. We then applied them to the PBMC-AIl
dataset, containing multiple distinct cell types. While the general trend
was consistent with the other benchmarks, the order of GENIE3 and
GRNBoost2 switched. This could be related to the ability of these
methods on handling distinct cell types. One should also note that the
results of benchmarking on PBMC-All is not conclusive, and follow-up
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studies are required to fully characterize the effect of distinct cell types
on the performance of GRN inference methods. In particular, GRNs are
cell type- and context-specific, and such a study should impose dif-
ferent GRNs on different subpopulations of the dataset. Due to the
flexibility provided by GRouNdGAN, one can evaluate a variety of GRN
inference methods including supervised methods***° or cell-specific
GRN inference methods*®*’. We included CeSpGRN*® in our bench-
marks, but a comprehensive study that evaluates this and other
methods of this class from different perspectives is of great interest.

Since GROuNdGAN generates data based on a structural causal
model, it can be used to sample synthetic cells from both observational
and interventional distributions. Using this property, we conducted in
silico perturbation experiments by knocking out key regulating TFs in
various cell types and observed that the targeted cell-states were
suppressed in the generated dataset. These results, while preliminary,
show potential for developing a method based on GRouNdGAN to
predict the results of TF knockout experiments. However, such
method would inevitably need access to a high quality GRN underlying
the real data, requiring additional data modalities such as (sc)ATAC-
seq or TF ChIP-seq.

GRouNdGAN maintains key advantages over existing simulators
that incorporate GRNs such as SERGIO and BoolODE. BoolODE, unlike
GRouNdGAN, is a reference-free (de novo) and rule-based simulator
that relies on user-defined parameters instead of a reference dataset to
artificially introduce properties of single-cell data (e.g., dropout, batch
effect, existence of distinct populations, and variation among experi-
mental samples and conditions). As a rule-based simulator, it allows for
flexible selection of simulation parameters such as choice of noise
strength, dropout rate, or kinetic parameters (for mRNA transcription,
protein translation and mRNA and protein degradation rates). How-
ever, extensive user knowledge is required to leverage this flexibility to
avoid generating unrealistic datasets and recent studies have argued
that one should use discretion when interpreting results obtained
from such de novo simulations®”. This may explain why some of GRN
inference methods that performed best on BoolODE’s synthetic
benchmarks, were among the worst on the experimental benchmarks
of BEELINE. Moreover, as a reference-free simulator, BoolODE is not
designed to match a specific reference dataset. As a result, it does not
lend itself to benchmarking GRN inference methods in distinct con-
texts characterized by experimental reference datasets.

On the other hand, SERGIO is a hybrid method that contains ele-
ments of reference-free simulators, but also enables matching the
simulated cells to a specific reference dataset by adding technical
noise. SERGIO simulates data by first generating a “clean” dataset
based on SDEs. Then, the user would iteratively fine-tune three noise
parameters until the simulated and reference datasets are matched.
However, this data-matching procedure puts extra burden on the user
and might lead the user to overly rely on fine-tuning technical noise
parameters, instead of SDE parameters. Our experiments with SERGIO
(described in Supplementary Notes) showed that in spite of our best
efforts for distribution matching, there were clear differences between
the SERGIO-simulated data and the reference dataset. Another con-
sideration is that over relying on added technical noise to achieve data-
matching can potentially corrupt the data, rendering the underlying
regulatory patterns unobservable in the final simulated dataset. This
might explain the near-random GRN inference performance of various
methods reported by SERGIO on their noisy datasets*.

In contrast to BoolODE and SERIGO, during training, GRouNd-
GAN’s parameters are optimized to minimize any mismatch between
real and simulated data distributions automatically. This enables it to
replicate scRNA-seq data characteristics (e.g., technical and biological
noise) without any user intervention or post-processing. Moreover,
GROuUNdGAN is trained such that each of its generated genes or TFs
mimics the expression patterns of a corresponding gene or TF in the
reference dataset, preserving gene/TF identities. In contrast, BoolODE

and SERGIO simulate pseudo-genes whose identities cannot be readily
mapped to their counterparts in the reference dataset. Gene identity
preservation can be attained in these simulators by fine-tuning the SDE
parameters until the expression patterns of a given generated gene
aligns with a corresponding gene in the reference dataset. This, how-
ever, places further burden on the user. Finally, GROouNdGAN learns
complex non-linear co-regulatory patterns from the data, instead of
relying on simplifying assumptions or user input. In contrast, SERGIO
assumes that the combined effect of multiple regulatory TFs is simply
the sum of their individual effects. Similarly, BoolODE requires the user
to provide a truth table specifying combinatory TF co-regulation rules
for each target gene. In contrast, GROUNdGAN’s neural network-based
generator enables it to implicitly learn complex non-linear co-reg-
ulatory patterns that may represent co-expression, co-inhibition, or co-
activation of individual genes. This is achieved during the training of
GRouNdGAN without user intervention.

Several key points need to be considered when using GRouNd-
GAN. First, our analyses showed that the architectural and hyper-
parameter choices of the presented model result in good performance
across different datasets. We performed hyperparameter tuning on
one dataset and used the same set of values for all datasets and for
different choices of GRNs, obtaining state-of-the-art performance.
However, when trained on a completely new dataset, or datasets
containing significantly different number of genes and TFs, it is advi-
sable to try different choices of the hyperparameters using a validation
set. Second, the architecture of the model includes LSN layers and, as
such, the model generates expression values library-size normalized
across the considered genes and TFs. Our ablation study (Supple-
mentary Notes) and our experiments showed that the LSN layer
improves the GRN imposition, the realism of the generated samples,
and stabilizes the training (an observation also made by the scGAN
study). In the future iterations of the model, we are planning to remove
this restriction to enable generating unnormalized count data. Third,
an important consideration for any causal inference problem is that
given an observational dataset, its underlying causal graph is not
necessarily unique. When benchmarking GRN inference methods, this
problem exists regardless of how the ground truth GRN is obtained
(even using knockout/knockdown experiments), and a GRN inference
algorithm may find a plausible causal GRN, yet not the one that gen-
erated the data. Despite this, our analysis using the positive/negative
control GRNs showed that GRN inference methods could detect the
imposed edges while ignoring others that were unimposed. Based on
this observation, we posit that the imposed GRN by GRouNdGAN,
while not the only causal GRN capable of generating the simulated
dataset, is the most probable one. However, verifying this requires
theoretical analyses that are well beyond the scope of this study.
Fourth, GRouNdGAN is a generative model and is not a predictive
model. As such, its goal is to simulate cells similar to a reference
training set (while imposing a user-defined GRN), and not to predict
the scRNA-seq profile of cells in a new context or an independent
dataset. Given a new dataset, the model needs to be retrained to
generate realistic samples.

Finally, although GRouNdGAN can generate data with any GRN,
the resemblance of the data to the reference dataset deteriorates if the
imposed TF-gene relationships are significantly different from those
consistent with the patterns in the reference dataset. The reason is that
in such a scenario, generating simulated datapoints resembling the
reference training dataset and imposing the GRN act as contradictory
requirements. This is a fundamental problem that is not unique to
GRoOuNdGAN and is applicable to any simulator with these two
requirements. However, simulators that do not try to impose a causal
graph (e.g., scGAN) can focus on generating realistic SCRNA-seq sam-
ples, even at the expense of disrupting some of the interactions pre-
sent in the reference dataset (as we observed in Fig. 3 with scGAN). As a
result, for GRN inference method benchmarking, we recommend first
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finding a set of regulatory edges from the reference dataset (e.g., using
GRNBoost2 or even other data modalities) and imposing a selected
subset of those in the simulated data. This ensures that the imposed
edges are encoded in the simulated data, the unimposed (or unde-
tected) edges are disrupted (as shown in our analyses), and the
simulated dataset resembles the reference dataset. It is important to
note that the regulatory edges inferred from the reference dataset do
not need to be causal (and most likely, some are not); some of
them could represent spurious correlations that are observable in the
data. In fact, most GRN inference methods do not identify causal
edges, yet can be used to form the input GRN. When a subset of the
(potentially) non-causal edges of the reference dataset are imposed by
GROUNdGAN, they are imposed in a causal manner, representing the
causal graph underlying the simulated data (and not the
reference data).

The current version of GRouNdGAN only allows imposing a
bipartite GRN and does not support a multi-layer GRN, an assumption
that we plan to relax with the future versions of the model. Moreover,
we intend to augment the model’s architecture in the future to enable
imposing a causal graph with three layers of nodes capturing TF-gene-
phenotype relationships. This is particularly useful for development
and evaluation of phenotype-relevant GRNs, a concept that we have
introduced in the past’. Additionally, a conditional version of
GROUNdGAN can be developed, allowing the user to generate cells of
specific cell type or on a specific stage along a lineage trajectory.
Finally, by incorporating DAG structural learning®®, we intend to enable
GRouNdGAN to infer a GRN while simultaneously learning to mimic
the reference dataset.

Methods

Datasets and preprocessing

We downloaded the human peripheral blood mononuclear cell (PBMC
Donor A) dataset containing the single-cell gene expression profiles of
68579 PBMCs represented by UMI counts from the 10x Genomics
(https://support.10xgenomics.com/single-cell-gene-expression/datasets/
1.1.0/fresh_68k_pbmc_donor a). This dataset contains a large number of
well-annotated cells and has been used by other models to generate
synthetic scRNA-seq samples*. We also downloaded the scRNA-seq
profile of 2730 cells corresponding to differentiation of hematopoietic
stem cells to different lineages from mouse bone marrow™ (“Bone-
Marrow” dataset) from Gene Expression Omnibus (GEO) (accession
number: GSE72857). We also obtained another haematopoietic dataset
corresponding to the scRNA-seq (10x Genomics) profiles of 44,802
mouse bone marrow hematopoietic stem and progenitor cells (HSPCs)
differentiating towards different lineages from GEO (accession number:
GSE107727)* (called Dahlin dataset here). Finally, we obtained the batch-
corrected scRNA-seq (10x Genomics) profile of 136,147 cells corre-
sponding to malignant cells as well as cells in the tumor microenviron-
ment (called Tumor-All dataset here) from 20 fresh core needle biopsies
of follicular lymphoma patients from (https://cellxgene.cziscience.com/
collections/968834a0-1895-40df-8720-666029b3bbac)*’.

We followed pre-processing steps similar to those of scGAN and
cscGAN** using scanpy version 1.8.2*°. In each dataset, cells with non-
zero counts in less than ten genes were removed. Similarly, genes that
only had nonzero counts in less than three cells were discarded. Top
1000 highly variable genes were selected using the dispersion-based
method described by Satija et al.**. Finally, library-size normalization
was performed on the counts per cell with a library size equal to
20,000 in order to be consistent with previous studies®. See Supple-
mentary Data 1 - Sheet 3 for the number of cells and highly variable
genes and TFs present in each final dataset.

GRouNdGAN'’s model architecture
GRoOuNdGAN’s architecture consists of 5 components, each imple-
mented using separately parameterized neural networks: a causal

controller, target generators, a criticc a labeler, and an anti-
labeler (Fig. 1C).

Causal controller. The role of causal controller is to generate the
expression of TFs that causally control the expression of their target
genes based on a user-defined gene regulatory network (Fig. 1C). To
achieve this, it is first pre-trained (Fig. 1B) as the generator of a Was-
serstein GAN with gradient penalty (WGAN-GP) (see Supplementary
Notes for the formulation of the Wasserstein distance). GANs are a
class of deep learning models that can learn to simulate non-
parametric distributions®. They typically involve simultaneously
training a generative model (called the “generator”) that produces new
samples from noise, and its adversary, a discriminative model that tries
to distinguish between real and generated samples (called the “dis-
criminator”). The generator’s goal is to generate samples so realistic
that the discriminator cannot determine whether it is real or simulated
(an accuracy value close to 0.5). Through adversarial training, the
generator and discriminator receive feedback, allowing them to co-
evolve in a symbiotic manner.

The main difference between a WGAN and a traditional GAN is
that in the former, a Wasserstein distance is used to quantify the
similarity between the probability distribution of the real data and the
generator’s produced data (instead of Kullback-Leibler or
Jensen-Shannon divergences). Wasserstein distance has been shown
to stabilize the training of WGAN without causing mode collapse®. The
detailed formulation of the Wasserstein distance used as the loss
function in this study is provided in Supplementary Notes. In addition,
instead of a discriminator, WGAN uses a “critic” that estimates the
Wasserstein distance between real and generated data distributions. In
our model, we added a gradient penalty term for the critic (proposed
by Gulrajani et al.*° as an alternative to weight clipping used in the
original WGAN) in order to overcome vanishing/exploding gradients
and capacity underuse issues.

In the pretraining step, we trained a WGAN-GP with a generator
(containing an input layer, three hidden layers, and an output layer), a
library-size normalization (LSN) layer*, and a critic (containing an
input layer, three hidden layers, and an output node). A noise vector of
length 128, with independent and identically distributed elements
following a standard Gaussian distribution, was used as the input to the
generator. The output of the generator was then fed into the LSN layer
to generate the gene and TF expression values. The details of hyper-
parameters and architectural choices of this WGAN-GP are provided in
Supplementary Table 1. Although we were only interested in generat-
ing expression of TFs using the generator of this WGAN-GP (in the
second step of pipeline), the model was trained using all genes and TFs
to properly enforce the library-size normalization. Once trained, we
discarded the critic and the LSN layer, froze the weights of the gen-
erator and used it as the “causal controller” to generate expression of
TFs (Fig. 1C).

Target generators. The role of target generators is to generate the
expression of genes causally regulated by TFs based on the topology
of a GRN. Consider a target gene Gj regulated by a set of TFs :
{TF,,TF,,...,TF,}. Under the causal sufficiency assumption and as a
result of the manner by which TFs” expressions are generated from
independent noise variables, we can write Eg=fg(Ere,
Erpys.. i Erpn Ng) and Eqpi=frp;(N7g) for i=1,2,...,n, where E
represents expression, N represents a noise variable, and f represents
a function (to be approximated using neural networks). All noise
variables are jointly independent. Following the theoretical and
empirical results of CausalGAN®, we can use feedforward neural
networks to represent functions f by making the generator inherit its
neural network connections from the causal GRN. To achieve this, we
generate each gene in the GRN by a separate generator such that
target gene generators do not share any neural connections (Fig. 1C).
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As input, the generator of each gene accepts a vector formed by
concatenating a noise variable and a vector of non-library size nor-
malized TF expressions from the causal controller, corresponding to
the TFs that regulate the gene in the imposed GRN (i.e., its parents in
the graph). The expression values of TFs and the generated values of
target genes are arranged into a vector, which is passed to an LSN layer
for normalization. We used target generators with three hidden layers
of equal width. The width of the hidden layers of a generator is
dynamically set as twice the number of its regulators (the noise vari-
able and the set of regulating TFs). If the imposed GRN is relatively
dense and contains more than 5000 edges, we set the depth to 2 and
the width multiplier to 1 to be able to train on a single GPU. The details
of hyperparameters and architectural choices are provided in Sup-
plementary Table 2.

In practice, generating each target gene’s expression using sepa-
rate neural networks introduces excess overhead. This is because in
every forward pass, all target genes’ expressions must be first gener-
ated before collectively being sent into the LSN layer. As a result,
instead of parallelizing the generation of each target gene’s expression
(which due to the bottleneck above does not provide a significant
computational benefit), we implemented target generators using a
single large sparse network. This allows us to reduce the overhead and
the training time to train the model on a single GPU, and to benefit
from GPU’s large matrix multiplication. We mask weights and gra-
dients to follow the causal graph, while keeping the generation of
genes independent from each other. From a logical standpoint, our
implementation has the same architecture described earlier, but is
significantly more computationally efficient. See Supplementary Notes
for details.

Critic. Similar to a traditional WGAN, the objective of GROUNdGAN'’s
critic (Fig. 1C) is to estimate the Wasserstein distance between real and
generated data distributions. We used the same critic architecture as
the WGAN-GP trained in the first stage.

Labeler and anti-labeler. Although the main role of the target gen-
erators is to produce realistic cells to confuse the critic, it is crucial that
they rely on the TFs’ expression (in addition to noise) in doing so. One
potential risk is that the target generators disregard the expression of
TFs and solely rely on the noise variables. This is particularly probable
when the imposed GRN does not conform to the underlying gene
expression programs of real cells in the reference dataset; in such a
scenario, and to make realistically looking simulated cells, it is more
convenient for a WGAN to simply ignore the strict constraints of the
GRN and solely rely on noise.

To overcome this issue, we used auxiliary tasks and neural net-
works known as “labeler” and “anti-labeler””. The task of these two
networks is to estimate the causal controller’s TF expressions (here
called labels) from the target genes’ expressions alone, by minimizing
the squared L2 norm between each element’s TF estimates and their
true value. More specifically, the corresponding loss for a batch of size
Npaeen is of the form mz;&;mmfy,.ug, where y; is the estimated
vector of TF expression values generated by the labeler or anti-labeler.
For anti-labeler, y; corresponds to the TF expression values outputted
by the causal controller; for labeler, this vector can also correspond to
TF expression values from the real training data. This resembles the
idea behind an autoencoder and ensures that the model will not dis-
regard the expression of TFs in generating the expression of their
target genes. The anti-labeler is trained solely based on the outputs of
the target generators, while the labeler utilizes both the outputs of
target generators and the expression of real cells (Fig. 1C). They are
both implemented as fully connected networks with a width of 2000
and a depth of 3 and optimized using the AMSGrad®*” algorithm. Each
layer, except the last one, utilizes a ReLU activation function and batch
normalization. In addition to WGAN-GP losses, we add labeler and anti-

labeler losses to the generator to minimize both. This is different from
the approach used in CausalGAN, where the anti-labeler’s loss is
maximized in the early training stages to ensure that the generator
doesn’t fall into label-conditioned mode collapse. In GRouNdGAN, the
causal controller is pretrained and generates continuous labels (TFs
expression) and does not face a similar issue. As a result, we instead
minimized the loss of the anti-labeler from the beginning and as such
the labeler and anti-labeler both act as auxiliary tasks to ensure the
generated gene expression values take advantage of TFs expression.

Training procedure and hyperparameter tuning

We follow a two-step training procedure comprising of training two
separate WGAN-GPs (Fig. 1) to train GRouNdGAN. The generators and
critics in both GANs are implemented as fully connected neural net-
works with rectified linear unit (ReLU) activation functions in each
layer, except for the last layer of the critic. The weights were initialized
using He initialization® for layers containing ReLU activation and
Xavier initialization*® for other layers (containing linear activations). We
used Batch Normalization®® to normalize layer inputs for each training
minibatch, except for the critic. This is since using it in the critic inva-
lidates the gradient penalty’s objective, as it penalizes the norm of the
critic’s gradient with respect to the entire batch rather than to inputs
independently. An LSN layer** was used in both WGAN-GPs (Fig. 1B, C)
to scale counts in each simulated cell to make it consistent with the
library size of input reference dataset. This normalization results in a
dramatic decrease in convergence time and smooths training by miti-
gating the inherent heterogeneity of scRNA-seq data.

We would like to point out that both steps of training (i.e., the
pretraining of Fig. 1B and training of Fig. 1C) are performed on the
exact same training set, and when data corresponding to a new dataset
is to be generated, these steps need to be repeated. The goal of the first
step is to train the causal controller to learn the distribution of training
set and generate realistic TF expression values (without imposing TF-
gene relationships). The goal of the second step is to use the TF
expression values generated by the trained causal controller to gen-
erate expression of target genes while imposing the TF-gene causal
relationships.

GROUNdGAN solves a min-max game between the generator (f,)
and the critic (f,), with the following objective function:

ming, max; r i, <1 Fp, SO = By g ) fe0) @

The training objective of the critic involves maximizing the dif-
ference between the average score assigned to real (E, .p f.(x)) and
generated samples (EXNfg (Proie) f.(x)) with respect to its parameters
following Eq. (1). On the contrary, the generator attempts to minimize
the average score that the critic assigns to real and generated samples.
Through this adversarial game, both the critic and generator co-evolve
and the generator learns a mapping f, froma simple standard Gaussian
noise distribution (IP,,;) to a distribution f(IP ;) that approx-
imates the real data distribution IP,. An important point to consider is
that the critic does not directly compute the Wasserstein distance
(mathematically defined in Supplementary Notes - Details regarding
the Wasserstein distance). Instead, it is encouraged to provide a
meaningful estimate of the Wasserstein distance between the dis-
tribution of real data (P,) and the distribution of generated data
(f¢ (Pppise)) through its training process.

We alternated between minimizing the generator loss for one
iteration and maximizing the critic loss for five iterations. We
employed the AMSGrad®” optimizer with the weight decay parameters
B;=0.5, B,=0.9 and employed an exponentially decaying learning
rate for the optimizer of both the critic and generator.

The hyperparameters were tuned using a validation set consisting
of 1000 cells from the PBMC-CTL dataset (Supplementary
Tables 1 and 2) based on the Euclidean distance and the RF AUROC
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score, which were consistently in accord. The same hyperparameters
were used for all other analyses and datasets.

Causal GRN preparation

This section describes the creation of the causal graph inputted to
GRouNdGAN used to impose a causal structure on the model.
GRouNdGAN accepts a GRN in the form of a bipartite directed acyclic
graph (DAG) as input, representing the relationship between TFs and
their target genes. In this study, we created the causal graph using the
1000 most highly variable genes and TFs identified in the preproces-
sing step (Supplementary Data 1 - Sheet3). First, the set of TFs among
the highly variable genes were identified based on the AnimalTFDB3.0
database® and a GRN was inferred using GRNBoost2® (with the list of
TFs provided) from the training reference dataset. It is important to
note that the regulatory edges identified from the reference dataset
using GRNBoost2 are not necessarily causal edges (and they do not
need to be for the purpose of forming the input GRN), but they are
consistent with the patterns of the data. However, when this (poten-
tially non-causal) GRN is imposed by GRouNdGAN, it is imposed in a
causal manner and represents the causal data generating graph of the
simulated data (and not the reference data).

Evaluation of the resemblance of real and simulated cells

We evaluated all models using held-out test sets containing randomly
selected cells from each reference dataset (500 cells from Bone-
Marrow and 1000 cells for all other datasets) (see Supplementary
Data 1 - Sheet 3 for other statistics about the datasets). To quantify the
similarity between real and generated cells, we employed various
metrics. For each cell represented as a datapoint in a low dimensional
embedding (e.g., t-SNE or UMAP), the integration local inverse Simp-
son’s Index (iLISI)* captures the effective number of datatypes (real or
simulated) to which datapoints of its local neighborhood belong based
on weights from a Gaussian kernel-based distributions of neighbor-
hoods. The miLISI is the mean of all these scores and in our study
ranges between 1 (poor mixing of real and simulated cells) and 2
(perfect mixing of real and simulated cells). Additionally, we calculated
the cosine and Euclidean distances of the centroids of real cells and
simulated cells, where the centroid was obtained by calculating the
mean along the gene axis (across all simulated or real cells).

To estimate the proximity of high-dimensional distributions of
real and simulated cells without creating centroids, we used the
maximum mean discrepancy (MMD)*. Given two probability dis-
tributions p and g and a set of independently and identically dis-
tributed (i.i.d.) samples from them, denoted by X and Y, MMD with
respect to a function class F is defined as

MMDLF, X, Y): =supye (ELf ()] - E,Lf0)]), @)

where sup refers to supremum and E denotes expectation. When the
MMD function class F is a unit ball in a reproducing kernel Hilbert
space (RKHS) H with kernel k, the population MMD takes a zero value
if and only if p=g and a positive unique value if p#q. The squared
MMD can be written as the distance of mean embeddings y,, p, of
distributions p and g, which can be expressed in terms of kernel
functions:

MMD?[F,p, q1= |11, — ig|1%; 3)
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Following existing implementations of MMD in the single-cell
domain®*®2, we chose a kernel that is the sum of three Gaussian kernels

to increase sensitivity of the kernel to a wider range:

2
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where o; denote standard deviations and were chosen to be the
median of the average distance between a point to its 25 nearest
neighbors divided by factors of 0.5, 1, and 2 in the three kernels,
respectively.

We also used a random forests (RF) classifier and used its area
under the receiver operating characteristic (AUROC) curve to deter-
mine whether the real and simulated cells can be distinguished from
each other. Consistent with previous studies®**, we first performed a
dimensionality reduction using principal component analysis (PCA)
and used the top 50 PCs of each cell as the input features to the RF
model, which improves the computational efficiency of this analysis.
The RF model was composed of 1000 trees and the Gini impurity was
used to measure the quality of a split.

Baseline simulator models

We compared the performance of GROuNdGAN to scDESIGN2%,
SPARsim?®, and three GAN-based methods: scGAN*, c¢scGAN with
projection-based conditioning®, and a conditional WGAN (cCWGAN).
The cWGAN method conditions by concatenation following the cGAN
framework®’. More specifically, it concatenates a one-hot encoded
vector (representing the cluster number or cell type) to the noise
vector input to the generator and cells forwarded to the discriminator.
We did not train the cWGAN or cscGAN on the PBMC-CTL dataset,
since it contains only one cell type. For the PBMC-All and the Bone-
Marrow dataset, we trained all models above. Additionally, we simu-
lated data using scDESIGN2 and SPARsim with and without cell cluster
information, as they allow providing such side information in their
training.

To train models that utilized cell cluster information, we per-
formed Louvain clustering and provided the cluster information and
ratio of cells per cluster during training. Clustering was done by fol-
lowing the cell ranger pipeline®, based on the raw unprocessed dataset
(and independent of the pre-processing steps described earlier for
training simulators). First, genes with no UMI count in any of the cells
were removed. Then the gene expression profile of each cell was
normalized by the total UMI of all (remaining) genes, and highly vari-
able genes were identified. The gene expression profile of each cell
was then re-normalized by the total UMI of retained highly variable
genes, and each gene vector (representing its expression across dif-
ferent cells) was z-score normalized. Given the normalized gene
expression matrix above, we found top 50 principal components (PCs)
using PCA analysis. These PCs were then used to compute a neigh-
borhood graph with a local neighborhood size of 15, which was used in
Louvain clustering. We ran the Louvain algorithm with a resolu-
tion of 0.15.

For SPARSim, we set all sample library sizes to 20000 and esti-
mated gene expression level intensities and simulation parameters by
providing it with both raw and normalized count matrices. When cell
cluster information was provided, distinct SPARSim simulation para-
meters were estimated per cell for each cluster. sScDESIGN2 accepts
input matrices where entries are integer count values; we thus per-
formed rounding on the expression matrix before fitting ScDESIGN2.
With cluster information provided, a scDESIGN2 model was fit sepa-
rately for cells of each cluster, and similar to conditional GANs, the
ratio of cells per cluster was provided to the method.

In silico perturbation experiments using GRoundGAN

To perform perturbation experiments using GRoundGAN, we put the
trained model in a deterministic mode of operation. This is necessary
to ensure that the perturbation experiments are performed on the
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same batch (i.e., replicate) of generated cells to form matched case/
control experiments. To do this, we performed a forward pass through
the generator and then saved the input noise to the causal controller,
the input noise to the target generators, the TF expression values
generated by the causal controller, and the per-cell scaling factor of
the LSN layer. Subsequent passes through the generators used the
saved parameters so that ensuing runs always output the same batch
of cells (instead of generating new unmatched cells).

Trajectory inference and pseudo-time analysis

Following official PAGA tutorial for the BoneMarrow dataset (https://
github.com/scverse/scanpy-tutorials/blob/master/paga-paull5.ipynb),
we used (Partition-based graph abstraction) PAGA*® for trajectory
inference and analysis. We built force-directed graphs® (with
ForceAtlas2°®) using the top 20 principal components of the data
(using principal component analysis or PCA) and a neighborhood
graph of observations computed using UMAP (to estimate con-
nectivities). We next denoised the graph by representing it in the dif-
fusion map space and computed distances and neighbors as before
using this new representation. After denoising, we then ran the Lou-
vain clustering algorithm with a resolution of 0.6. Finally, we ran the
PAGA algorithm on the identified clusters and used the obtained graph
to initialize and rebuild the force-directed graph.

GRN inference methods

In our GRN benchmarking analysis, we focused on eight GRN inference
algorithms: GENIE3’, GRNBoost2®, PPCOR¥, PIDC'®, LEAP", SCODE"
and SINCERITIES™, which were used in the BEELINE study", as well as
CeSpGRN*, Of these methods, LEAP requires pseudo-time ordering of
cells, while SCODE and SINCERITIES require both pseudo-time order-
ing and pseudo-time values. Since not all algorithms inferred the edge
directionality or its sign (activatory or inhibitory nature), we did not
consider these factors in our analysis to be consistent among different
models.

For the methods available in the BEELINE study, we ran them as
docker containers using the docker images provided by BEELINE’s
GitHub (https://github.com/Murali-group/Beeline)’ with the default
parameters used in BEELINE. These methods were applied to nine
datasets simulated by GRouNdGAN and scGAN, and the original
training real dataset corresponding to PBMC-CTL, PBMC-AIl, and
BoneMarrow. To ensure consistency, the same number of cells as the
real training set were simulated using GROUNdGAN and scGAN for each
dataset: n=19773 for PBMC-CTL, n = 67579 for PBMC-AIl, and n = 2230
for BoneMarrow. Number of genes and TFs present in the GRN for each
dataset is provided in Supplementary Data 1 - Sheet 3. To benchmark
algorithms requiring pseudo-time ordering of cells, we computed the
pseudo-times of GRouNdGAN-simulated data (based on the Bone-
Marrow dataset) using PAGA™® and diffusion pseudotime®, following
the methodology described earlier. In the GRN inference benchmark
analysis, we did not provide the list of TFs to GRNBoost2 to make it
consistent with other GRN inference methods.

We also included CeSpGRN, which is a cell-specific GRN inference
method. Since this method first generates one GRN for each cell, it
requires a high amount of memory to run. As a result, we were only
able to benchmark it using a subset of data consisting of only n =1000
cells (for any of the three datasets) and 100 genes (we did not change
the number of TFs, or the GRN edges connecting them to the con-
sidered genes). Following the method described in the original study,
we then averaged the total absolute edge weights across all cells to
form a consensus GRN using CeSpGRN.

Statistics and reproducibility

The sample sizes were selected by original studies producing datasets
used for training GRouNdGAN. Preprocessing steps are described in
the datasets and preprocessing section. Other than standard cell-level

and gene-level filtering, there were no data exclusions. Statistical tests
used for each analysis are described in the corresponding sections and
include Wilcoxon signed rank and Mann Whitney U tests.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The PMBC reference dataset is available from the 10x Genomics repo-
sitory (corresponding to healthy donor A) from the following link:
https://support.10xgenomics.com/single-cell-gene-expression/datasets/
1.1.0/fresh_68k_pbmc_donor a? (related to PBMC-All, PBMC-CTL, and
PBMC-NaiveT). The BoneMarrow reference dataset is available in the
Gene Expression Omnibus (GEO) repository under accession number
GSE72857. The Dahlin reference dataset is available in GEO (accession
number: GSE107727). The Tumor-All (and Tumor-malignant) dataset is
available from cellxgene (https://cellxgene.cziscience.com/collections/
968834a0-1895-40df-8720-666029b3bbac). Simulated data corre-
sponding to PBMC-All, PBMC-CTL, BoneMarrow, Dahlin, Tumor-All, and
Tumor-malignant and their corresponding imposed GRNs are provided
on GRouNdGAN’s website (https://emad-combine-lab.github.io/
GRouNdGAN/benchmarking) and can be used for benchmarking dif-
ferent GRN Inference methods. Source data are provided with
this paper.

Code availability

Our implementation and evaluation of GRouNdGAN in Python 3.9.6
using the PyTorch framework®” along with a tutorial is freely available
under the GNU Affero General Public License v3.0 on GitHub (https://
github.com/Emad-COMBINE-lab/GRouNdGAN) which is archived in
Zenodo under record number 11068246° (https://doi.org/10.5281/
zenodo.11068246). The repository also contains a Docker image for
reproducibility and our PyTorch implementation of scGAN,
projection-based conditioning cscGAN** and a variation of cscGAN
that uses conditioning by concatenation (c(WGAN). More information
about the installation, a detailed tutorial, and simulated datasets that
can be readily used are provided in (https://emad-combine-lab.github.
io/GRouNdGAN).
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