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Deep mutational scanning reveals a
correlation between degradation and
toxicity of thousands of aspartoacylase
variants

Martin Grønbæk-Thygesen1, Vasileios Voutsinos 1, Kristoffer E. Johansson 1,
Thea K. Schulze 1, Matteo Cagiada 1, Line Pedersen1, Lene Clausen1,
Snehal Nariya2, Rachel L. Powell 2, Amelie Stein 3, Douglas M. Fowler 2,4 ,
Kresten Lindorff-Larsen 1 & Rasmus Hartmann-Petersen 1

Unstable proteins are prone to form non-native interactions with other pro-
teins and therebymaybecome toxic. Tomitigate this, destabilizedproteins are
targeted by the protein quality control network. Here we present systematic
studies of the cytosolic aspartoacylase, ASPA, where variants are linked to
Canavan disease, a lethal neurological disorder. We determine the abundance
of 6152 of the 6260 ( ~ 98%) possible single amino acid substitutions and
nonsense ASPA variants in human cells. Most low abundance variants are
degraded through the ubiquitin-proteasome pathway and become toxic upon
prolonged expression. The data correlates with predicted changes in ther-
modynamic stability, evolutionary conservation, and separate disease-linked
variants from benign variants. Mapping of degradation signals (degrons)
shows that these are often buried and the C-terminal region functions as a
degron. The data can be used to interpret Canavan disease variants and pro-
vide insight into the relationship between protein stability, degradation and
cell fitness.

The ubiquitin-proteasome system (UPS) is responsible for the majority
of intracellular protein degradation and thus plays a vital role in main-
taining protein homeostasis1–3. An important group of UPS substrates
includes proteins that are thermodynamically destabilized or otherwise
unable to attain their native conformation. When the cellular protein
quality control (PQC) system detects such non-native proteins, cha-
perones, co-chaperones and specific E3 ubiquitin-protein ligases cata-
lyze either their refolding or degradation via the UPS3,4. Along with
physical conditions such as temperature5, the folding and stability of a
protein is determined by its amino acid sequence6. Accordingly, muta-
tions that cause alterations in the amino acid sequence may affect the

folding and thermodynamic stability of the protein. However, depend-
ing on the nature of the substitution and on its position in the protein
structure, the effect of single amino acid substitutions may vary greatly,
from increasing stability to a partial or complete destabilization of the
natively folded structure, which in turn can lead to rapid degradation of
the protein. Though estimates vary depending on which approach is
used7, about half of disease-causing missense variants are thought to
lead to protein destabilization and degradation7–14. Despite recent pro-
gress in computational biology, predicting the effects of missense var-
iants remains a significant challenge, which in turn reduces our ability to
accurately identify pathogenic gene variants15–17.
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Aspartoacylase (ASPA) (EC 3.5.1.15; UniProt entry P45381) is a 313
residue enzyme, mainly expressed in the cytosol of oligodendrocytes
of the brain18–20. Here, it facilitates the hydrolysis of N-acetyl-aspartate
(NAA), one of the most abundant amino acid-derived metabolites in
the brain and a marker of brain health21, into aspartate and acetate22,23.
Structurally, the protein consists of a single domain with a channel
leading to the active site23. Despite a sequence identity of only ~10%
between ASPA and carboxypeptidases, their active sites share some
structural similarity, likely utilizing similar catalytic mechanisms23–25.
To our knowledge, nomembersof the zinc hydrolase superfamily have
yet been systematically analyzed by deep mutational scanning.

Various interactions around the substrate binding cavity ensure
high substrate specificity. Additionally, ASPA binds a Zn2+ ion, which is
coordinated by the conserved residues H21, E24, and H11623,26.
Although the monomeric enzyme is active27, several studies have
demonstrated that ASPA forms homodimers19,24,28 through a large
interaction surface23,26.

Insufficient ASPA activity caused by germline ASPA variants is
linked to Canavan disease (CD) (OMIM: 271900), a recessive, neuro-
degenerative leukodystrophy, in which oligodendrocytes fail to
properly myelinate neuroaxons29. The mechanism of pathogenicity
remains somewhat obscure, with two suggested hypotheses that are
not mutually exclusive: the osmotic-hydrostatic hypothesis suggests
that abnormal NAA build-up in CD patients, and the resulting osmotic
consequences, cause the disease29,30. Alternatively, according to the
acetyl-lipid myelin hypothesis, insufficient acetate production from
NAA, which is normally incorporated into the myelin sheath, is the
underlying cause18,30,31.

Clinically, CD patients suffer from poor muscle control, reduced
cognitive capabilities, and other severe conditions. The symptoms
appear within the first 3–6 months of life and worsen over time
eventually leading to an early death32–34. Various attempts at curing CD
or ameliorating the symptoms35–39 have been reported, with gene
therapy being one of the more promising40–42. Three clinical trials
aiming at curing Canavan disease with gene therapy are currently
ongoing (ClinicalTrials.gov Identifier: NCT05317780, NCT04998396,
andNCT04833907). Due to the progressive nature of the disease, such
an intervention would likely need to be performed early42–44, thus
making it essential to rapidly assess whether novel ASPA variants are
pathogenic.

In a previous study, we have shown that the disease-linked ASPA
C152Wvariant is targeted for PQC-linkeddegradation inboth yeast and
human cells45. To further investigate the PQC degradation of ASPA in
relation to Canavan disease, we here generated a site-saturated library
of ASPA variants and analyzed it using the variant abundance by a
massively parallel sequencing (VAMP-seq) technique46. The resulting
variant effect map comprises 6152 out of the 6260 possible single
amino acid substitutions and nonsense variants (19 substitutions/
residue*313 residues + 312 early stop codons + 1 wild type). This cor-
responds to a coverage of ~98% of all possible single-site missense and
nonsenseASPA variants, and the results correlate with thermodynamic
stability predictions and evolutionary conservation.We find thatmany
of the low-abundance ASPA variants are toxic to the cells, indicating a
tight connection between structural destabilization, PQC-linked
degradation, and reduced fitness. Our data emphasize the impor-
tance of low ASPA abundance as a major mechanism of Canavan dis-
ease and reveal an intimate link between reduced thermodynamic
stability, degradation, and reduced fitness.

Results
A massively parallel assay for ASPA protein abundance
We have previously shown that the disease-linked C152W ASPA variant
is subject to chaperone-dependent proteasomal degradation45. To test
whether this is a common trait for disease-linked ASPA variants, we
applied variant abundance by massively parallel sequencing (VAMP

seq)46 to a site-saturated and barcoded cDNA library of ASPA variants.
In our approach, the ASPA library consists of ASPA variants fused to
GFP. The library is expressed after site-specific recombination at a
“landing pad” locus in human HEK293T cells (Fig. 1A). Since the plas-
mid does not contain a promoter, non-integrated plasmids are not
expressed, while correct Bxb1-catalyzed site-specific integration at the
landing pad locus leads to single-copy expression of GFP-fused ASPA.
To correct for cell-to-cell variations in mRNA levels, the integrated
plasmid also produces mCherry from an internal ribosomal entry site
(IRES) downstream of ASPA. Fluorescence-activated cell sorting
(FACS) is used to separate cells into distinct bins based on the
GFP:mCherry ratio. Subsequently, the frequency of every variant in
each bin is determined by sequencing the barcodes (Fig. 1A). Since
integration of the plasmid at the landing pad will block expression of
BFP and iCasp947, non-recombinant cells can be identified based on
expression of BFP and depleted from the culture by adding AP1903
(Rimiducid), which specifically induces apoptosis of iCasp9 positive
cells (Fig. 1A).

To test the feasibility of the assay, we initially compared wild-type
(WT) ASPA and the C152W disease-linked variant48,49, which was pre-
viously shown to be rapidly degraded via the proteasome and there-
fore of low abundance45. Indeed, fluorescence microscopy revealed a
dramatically reduced abundance of the C152W variant (Fig. 1B). This
was also evident by western blotting and was independent of whether
GFP was fused to the N-terminus or C-terminus of ASPA (Fig. 1C).
However, to allow for analyses of nonsense variants, we proceeded
with the GFP fused to the N-terminus of ASPA. Flow cytometry showed
that the mCherry levels were similar for WT and C152W, while the GFP
level of WTwas roughly 10-fold greater than that of C152W (Fig. 1D, E).
Finally, since we were unable to detect endogenous ASPA in the
HEK293T cells (Supplementary Fig. 1), the GFP-ASPA protein abun-
dance is likely independent of potential heterodimer formation with
endogenous WT ASPA.

Comprehensive mapping of ASPA variant protein abundance
We generated a site-saturated library of ASPA missense and nonsense
variants and inserted it in a frame with GFP (Fig. 1A). An oligo con-
taining 18 randomnucleotideswas also inserted in theplasmid to serve
as a barcode for the subsequent analyses (Fig. 1A). The resulting
plasmid library was then subjected to long-read PacBio sequencing.
This allowed us tomatch 134,176 unique barcodeswith individualASPA
variants, which corresponds to each variant being represented on
average by ~21 different barcodes, thus providing internal replicates
for each variant. For all subsequent experiments, variants were iden-
tified by short-read Illumina sequencing of the barcodes.

The barcoded ASPA library was transfected into the HEK293T cell
line and non-recombinant cells were eliminated with AP1903. Flow
cytometry revealed that GFP:mCherry levels in the library spanned
more than an order of magnitude and covered the range between the
WTandC152Wcontrols (Fig. 1D, E). FACSwas used to separate the cells
into four equally populated bins based on the GFP:mCherry levels
(Fig. 1F). Then, Illumina sequencing of the barcodes allowed us to
quantify the frequency with which each variant is found in each of the
four bins (Fig. 1A, F) and calculate an abundance score ranging from 1
(WT-like abundance) to 0 (strongly reduced abundance). The average
Pearson correlation between replicate experiments was 0.99 (Sup-
plementary Fig. 2). However, we note that for the low-score variants
the correlations between replicates were not as strong, indicating a
poor resolution for the low-abundance variants. The final scores and
standard deviations were determined based on 11 replicates and
revealed the relative abundance of 5843 out of 5947 (98%) missense
variants and 308 out of 312 (99%) nonsense variants (Fig. 2A).

The abundance scores were bimodally distributed, with a WT-like
peak of stable variants centered on the synonymous (silent) substitu-
tions and a peak of low-abundance variants centered on the nonsense
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variants (Fig. 2B). The abundance of 18 different ASPA variants,
determined individually by flow cytometry in low throughput, was
consistentwith the high-throughputmap (Fig. 2C). Bymicroscopy, five
variants displaying different abundance levels all appeared to localize
like WT (supplementary Fig. 3A) and were largely found in the soluble
fraction upon centrifugation of cell lysates (supplementary Fig. 3B). In
the VAMP-seq- scores, we observe a poorer resolution of the lowest
abundance variants, which appears—at least in part—to be connected
to the reduced fitness observed for many of these variants (see below
and discussion). The median abundance score per position (shown in
Fig. 2A) explained 55% of the total variance of the variant abundance
scores (equivalent to a Pearson correlation of 0.77). Thus, the toler-
ance to amino acid substitutions appeared more dependent on posi-
tion than the nature of the substituted amino acid. However, as

expected, substitutions to proline appear detrimental at most posi-
tions (Fig. 2A). The map revealed that most regions of ASPA are sen-
sitive to substitutions, although a particular loop stretching from
position 70 to 110 appeared more tolerant (Fig. 2A), while many var-
iants in the disordered regions (as predicted by low AlphaFold pLDDT
scores) near theN- andC-termini displayed an increased abundance. In
another loop spanning from position 159 to 166, substitutions to
hydrophobic residues reduce ASPA abundance (Fig. 2A).

When mapping the median abundance scores at each position
onto the ASPA structure, some surface regions appeared sensitive to
substitutions (Fig. 2D). Most regions buried in the core of the ASPA
structure were highly sensitive to substitutions (Fig. 2D), including
the residues coordinating the Zn2+ ion in the active site (Supple-
mentary Fig. 4A). For the exposed β-strand at positions 150–160, the

Fig. 1 | The ASPA expression system. A Schematic representation of the expres-
sion system. HEK293T cells, carrying a landing pad for Bxb1-catalyzed site-specific
integration are transfected with the expression vector and a Bxb1 expression
plasmid (not shown). Upon integration at the landing pad locus, the BFP-iCasp9-
BlastR gene is displaced downstream, and the cells therefore become resistant to
AP1903, while GFP-ASPA and mCherry are expressed from the tetracycline/dox-
ycycline regulated promoter. The same mRNA leads to both GFP-ASPA and
mCherry protein production, which in turn allows flow sorting of cells based on the
GFP:mCherry ratio. Finally, variants in each bin can be identified by sequencing the
barcodes. Figure adapted from refs. 58,76,96. Figure created with BioRender.com,
released under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0
International license. B Fluorescence microscopy of cells transfected with either

wild-type ASPA (WT) or ASPA C152W variant. Note the reduced amount of the
C152Wvariant. Scale bar = 20 μm.CCellswere transfectedwith eitherWTorC152W
ASPA variants fused to GFP in the N-terminus or C-terminus as indicated. A mock
transfection was included as a control. Whole-cell lysates were then resolved by
SDS-PAGE and analyzed byWestern blotting using antibodies to GFP, Cherry, or, as
a loading control, GAPDH. Note the reduced level of the C152W variant. D Scatter
plots of flow cytometry analyses of the WT (blue) and C152W (red) ASPA variants,
along with the site-saturated ASPA library (gray). Note that the mCherry levels are
similar, while the GFP levels differ approximately 10-fold. E Histograms of the
GFP:mCherry ratio based on WT (blue) and C152W (red) ASPA variants, and the
ASPA variant library (gray). F The ASPA library was sorted into four separate bins
(1–4) as indicated, with each bin containing 25% of the total population.
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substitutions alternated between destabilizing and stabilizing, cor-
responding to residues pointing inwards and outwards, respectively
(Supplementary Fig. 4B). To quantify this effect more broadly, we
calculated the weighted contact number50 (WCN) for all residues in
ASPA. TheWCN is a sumover weights quantifying the extent towhich

contacts are formed with other residues in the protein, and a high
WCN thus indicates that a residue is in a densely packed region. We
find that many of the low-abundance positions are buried in the
structure and thus have a high WCN (Supplementary Fig. 5). How-
ever, we also find a few exposed positions with several low-

Fig. 2 | TheASPAabundancemap.AThe results of theASPA abundance screen are
presented as a heatmapwith the position in ASPA (horizontal) and the 20 different
aminoacids (vertical). * indicates a stop codon. Themedian abundance score (MED)
per position is shown above. The wild-type residues are shown in yellow. Missing
data points are marked in gray. Neutral variants (WT-like abundance) are in white.
Low-abundance variants are shown in red and high-abundance variants are shown
in blue. The AlphaFold confidence scores (pLDDT) are marked below, as a disorder
indicator. Regions with low pLDDT scores (green/blue colors) indicate flexible/
disordered regions. The ASPA domain organization and secondary structure are
marked. The black bar indicates the positions of selected key catalytic residues
(H21, N23, R63, N70, R71, D114, N117, E178, G185, P232, A287, Y288). B The library
displays a bimodal distribution of abundance scores with a peak of neutral variants

overlapping with the synonymous (silent) WT ASPA variants, and a peak of low-
abundance variants overlappingwith the nonsense ASPA variants.C Tovalidate the
abundancemap, 18 ASPA variants were generated and analyzed one-by-one by flow
cytometry in low-throughout. The abundance scores determined in low through-
put (y-axis) correlate with the abundance scores determined from the screen (x-
axis). The error bars reflect the standard deviation (n = 3 independent experi-
ments).DTheASPAdimer structure (PDB: 2O53) colored by themedian abundance
score. The Zn2+ ions are marked as yellow spheres. Note that the surface of ASPA
appears more tolerant to amino acid substitutions than regions that are buried or
located in the subunit-subunit interface. Source data are provided as a Source
Data file.
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abundance variants, corresponding to the sensitive regions on the
ASPA surface (Fig. 2D).

The abundance of ASPA variants correlates with predicted
thermodynamic folding stability
Previous reports on other proteins have suggested that variant protein
abundance correlates with the experimental or predicted thermo-
dynamic stability of the folded protein46,51,52. To probe this relationship
for ASPA, we next employed structure-based energy calculations to
predict the effects of missense variants on the thermodynamic
(structural) stability of ASPA. Using the published crystal structure of
theASPAhomodimer (PDB: 2O53)26, and introducing all possible single
amino acid substitutions, we applied the Rosetta energy function53 to
estimate the change (Δ) in thermodynamic folding stability (ΔG)
compared to wild-type ASPA (ΔΔG). In total, the data comprise 5719
variants (19 possible amino acid substitutions per position × 301
positions resolved in the structure). The resulting ΔΔG values report
on the predicted change in thermodynamic stability of the ASPA
dimer, such that variants with ΔΔGs close to zero represent WT-like
stability, while variants with large positive ΔΔGs should be less stable
than WT ASPA, and have a higher proportion of fully or partially
unfolded structures that are targeted for degradation. A comparisonof
theRosetta predictionswith the abundance scores represented asheat
maps is included in the supplemental information (Supplementary
Fig. 6A, B). Overall, the thermodynamic stability predictions correlated
with the experimental abundance scores (Spearman’s ρ = −0.47),
which were further strengthened when comparing the median values
per residue (Spearman’s ρ = −0.55) (Fig. 3A). However, some variants
were either predicted to be unstable (high ΔΔG) but observed at high
abundance, or predicted as stable (low ΔΔG) but observed at low
abundance (Fig. 3A). Hence, the thermodynamic stability predictions
capture some, but not all, of the observed effects. For instance,
surface-exposed sensitive regions or substitutions that introduce
degrons, will not be captured. Comparisons of the abundance scores
with the Rosetta predictions based on the ASPA monomer (Supple-
mentary Fig. 6A, B) and the difference (Δ(ΔΔG)) between the Rosetta
predictions for the monomer and dimer (Supplementary Fig. 6A, B),
did not reveal any abundance effects that could be attributed directly
to dimer formation.

The abundance of ASPA variants correlates with evolutionary
conservation
In folded proteins, residues critical for function e.g. those in the active
site and/or for maintaining the native structure, are typically highly
conserved across different species. Accordingly, sequence conserva-
tion across ASPA orthologues should predict the mutational tolerance

of the protein at the residue level. To test this, we first generated a
multiple sequence alignment of 757different ASPAhomologs and then
applied the GEMME54 model that takes into account both residue
conservation and the non-trivial pair couplings that occur as a con-
sequence of amino acid co-variation. The resulting evolutionary dis-
tance scores report on the likelihood of a given substitution, where a
score close to zero indicates a neutral variation with no effect on the
structure and/or function of the protein. Conversely, substitutions
with large negative GEMME scores are predicted asunfavorable. Again,
we observed a correlation (Spearman’s ρ = 0.45) between the experi-
mental abundance scores and the predictions (Fig. 3B). As these
sequence-basedpredictions donot discriminate between residues that
are conserved for function or structure, many of the outliers in our
correlations may simply be residues that are important for function
but do not contribute to the thermodynamic stability of the native
fold. A comparison of the GEMME predictions with the abundance
scores and Rosetta stability predictions represented as heat maps is
included in the supplemental information (Supplementary Fig. 7A, B).

Most destabilized ASPA variants are heat-labile PQC and pro-
teasome targets
Next, we proceeded to explore the cellular and physical mechanisms
causing the low abundance. To this end, cells transfected with the
ASPA library were subjected to a range of physical and chemical per-
turbations while following the distribution of the GFP:mCherry ratio of
the variants by flow cytometry. The flow cytometry profiles of the WT,
C152W, and the variant library in unperturbed cells are shown for
comparison (Fig. 4A). First, we noted that the flow cytometry profiles
for cells incubated at 29, 37, or 39.5 °C differed widely. Thus, at 39.5 °C
the unstable peak becamemore pronounced (Fig. 4B), which suggests
that at this temperature, variants with low or intermediate abundance
at 37 °C are further destabilized. At 29 °C, however, the low-abundance
peak was reduced to a small shoulder indicating that most variants
were stabilized (Fig. 4C).

Treating the cells with an inhibitor of the E1 ubiquitin-activating
enzyme (MLN7243) led to an increased abundance (Fig. 4D). Accord-
ingly, an increased abundance was also evident when the proteasome
wasblockedwithbortezomib (BZ) (Fig. 4E). Conversely, therewas little
effect of treating the cells with the autophagy-inhibitor chloroquine
(CQ) (Fig. 4F). This indicates that most of the low-abundant ASPA
variants are targeted by the ubiquitin-proteasome system, while
autophagic clearance of ASPA variants is insignificant. However, we
cannot exclude that autophagy will not play a role under conditions
where the expression of the ASPA variants persists for longer.

Since HSP70-typemolecular chaperones have been shown to play
an important role in the PQC-linked degradation of destabilized

Fig. 3 | Correlations with thermodynamic stability predictions and evolu-
tionary conservation. A Scatter plots showing correlations between the abun-
dance scores and the predicted protein stabilities (ΔΔG) for all variants (left panel)
and the median scores per position (right panel). B Scatter plots showing

correlations between the abundance scores and the evolutionary conservation
scores for all variants (left panel) and the median scores per position (right panel).
CI, bootstrapped 95% confidence interval. Source data are provided as a Source
Data file.
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proteins, including ASPA C152W45, we tested the effect of the HSP70
inhibitor, YM01. Similar to the situation with bortezomib, the HSP70
inhibitor shifted the unstablepeak towards a higherGFP:mCherry ratio
(Fig. 4G), indicating thatHSP70plays a role in the degradation ofmany
ASPA variants.

Since ASPA folding and stability could potentially be affected by
substrate binding, we also analyzed the library distribution in the
presence of NAA. However, no effects were evident upon the addition
of the ASPA substrate to the cells (Fig. 4H), though we note that the
resulting intracellular concentration of NAA is unknown.

Finally, as a control, we compared the abundance of WT and the
C152W variant under each of the above conditions. In all cases, the
abundance of WT ASPA appeared largely unaffected (supplementary
Fig. 8), while—as expected—the abundance of the C152W variant was
reduced at 39.5 °C but increased at 29 °C and in response to inhibition
of E1, the proteasome, or HSP70 (supplementary Fig. 8).

In conclusion, these data show that most of the low-abundance
ASPA variants are thermolabile targets of the ubiquitin-proteasome
system. However, we cannot rule out that under different conditions,
e.g. expression levels, timing, etc. some ASPA variants will undergo
autophagic clearance.

Inherent PQC degrons in ASPA map to buried regions that are
sensitive to mutation
The reigning hypothesis explaining the degradation of destabilized or
misfolded proteins states that these proteins, through local or global
unfolding events, transiently expose PQC degradation signals
(degrons). Degrons are recognizedby E3 ubiquitin-protein ligases and/
or molecular chaperones such as HSP7055–58, which in turn direct the
protein for proteasomal degradation.

Given the effect of inhibiting the ubiquitin-proteasome system on
ASPA variants, we reasoned that ASPA likely contains PQCdegrons and
that mapping these degrons could shed additional light on the ASPA
abundance map. To identify degrons, the ASPA sequence was divided

into 24-residue tiles each overlapping by 12 residues (Fig. 5A). Similar
to full-length ASPA, we constructed a library containing the ASPA tiles
that was fused to the C-terminus of GFP and expressed from the
landing pad in the HEK293T cells. The cells were flow-sorted and
sequencing across the tiles revealed the frequency of each ASPA tile in
the four different bins (Fig. 5B). Ultimately, this allowed us to calculate
a tile stability index (TSI) covering theASPA sequence (Fig. 5C). Indeed,
multiple tiles display a low TSI and thus had reduced GFP:mCherry
levels, suggesting that these tiles harbor degrons. When comparing
with the ASPA structure, the low-abundance tiles generally appeared
buried in the structure (Supplementary Fig. 9). Accordingly, regions
with low TSI also partly overlapped with regions that display a high
average WCN (Fig. 5C). Comparing the mapped TSIs with PQC degron
predictions made with the quality control degron predictor
(QCDPred)59,60, revealed that regions displaying a low TSI also dis-
played a high QCDPred degron probability, while regions with a low
degron probability appeared stable (Fig. 5D). This indicates that the
sequence features of the ASPA degrons are similar to those reported
for PQC degrons in general, i.e. enriched in hydrophobic residues and
depleted for acidic residues59–62. Finally, the C-terminal tile displayed
degron properties (Fig. 5C). This may suggest that ASPA contains a
C-degron61,62 or that the C-terminal region functions as a disordered
degradation initiation site (tertiary degron)63,64, but due to the high
QCDPred score could also reflect a PQC degron. We note that both
substitutions and truncations in the ASPA C-terminus increase ASPA
abundance (Fig. 2A), supporting the presence of a degron at this
position in wild-type ASPA.

Most disease-linked ASPA variants have reduced abundance
Next, we examined if the abundance map could distinguish known
harmless (benign) and disease-linked ASPA variants. Based on the
ClinVar database65 and frequency in the population, as reported in the
Genome Aggregation Database (gnomAD)66, we first collected a cura-
ted list of disease-linked and benign ASPA variants (Source Data File).

Fig. 4 | Flow cytometry distributions of the ASPA library with different cellular
perturbations.Histograms displaying the distributions of the GFP:mCherry ratios
of the ASPA library, and for comparisonASPAWTandC152W (A), were analyzed for
the indicated perturbations:B 16 h incubation at 39.5 °C,C 16 h incubation at 29 °C,
D 16 h at 37 °C with 0.5 μM (blue) or 1μM (red) of the ubiquitin E1-inhibitor

MLN7243, E 16 h at 37 °C with 15μM of the proteasome inhibitor bortezomib (BZ),
F 16 h at 37 °C with 20μM the lysosomal inhibitor chloroquine (CQ),G 24h at 37 °C
with 2.5μMof the HSP70 –inhibitor YM01, andH 24h at 37 °C with 6mMN-acetyl-
aspartate (NAA). In all cases, perturbations were applied prior to harvesting the
cells for flow cytometry.
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The three variants listed in ClinVar as benign/likely benign and also
observed most frequently in the population, all displayed an abun-
dance similar to wild-type ASPA (Fig. 6A). Conversely, 50 out of 61
pathogenic variants displayed an abundance score lower than 0.5
(Fig. 6A). Among the remaining pathogenic high-abundance variants,
most were at catalytic sites (Fig. 6A, blue markers; Supplementary
Fig. 10). Indeed, several of these were also predicted as stable (Rosetta
ΔΔG< 2 kcal/mol) but functionally important (GEMME score < −3.5)
sites (Supplementary Fig. 10). Thus, these variants are likely patho-
genic due to inactivating function without affecting thermodynamic
stability and abundance50. The so-called variants of uncertain sig-
nificance (VUS), i.e. variants where a clinical interpretation is currently
lacking, clustered into high and low-abundance groups (Fig. 6A). We
suggest that those with low abundance are likely to be pathogenic.

As expected, comparing the abundance scores with the allele
frequencies of the ASPA variants reported in gnomAD, revealed that
the most common ASPA missense alleles are benign and display wild-
type-like abundance scores, while most of the low-abundance variants
are rare (Fig. 6B).

Then, we examined the abundance score for the clinical variants
in combination with the evolutionary conservation scores generated
with GEMME (Fig. 6C). The high GEMME scores for benign and highly
abundant variants indicate that these substitutions occur at evolu-
tionary tolerant sites, indicating that they are likely functional and
stable proteins. For pathogenic variants, there was a lower match with
evolutionary conservation. For the 11 highly abundant pathogenic
variants (abundance score > 0.5), five showed a high level of evolu-
tionary conservation (GEMME score < −3), suggesting they play a role

Fig. 5 | Mapping inherent degrons in ASPA. A The ASPA protein was divided into
26 different tiles of 24 residues, each overlapping by 12 residues, as indicated.
B The ASPA tiles shown in (A) were expressed from the landing pad in
HEK293T cells. Then the cells were flow-sorted into different bins based on thee
GFP:mCherry ratio and the tiles in each bin were identified by sequencing across
the tiles. Figure adapted from refs. 58,76,96. Figure created with BioRender.com,
released under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0
International license. C The sequencing shown in (B) was used to determine a tile
stability index (TSI) for each of ASPA tiles. Each point is positioned at the central

position of the 24-mer tiles. Tiles with a low TSI have reduced GFP:mCherry ratios
and therefore display degron-like properties. As a measure for exposure, the
average weighted contact number (WCN) was determined for each tile based on
the ASPA crystal structure (PDB: 2O53). The domain organization of ASPA is
included for comparison. D PQC degrons in ASPA were predicted from the ASPA
sequence using QCDPred. Note that regions where QCDPred predicts a high
probability of PQCdegrons overlapwith regionswith a lowTSI (C). Source data are
provided as a Source Data file.
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in enzyme activity. Additionally, most low-abundance, pathogenic
variants are further distinguished from benign, abundant variants by
the GEMME score.

Importantly, some ASPA variants, including G274R, P181T, Y231C,
P257R, I143T, K213E, R71H, Y288C, I170T, G101V, and D204H67–69, have
been suspected to give rise to Canavan disease with a juvenile, rather
than infantile onset. However, of these, all except K213E (annotated as
VUS, abundance score: 0.89), R71H (annotated as pathogenic, abun-
dance score: 0.95), and Y288C (annotated as pathogenic, abundance
score: 1.1) displayed a reduced abundance, suggesting that the sensi-
tivity of our screen may be insufficient to identify potential “mild”
variants with juvenile onset.

CertainASPA variants become toxic uponprolonged expression
While conducting the abundance experiments presented above, we
noticed that upon prolonged incubation after inducing expression
by the addition of doxycycline, cells transfected with ASPA C152W
were lost from the cultureswhile the small group of BFP-positive cells

that survived treatment with AP1903 instead became more profuse
(Supplementary Fig. 11A). Conversely, cells expressing wild-type
ASPA did not disappear from cultures for at least up to 9 days
(Supplementary Fig. 11B). This substantial decrease in relative growth
rate suggests that prolonged expression of some non-native ASPA
protein species (including C152W) is toxic to the cells. To examine
this effect more broadly we therefore screened the library for effects
on growth rates; in the absence of a mechanism underlying the
reduction in growth we use the general term “toxicity”. To this end,
the library was introduced into the landing pad in the HEK293T cells,
and non-recombinant cells were eliminated with AP1903. Then,
without flow sorting, the cells were harvested after 0, 5, 7, and 9 days
in culture and the surviving variants were identified by sequencing
the barcodes (Supplementary Fig. 11C). Thus, by following the pro-
pagation of each variant in the culture over time, we could quantify
the competitive fitness of each variant and calculate a “toxicity score”
ranging from 1 (growth rate similar to C152W) to 0 (growth similar to
WT). The final toxicity scores and standard deviations were

Fig. 6 | Comparing the ASPA abundance scores with human genetics data.
A Comparisons of the abundance scores for ASPA missense variants listed in the
Source Data File as pathogenic (red) (n = 61), variants of uncertain significance
(VUS) (yellow) (n = 37) and benign (green) (n = 3) are shown as raincloud plots.
Residues in or near the ASPA active site have beenmarked (blue).Many of the high-
abundance pathogenic variants are located near the active site. The box shows the
quartiles of the dataset while the whiskers extend to show the rest of the dis-
tribution, except for points that are determined to be outliers (diamonds).

B Comparison of the ASPA abundance scores with the ASPA allele frequency
reported in gnomAD. Note that ASPA variants that are common in the population
are benign and display a wild-type-like abundance, whilemany rare variants display
a low abundance. Variants so rare that they have not been observed in gnomAD are
included to the left of the dashed line.C Comparison of the abundance scores with
GEMME evolutionary conservation scores. All variants are shown as a blue 2D his-
togram and overlayed with variants annotated as pathogenic (red), benign (green),
and VUS (yellow). Source data are provided as a Source Data file.
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determined based on four biological replicates and the average
Pearson correlation between replicate experiments was 0.93 (range:
0.93–0.94) and the mean absolute error 0.10 (Supplementary
Fig. 12). Since the coverage is mainly limited by library synthesis, the
coverage of toxicity scores was similar to the abundance score

coverage with 5847 of 5947 (98%) missense variants and 307 out of
312 (98%) nonsense variants (Fig. 7A). The toxicity scores displayed a
bimodal distribution with a peak overlapping with the synonymous
WT non-toxic variants and smaller peak of toxic variants (Supple-
mentary Fig. 13).

Fig. 7 | Several low-abundant ASPA variants are toxic. A Results from the ASPA
toxicity screen presented as a heat map with the position in ASPA (horizontal) and
the 20different amino acids (vertical). * indicates a stopcodon. Themedian toxicity
score (MED) per position is shown above. The wild-type residues are shown in
yellow. Missing data points are marked in gray. Non-toxic variants (WT-like) are in
white. Toxic variants are shown in green. B Correlation between abundance and
toxicity scores for all missense variants. Note that all toxic variants have low-
abundance scores. C Plot showing the correlation between toxicity and Rosetta
ΔΔG values for all missense variants. D Plot showing the correlation between

toxicity and GEMME scores for all missense variants. In (B–D), the correlations are
illustrated using 2D histograms consisting of hexagonal bins, with the number of
data points in each hexagon determining the color of the bin. The data point
densities are shown according to the color scales below each individual plot. CI,
bootstrapped 95% confidence interval. E The ASPA dimer structure (PDB: 2O53)
colored by the median toxicity score. The Zn2+ ions are marked as yellow spheres.
Note that toxicity is most pronounced in amino acid substitutions within regions
that are buried or located in the subunit-subunit interface compared to the surface.
Source data are provided as a Source Data file.
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Comparing the toxicity scores with the abundance scores
revealed that all toxic variants were low-abundance variants (Fig. 7B),
indicating that continued expression of some destabilized ASPA var-
iants is toxic, resulting in a gradual depletion of such variants from the
population. The abundance levelsmeasured in lowthroughputof toxic
variants are lower than for non-toxic variants (Supplementary Fig. 14).
This observed relation suggests that the toxicity scores also reflect
cellular abundance levels. Notably, the toxicity scores are observed to
resolve some of the low-abundance variants not resolved in the high-
throughput abundance screen, e.g. T26V, C152W, and P254F (com-
paring Fig. 2C and Supplementary Fig. 14). Thus, the toxicity scores
may provide a high-throughput measurement of cellular abundance
levels that complements the FACS-based abundance screen in the peak
around abundance score zero. Accordingly, we observe a correlation
(Fig. 7C) between variant toxicity and Rosetta ΔΔG values (Spearman’s
ρ = 0.53), indicating that toxic variants tend to be more thermo-
dynamically destabilized than non-toxic variants. In particular, many
toxic variants are highly destabilized in our assay. However, not all
variants with large positive ΔΔG values are toxic. Likewise, the toxic
variants also appeared more unfavorable in the GEMME-based evolu-
tionary conservation analyses (Fig. 7D). Most of the nonsense variants
were non-toxic (Fig. 7A and Supplementary Fig. 13), while generally of
low abundance (Fig. Fig. 2A, B). A side-by-side comparison of the
toxicity, abundance, RosettaΔΔG, andGEMMEmaps is provided in the
supplemental material (Supplementary Fig. 15). Similar to the abun-
dance map, the positions where most substitutions resulted in toxic
ASPA variants were found in regions buried within the ASPA structure
(Fig. 7E). Accordingly, we note a correlation (between the toxicity
score and the weighted contact number (WCN)) (Supplementary
Fig. 16) and a partial overlap between toxic positions and the mapped
degrons (Supplementary Fig. 15B). None of the benign variants were
toxic, while the pathogenic variants clustered into toxic and non-toxic
groups (Supplementary Fig. 17).

Canavan disease is a recessive disorder33, so this toxicity pheno-
type is unlikely to be directly relevant to the development of the dis-
ease. To examine this in more detail, we compared the gnomAD allele
frequencies of the toxic and non-toxic variants. None of the gnomAD
variants with a high allele frequency were toxic (Supplementary
Fig. 18A). Further, the distribution of allele frequencies of low-
abundance variants is similar irrespective of whether the variants
were toxic or not (Supplementary Fig. 18B). Hence, while we predict
that highly toxic VUS are likely to be pathogenic, the results suggest
that this is due to them having low abundance rather than directly due
to their toxicity in our assay.

Toxic, low-abundance variants trigger a stress response leading
to induction of HSP70
Based on the results above, we conclude that some of the thermo-
dynamically destabilized and low-abundance ASPA variants severely
reduce cellular fitness upon prolonged expression. To gain further
insight into the molecular origins of this effect, we compared the
transcriptomes of cells expressing the WT (non-toxic) and C152W
(toxic) variants by RNA sequencing. Principal component analysis
(PCA) revealed that the three independent WT samples clustered
together, whereas the three C152W samples were more spread out,
indicating a larger variation between the toxic samples (Supplemen-
tary Fig. 19A). Among the differentially expressed genes, we observed
the small heat-shock protein HSPB8 and the HSP70-type chaperone
HSPA1B as significantly upregulated in cells expressing C152W (Sup-
plementary Fig. 19B). Among the Gene Ontology (GO) terms that were
significantly enriched, we noted several related to cell stress and
apoptosis (Source Data File), indicating that the toxicity is linked to a
stress response caused by the degradation of thermodynamically
unstable ASPA variants. Therefore, we tested if the expression of
selected ASPA variants would activate the stress response pathway by

measuring the induction of the stress-responsive HSPA1B by reverse
transcription qPCR. Indeed, we find a correlation between abundance,
toxicity, and HSPA1B mRNA levels (Supplementary Fig. 19C–E), sug-
gesting that the reduced growth of cells expressing certain low-
abundance ASPA variants is connected with activation of the stress
response pathway, which in turn inhibits cell growth.

Discussion
Previously, we studied the protein quality control of the C152W variant
in yeast cells45, which have the advantage of being genetically tractable
allowing identification of the PQC components involved in C152W
folding anddegradation. Although the PQC system is highly conserved
across species, yeast—whichdoes not encodeanyorthologueofASPA—
is obviously an artificial system to analyze the PQC systemof relevance
for Canavan disease. In the present work, we instead use human
HEK293T cells. However, as these cells also do not express detectable
levels of ASPA, we cannot exclude that the PQC of ASPA would be
different in e.g. oligodendrocytes that appear to be the cells most
relevant for Canavan disease70.

In the present work, we probed the intimate relationship between
missense protein variants, thermodynamic folding stability, degrada-
tion, and toxicity. By draining the cell for resources and through the
formation of non-specific interactions, the expression of non-native
proteins has long been recognized to be toxic to cells71–73. However, in
most cases, studies on this have been limited to the expression of a
single toxic protein such as Huntingtin or α-synuclein, etc.74,75,
genetically linked to dominant diseases. Since Canavan disease is a
recessive disorder33, the toxicity of certain low-abundance ASPA var-
iants is unlikely to contribute to the disease, but rather a consequence
of the variants being overexpressed, which provides us with a glimpse
of how the PQC network operates. Some toxic and misfolded protein
species form aggregates, and although ASPA C152W, when expressed
in yeast cells, localizes to large cytosolic inclusions45, we do not
observe aggregates in the HEK293T cells. However, we cannot exclude
that smaller inclusions are formed, which may influence turnover and
toxicity. RNA sequencing revealed that the toxicC152Wvariant led to a
differential expression of genes involved in stress response and
apoptosis, including an upregulation of the stress-responsive HSP70-
type chaperone HSPA1B. As the HSPA1B induction correlated with a
reduced abundance and increased toxicity, this suggests that the
toxicity is caused by the presence of destabilized ASPA variants that
are prone to misfold and therefore rapidly turned over.

Most likely, the toxicity of low-abundant variants is not unique to
ASPA. In a parallel study, we analyzed the abundance of a saturated
library ofmissense variants in the protein Parkin76. For that protein, we
did not observe any toxic effects of low-abundance variants. It is
possible that the low-abundance ASPA variants are expressed at a
higher level than the Parkin variants, and therefore potentially bur-
dening the PQC system more severely. However, since Parkin is a
modular protein, composed of multiple smaller domains, while ASPA
is a large single-domain protein, it is also possible that ASPA unfolding
eventswill affect the protein globally and thus bemoredramatic than a
putative local unfolding event localized to a single domain in Parkin. In
agreement with this, we note that while most ASPA nonsense variants
are of low abundance, the toxic nonsense variants primarily cluster
towards the C-terminal region, indicating that the toxicity primarily
occurs when the bulk of ASPA (including multiple degrons) has been
produced.

Knowing that some variants can be toxic to the cells will be
important for other VAMP-seq screens and other implementations of
multiplex assessment of variant effects (MAVE) technologies. When
considering how toxicity could impact the abundance experiment, we
note the high density of variants around abundance score zero
(Fig. 2B) and the elevated uncertainty in this region (Supplementary
Fig. 2) may in part be a consequence of the growth effects because
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toxic variants are poorly represented in terms of the number of cells.
Thus, the average Spearman replica correlation of 951 non-toxic var-
iants (toxicity score <0.4) with abundance score <0.2 is 0.77, but only
0.09 for 1529 toxic variants (toxicity score >0.6) also with abundance
score <0.2. This substantial difference in replica correlations supports
that the toxicity causes poor resolution in the low-abundance region
also observed for the low-throughput validation experiments (Fig. 2C).
Thus, although the toxicity should not affect the abundance scores
directly, it may result in reduced resolution among low-abundance
variants because toxicity only affects low-abundance variants and
because the FACS gates are set to include the same number of cells in
each bin. For future VAMP-seq analyses, sorting into more bins may
increase the resolution of the low-abundance variants.

The observed correlation between protein abundance and pre-
dicted thermodynamic folding stability suggests that most low-
abundance ASPA variants are thermodynamically destabilized in
their structure. In turn, this will cause such variants tomore frequently
populate fully or partially unfolded states where regions that are
buried in the native conformation become exposed. Recent structural
studies on disease-linked variants in dihydrofolate reductase showed
that structural destabilization led to transient exposure of a PQC
degron57. We show that ASPA also contains multiple regions that lead
to degradation when artificially exposed by grafting them as peptides
onto GFP. Since most of these regions are buried in the native con-
formation and have sequence properties leading to high scores with
QCDPred, we suggest that these fragments work as PQC degrons.
Presumably, at least some of these degrons are involved in targeting
non-native ASPA variants for degradation via the UPS.

Although ASPA protein abundance to some degree appears to be
captured by the predicted changes in thermodynamic stability, we
note several outliers in the correlation between predicted ΔΔG values
and the abundance scores. Some of these could reflect experimental
noise or underlying biological effects that we do not control for, e.g.
introducing or destroying binding sites such as degrons or sites for
post-translational modifications. We note also that Rosetta is an
imperfect predictor of changes in thermodynamic stability77, and that
the relationship between thermodynamic protein stability and cellular
abundance is non-linear78,79. We hope that new developments in the
large-scale assessment of protein stability by experiments77 and
computation10, a better understanding of quality control degradation
sequences59, and additional multiplexed measurements of abundance
in eukaryotic cells will lead to improved predictors of cellular
abundance.

Although we find that HSP70 contributes to the ubiquitin-
dependent proteasomal turnover of many ASPA variants, we do not
presently know the identity of the UPS components, including E3s,
which mediate the degradation. Even though one candidate is the E3
ligase CHIP, which is known to target certain HSP70 clients for pro-
teasomal degradation80–82, data from yeast cells indicate a high level of
redundancy between the E3s linked to the degradation of PQC
substrates83–85. Accordingly, matching non-native proteins with their
corresponding PQC E3s is not straightforward, but highly important
since inhibiting such E3s should lead to increased levels of destabilized
variants. In turn, this could potentially broadly alleviate genetic dis-
orders where the variant proteins, albeit structurally destabilized, are
still functional. Indeed, many disease-linked protein missense variants
that are targeted for PQC-linked degradation are still, at least partially,
functional57,86,87, indicating that the PQC system is tightly tuned to root
out non-native protein species. An alternative approach would be to
develop small molecule stabilizers/correctors that through binding to
the native conformation could block PQC-linked degradation and
reactivate certain pathogenic variants. Indeed such drugs have been
successfully developed and implemented for cystic fibrosis88.

Gene therapy is currently one of the more promising attempts at
curing Canavan disease40–42,89. However, as the disease is highly

progressive, such an intervention would most likely need to be per-
formed early42–44. Although MAVE assays, like those presented here,
offer comprehensive genotype-phenotype information90, they are
unlikely to replace the diagnosis of Canavan disease which is currently
based on elevations in N-acetyl-aspartate levels91,92. In addition, since
pathogenic variants need not affect protein abundance, we note that
high-throughput mapping of ASPA enzyme activity would likely pro-
vide a more valuable dataset from a clinical perspective, albeit on its
own it would not directly inform on the molecular mechanism of
pathogenicity.

Methods
Plasmids and library creation
The wild-type ASPA cDNA and selected variants studied in low
throughput were generated by Genscript. The library cloning and
barcoding described below are essentially as previously described76.
The ASPA site-saturation mutagenesis library was purchased from
Twist Biosciences and resuspended in 50μL nuclease-free water to a
final concentration of 100ng/μL. Then, two independent 50μL reac-
tions with 1μg of backbone plasmid were digested at 37 °C for 1 h with
MluI-HF and EcoRI-HF (New England Biolabs). After heat inactivation
(65 °C, 20min), the products were purified following the manu-
facturer’s protocols by resolving on a 1% agarose gel with SYBR Safe
(Thermo Fisher Scientific), followed by gel extraction (Qiagen) and
cleanup (Zymo Clean and Concentrate) of the 5.3 kb band. The pro-
duct was assembled with the library oligonucleotide (diluted ten-fold)
in aGibson reaction (insert:backbonemolar ratio of 2:1) at 50 °C for 1 h.
The assembly products were then cleaned and eluted in 6μL water
(ZymoClean andConcentrate). Then, 1μL of Gibson assemblyproduct
was incubated with 25μL E. coli NEB-10β cells (New England Biolabs)
for 30min on wet ice, prior to electroporation (2 kV, 6ms). The cells
were resuspended in 975μL SOC (Sigma) immediately after electro-
poration and incubated at 37 °C for 1 h with gentle agitation. Subse-
quently, 1mLculturewas used to inoculate 99mL LBmedia containing
100μg/mL ampicillin and grown overnight at 37 °C. In addition, and
prior to the overnight growth, to estimate library coverage by colony
count, 100μL, 10μL, and 1μL sampleswere collected and spreadonLB
agar plates containing 100μg/mL ampicillin. After the overnight
growth at 37 °C, the cells were harvested by centrifugation (30min,
4300× g) and plasmid purified by midi prep (Millipore Sigma).

Library barcoding
For the barcoding of individual variants, 1μg of the library plasmidwas
digested at 37 °C for 5 h with NdeI and SacI-HF (New England Biolabs).
Then, 1μL rSAP (New England Biolabs) was added for 30min. at 37 °C,
followed by a 20min heat inactivation at 65 °C. The digested library
was purified by 1% agarose gel electrophoresis, followed by gel
extraction (Qiagen). Next, the library vectors were further purified and
eluted in 10μL water using the Zymo Clean and Concentrate kit.

The barcoding oligonucleotides, which contained 18 degenerate
nucleotides, (IDT) were resuspended in water to a concentration of
10μM. In order to anneal the barcode oligo, 1μL of oligo was added to
a mix of 1μL 10μM MAC356 primer, 4μL CutSmart buffer (New Eng-
land Biolabs), and 34μLwater. This reactionwas incubated at 98 °C for
3min, and then ramped down at −0.1 °C/s to 25 °C. To fill in the bar-
code oligo, 1.35μL of 1mM dNTPs and 0.8μL Klenow exo-polymerase
(New England Biolabs) were added and incubated at 25 °C for 15min,
70 °C for 20min, then ramped down to 37 °C at −0.1 °C/s. Once the
temperature was 37 °C, the product was digested for 1 h with 1μL each
ofNdeI, SacI-HF, andCutSmart buffer. Lastly, the digestedproductwas
run on a 2% agarose gel with 1× SYBR Safe (Thermo Fisher Scientific)
extracted by a gel extraction kit (Qiagen) and purified further (Zymo
Clean and Concentrate), followed by elution in 30 μL water.

To ligate the barcoded oligonucleotides, a ratio of 7:1 (oligo:li-
brary) was used overnight at 16 °C with T4 DNA ligase (New England
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Biolabs). The products were purified and eluted in 6μL water (Zymo
Clean and Concentrate). Using the same procedure as above, E. coli
NEB-10β cells were electroporated with 1μL of ligation product. To
bottleneck the library-barcode ligation product, electroporation
recovery volumes of 500μL, 250μL, 125μL, and 40μL were separately
used to inoculate 50mL LB media containing 100μg/mL ampicillin.
Then, 100μL, 10μL, and 1μL samples were spread on LB agar plates
containing 100μg/mL ampicillin, for each of the 50mL cultures, to
estimate library coverage. After growth overnight at 37 °C, the library
coverage was estimated by counting colony-forming units (CFU). After
overnight growth at 37 °C, each of the 50mL cultures was centrifuged
(30min, 4300 × g) and plasmid purified by midi prep (Millipore
Sigma). The bottlenecked library displayed an estimated 16.9 fold
barcode/variant coverage.

Subassembly of the barcode-variant map by PacBio sequencing
Using the enzymes XmaI and NdeI (New England Biolabs), 5μg of
barcoded library was digested in CutSmart buffer at 37 °C for 5 h. This
was followed by heat inactivation at 65 °C for 20min. The digested
products were then purified with AMPure PB beads (Pacific Bios-
ciences). Library preparation and DNA sequencing were performed by
the University of Washington PacBio Sequencing Services. Through-
out, DNA quantity was tested with fluorometry on a DS-11 FX instru-
ment (DeNovix) with the Qubit dsDNA HS Assay Kit (Thermo Fisher
Scientific). Sizes were analyzed on a 2100 Bioanalyzer (Agilent Tech-
nologies) with the High Sensitivity DNA Kit. SMRTbell sequencing
libraries were generated using the protocol ‘Procedure & Checklist -
Preparing SMRTbell libraries using PacBio Barcoded Universal Primers
for Multiplexing Amplicons’ and the SMRTbell Express Template Prep
Kit 2.0. The SMRTbell libraries were size-selected to remove backbone
fragments using the SageELF (SageScience). The libraries were bound
with Sequencing Primer v4 and Sequel II Polymerase v2.1 and
sequenced on one SMRT Cell 8M using Sequencing Plate v2.0, diffu-
sion loading, pre-extension for 1 h, and a movie time of 30 h. Calcula-
tion of CCS consensus was performed using SMRT Link version 9.0 set
at the default settings. Only reads passing an estimated quality filter of
≥Q20 were selected as “HiFi” reads.

Finally, the barcoded libraries were pooled by normalizing mass
to the number of constructs contained in each pool. Then, the library
was bound with Sequencing Primer v4 and Sequel II Polymerase v2.0.
Sequencing was performed using SMRT Cells 8M using Sequencing
Plate v2.0, diffusion loading, a 90min pre-extension, and a 30 hmovie
time. Further data were collected after SMRTbell Cleanup Kit v2
treatment to remove imperfect templates, with Sequel Polymerase
v2.2. Adaptive loading with a target of 0.85 and a 1.3 h pre-extension
time was used. CCS consensus and demultiplexing were performed
using SMRT Link version 10.2 set at default. Reads that passed an
estimatedquality filter of≥Q20were selected formapping barcodes to
variants.

PacBio reads were filtered for reads with less than ten CSS passes
using samtools version 1.1693 and aligned to the barcode-GFP-ASPA
construct using BWA version 0.7.1794. The barcode and ASPA sequen-
ces were extracted using cutadapt version 3.295, see pacbio/pacbio_a-
lign.sh available on GitHub. Reads containing ten or more DNA
substitutions or any indels were filtered out. For 1,436 barcodes (1%),
multiple ASPA variants mapped to the same barcode but with the
majority mapping to a dominant variant, on average 89% of reads of
that barcode, which was then used. This resulted in a barcode map of
134,176 unique barcodes, see pacbio/barcode_map.r on GitHub. Of
these, 5970 are wild type, 6122 are synonymous wild type, and 119,301
are single amino acid variants including 5% nonsense variants. More
than 98% of all possible single amino acid substitutions (incl. stop) are
covered by this library and 301 of 313 positions are fully covered. Only
position 1, 188, 189, 242, and 243 were missing more than 2 substitu-
tions and the majority of these were not synthesized in the library.

Code is available at https://github.com/KULL-Centre/_2023_
Groenbaek-Thygesen_ASPA_MAVE and sequencing reads at https://
doi.org/10.17894/ucph.3e05fe3a-4d7e-4d70-9056-18ed999e7e1e.

Cell propagation, transfection, and recombination
Experiments were performed using HEK293T landing pad cell line
TetBxb1BFPiCasp9Clone 12, whichwas characterizedpreviously47. The
cellsweremaintained inDulbecco’sModified Eagle´sMedium (DMEM)
(Sigma-Aldrich) supplemented with 10% fetal bovine serum (Sigma),
64.43mM Penicillin G (AppliChem), 27.45mM Streptomycin sulfate
(AppliChem), and 2mM glutamine (Sigma), with 2μg/mL doxycycline
(Dox) (Sigma-Aldrich), and split at around 80–90% confluency. For the
recombination of libraries, 3.5 million cells were seeded out into a
10 cm plate with 10mL DMEM without doxycycline. The next day, the
cells were transfected as follows: In one tube, 7.1μg library DNA and
0.48μg pNLS-bxb1-recombinase were mixed with OptiMEM (Gibco) in
a total volume of 710μL. In another tube, 28.5 μL Fugene HD (Pro-
mega) was added to 685μL OptiMEM and mixed gently. The two
solutions were mixed gently by pipetting and incubated for 15min
before being added to the cells in 10 cm plates. Approximately 48 h
later, 2μg/ml doxycycline and 10 nM AP1903 (MedChemExpress) was
added. The library was grown for 5 days in doxycycline before FACS
profiling/sorting. A minimum of 106 cells, corresponding to approxi-
mately 150-fold coverage of the total number of variants, were main-
tained in the population at all times following library recombination.

Microscopy
Live cell fluorescence microscopy was performed using a Zeiss Axio-
Vert microscope equipped with a digital camera (Carl Zeiss AxioCam
ICm1). The following excitation and emission filters were used: BFP
(excitation: 390 ± 18 nm, emission: 452 ± 48 nm), GFP (excitation:
475 ± 28 nm, emission: 525 ± 48 nm), mCherry (excitation: 575 ± 25 nm,
emission: 620 ± 30nm).

Solubility of ASPA variants
The solubility experiments were performed as previously described96.
Briefly, transfected cells were lysed in ice-cold buffer A (30mM Tris/
HCl, 100mM NaCl, 5mM EDTA, 1mM PMSF, and complete protease
inhibitor tablet (Roche), pH 7.5) followed by sonication (3 times, 20 s)
on ice. The resulting whole-cell lysates were then centrifuged for
30min at 15,000 × g at 4 °C. The pellet and supernatant fractions were
separated. Then, the pellet was resuspended in buffer A and the
volume of this solution was set to be identical to the volume of the
supernatant. Finally, SDS sample buffer was added, and the samples
were analyzed by SDS-PAGE and western blotting.

SDS-PAGE and western blotting
Cells were washed in PBS and then harvested in SDS sample buffer (3%
SDS, 93mM Tris/HCl pH 6.8, 18% glycerol, 0.02% Bromophenol blue,
2.5% (v/v) 2-mercaptoethanol) and boiled at 100 °C for 2min. The
samples were resolved on 12.5% acrylamide separation gels with a 3%
(w/v) stacking gel using a constant voltage of 125 V for approximately
1 h in running buffer (50mM Tris, 0.4M glycine, 0.1% SDS). Next, the
proteins were transferred onto a nitrocellulose membrane (pore size
0.2μm) (Advantec), in-between filter papers (Frisenette) soaked in
transfer buffer (50mM Tris-base, 100mM glycine, 0.01% SDS, 20% (v/
v) ethanol), at 100mAmp/gel for 1.5 h. Transferred proteins were
stained in Ponceau S (0.1% Ponceau S (Sigma-Aldrich), 5% (v/v) acetic
acid), Excess Ponceau was washed away with PBS (0.137M NaCl,
2.68mM KCl, 6.46mM Na2HPO4, 1.47mM KH2PO4, pH 7.4), before
areas of interest were excised out of the membrane. The excised
membrane pieces were incubated in blotto buffer (5% fat-free milk
powder in PBS) for at least 30min, and incubated with primary anti-
body overnight. Following 3 rounds of 10min incubations in wash
buffer (50mM Tris/HCl pH 7.4, 150mM NaCl, 0.01% (v/v) Tween-20)
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the blots were incubated in horse radish peroxidase (HRP)-conjugated
secondary antibodies for 1 h. After, 3 rounds of 10min incubations in
wash buffer, the blots were developed using chemiluminescence (GE
Healthcare, 1059243, 1059250) on a BioRad ChemiDoc MP Imaging
System imager (BioRad, 12003154). The primary antibodies used and
their sources were: rabbit anti-ASPA (Thermo Fisher Scientific, PA5-
29180) (diluted 1:1000), mouse anti-β-actin (Sigma-Aldrich, A5441)
(diluted 1:1000), rat anti-GFP (Chromotek, 3H9) (diluted 1:1000),
mouse anti-RFP (Chromotek, 6G6) (diluted: 1:1000), rabbit anti-
GAPDH (Cell Signaling Technology, 14C10) (diluted 1:1000). The sec-
ondary antibodies and their sourceswere:HRP-anti-rat IgG (Invitrogen,
31470),HRP-anti-mouse IgG (Dako, P0260), HRP-anti-rabbit IgG (Dako,
P0448), all diluted 1:5000.

Cell sorting
Perturbations were performed as follows: For temperature, the cells
were incubated at 29 °C or 39.5 °C for 16 h prior to harvesting for flow
cytometry profiling. Cells (at 37 °C) were treated with 10μM bortezo-
mib (LC Laboratories), 20μM chloroquine (Sigma-Aldrich), or 0.5μM
or 1μM MLN7243 (MedChemExpress) for 16 h prior to harvesting for
flow cytometry. YM01 (StressMarq Bioscience) was used at 2.5μM and
N-acetyl-aspartate (Sigma-Aldrich) at 6mM, and added 24 h prior to
harvesting for flow cytometry. For flow cytometry, cells were first
washed with PBS and trypsinized (0.25% (w/v) trypsin (Gibco), 10mM
Na-citrate (Sigma-Aldrich), 102.7mMNaCl, 0.001% phenol red (Merck,
143-74-8), pH 7.8) for 5min at 37 °C. The dislodged cells were then
washed by centrifugation in PBS and resuspended in 5% (v/v) fetal
bovine serum (Sigma-Aldrich, F7524) in PBS. Then the cells were pas-
sed through a 50 µm filter (ctsv, 150–47S) into 5mL tubes.

Cells were analyzed on a BD FACSJazz (BD Biosciences). Data was
collected and analyzed using FlowJo (v10.7.2, BD), using the following
gates: Live cells, singlet cells, BFP negative, and mCherry positive. We
include an example of the used gating strategy (Supplemen-
tary Fig. 20).

VAMP seq
For VAMP seq46, cells were grown and transfected as described above.
After 5 days of treatment with doxycycline, the cells were washed with
PBS, trypsinized for 5min at 37 °C, and resuspended inmedia. The cells
were thenwashedby centrifugation in PBS and resuspended in 5% (v/v)
fetal bovine serum in PBS. Sorting was performedwith a Cell Sorter BD
FACS Aria III (BD Biosciences), directly based on the GFP:mCherry
ratio. In total 1.1 million cells were sorted into each of four bins. We
include an example of the used gating strategy (Supplemen-
tary Fig. 20).

The cells were collected in tubes, pre-coated in 5% (v/v) fetal
bovine serum in PBS overnight, and containing 1mL media without
doxycycline. Both the sample tube and the collecting tubeswere kept
at room temperature. After each sorting, the cells were harvested by
centrifugation and resuspended in freshmedia. The sorted cells were
grown in 6 cm plates for 2 days (until confluent), before being
resuspended and moved to 10 cm plates to grow for another 2 days
(until confluent). Next, the cells were dislodged using trypsin (0.25%
(w/v) trypsin (Gibco), 10mM Na-citrate (Sigma-Aldrich), 102.7mM
NaCl, 0.001% phenol red (Merck, 143-74-8), pH 7.8) for 5min at 37 °C,
resuspended in media, before 5 million cells from each bin were
isolated and centrifuged. The supernatant was aspirated and the cell
pellet was stored at −80 °C for later genomic DNA extraction.

Toxicity screen
Approximately 48h after transfection, doxycycline and AP1903 were
added to the cultures as previously described. Samples of 5 million
cells were taken on days 0, 5, 7, and 9 after the introduction of dox-
ycycline, as described for the VAMP-seq cells. For the day 0 sample,

cells were treated with doxycycline and AP1903 for 24 h to select
recombinant cells, after which new media without doxycycline was
added. The cells were grown until confluent and then frozen down.

Genomic DNA extraction and sequencing
Genomic DNA extraction was performed using a Qiagen DNeasy blood
& tissue kit (Cat. No. 69506). Two separate purifications were per-
formed for each sample, to be used as technical replicates in the post-
sequence analysis.

For each genomic DNA sample, an adapter PCR was performed as
follows: All 8 tubes of a 50 µL PCR strip tube (VWR, catalog # 490003-
606) were filled with 2500 ng DNA template, 25 µL 2× Q5 high fidelity
Mastermix (New England Biolabs, M0492S), 0.5 µM forward primer
(LC1020), 0.5 µM reverse primer (LC1031) and PCR-grade water to
reach a total volumeof 50 µL. All primers are listed in the supplemental
material (Source Data File). Samples were denatured at 98 °C (30 s)
followed by 7 cycles of PCR performed at temperatures: 98 °C (10 s),
60 °C (20 s), 72 °C (10 s), and lastly a final elongation step at 72 °C
(2min). The content of the PCR tubes was pooled and mixed with an
equal volume of AMPure XP beads (Beckman Coulter, A63881). After
5min incubation, the beads were pelleted and the supernatant aspi-
rated, followed by a wash in 70% (v/v) ethanol, and elution in 21μL
PCR-grade water.

Indexing PCRs were performed by mixing: 4.1 µL PCR-grade
water, 5 µL 5 µM forward primer, 5 µL 5 µM reverse primer, 25 µL 2×Q5
HF Mastermix, 2.5 µL 10× SYBR Green, 8.4 µL DNA template. Then,
after initial denaturing at 98 °C (30 s), 14 PCR cycles were run at the
following temperatures: 98 °C (10 s), 63 °C (20 s), 72 °C (15 s) fol-
lowed by final elongation at 72 °C (2min). Next, samples were mixed
with DNA Gel Loading Dye (Thermo Fisher Scientific) and loaded
onto a 2% agarose gel (2% (w/v)) agarose in TAE-buffer (40mM Tris,
20mM acetic acid, 1mM EDTA with 0.01% (v/v) SYBR safe DNA gel
stain (Thermo Fisher Scientific, S33102)). Electrophoresis was per-
formed at 100V for 50min. Bands were visualized and excised using
a Chemidoc imaging system (BioRad). The specific PCR product was
extracted from the gel using the GeneJET gel extraction kit (Thermo
Fisher Scientific, K0692)with a final elution in 30 µL PCR-gradewater.
The DNA concentration of the eluates was measured using Qubit
dsDNAHigh Sensitivity (Thermo Fisher Scientific, Q32851) in order to
normalize the pooled samples. The library was sequenced using a TG
NextSeq 500/550 High Output Kit v2.5 (75 Cycles) (Illumina,
20024911). Customprimers were spiked in with the Illumina primers.
Demultiplexing was performed using the BaseSpace software
(Illumina).

VAMP-seq data analyses
Illumina reads from the abundance and toxicity screens were cleaned
for adapters using cutadapt95 and paired-end reads were joined using
fastq-join from ea-utils97, see illumina/call_zerotol_paired.sh available
on GitHub. Only barcodes with an exact match to the barcode map
were counted, see illumina/merge_counts.r.

Read counts of barcodesweremerged for amino acid variants and
the technical replicates of each FACS bin (abundance) or time point
(toxicity) and normalized to frequencies without pseudo counts. After
merging, a score was calculated for variants with 20 or more reads
observed per replica.

For the abundance scores, a protein stability index (PSI) was cal-
culated per variant for each biological and FACS replica:

PSIi =

P
g g × f i,g
P

g f i,g
ð1Þ

where fi,g is the frequency of variant i in FACS gate g. The reported
scores are the mean and the standard deviation of PSI over replicates
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normalized using:

abundance score=
PSIi � PSIstop
PSIWT � PSIstop

ð2Þ

where PSIWT is the PSI value of the wild-type amino acid sequence and
PSIstop is the median PSI value of stop substitutions per amino acid
residue, both averaged over all replicates, see illumine/abundance.r
available on GitHub. The average Pearson correlation of scores
between replicas is 0.99 (range: 0.98–0.99) and the mean absolute
error 0.05 in normalized units (Supplementary Fig. 2). All VAMP-seq
data are available onGitHub and included in the supplementalmaterial
(Source Data File).

Toxicity data analysis
The toxicity scores were calculated as the slope (α) from a linear
regression of the variant frequency at each time point. Comparable
slopes are achieved by normalizing the frequencies for variant, i, at
each time point, t, like a distribution of frequencies:

f i,tP
t f i,t

ð3Þ

Since all sequenced pools are based on the same number of cells,
we do not normalize further. This means that non-toxic variants are
expected to be slightly enriched, as the complexity of the library
decreases with time. We abstain from using weighted least squares
because of the inherent correlation between fi,t and the Poisson
uncertainty of this quantity which means that the expected low fre-
quencies of toxic variants at later time points will always be down-
weighted (or even ignored since pseudo counts were not applied). The
reported scores are the mean and standard deviation of slopes over
replicates normalized according to:

toxicity score=
αi � αWT

αC152W � αWT
ð4Þ

such that wild type has a toxicity score of zero and the toxic C152W
variant has a toxicity score of one, see illumine/toxicity.r available on
GitHub. The toxicity data are available on GitHub and included in the
supplemental material (Source Data File).

Degron cloning
Theprotein sequences of seven proteins, including ASPA,were used to
construct the protein-tile library presented here and in a separate
manuscript76. The DNA sequences of these protein sequences were
optimized with the IDT codon optimization tool and then split into 72
nucleotides (nt) long oligonucleotides overlapping by 36 nt except for
the C-terminal tile which may have a longer overlap. To avoid
unwanted PCR products produced due to template switching over the
overlapping parts of the tiles, the tiles were split into odd tiles (Odds),
even tiles (Evens), and C-terminal tiles (CT) based on the position they
occupy in the tile series of each protein. Two 30 nt long adapters were
attached to the 72 nt long sequences to serve as the complementary
overlaps for Gibson assembly cloning resulting in 132 nt long oligos.
Alongwith the 132 nt oligos three 126 nt long control oligos weremade
as well, each consisting of a 66 nt long oligo flanked by the same
complementary Gibson overlaps. The three control oligos used were
based on the APPY degron (-RLLL), which is 22 aa long sequence, and
two variants that are known to mildly (-RAAA) or strongly (-DAAA)
stabilize the APPY degron58. The 132 nt long oligos library, and the
three control oligos, were ordered from IDT as three separate libraries
in a way that excludes the presence of Odds, Evens, and CT oligos of
the same protein in the same library tube, thus producing three

libraries referred to asOdds (complexity = 93), Evens (complexity = 91)
and CT (complexity = 10).

The oligosweremade into double-strandedDNA and amplified by
the primers VV3 and VV4 using the following program: 98 °C for 30 s
and then 98 °C for 10 s, 69 °C for 30 s 72 °C for 10 s for 2 cycles in total,
followedby afinal 72 °C incubation for 2min. ThePCRproductwas run
on a 2% agarose gel with 1× SYBR Safe (Thermo Fisher Scientific) and
the PCRproductbandwas extractedwith theGeneJet gel extraction kit
(Thermo Fisher Scientific).

The attB-EGFP-PTEN-IRESmCherry_562Bgl46 vector backbone was
linearized by inverse PCR with primers VV1 and VV2. The reaction was
run with 5 ng of the vector DNA as a template with the following pro-
gram: 98 °C for 30 s and then 98 °C for 5 s, 69 °C for 30 s 72 °C for
3min, and 40 s for 30 cycles in total, followed by a final 72 °C incu-
bation for 5min. The PCR product was cleaned and concentrated with
the Zymo Research kit following themanufacturer’s protocol and then
digested by DpnI (New England BioLabs) overnight. The digestion
reaction product was run on a 1% agarose gel with 1x SYBR Safe
(Thermo Fisher Scientific) and the digested band was extracted from
the gel with the GeneJet gel extraction kit (Thermo Fisher Scientific).

The double-stranded oligos from all three libraries (Odds, Evens,
and CT) were assembled into the attB-EGFP-PTEN-
IRESmCherry_562Bgl linearized vector by performing Gibson reac-
tion mixing the oligos with the vector in a 4:1 molar ratio. The Gibson
reaction was then cleaned and concentrated with the Zymo Research
kit and transformed by electroporation into NEB-10β electro-compe-
tent E. coli cells with 2 kV. The electroporated cells were incubated for
1 h at 37 °C in 1mL and then 100μL of a 100-fold dilutionwas plated on
LB-ampicillin plates. The rest (900μL) of the transformed cells were
inoculated in 100mL LB-ampicillin liquid cultures and incubated
overnight. After making sure that the CFUs on the plates were at least
100× of the complexity of each library, plasmid DNA was extracted
from 100mL cultures using a midi prep kit (Millipore Sigma), and the
DNA concentration was determined by NanoDrop spectrometer
ND-1000.

Tile scoring
The tiles were integrated into the HEK 293 T TetBxb1BFPiCasp9 Clone
12 cell line as full-length ASPA, and sorted into 4 bins based on their
GFP:mCherry ratio. DNA was extracted from the bins and amplicons
were prepared for downstream Illumina high-throughput sequencing.
Ampliconswere amplifiedwith primers VV40S and VV2S. The program
of the first PCR (adapter PCR) was the following: initial denaturation
wasperformedat 98 °C for 30 s; followedby7 cycles of denaturation at
98 °C for 10 s, annealing at 65.5 °C for 10 s, and extension at 72 °C for
50 s; a final extension at 72 °C for 2min. Afterwards, the product was
purified by Ampure XP beads (Beckman Coulter) (0.8:1 ratio) (beads:
PCR product) and the Illumina cluster generation sequences were
added with a second PCR (indexing PCR) with the primers gDNA_2nd
and JS_R. The PCRprogramused for the secondPCR is as follows: initial
denaturation at 98 °C for 30 s; followed by 16 cycles of denaturation at
98 °C for 10 s, annealing at 63.5 °C for 10 s, and extension at 72 °C for
10 s. The amplicons were sequenced by a NextSeq 550 sequencer with
a NextSeq 500/550 Mid Output v2.5 300 cycle kit (Illumina) with cus-
tom sequencing primers VV16 and VV18 for read 1 and read 2 (paired-
end). The indices were readwith the primers VV19 and VV21 for index 1
and index 2 respectively.

Similar to the processing of reads in the VAMP-seq experiment,
the tile reads were cleaned for adapter sequences using cutadapt95 and
paired-end reads were joined using fastq-join from ea-utils97. Only
barcodes with an exact match to the barcode map were counted. If
tiles from theOdds, Evens, or CT libraries were observed in a sorting of
a different library, thesewere assumed to be non-sorted contaminants
and ignored. Technical replicates of each FACS bin were merged and
normalized to frequencies without pseudo counts. For each library,
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biological, and FACS replicas, a tile stability index (TSI) was calculated
per tile using:

TSIt =

P
g g × f t,g
P

g f t,g
ð5Þ

Where ft,g is the frequency of tile t in FACS gate g. Two of the APPY-
based control tiles, RLLL and DAAA, present in all sequenced pools
were used to renormalize the Evens andCT libraries tomatch theTSI of
the control tiles to the Odds library:

TSIeven,normt =0:075+0:9018*TSIevent ð6Þ

TSIct,normt =0:5895+0:5570*TSIctt ð7Þ

Since the complexity of the libraries is relatively low, each tile is
covered by more than 3500 observed reads per technical replicate on
average. Thus 3 biological and 2 FACS replicates for each of the 3
libraries reproduced TSI scores very well with a minimum Pearson
correlation of 0.97. The standard deviation over replicates is reported
as an error estimate. The tile scores are available on the GitHub
repository of this paper and the code is available with the original
report of this experiment76.

Evolutionary conservation scores
Evolutionary distance from the WT sequence was calculated in silico
for all the ASPA variants using information from evolutionary
sequence conservation. We generated a multiple sequence alignment
(MSA) of ASPA homologs using HHblits98 with an E-value threshold of
10−20. The full ASPA MSA included 1102 sequences but was reduced to
757 homologs by filtering out sequences with more than 50% gaps.
Using the MSA information, we calculated evolutionary conservation
scores using the Global Epistatic Model for predicting Mutational
Effects (GEMME) v1.0 software54.

In silico thermodynamic stability predictions
Changes in thermodynamic stability (ΔΔG) were predicted using
Rosetta (GitHub SHA1 99d33ec59ce9fcecc5e4f3800c778a54afdf8504)
with the Cartesian ddG protocol53 on ASPA crystal structures 2O53,
using only the chain A for the monomeric evaluation and both the
chains (AB) for the dimeric evaluation. Non-protein atoms were
removed from the crystal structure except for the zinc ion that was
kept in the dimer calculations. All the ΔΔG values obtained from
Rosetta were divided by 2.9 to bring them from Rosetta energy units
onto a scale corresponding to kcal/mol53 and truncated to the range
0–5 kcal/mol.

RNA sequencing and RT-qPCR
After 5 days of induced protein expression using doxycycline, viable,
singlet, mCherry-positive cells were sorted using a BD FACSJazz (BD
Biosciences).

For the qPCR, RNA was purified from samples containing more
than 500,000 cells using anRNeasy kit (Qiagen) following the protocol
without the optional on-column DNase digestion step. DNA digestion
was performed on 1μg nucleic acid using DNase I, RNase-free (Thermo
Fisher Scientific) as described by the manufacturer. 1 U/µL RiboLock
RNase Inhibitor (Thermo Fisher Scientific), was included to prevent
RNA degradation. Subsequently, reverse transcription was performed
using Maxima H Minus Reverse Transcriptase (Thermo Fisher Scien-
tific), yielding a 20μL cDNA sample. Of these, 1μL was mixed with
12.5 μL Maxima SYBR Green/ROX qPCR Master Mix (2X) (Thermo
Fisher Scientific), primers at a final concentration of 0.3μM for either
HSPA1A/B or β-actin and water for a final volumeof 25μL. The samples
were denatured at 95 °C (10min), followed by 40 cycles performed at

the temperatures: 95 °C (15 s), 59 °C (30 s), and 72 °C (30 s). The mean
of 3 replicates (not differing by more than 0.5 cycles) was calculated
and normalized to β-actin. Subsequently, samples were normalized to
a WT sample included in each PCR run. In total, 3 biological replicates
were included per ASPA variant.

For the RNA sequencing, total RNAwas isolated and purified from
more than 1.5 million sorted cells using the GeneJET RNA Purification
Kit (Thermo Fisher Scientific) according to the manufacturer’s
instructions. Genomic DNA was removed from 5μg total RNA
according to the manufacturer’s instruction in the GeneJET RNA Pur-
ification Kit (Thermo Fisher Scientific). RNA samples of more than
2.5μg were shipped to BGI (Hong Kong). The RNA was rRNA depleted
and sequenced using DNBSEQ by BGI. The RNA sequencing was per-
formed with three independent repeats (separate transfections) of
each condition (WT and C152W).

RNA sequencing data analysis
Quality control of sequence reads was done using the tools “FastQC”
v0.11.7 (), “RSeQC” v2.6.499, and “fastq_screen” v0.11.4 (https://www.
bioinformatics.babraham.ac.uk/projects/fastq_screen/). Low-quality
bases and the first 12 bases and reads shorter than 25 nt were
removed with “Trimmomatic” v0.39100 using settings “HEADCROP:12
LEADING:3 SLIDINGWINDOW:4:15 MINLEN:35”. Reads were mapped
using “STAR” v2.7.3a101 against the human genome (hg38). Up to two
mismatches were allowed during the mapping, and the minimum
number of overlap bases to trigger mates merging and realignment
was set to five. Otherwise, default settings were used. Duplicate reads
were also removed with the bamRemoveDuplicatesType “UniqueI-
dentical” option in “STAR”. The “featureCounts” function of the “Rsu-
bread” R package v2.2.6102 was used to quantify reads in exons. The
Gencode v38 comprehensive gene annotation including all genomic
regions was used to assign reads to genes.

The “edgeR” v3.30.6 software103 was used to perform adifferential
expression analysis. For this purpose, first, a model was defined indi-
cating the experimental conditions. Library normalization factorswere
calculated using the “calcNormFactors” function with the “TMM”

algorithm. Tag-wise dispersion was calculated using the “estimate-
Disp” function with “robust = TRUE”. A gene-wise generalized linear
model was fit with “glmQLFit”. Finally, differential gene usage was
assessed using “glmQLFTest”. The resulting p-values were corrected
for multiple testing using the “Benjamini–Hochberg” method.

Statistics and reproducibility
Unless otherwise stated, all experiments were repeated independently
at least three times.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited on GitHub:
https://github.com/KULL-Centre/_2023_Groenbaek-Thygesen_ASPA_
MAVE (https://doi.org/10.5281/zenodo.8382504). The DNA sequen-
cing data have been deposited at the Gene ExpressionOmnibus (GEO),
accession code: GSE254639. Abundance and toxicity scores are also
deposited at MaveDB (https://www.mavedb.org) under accession
number urn:mavedb:00000657-a [https://www.mavedb.org/#/
experiments/urn:mavedb:00000657-a]. Sequencing reads for the
abundance and toxicity scores are available at https://doi.org/10.
17894/ucph.3e05fe3a-4d7e-4d70-9056-18ed999e7e1e. The RNA seq.
data have been uploaded to Gene Expression Omnibus (GEO): https://
www.ncbi.nlm.nih.gov/geo/ (accession number: GSE232399; samples
GSM7329952-57). The processed data are available in the source data
file providedwith this paper. Source data are providedwith this paper.
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Code availability
The software used for this article is available at https://github.com/
KULL-Centre/_2023_Groenbaek-Thygesen_ASPA_MAVE (https://doi.
org/10.5281/zenodo.8382504).
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