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Polarization-driven band topology evolution
in twisted MoTe2 and WSe2

Xiao-Wei Zhang 1, ChongWang 1, Xiaoyu Liu1, Yueyao Fan 1, TingCao 1 &
Di Xiao 1,2

Motivated by recent experimental observations of opposite Chern numbers in
R-type twistedMoTe2 andWSe2 homobilayers, we perform large-scale density-
functional-theory calculationswithmachine learning force fields to investigate
moiré band topology across a range of twist angles in both materials. We find
that the Chern numbers of the moiré frontier bands change sign as a function
of twist angle, and this change is driven by the competition between moiré
ferroelectricity and piezoelectricity. Our large-scale calculations, enabled by
machine learning methods, reveal crucial insights into interactions across
different scales in twisted bilayer systems. The interplay between atomic-level
relaxation effects and moiré-scale electrostatic potential variation opens new
avenues for the design of intertwined topological and correlated states,
including the possibility of mimicking higher Landau level physics in the
absence of magnetic field.

The low-energy electronic structure of moiré superlattices can be
described by Bloch electronsmoving in a periodic potential that varies
on the scale of the moiré period. The understanding of this moiré
potential is pivotal to the realization of various topological states1–6,
including the much coveted zero-field fractional Chern insulators7–12,
recently discovered in twisted transition metal dichalcogenide (TMD)
homobilayers13–16. Given the structural and chemical similarities among
different TMDs, it is intuitive to expect that the moiré potentials of
twisted TMD homobilayers, and thus the moiré band topology, would
also be similar. However, recent experiments seem to suggest the
contrary: at the integer hole filling of ν = −1, optical and transport
measurements have found opposite Chern numbers in 3.7° twisted
bilayer MoTe2 (tMoTe2)

13–16 and 1.23° twisted bilayer WSe2 (tWSe2)
6.

On the theory side, discrepancies in the Chern numbers were also
found by two distinct approaches used to study the moiré electronic
structures. The first approach involves deriving electronic structures
from small unit cells containing local stacking arrangements17–22. The
second approach relies on density-functional theory (DFT) calcula-
tions performed on reasonably sized moiré superlattices23–26. Cur-
iously, for tMoTe2, the Chern number of the topmost spin-up (spin-
down) moiré valence band is found to be −1 (+1) within the local
stacking approximation20, whereas theDFT calculation conductedon a

fully relaxed structure with a 3.89° twist yield opposite Chern
numbers25. The latter is consistent with experimental observations.
However, at smaller twist angles, the system size poses a substantial
challenge to DFT calculations, and a direct comparison with experi-
ments is currently unavailable.

In this letter, we perform large-scale DFT calculations for tMoTe2
and tWSe2 down to 1.25° twist angle. This is made possible by using a
machine learning force field to obtain the relaxed structures, which
enables a comprehensive exploration of the twist-angle dependence of
themoiré lattice reconstruction.We show that the observeddifference
in Chern numbers is due to the twist-angle dependence of the moiré
potential. Specifically, we find that as the twist angle varies, the loca-
tion of the moiré potential maximum shifts from the MX stacking
region to theXMstacking region (see Fig. 1 for the definition ofMXand
XM), causing a sign changeof theChern number. The shift of themoiré
potential maximum is attributed to the competition between the in-
plane piezoelectricity and the out-of-plane ferroelectricity, a
mechanism associated with the broken inversion symmetry in TMDs
and absent in the local stacking approximation. The large-scale cal-
culations, enabled by machine learning methods, also reveal multiple
flat bands with Chern numbers all equal to 1 in tMoTe2 at around 2°
twist, indicating the possibility of mimicking higher Landau-level
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physics in the absence of magnetic field. The interplay between
atomic-level relaxation effects and moiré-scale electrostatic potential
variation opens new avenues for the design of intertwined topological
and correlated states.

Results
Following recent experiments6,13–16, we will focus on the valence bands
of R-type twisted TMD homobilayers. In these systems, the emergence
of nontrivial band topology can be understood as a consequence of
the real-space layer pseudospin texture. Within the continuummodel,
the effective Hamiltonian for the K-valley electrons is given by20

H"
K =

� _2ðk�KbÞ2
2m* +ΔbðrÞ ΔTðrÞ
Δy
TðrÞ � _2ðk�KtÞ2

2m* +ΔtðrÞ

0
@

1
A, ð1Þ

where Δb/t(r) and ΔT(r) are the intra- and inter-layer moiré potential,
respectively. Due to the spin-valley coupling, the band edge at each
valley is spin split, and opposite valleys carry opposite spins as
required by time-reversal symmetry27,28. The continuum Hamiltonian
for the K 0-valley spin-down electrons can be obtained by applying
time-reversal symmetry toH"

K , resulting in moiré bands with opposite
Chern numbers.

The moiré potential can be represented as an effective layer
pseudospin magnetic field ΔðrÞ= ðRe ΔT,� Im ΔT,

Δb�Δt
2 Þ. There are

three high-symmetry local stackings in a moiré supercell, labeled as
MM, XM, andMX (Fig. 1). It has been shown thatΔ(r) forms a skyrmion
lattice with its north/south poles located at the MX and XM points20.
Curiously, for 3.89° tMoTe2, using parameters from the local stacking
approximation20 and the DFT calculation25, we find a reversal in the
positions of the north/south poles between the two cases as shown in
Fig. 1, which results in opposite skyrmion numbers29. This contrast in
skyrmion numbers, in turn, manifests as opposite Chern numbers for
the topmost valence band, with only the DFT calculationmatching the
experiment.

Armed with the insight that the moiré potential landscape can
affect the band topology, we now perform DFT calculations at even
smaller twist angles. Because the system size at these angles (~13,000
atoms at 1.25°) is beyond the typical scale of DFT relaxations, we first
trained a neural network (NN) inter-atomic potential to capture the
moiré lattice reconstruction. The NN potentials are parameterized by
using the deep potential molecular dynamics (DPMD) method30,31,
where the training data are obtained from 5000 to 6000 ab initio
molecular dynamics (AIMD) steps at 500K for a 6° twisted homo-
bilayer calculated using the VASP package32. We test the NN potential
for a moiré bilayer at 5° and obtain a root mean square error of force

<0.04 eV/Å. More details can be found in Supplementary Note 1. Fig-
ure 2a, b shows the calculated in-plane displacement field of the top-
layer W atoms and interlayer distance in tWSe2 at 3.15° and 1.25°. The
displacement field in the bottom layer shows the opposite pattern. It is
clear that while the local stacking varies smoothly at 3.15°, at 1.25° large
domains of the MX and XM regions form, with domain walls con-
necting the shrunken MM region. The difference between recon-
struction patterns at the large and small twist angles also affects the
strain tensor distributions, shown in Supplementary Fig. 6. We find
that the shear strain (uxy) and uxx − uyy aremuch larger than the normal
strain (uxx + uyy). As the twist angle decreases, the strains are mostly
distributed near the domain boundaries due to the domain wall for-
mation. These findings are consistent with previous calculations based
on continuum model and parameterized inter-atomic potential26,33–36,
as well as available experiments37–43.

We then calculate themoiré band structure for the relaxed atomic
structures. To reduce the computational cost, we adopt the SIESTA
package44 for band structure calculations. We first benchmark the
accuracy of this local basis approach with the plane-wave basis
approach by comparing the band structures at 6° obtained from
SIESTA and VASP, and reach a qualitative agreement between the two
(see details in Supplementary Note 4). Then we perform small twist-
angle band calculations by using the SIESTA package. Figure 2c, d
shows the twist-angle dependence of band structures for tWSe2 and
tMoTe2, respectively. The top valence bands consist of folded K-valley
andK 0-valleyminibandswith opposite spins. A small band splitting can
be seen, mostly between γ and m. Multiple factors, including trigonal
warping and intervalley coupling, may contribute to the splitting.
Nevertheless, we assume approximate spin z conservation, and sepa-
rate moiré bands originating from the two valleys by adding a small
Zeeman field in the calculation. In the following, we shall focus on the
moiré bands from the spin-up K-valley.

To determine the Chern numbers for the moiré bands, we first
calculate the eigenvalues of the DFT wave functions under three-fold
rotational symmetry (C3z). The Chern number is then determined by
the product of C3z eigenvalues at rotationally invariant momenta45:
expði 2π3 CÞ= � ξγξκξκ0 , where the ξ’s are the C3z eigenvalue at the high-
symmetry point of the moiré Brillouin zone (mBZ). These eigenvalues
are labeled in Fig. 2. Our assignment of theChern numbers for tWSe2 at
3.15° and 1.70° agree with a recent calculation at 2.28° in which the
Chern numberswere calculated by directly integrating the Berry phase
over the entire mBZ26. The Chern numbers for tMoTe2 are further
confirmed through the integration of the Berry curvature within the
mBZwith the help ofWannier interpolations. The change of the Chern
numbers with varying twist angles can be understood by tracking the
evolution of the C3z eigenvalues, which signals band inversion. For
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Fig. 1 | The layer pseudospin skyrmion lattice. a The K-valley layer pseudospin
Δ(r) skyrmion lattice, using parameters from the local stacking approximation20.
The color denotes Δz(r) and the arrow denotes Δx,y(r). The black, green, and purple

dots denote the three high-symmetry local stacking sites, MM, XM, and MX,
respectively. b Similar to (a) but using parameters from the DFT calculation25.
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example, in tWSe2 (Fig. 2c), when the twist angle changes from 1.70° to
1.54°, the first and second bands invert at the γ point, and the second
and third bands invert at the κ and κ0 points. As a result, the Chern
numbers of the two topmost bands change from (+1, +1) to (0, 0).

The twist-angle dependence of the Chern numbers is in excellent
agreement with experiments. First, it was reported that at ν = −1 the
Chern numbers are opposite for tWSe2 at 1.23°

6 and tMoTe2 at 3.7°
13–16.

Second, in 1.23° tWSe2, the Chern numbers are the same at filling
factors ν = −1 and ν = −3,which indicates that the Chern numbers of the
first two bands from the same valley must be the same6. Further
increasing the twist-angle results in trivial insulators up to 1.6°6.
Remarkably, all these observations are consistent with the trend in the
twist-angle dependence of our calculations, confirming the validity of
our machine learning-based approach. Our calculation also predicts
that in tMoTe2, as the twist angle decreases, the Chern numbers of the
two topmost bands change from (+1, −1) to (+1, +1), and finally to (0, 0)
at the smallest angle of the calculation. In particular, our calculations
revealmultiple flat bands with Chern numbers all equal to +1 at around
2°, indicating the possibility of mimicking higher Landau-level physics
in the absence of magnetic field. The presence of multiple bands of
Chern number +1 has been confirmed by a recent experimental
measurement46.

Since we are interested in the sign change of the Chern number of
the topmost band, in the following we will focus on tWSe2. As men-
tioned earlier, the evolution of band topology in momentum space is
closely related to the change in the real-space moiré potential. In
particular, the location of the north/south poles ofΔ(r), which directly
affects the skyrmion number, is given by the difference between the
moiré potentials at the top and bottom layer.

The moiré potential can be inferred from the surface Hartree
potential47, defined as the difference between the Hartree potential

above and below the twisted bilayer surface in DFT calculations. Fig-
ure 3a shows the coarse-grained surface potential drop at 3.15° in
tWSe2. More details can be found in Supplementary Note 4. The
maximum is located at MX, zero at MM, and minimum at XM. Sur-
prisingly, the surface potential drop shows a sign reversal at XM (and
MX) as the twist angles decrease (see Fig. 3a–d). Going from 3.15°, to
1.70°, 1.47°, and eventually down to 1.25°, the potential at the high-
symmetry point XM (andMX) changes sign, and the area of the flipped
region grows in size. This sign switch suggests that the north pole of
Δ(r) at ~3° becomes the south pole at ~1°. Additional features can be
identified near the MM site, where the surface potential drop mimics
the pattern of a six-petal flower with C3 symmetry. We find that the
amplitude of potential inside the petal is comparable with that at XM
(and MX) at 1.70°, suggesting unique quantum confinement effects
which reshapes the electronwave function. The overall effects of these
features can be clearly seen by a line cut along MM–XM–MX–MM,
showing rich variations and multiple extremes in Fig. 3e. The intricate
behavior of the surface potential goes beyond the continuum
approximation of moiré potential based on the first-star expansion of
the reciprocal lattice vectors alone, evident by their Fourier transform
as shown in Fig. 3f.

The evolution of the surface potential implies that the layer
polarization of the wave functions should also change with the twist
angle. In Fig. 4, we plot the real-space wave function for the two top-
most bands at the γ point of themBZ at various twist angles for tWSe2.
Since the time-reversal symmetry T andC2x symmetry are preserved at
the γ point, only the wave function in the top layer is plotted, while the
wave function in the bottom layer can be obtained by performing a
T C2x operation, underwhichMX/XM in the top layer ismapped toXM/
MX in the bottom layer. At 3.15°, the wave function of the first band in
the top layer is localized at MX. As the twist angle decreases, the
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Fig. 2 | Lattice relaxations and band structures. a The in-plane displacement field
of the top-layer W atoms at 3.15° and 1.25° for tWSe2. The color and arrow denote
the amplitude and direction of in-plane displacement fields, respectively. b The
interlayer distance (ILD) distribution at 3.15° and 1.25° for tWSe2. c, d Twist-angle

dependence of the valence moiré bands of tWSe2 and tMoTe2, respectively. The
labels indicate the spinorientations and theC3z eigenvalues at high-symmetrypoint
with ξ = eiπ/3, ξ* = e−iπ/3, and �1 = � 1. The C3z eigenvalue is the same at the κ and the
κ0 point.
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localization region switches to MM and eventually to XM. The shift of
the wave function location also coincides with the change of the C3z

eigenvalue at the γ point (Fig. 2c). Similar changes have been found for
the wave function of the second moiré band.

Two remarks are in order. First, the switch from MX to XM of the
first band indicates the flip of the layer pseudospin, which gives rise to
the sign change of the Chernnumber as shown in Fig. 2c. Second, aside
fromorbitals located atMXandXM, those atMMalsoplay a significant
role in deciding band topology, evident by the distribution of thewave
functions (Fig. 4). Thus for a tight-binding model to properly describe
the moiré band topology of tWSe2, one also needs orbitals from the
MMsite48. This goes beyond the real-space skyrmion picture discussed
earlier.

What is the origin behind the change in surface potential drop as
a function of twist angle? For a two-dimensional (2D) bilayer system
in global charge neutrality, the electrostatic surface potential can be
directly associated with the interlayer electric polarization. In twisted

TMD homobilayers, two microscopic mechanisms contribute to this
polarization: ferroelectricity and piezoelectricity. The ferroelectric
effects arise from the inversion symmetry breaking in R-type TMD
bilayers and have been termed “moiré ferroelectricity”49,50. In a moiré
supercell, this leads to alternating out-of-plane ferroelectric polar-
ization depending on the local stacking registry, with opposite
dipoles in the XM/MX region50–53. On the other hand, sincemonolayer
TMDs lack inversion symmetry, the strain field can produce piezo-
electric polarization for each layer54. Because the two layers have
opposite patterns of atomic displacement fields and the same pie-
zoelectric coefficient, the polarization charge distributions are
opposite between the two layers, which can produce a vertical
potential drop35,36. As pointed out in ref. 36, these two types of
polarization charges can be opposite in sign, and their competition
will determine the potential drop.

Note that additional in-plane polarizations can also arise from the
out-of-plane ferroelectricity and local symmetry breaking55. While
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these effects are present in our DFT calculations, they do not create
additional Hartree potential that changes the Chern numbers.

Our machine learning-based first-principles simulations enable us
to quantitatively study the polarization effects from the relaxed
structurewith atomic resolution.We start by separately calculating the
piezoelectric charge and ferroelectric charge. For each layer, the pie-
zoelectric charge density is directly proportional to the gradient of the
strain field by ρpiezo = � ~e11½∂xðuxx � uyyÞ � 2∂yuxy�, where ~e11 is the
independent non-zero component of the piezoelectric tensor35,54. The
out-of-plane ferroelectric polarization is obtained directly from inte-
grating the charge density along the z direction for each local stacking
unit cell. More details about the polarization calculations can be found
in Supplementary Note 3 and “Methods”. In Fig. 5, we plot the piezo-
electric (further considering the dielectric screening effect35) and fer-
roelectric charge densities, as well as their sum at 3.15° and 1.25°,
respectively. The total polarization charge matches qualitatively the
pattern of the surface potential drop.

Specifically, at 3.15°, the piezoelectric charges are mainly dis-
tributed in the XM and MX regions because of the larger gradient of
shear strain and uxx − uyy in these regions (see Supplementary Fig. 6).
The piezoelectric charge is negative at MX and positive at XM for the
top layer. Because the bottom layer has the opposite atomic dis-
placements, it has the opposite charge distributions. In contrast, the
ferroelectric charge is positive (negative) at MX and negative (posi-
tive) at XM for the top (bottom) layer. Adding them together, we find
the total charge density is negative (positive) at MX and positive
(negative) at XM for the top (bottom) layer. As the twist angle
decreases to 1.25°, the ferroelectric charge density at MX and XM
remains virtually unchanged, but the total amount of ferroelectric
charge within the MX and XM domains increases following the for-
mation of the domain wall. In contrast, because the shear strain and
uxx − uyy are mainly distributed along the domain wall and are uni-
formly small inside the XM and MX domains (see Supplementary
Fig. 6), the piezoelectric charge density peaks near the domain wall
but decreases at the interior of the domain. This explains the six-
petal flower pattern that we discovered for the surface potential
drop. As a consequence, the total charge density is now positive
(negative) at MX and negative (positive) at XM for the top (bottom)
layer. This trend from 3.15° to 1.25° is consistent with the variation of
the surface moiré potentials and wave functions. In contrast, within
the local stacking approximation, the sign of polarization charge is
fixed and a sign reversal of the Chern number is not possible. Probing
the predicted reversal of the polarization charges at MX and XM
should be a clear experimental evidence of the change of band
topology in momentum space.

Discussion
Up to this point, our discussion has focused on tWSe2. While the
evolution of the moiré potential in tMoTe2 follows a similar trend,
there are somequantitative differences in the band structures between
tWSe2 and tMoTe2. This ismostly due to a couple of factors.WSe2 has a
lighter effective mass (0.35) compared to MoTe2 (0.62), resulting in a
larger bandwidth. In addition, differences in both elastic and piezo-
electric coefficients also lead to quantitative changes in the moiré
potential between these materials. More details can be found in Sup-
plementary Information.

In summary, we have performed large-scale DFT calculations on
R-type TMD homobilayers. Our results demonstrate machine learning
as a powerful tool to studymoiré systems, by revealing the importance
of lattice relaxation that eventually leads toqualitative changes in band
topology. This change is attributed to the competition between pie-
zoelectricity and out-of-plane ferroelectricity, resulting in electrostatic
potential variation that reshapes the potential landscape for anymoiré
electronic states. Our findings highlight the crucial long-range inter-
actions arising from polarization charges, which change rapidly as the
twist angle decreases. This behavior necessitates the explicit calcula-
tions of moiré electronic potential even at minimal twist angle.

Note added. We recently became aware of two related works in
which machine learning force field is also used to calculate the moiré
bands of twisted MoTe2 homobilayers56,57.

Methods
Machine learning
AIMD simulations are conducted to generate training datasets. These
simulations utilize the VASP package32, employing the projector aug-
mented wave pseudopotential58,59 and the Perdew–Burke–Ernzerhof
(PBE) exchange-correlation functional60. Additionally, van der Waals
corrections are incorporated using the D2 formalism61. 5000-step
AIMD simulations using the canonical ensemble are performed at
500K for 6° tMoTe2, and 6000-step for 6° tWSe2. The NN inter-atomic
potential is generated using the DPMD method30,31. One thousand
steps of the training data are used for validations. The embedding and
fitting NNs include three hidden layers and the cutoff radius for each
atom is 10.0Å. One million steps (batches) with a batch size of 1 are
used to minimize the loss function that includes energy and force
contributions. One hundred new steps of MD trajectories at 500K are
used to test the NN potentials. The loss functions and comparisons
between the NN inferences and DFT calculations can be found in
Supplementary Note 1. The NN potentials are used to relax the
superlattice within the LAMMPS package62 until the maximum atomic
force is smaller than 10−4 eV/Å.
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Fig. 5 | The competition between the piezoelectric and out-of-plane ferroelectric polarizations. a The piezoelectric charge density, the ferroelectric charge density,
and the total charge density, respectively, at 3.15° in tWSe2. b The same quantities at 1.25°.
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Band structure calculations
The SIESTA package is used to calculate band structures. Optimized
norm-conserving Vanderbilt pseudopotentials63, PBE functional60, and
double-zeta plus polarization basis are used. Spin–orbit coupling
(SOC) is treated within the on-site approach64. We first perform self-
consistent calculations without SOC. Then we include on-site SOC
without iterating charge densities. The validations of the on-site SOC
and the comparisons between the band structures from SIESTA and
VASP can be found in Supplementary Note 4.

Electric polarization calculations
The proper piezoelectric coefficient is defined as65

~eijk =
∂Ji
∂ _ujk

 !
E,T

, ð2Þ

which represents the response of the current with respect to the strain
flow. Here Ji is the current component, ujk the strain component, E the
macroscopic electric field, and T is the stress. Both E and T are zero in
the DFT calculations. Since monolayer WSe2 has the symmetry of D3h,
the only independent non-zeropiezoelectric coefficient is ~e11 �~e111 and
other non-zero coefficients are related to ~e11 by

54

~e122 = � ~e11, ð3Þ

~e212 = ~e221 = � ~e11: ð4Þ

~e11 is calculated from the change of electric polarization density with
respect to the strain54. A rectangular unit cell ofmonolayerWSe2 and a
12 × 12 × 1 k-space grid are used. The in-plane polarization is calculated
in SIESTA using the modern theory of polarization66.

The piezoelectric polarizations in the moiré superlattice are cal-
culated from the strain,

P= ~e11ðuxx � uyy,� 2uxyÞ, ð5Þ

and the piezoelectric charge density is calculated as

ρpiezo = � ∇ � P= � ~e11½∂xðuxx � uyyÞ � 2∂yuxy�: ð6Þ

More details can be found in Supplementary Note 3. We use the
method in ref. 35 to include the dielectric screening of piezoelectric
charges.

The out-of-planemoiré ferroelectricity is calculated from the local
stacking unit cell in the relaxed moiré superlattice. Within each unit
cell, we calculate the out-of-plane dipole moment in SIESTA by inte-
grating the charge density multiplied by z coordinates. Then the sur-
face charge density due to ferroelectricity is obtained as ρferro = Pz/
(Sdz), where Pz is the dipolemoment, S is the area of the unit cell, anddz
is the interlayer vertical distance between transition metal atoms.

Data availability
The files and datasets generated during this study, including typical
input files for parameterizing NN potentials and DFT calculations, as
well as the source data of band structures, Hartree potentials, wave
functions, and polarizations, have been deposited in the Zenodo
database67. Other data related to this paper are available from the
corresponding authors upon request.

Code availability
The DFT calculations and parameterization of NN potentials are
obtained from publicly available packages, following the procedure
outlined in the paper. Automation and acceleration workflows are
available from the corresponding authors on request.
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