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Benchmarking of methods for DNA
methylome deconvolution

Kobe De Ridder 1, Huiwen Che 1, Kaat Leroy 1 & Bernard Thienpont 1,2,3

Defining the number and abundance of different cell types in tissues is
important for understanding diseasemechanisms as well as for diagnostic and
prognostic purposes. Typically, this is achieved by immunohistological ana-
lyses, cell sorting, or single-cell RNA-sequencing. Alternatively, cell-specific
DNA methylome information can be leveraged to deconvolve cell fractions
from a bulk DNA mixture. However, comprehensive benchmarking of decon-
volution methods and modalities was not yet performed. Here we evaluate 16
deconvolution algorithms, developed either specifically for DNA methylome
data or more generically. We assess the performance of these algorithms, and
the effect of normalization methods, while modeling variables that impact
deconvolution performance, including cell abundance, cell type similarity,
reference panel size, method for methylome profiling (array or sequencing),
and technical variation. We observe differences in algorithm performance
depending on each these variables, emphasizing the need for tailoring
deconvolution analyses. The complexity of the reference, marker selection
method, number of marker loci and, for sequencing-based assays, sequencing
depth have a marked influence on performance. By developing handles to
select the optimal analysis configuration, we provide a valuable source of
information for studies aiming to deconvolve array- or sequencing-based
methylation data.

Profiling thenumber and abundanceofdifferent cell types in tissues
is important for research into disease mechanisms as well as for
diagnostic and prognostic purposes. For instance, the stromal cell
composition of a tumor predicts response to therapy and patient
survival, and provides insights into drug resistance mechanisms1–3.
Typically, cell fractions in tissue are determined using immunohis-
tological analyses, cell sorting, or single-cell RNA-sequencing.
Though valuable in specific settings, these techniques are either
expensive and time-consuming, or limited in sensitivity by a
restrictive availability and multiplexing ability of highly specific
antibodies4–6. Additionally, they are not applicable when querying
the abundance of tissues- or cells-of-origin in a complex mixture of
nucleic acids, as found for example in blood plasma under the form
of cell-free DNA or RNA7–12.

A valuable alternative is provided by techniques that determine
the individual cell types contributing to amixture, by decomposing the
signal derived from this mixture into its constituent signals, a proce-
dure called “deconvolution”13–16. Deconvolution is often applied to
bulk transcriptomes, with expression of cell-type-specific marker
genes reflecting the contribution of that cell type to the bulk profile. A
plethora of deconvolution methods exist, and a recent benchmarking
study on transcriptomedeconvolution demonstrated that they display
a variable performance17. Although transcriptomes can indeed reveal
cell-type compositions, they are inherently variable between samples
and individuals due to variations in RNA quality. Additionally, tran-
scriptional activity is dependent on cell type. Different cell types hence
contribute to a varying degree to the total RNA content of a bulk
sample18–20.
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DNA methylomes are a frequently used alternative data source.
Like gene expression, DNA methylation patterns are cell-type specific
and amenable to high-throughput profiling21–25. They however possess
a few advantages for deconvolution. Firstly, similar to marker genes,
differential methylation at selected CpGs can serve as a cell-type-
specific marker, but there are vastly more CpGs than expressed genes
that can be used for deconvolution. Secondly, DNA methylation is
binary, being either present or absent at a given locus in contrast to the
continuous distribution of RNA transcription, rendering deconvolu-
tion more straightforward. Thirdly, assuming ploidy is comparable
between the cell types, each cell will provide an equal contribution to
the mixture, in contrast to the transcriptional magnitude-dependent
contribution of cells in bulk transcriptomes, with some cell types
containing orders of magnitude more RNA than others. A few studies
on benchmarking of reference-based DNAmethylation deconvolution
have been described. These compare a limited number (4–6) of
reference-based deconvolution methods and assess a limited set of
variables that may impact deconvolution performance26,27.

We here comprehensively evaluate 16 deconvolution algorithms,
developed either specifically for DNA methylome data or for tran-
scriptome data but having a generic basis. Different normalization
methods are applied and tested on array- and sequencing-based DNA
methylation profiles. We also assess the impact of other variables that
may influence deconvolution performance, including the cellular
fraction, the method ofmarker selection, the number of markers used
to build the reference, the impact of technical variability, and the
depth and evenness of sequencing. Together, these analyses allow
tailored selection of methods for accurate DNA methylome
deconvolution.

Results
Setting up the benchmarking
Methods to deconvolve DNA methylome profiles of heterogeneous
samples into their constituent cell or tissue types can be broadly
categorized into linear methods and more complex machine learning
models. For our benchmarking, we selected 16 commonly used or
recently developed methods that leverage a range of statistical algo-
rithms, including expectation maximization, (regularized) least
squares regression, robust partial correlation, and linear constrained
projection. These methods are BVLS, Elastic net regression, EMeth-
Binomial, EMeth-Laplace, EMeth-Normal, EpiDISH, Lasso, Meth atlas,
MethylResolver, Minfi, NNLS, OLS, Ridge regression, FARDEEP, ICeDT and

DCQ (Table 1)28–38.Weoptednot to test reference-freemethods suchas
PRISM, MethylPurify, DXM, and csmFinder + coMethy, which were
benchmarked recently elsewhere and which have a performance
inferior to reference-based methods26. Since many of these methods
have different underlying assumptions of data structure and dis-
tribution, we also tested seven data normalization approaches (Sup-
plementary Data 1), summing up to 112. Since ICeDT cannot deal with
negative values, it is incompatible with (column) Z-score and log
normalization, resulting in a total of 109 combinations.

Deconvolution is typically performed on a limited subset of
marker loci. Formost analyses, we used a fixed number of markers per
cell type (n = 100 for each source) such that each cell or tissue type had
an equal representation in the reference. Markers were selected
essentially as described by Luo et al. 39 with a minor modification (see
methods)39. To deconvolve mixtures of four tissue types, we thus
identified 400 marker loci, while we identified 600 marker loci for
mixtures of six leukocyte types (Supplementary Data 2). The same set
of loci was used for every comparison. As a ground truth, 200 in silico
mixtures were generated by combining single DNA methylation pro-
files of defined tissues or cell types (SupplementaryData 3) in specified
proportions. Individual fractions were sampled from a uniform uni-
variate distribution ranging between 0 and 1, after which values were
rescaled to add up to 1. This resulted in homogeneous proportion
distributions allowing us to compare performance between cell and
tissue types in an unbiased manner. For each in silico mixture,
methylation signals for each cell type were sampled from one ran-
domly selected sample in the set of DNAmethylome profiles available
for that cell type, to reflect technical variation in samples between
mixtures. We provide a detailed description of all in silico mixtures in
Supplementary Data 3. Furthermore, to evaluate performance on real-
life datasets, we includedboth in vitromixed and cytometry-quantified
whole-blood datasets that were previously described (see methods).

We tested the performance of each algorithm-normalization
combination by computing measures of accuracy between decon-
volved and actual proportions. We assessed deconvolution perfor-
mance by quantifying the root mean square error (RMSE), reflecting
the absolute error between true and predicted values, the Spear-
man’s R2, which quantifies the correlation between true and pre-
dicted values but is less perceptive of systematic biases, and
Jensen–Shannon divergence (JSD), a performance metric assessing
homogeneity between predicted and actual fraction distributions.
These metrics were compiled into a summary metric that we call the

Table 1 | Overview of included deconvolution algorithms

Method Statistical model Software package

BVLS Bounded-variable least squares bvls R-package28

DCQ Elastic net regularization ADAPTS R-package38

Elastic net regression Elastic net regularization glmnet R-package29

EMeth-Binomial Expectation maximization with binomial likelihood function EMeth R-package30

EMeth-Laplace Expectation maximization with Laplace likelihood function EMeth R-package30

EMeth-Normal Expectation maximization with normal likelihood function EMeth R-package30

EpiDISH Robust partial correlation EpiDISH R-package31

FARDEEP Least trimmed squares FARDEEP R-package36

ICeDT Expectation maximization ICeDT R-package37

Lasso Lasso regularization glmnet R-package29

Meth atlas Non-negative least squares Meth atlas Python-package32

MethylResolver Least trimmed squares MethylResolver R-package33

Minfi Linear constrained projection Minfi R-package34

NNLS Non-negative least squares nnls R-package35

OLS Ordinary least squares lm base R function

Ridge Ridge regularization glmnet R-package29
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accuracy score (AS), and that combines the ranks of R2, RMSE, and
JSD (see methods). Practically, an RMSE difference of 0.01 represents
an average absolute difference of 1% between predicted fractions and
actual fractions. Some researchers may bemore interested in relative
differences of cell proportions between conditions and may thus
consider R2 to be more informative. We refer to Supplementary
Data 4, 5, 6, and 7 for respectively the R2, RMSE, JSD, and AS values of
the various analyses.

When we applied deconvolution on in silico mixtures that were
generated from the same dataset that serves as deconvolution refer-
ence, most methods produced near-perfect results (Supplementary
Fig. 1) as expected. This differs from a real-world scenario, where
referenceprofiles are generated fromdifferent samples, and often also
profiled in different laboratories. To evaluate the real-world usage, we
therefore selected separate, independently generated, reference
datasets from the same cell or tissue sources to be used for marker
selection and reference building (Fig. 1). These datasets differ mark-
edly from those we use to generate our in silico mixtures, as was evi-
dent in a head-to-head comparison of DNA methylation levels at 100
marker loci (Fig. 2a, Supplementary Fig. 2a).

Tissue fraction deconvolution
As a first means of benchmarking all algorithm-normalization combi-
nations, we focused on a relatively straightforward deconvolution
problem, by assessing the deconvolution performance for mixtures of
four tissues: small intestine (fraction range: 0.04%–70.76%), blood
(fraction range: 0.54%–82.42%), kidney (fraction range: 0.07%–67.63%)
and liver (fraction range: 0.05%–65.7%) (Supplementary Fig. 2), pro-
filed using 450K microarrays (HumanMethylation450K BeadChips;
Illumina). The tissue types profiled vary in the specificity of themarker
CpGs identified from the reference samples. This can be quantified by
computing F-statistics for all cell types at their respective marker loci.
Median values per cell type ranged from 125.5 for small intestine to
2045.3 for liver (Fig. 2b). Specificity ofmarker CpGswas also evident in
thedataset used for in silicomixturegeneration, ranging from173.3 for
blood to 939.8 for liver (Fig. 2a, b). Indeed, although tissue type frac-
tions were in general accurately predicted (median RMSE =0.07,
median Spearman’s R2 =0.90), we observed significantly higher abso-
lute error in small intestine (difference in RMSE = 0.10, P < 10−16, CI 95%:
0.09, 0.10). Surprisingly however, significantly higher correlation was

observed between predicted and actual proportions for small intestine
(difference in R2 =0.06, P < 10−16, CI 95%: 0.06, 0.07). Though markers
arehighly specific in thedataset used to generate in silicomixtures, the
dataset used for marker selection is noisier, resulting in a discordance
between both (Supplementary Fig. 2a). This resulted in a consistent
overestimation of small intestine proportions (Fig. 2c and Supple-
mentary Fig. 2b), emphasizing the need to use high-quality datasets for
achieving optimal deconvolution performance.

Disregarding the effect of normalization,DCQ (difference in AS to
all other algorithms = −57.2; P = 3.17 × 10−6, CI 95%: −90.0, −40.0) and
EMeth-Laplace (difference in AS to all other algorithms = 54.5;
P =0.004, CI 95%: 14.0, 77.0) were the poorest and best-performing
deconvolution methods respectively. Most normalization methods
performed comparably, except for log transformation performing
significantly worse than all others (difference in AS to all other nor-
malizations = −115; P < 10−16, CI 95%: −131.7, −90.0; Fig. 2d, e). The best
prediction was achieved when combining EMeth-Normal deconvolu-
tion on columnZ-score normalizeddata (medianRMSE =0.06,median
Spearman’sR2 =0.93,medianAS = 294),while theworst predictionwas
producedby applying EMeth-Normaldeconvolution on log normalized
data (median RMSE =0.19, median Spearman’s R2 =0.84, AS = 54.8)
(Fig. 2e).

Impact of marker selection
Effective marker selection is a major contributor to deconvolution
performance. As described in the previous chapter, we selected the
top 100 markers per cell type. Marker selection was based on both
significance of FDR-adjusted P-values as well as on mean methylation
differences between cell types, in line with a method proposed earlier
(see methods)39. This allowed us to both select highly specific loci
while simultaneously ensuring equal contribution of all cell types to
the reference. Though beneficial for benchmarking purposes, this
might compromise deconvolution performance. Therefore, we quan-
tified how marker selection affects deconvolution performance by
comparing our custom algorithm to the commonly used IDOL algo-
rithm (43/400marker loci overlapped between both sets)40. Generally,
IDOL selection performed significantly worse, both in terms of R2

(difference in R2 =0.02, P < 10−10, CI 95%: 0.01, 0.03) and RMSE (dif-
ference in RMSE = −0.02, P < 10−16, CI 95%: −0.03, −0.02) (Fig. 2f). This
observation is in line with a previous benchmarking, which highlighted

Fig. 1 | Schematic representation of benchmarking workflow. Panel 1: selection
of cell-specific markers using a reference dataset. Panel 2: construction of in silico
mixtures from an independent validation dataset. Panel 3: normalization and

deconvolution of bulk DNA methylation signals derived from in silico mixtures.
Panel 4: deconvolution performance assessment based on root mean squared
error, Spearman’s R2, Jensen–Shannon divergence, and combined summarymetric.
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the same marker selection method as optimal when compared to five
other methods.

Impact of cell-type similarity
Next, we investigated how these algorithms perform a more difficult
and relevant deconvolution task, namely the deconvolution of rela-
tively homogeneous cell-type fractions that have a common

developmental origin. Specifically, we investigated how blood cell
types can be reliably deconvolved, by constructing 200 pseudo-bulks
generated from 450K microarray profiles of fluorescence-activated
cell sorting (FACS)-purifiedneutrophils (fraction range: 0.07%–51.74%),
monocytes (fraction range: 0.07%–44.25%), CD4+ (fraction range:
0.07%–47.89%) and CD8+ T-cells (fraction range: 0.18%–45.88%), nat-
ural killer cells (fraction range: 0.28%–51.59%) and B-cells (fraction
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range: 0.3%–41.60%), and applying the same strategy we described
earlier. 100marker CpGswere identified for each cell type, resulting in
a total of 600 loci (Fig. 3a and Supplementary Fig. 3a). Overall, algo-
rithms showed similar performance (Fig. 3b). EpiDISH was overall the
best-performing algorithm, significantly outperforming DCQ (differ-
ence in AS = 155.1, P = 6.941 × 10−5, CI 95%: 74.7, 211.7).

In terms of normalization, no methods significantly improved
deconvolution over non-normalized data. Furthermore, log normal-
ization resulted in significantly worse predictions (difference in AS to
other normalizations = −133, P = 1.422 × 10−11, CI 95%: −163, −100;
Fig. 3b–d). Notably, deconvolution was more accurate for some cell
types than for others: indeed, quantification of natural killer and CD8+
T-cell abundance was poorer (difference in AS to other cell types =
−272.333, P < 10−16, CI 95%: −288.3, −257.3), perhaps because they are
both cytotoxic effector cells thus sharing functional activities, despite
originating from divergent lineages. Furthermore, DNA methylation
for natural killer cell loci differed significantly between datasets used
formarker selection and those used formixture generation (difference
in F-statistic = 91.18, P < 10−16, CI 95%: 73, 110) suggesting technical
variability between datasets (Supplementary Fig. 3b–d).

To further validate these rankings, we evaluated five DNA
methylome profiles from whole-blood samples41, comparing cell-type
fractions predicted by deconvolution to cell-type fractions measured
by flow cytometry and in vitro mixed blood samples. Overall decon-
volution performance was lower, perhaps reflecting the additional
measurement uncertainty introduced by applying flow cytometry
(Fig. 3e, f). Though sample sizes were too small for statistical inter-
pretation, EpiDISHwas able to identify relative proportion differences
well for most cell types (median R2 = 0.93).

Larger array size improves deconvolution
We next assessed the impact of array size on deconvolution efficiency,
by analyzing DNA methylome profiles generated for the same cell
types using EPIC microarrays (Infinium MethylationEPIC v1.0 Bead-
Chip; Illumina), which encompass over 850,000 probes. These include
most probes represented on 450K microarrays, as well as about
350,000 additional probes targeting more enhancer CpGs and fewer
CpG island CpGs than on the 450K microarray42. Of note, all 600
marker CpGs we identified from 450K arrays were also present on the
EPIC arrays. 200 pseudo-bulks were again produced for neutrophils
(fraction range: 0.5%–37.11%), monocytes (fraction range:
0.5%–54.70%), CD4+ (fraction range: 0.07%–42.37%) and CD8+ T-cells
(fraction range: 0.04%–49.18%), natural killer cells (fraction range:
0.09%–43.98%) and B-cells (fraction range: 0.24%–48.73%), When
using the same marker CpGs identified from 450K data on EPIC array
data, the performance for all 109 algorithm-normalization combina-
tions improved significantly (difference in R2 = 0.04; P < 10−16, CI 95%:
0.040, 0.045), suggesting a higher concordance between the EPIC

array data used for generating in silicomixtures and for deconvolution
(Supplementary Fig. 4).

We next identified 600 new marker CpGs from the EPIC array
data. 484 CpGs were selected that do not overlap with those repre-
sented on the 450K array (Fig. 4a and Supplementary Fig. 5a). Of these
484 additional marker CpGs, 246 overlap with known enhancer
regions. As before, natural killer cells and CD8+ T-cells were not
separated as accurately as other cell types (Fig. 4b). Lower cell speci-
ficity between these cell types was confirmed by a higher inter-sample
correlation of CD4+ andCD8+T-cells (R2 =0.1–0.2) aswell as CD8+ and
natural killer cells (R2 =0.0–0.1) compared to other cell-type pairs
(R2 =0.0) (Supplementary Fig. 5b). Concordance in methylation ratios
betweendatasets used formarkers selection and generation of in silico
mixtures was relatively high (Supplementary Fig. 5c, d). The relative
performance rankings of algorithms and normalization methods were
nevertheless comparable to those in the analyses using 450K array
probes described earlier (Fig. 4c). However, when comparing decon-
volution using marker loci selected from the EPIC probes to those
selected from 450K array data, fraction estimates improved slightly
for all cell types, except for CD8+ T-cells (Fig. 4d). To further validate
these in silico analyses, we next assessed performances on DNA
extracted fromdifferent cell types,mixed in vitro at prespecified ratios
(n = 12)43. Here, deconvolution performance was comparable to the in
silico generated mixtures, thus validating the relative rankings of
deconvolution and normalization methods, as well as our strategy for
generating pseudo-bulks (Fig. 4d–f).

Impact of technical and biological variation on deconvolution
The above analyses represent a realistic scenario wherein an indepen-
dently generated dataset is used as reference for bulk deconvolution.
This approach however likely underestimates deconvolution perfor-
mances, given the confounding technical and biological differences
between reference and test, with variations in age, smoking, BMI or sex
havingaknown impactonDNAmethylomes43. Togauge their impact,we
next removed this inter-dataset variability, by splitting a single dataset
into a subset for reference generation and marker selection, while the
remainder was used for in silico mixture generation. As expected, this
improved the overall deconvolution performance (Supplementary
Fig. 6a, b). Nevertheless, relative performances of deconvolution meth-
ods were comparable (Supplementary Fig. 6c). Furthermore, we inves-
tigated the effect of age differences between the dataset used for both
reference generation and marker selection and the dataset used for
mixture generation.We either built the reference using data fromyoung
individuals (<30 years old) and 200 in silico mixtures using data from
older individuals (> = 30 years old), or the other way around. Though in
general deconvolution performance was worse compared to deconvol-
ving without age differences between reference and mixtures, the rela-
tive ranking of methods was highly similar (Supplementary Fig. 6d, e).

Fig. 2 | Deconvolution of tissues on Illumina 450K array. a Matrices of marker
CpGs (n = 400) used for building the tissuemethylation reference (left panel) and in
silico mixtures (right panel) of 450K data. Samples for four tissues were included:
blood (reference: n = 49, validation: n = 6), kidney (reference: n = 21, validation:
n = 85), liver (reference: n = 25, validation: n = 52), and small intestine (reference:
n = 17, validation:n = 4).bBoxplots showingF-statistics for tissues at their respective
marker CpGs, between reference (n = 112 biologically independent samples) and
validation datasets (n = 147 biologically independent samples). The boxplots pre-
sent median values and quartiles, whiskers the minimum andmaximum values, and
dots the individual data points. c Scatter plots showing true proportions (x-axis) and
predicted proportions (y-axis) in percentages for all tissues for the best-performing
(left-upper) and worst-performing (right-lower) algorithm-normalization combina-
tions on 200 in silico mixtures. R2 and p-values were calculated using Spearman’s
rank correlation test. d Deconvolution accuracy represented as boxplots showing
accuracy scores for the different deconvolution methods, normalization methods,
and cell types on 200 in silico mixtures. Black diamond shapes represent median

values, colors represent tissues. The boxplots present median values and quartiles,
whiskers theminimum andmaximum values, and dots the individual data points. P-
values were determined using two-tailed FDR-adjusted Dunn’s tests. e Performance
of deconvolution on 200 in silico mixtures. Algorithm-normalization combinations
are visualized as circles. Spearman’s R2 is represented by color, and root mean
squarederror is representedby size. Rows showdeconvolution algorithms, columns
show normalization methods. f Boxplots showing Spearman’s R2 and RMSE values
for deconvolutionon 200 in silicomixtures usingmarkers selectedby either custom
or IDOL algorithm. The boxplots present median values and quartiles, whiskers the
minimum and maximum values, and dots the individual data points. P-values were
calculated using a two-tailed Wilcoxon rank-sum test. P-values for R2: small
intestine = 5.2 × 10−14; blood = 2.2 × 10−16; liver = 2.2 × 10−16; kidney = 2.2 × 10−16.
P-values for RMSE: small intestine = 4.2 × 10−6; blood = 1.9 × 10−15; liver = 2.2 × 10−16;
kidney = 2.2 × 10−16. ‘X’ symbol represents missing values. Source data are provided
as a Source Data file. Exact p-values are added in the Source Data file.
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These results emphasize theneed to select referencedata thatmatch the
test cohort as much as possible but also validate our method rankings
across technical and biological variation.

Impact of the number of marker CpGs on deconvolution
All analyses described earlier relyon 100markerCpGsper cell or tissue
type. Depending on the method used to analyze DNA methylation, a

lower number ofmarker CpGsmaybepreferable (e.g., when the cost is
to beminimized). To assess the impactof thenumber ofmarker loci on
deconvolution, we next repeated our performance assessment, while
varying the number of marker CpGs included. Specifically, we selected
the 2–500 top-ranked marker CpGs per cell type and assessed per-
formance for each algorithmon unnormalized data (normalization did
not improve performance; Fig. 5a, b). For most algorithms, the
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performance increased starting from two CpGs per cell type (median
R2 = 0.97) consistently when more marker CpGs were included,
reaching an optimumat 75–100CpGs (medianR2 =0.99). This explains
our choice of the number of markers for benchmarking. Both EMeth-
Binomial and EMeth-Normal, reached anoptimum around 50 CpGs per
cell type and performed poorer as more CpGs were included. The
EMeth algorithms appeared to perform relatively well for low numbers
of marker CpGs (n = 2–10 per cell type). Finally, the EMeth-Laplace
methodwas top-performing, both when using only a fewmarker CpGs
(n = 2–10 per cell type), or when many markers were included CpGs
(n = 300–500). It should be noted that these results simply highlight
the robustness of algorithms to varying numbers of markers. The
optimal number of loci may also be influenced by marker specificity.

Deconvolving small fractions
These analyses capture a broad spectrum of cell compositions, with
each blood cell type at a concentration between 0 and 75%. Biologi-
cally, these ranges are however more constrained, with neutrophils
beingmoreabundant thanBorT-cells. To assesswhether performance
estimates also translate to biologically relevant cell abundances, we
next evaluated deconvolution on 42 in silico mixtures, with propor-
tions not generated randomly but selected from deconvolution esti-
mates of bulk whole-blood samples (n = 42). This analysis yielded
somewhat lower deconvolution performances, with lower R2 due to
more limited ranges of proportions (Supplementary Fig. 7a, b), and
higher RMSE values for the more abundant cell types (Supplementary
Fig. 7b, c). Nevertheless, the relative performanceof thedeconvolution
methods was highly consistent with deconvolution on univariately
generated proportions (Supplementary Fig. 7a).

These analyses indicate that deconvolution performance can be
different for less abundant cell types. In many instances, such rare cell
types are evident or of particular interest. In order to specifically test
how predictions differed for these smaller fractions, we also reas-
sessed performance exclusively for cell-type contributions below 3%
on the original in silico dataset (n = 200). Accuracy at this threshold
was noticeably lower compared to larger fractions (Fig. 6a). Interest-
ingly, adding reference CpGs, from 2 to 100 CpGs, improved R2 for
small fractions (difference in R2 =0.27, P = 1.079 × 10−7, CI 95%: −0.36,
−0.16) was observed, indicating that addition of reference CpGs is
particularly beneficial for predicting small fractions, but also that small
fractions are difficult to predict accurately, irrespective of the algo-
rithm used (Figs. 6b and 5a). In conclusion, deconvolution for small
fractions is inadequate in performance for all methods tested, but this
can be mitigated to some extent by enlarging the reference mar-
ker panel.

Impact of incomplete or over-extensive references
Inmany cases, the referenceused for deconvolution canbe inaccurate,
by including more or fewer cell types than those present in a bulk
sample. This can introduce noise into the deconvolution experiment.

Therefore, we compared deconvolution performances when one cell
type was lacking from the reference, or when a cell type was included
in the reference but absent from the in silico mixture. Removing cell
types from the reference generally tends to improve deconvolution
accuracy, except when a cell type is left out that is similar to another
one included in the reference (e.g., CD4+ and CD8+ cell types; Sup-
plementary Fig. 8a). Furthermore, regularization-based deconvolution
methods such as elastic net and lasso, as well as FARDEEP deconvolu-
tion, performed very well in this experiment, significantly out-
performing Meth atlas and DCQ (difference in RMSE = −0.04,
P = 6.507 × 10−7, CI 95%: −0.05, −0.02; Supplementary Fig. 8b). On the
other hand, including more cell types in the reference has a similar
effect, but seemingly less intense, with slightly worse deconvolution
accuracy for cell types that are highly similar (Supplementary Fig. 8c).
In this setting, ICeDT, EMeth-Laplace andMeth atlas produced the best
deconvolution results, significantly outperforming DCQ, EMeth-Nor-
mal, EMeth-Binomial and ridge deconvolution (difference in RMSE =
−0.012, P = 1.457 × 10−9, CI 95%: −0.015, −0.010; Supplementary
Fig. 8d). Ingeneral, anover-inclusive reference performsbetter thanan
incomplete one. Cell types absent from the in silico mixture were
erroneously assigned fractions up to 18.3%, with the largest fraction
found for CD8+ T-cells by DCQ, and the lowest fraction, −8%, found for
CD8+ T-cells by MethylResolver (Supplementary Fig. 8e).

Deconvolution of DNA methylation sequencing data
DNA methylation is increasingly being profiled by sequencing-based
methods such as whole-genome, reduced representation, targeted or
amplicon bisulfite sequencing (BS-seq), or third-generation nanopore-
based sequencers. Here, DNA methylation levels are quantified by
calculating the fraction of reads with a methylated CpG over all reads
at a given locus, yielding data similar to array-based measurements.
These profiles however differ from array-based profiles as they are
count-based, quantifying the exact number of sequencing reads
showing CpGmethylation, rather than a percentage-based estimate of
the fraction of methylated CpGs. Also, the selection of marker CpGs
differs, with a much larger search space: all 28 million CpGs in the
human genome can putatively serve for the selection of marker CpGs
from whole-genome bisulfite sequencing (WGBS) data, versus only
~450,000 or ~850,000 CpGs available on microarrays. Additionally,
instead of parsing individual CpGs, average DNA methylation over
entire genomic regions can be leveraged for deconvolution, with DNA
methylation at flanking CpGs being often highly correlated44.

Here, we tested performance for sequencing-based DNA methy-
lation data of the same deconvolution methods we describe above
(Table 1). We performed deconvolution using non-overlapping geno-
mic regions flanking 100 bp as markers. Including multiple flanking
CpG reduces measurement errors and improve overall deconvolution
performance (difference inR2 =0.05, P < 10−16, CI 95%: 0.04, 0.06; Fig. 7
and Supplementary Fig. 9). Selected differentially methylated regions
(DMRs) where relatively specific, both in datasets used for markers

Fig. 3 | Deconvolutionof immune cell types on Illumina 450K array. aMatrix of
marker CpGs (n = 600) used for building immune cell methylation reference of
450K data. Samples for six cell types were included: neutrophil (n = 15), natural
killer cell (n = 6), B-cell (n = 4), CD4+T-cell (n = 6), CD8+ T-cell (n = 5) andmonocyte
(n = 5).bDeconvolutionaccuracy representedasboxplots showing accuracy scores
for the different deconvolutionmethods, normalizationmethods, and cell types on
200 in silico mixtures. Black diamond shapes represent median values, colors
represent cell types. The boxplots present median values and quartiles, whiskers
the minimum and maximum values, and dots the individual data points. P-values
were determined using two-tailed FDR-adjusted Dunn’s tests. *P <0.05, **P <0.01,
***P <0.001. c Scatter plots showing true proportions (x-axis) and predicted pro-
portions (y-axis) in percentages for the best-performing (left-upper) and worst-
performing (right-lower) algorithm-normalization combinations on 200 in silico
mixtures. R2 and p-values were calculated using Spearman’s rank correlation test.

d Performance of deconvolution on 200 in silico mixtures for all algorithm-
normalization combinations represented as circles. Spearman’s R2 is represented
by color, rootmean squared error is representedby size. Rows showdeconvolution
algorithms, columns show normalization methods. e Scatter plots showing true
proportions (x-axis) and predicted proportions (y-axis) in percentages for the best-
performing (left-upper) and worst-performing (right-lower) algorithm-
normalization combinations on 12 in vitromixtures.R2 andp-valueswere calculated
using Spearman’s rank correlation test. f Scatter plots showing true proportions
(x-axis) and predicted proportions (y-axis) in percentages for the best-performing
(left-upper) and worst-performing (right-lower) algorithm-normalization combi-
nations on five FACS-sorted whole-blood samples. R2 and p-values were calculated
using Spearman’s rank correlation test. ‘X’ symbol represents missing values.
Source data are provided as a Source Data file. Exact p-values are added in the
Source Data file.
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selection and mixture generation, however absolute methylation
levels at marker loci differed considerably between datasets (Fig. 7a
and Supplementary Fig. 10a–c). Deconvolution was performed on 100
in silico mixtures, comprising six immune cell types: neutrophils
(fraction range: 0.86%–36.06%), monocytes (fraction range:
1.8%–54.7%), CD4+ T-cells (fraction range: 0.1%–36.3%), CD4+ T-cells
(fraction range: 0.04%–35.9%), natural killer cells (fraction range:

0.1%–39.4%) and B-cells (fraction range: 0.3%–46.2%) (Supplementary
Fig. 10d). CD8+ T-cell fractions were predicted less accurately than
other cell types (difference in AS = −225.3, P < 10−16, CI 95%: −254.3,
−196.3; Fig. 7b).

Relative performance between deconvolution methods was
highly comparable to array data for most algorithms, except for
MethylResolver and ICeDT which were significantly outperformed by
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most other algorithms (difference in AS = −109.7, P = 1.03 × 10−7, CI
95%: −151.3, −69.7). Normalization did not significantly impact the
overall deconvolution performance (Fig. 7b–d), with unnormalized
data producing top-performing results. Furthermore,wenoted a lower
overall deconvolution performance for WGBS, at 34 × sequencing
depth, than for EPIC array data (minRMSE =0.03 vs0.01,maxR2 = 0.98
vs 0.99). This may be due to experimental differences, as WGBS pro-
tocols are often far less standardized between research groups, but an
alternative explanation may be the difference in approach taken to
generate in silico mixtures. Indeed, reads were mixed for WGBS,
whereas DNA methylation levels were calculated by proportional
weight-summing for array-derived data.

Sequencing depth and evenness, and number of markers
Deconvolution experiments are often based on targeted BS-seq45,46. In
these, both the number of marker regions assays and the sequencing
depth significantly impact the analysis cost. We set out to test these
variables, first by varying the number of marker regions for decon-
volving six immune cell types on the same 100 in silico mixtures. This
revealed that a local optimum was reached when 100 to 200 regions

per cell type were included for deconvolution (median R2 =0.98),
irrespective of the deconvolution method used (Fig. 8a). We next
assessed the impact of sequencing depth. We simulated depth ranges
between 34× and0.5×by downsampling, assessing the performanceof
the EpiDISH deconvolution algorithm on 100 unnormalized in silico
mixtures and varying the number of marker regions between 2 and
500 per cell type (Fig. 8b). Interestingly when using over five marker
regions, all simulated average sequencing depths exceeding 14-fold
appeared to yield a similar performance, suggesting that a depth of
~14× suffices for deconvolution, and that accuracy is boosted more by
including more marker regions than by higher sequencing depths.
Lastly, also evenness of coverage may impact deconvolution, by
altering the error rate of DNA methylation estimates. We therefore
assessed the effect of coverage skewness by comparing the perfor-
mance of deconvolution on mixtures with a regular 14 × coverage
(mean 13.7, IQR 7–19) to mixture with the same average but an artifi-
cially less even coverage (mean 13.8, IQR 3–23). Such a more skewed
coverage clearly affects performance when a small number of markers
is used, and we observed only minor performance penalties when a
large number of marker loci was deployed (>150 marker loci; Fig. 8c).

Fig. 4 | Deconvolution of immune cell types on Illumina EPIC array. aMatrix of
marker CpGs (n = 600) used for building immune cell methylation reference of
EPIC data. Samples for six cell types were included: neutrophil (n = 6), natural killer
cell (n = 6), B-cell (n = 6), CD4+ T-cell (n = 7), CD8+ T-cell (n = 6) and monocyte
(n = 6). b Deconvolution accuracy represented as boxplots showing accuracy
scores for the different deconvolution methods, normalization methods, and cell
types on 200 in silico mixtures. Black diamond shapes represent median values,
and colors represent cell types. The boxplots present median values and quartiles,
whiskers the minimum and maximum values, and dots the individual data points.
P-values were determined using two-tailed FDR-adjusted Dunn’s tests. *P <0.05,
**P <0.01, ***P <0.001. c Performance of deconvolution on 200 in silico mixtures
for all algorithm-normalization combinations, represented as circles. Spearman’sR2

is represented by color, root mean squared error (RMSE) is represented by size.
Rows show deconvolution algorithms, columns show normalization methods.

d Boxplots showing RMSE values of in silico (n = 200) and in vitro (n = 12) datasets
for CD8+ T-cells, natural killer cells, and all cell types on CpGs selected for 450K
and EPIC array data. The boxplots present median values and quartiles, whiskers
the minimum and maximum values, and dots the individual data points. e Scatter
plots of 200 in silico mixtures showing true proportions (x-axis) and predicted
proportions (y-axis) in percentages for the best-performing (left-upper) and worst-
performing (right-lower) algorithm-normalization combinations on in silico EPIC
data. R2 and p-values were calculated using Spearman’s rank correlation test.
f Scatter plots of in vitro data (n = 12) showing true proportions (x-axis) and pre-
dicted proportions (y-axis) in percentages for the best-performing (left-upper) and
worst-performing (right-lower) algorithm-normalization combinations on in silico
EPIC data. R2 and p-values were calculated using Spearman’s rank correlation test.
‘X’ symbol representsmissing values. Sourcedata are providedas a SourceDatafile.
Exact p-values are added in the Source Data file.
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Combined analysis of deconvolution performance
Having modeled differences in various parameters, we finally com-
pared the overall deconvolution accuracy across all datasets, by nor-
malizing metrics per dataset using Z-score. DCQ, EMeth-Normal and
EMeth-Binomial performed significantly worse than the other algo-
rithms (difference in AS [Z-score] = −1.22, P = 1.632 × 10−5, CI 95%: −1.51,
−0.64; Fig. 9a). Additionally, EpiDISHperforms significantly better than
most algorithms (difference in AS [Z-score] = 1.22, P = 2.55 × 10−4, CI
95%: 0.66, 1.84).Relative to theother algorithms, Meth atlasperformed
remarkably better on small fractions than on all fractions (Fig. 9b).

Discussion
Despite the importance of cell fraction deconvolution for basic sci-
ence and clinical studies, a large benchmark of deconvolution
methods and DNA methylation analysis methods is lacking. A few
studies have been performed, but these focused on a limited number
of algorithms, without assessing the impact of cell fraction size, of
normalizationmethods, of the types of inputmaterial, of the number
of marker CpGs used as reference, and for sequencing-based
methylome, of the impact of sequencing depth and evenness of
coverage26,27. Here, we benchmarked 16 reference-based deconvolu-
tion methods and seven normalization methods, adding up to 109
combinations, both for deconvolution at the tissue and the cell-type
level, and for array- and sequencing-based data. Thesewere tested on
in silico, in vitro and cytometry-quantified mixtures, enabling a
quantitative head-to-head comparison between predicted and actual
fractions. To facilitate future benchmarking of novel deconvolution
algorithms, we provide an extensive Supplementary Data section
containing metrics for the performed experiments with and without
normalization, as well as all marker CpGs identified per cell/tissue
type. Lastly, some metrics, such as root mean squared error and
Jensen–Shannon divergence, might be biased towards either highly
or lowly abundant cell types. depending on the research question,
this should be taken into consideration. In relation to this, we refer to
Supplementary Data 4–7 where we provide all performance metrics,

including Spearman’s R2, root mean squared error, Jensen–Shannon
divergence, and accuracy score values.

Given the ubiquity of data normalization methods available, we
anticipated data normalization to have a positive impact on decon-
volution performance. Remarkably, this did not hold true for most
algorithms, which mostly performed optimally without additional
normalization. Another aspect influencing deconvolution perfor-
mance is specificity of the marker loci. Illumina 450K arrays inter-
rogate over 450,000 CpG sites, and a further 413,743 CpGs are
represented on themore recent EPIC arrays. This implies that only 1.7%
or 3.2%, for 450K and EPIC respectively, of all CpGs in the genome are
considered for selection of tissue- or cell-specific CpGs. Therefore,
fewer specific marker CpGs for any given cell type are available for
selection. While this is not an issue when disparate cell types are
deconvolved, highly discriminatory marker CpGs are scarcer for more
similar cell types, such as natural killer and CD8+ T-cells. Another
deconvolution variable is the number of marker loci. We observe that,
for deconvolution of six cell types, increasing this number from 5 to
100 results in increasingly accurate predictions, while further
increasing beyond 100marker CpGsmostly yields only marginal gains
for the tested algorithms. This may be due to overfitting at the marker
selection step, and it should be noted that this optimum may differ
when deconvoluting a variable number of cell types, or cell types of
varying similarity. Also, the completeness of the reference should be
considered, as both an over-extensive and incomplete reference can
negatively affect deconvolution performance. Indeed, we observed a
decrease in predictive accuracywhen the number of cell types present
in the reference differs from that in the mixture. However, if the cell
types are unknown, a more comprehensive reference did perform
better. As always, in an ideal scenario, references are used that accu-
rately reflect the target population for optimal deconvolution. Finally,
forDNAmethylome sequencing data, the depth of sequencingwill also
drastically affect the deconvolution performance, while plateauing at
14× coverage using marker regions of 200 bp length. It should be
noted however that for accurate prediction of excessively small

a

Fraction size (%)

R2

0

0.2

0.4

0.6

0.8

1

3 5 10 20 50

b

in silico 450k data
in silico 850k data

in vitro 850k data
in silico 850k data using 450k CpGs

in vitro 850k data using 450k CpGs

R2

0.750 0.650.50.29

2 5 10 25 50 75 10
0

12
5

15
0

17
5
20

0
30

0
40

0
50

0

Mean R2

0 0.2
0.4

#CpGs

EMeth−Normal

Ordinary least squares

EMeth−Binomial

Meth atlas

Minfi

Non−negative least squares

Bounded variable least squares

EMeth−Laplace

ICeDT

EpiDISH

Ridge

FARDEEP

Elastic net

Lasso

MethylResolver

DCQ

0
0.2
0.4

X X

X

X

Fig. 6 | Impact of reference size on deconvolution accuracy for small propor-
tions of immune cell types using EPIC array data. a Line plot showing cubic
smoothed splines of Spearman’s R2 values (y-axis) for in silico and in vitro datasets
at increasing fraction sizes, ranging from 3 to 75% (x-axis, log-scaled). b Heatmap

showing Spearman’s R2 values for small fractions (<30%) on 200 in silico mixtures
for all deconvolution methods at variable numbers of marker loci. ‘X’ symbol
represents missing values. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-48466-z

Nature Communications |         (2024) 15:4134 10



fractions (i.e., <3%), sufficient sequencing depth and reference size is
essential.

Differences between deconvolution methods are mostly attribu-
table to the underlying statistical algorithms. The overall best-
performing algorithm, EpiDISH, leverages a robust partial correlation
(RPC)model. Its superior performancemaybe explained by its relative
insensitivity to outlier valueswhile still being able to pickup consistent
signals coming from rare cell types. In contrast, DCQ was the worst-
performing algorithm overall. It applies a variation on elastic net
regression. Although thismodel is effective in preventing overfitting to
the reference by reducing the number of features, it likely masks the
more subtle signals coming from rare cell types. These rare cell types

are particularly well deconvolved by non-regularized linear regression
models, such as ordinary least squares and Meth atlas (leveraging a
non-negative least squares model). This might be due to non-negative
least squares typically not allowing assignment of negative values to
very small proportions, which would result in reduction of these pro-
portions to 0% as seen in other algorithms.

Our study also has some limitations. Firstly, we focus on
reference-based methodologies for benchmarking. Alternative algo-
rithms have emerged over the past decade, but are more complex for
benchmarking, and they also have different fields of application47–49.
With the advent of DNA methylomemaps for most major cell types in
the human body, we anticipate thatmost future studies in patients will
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Fig. 7 | Deconvolution of immune cell types fromWGBSdata. aMatrix ofmarker
regions (n = 600) used for building immune cell methylation reference of WGBS
data. Samples for six cell types were included: neutrophil (n = 3), natural killer cell
(n = 3), B-cell (n = 5), CD4+T-cell (n = 10), CD8+T-cell (n = 10), andmonocyte (n = 3).
bBoxplots showing accuracy scores for 16 different deconvolutionmethods, seven
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quartiles, whiskers theminimumandmaximumvalues, and dots the individual data
points. P-values were determined using two-tailed FDR-adjusted Dunn’s tests.

*P <0.05, **P <0.01, ***P <0.001. c Performance of deconvolution on 100 in silico
mixtures. Algorithm-normalization combinations are visualized as circles. Spear-
man’s R2 is represented by color, root mean squared error is represented by size.
Rows show deconvolution algorithms, columns show normalization methods.
d Scatter plots showing true (x-axis) and predicted proportions (y-axis) for the best
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vided as a Source Data file. Exact p-values are added in the Source Data file.
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rely on reference-based deconvolution32. Next, because of the limited
availability of high-quality datasets, we selected marker loci from the
datasets that were used to build reference matrices, which might
induce overfitting. Additionally, read-based deconvolution has also
been proposed to analyze sequencing data50,51. This has not been
investigated here. Secondly, most benchmarking datasets we use are
derived from in silico mixtures sampled from univariate uniform dis-
tributions. Thesemay differ from real-life data but offer the advantage
of being customizable in high throughput and representing exact
ground truths. Indeed, real-life datasets typically lack accurately
determined cell-type contributions, and they thus fail to serve as
accurate benchmarks. Though sampling from a uniform distribution

allows direct comparison between cell types while controlling for
typical differences in proportion, researchers may prefer to assess
model performances using distributions reflecting real biological
composition estimates, as exemplified in Fig. 3f and Supplementary
Fig. 7. Furthermore, preprocessing methods for array data could have
an impact on deconvolution performance and should be considered.
As only data from healthy tissues is evaluated, deconvolution perfor-
mance on samples from pathological specimens is unknown. For
example, cancer is associated with pervasive perturbations of the DNA
methylation landscape that is not reflected in the currently available
reference profiles. Lastly, ease of implementation differs between
deconvolutionmethods. For example, untailoredmethods (e.g., ridge,
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elastic net, and lasso regression) may be more difficult to implement,
which should be considered for inexperienced users.

In conclusion, cell fraction deconvolution is awelcomealternative
to expensive and time-consuming cell sorting techniques, but depen-
dent on optimal algorithm and parameter selection. We provide a
comprehensive benchmarking of most currently available reference-
based DNA methylation deconvolution methods, comparing perfor-
mances between different data formats and resolutions. Overall, we
observe that normalization rarely positively impacts deconvolution
and that EpiDISH consistently performs well in most contexts31. Fur-
thermore, we provide guidelines on the appropriate number of loci
that should ideally be used for deconvolution, and on the optimal
sequencing depth needed to determine cell-type contributions to bulk
samples analyzed with BS-seq data.

Methods
No ethics evaluation was required for this study.

Dataset selection
Healthy tissues. Illumina Infinium 450K datasets for healthy tissues
were identified on ArrayExpress. For each tissue, two datasets were
used: one to perform marker selection and deconvolution, and one
to generate in silico mixtures. Healthy tissues included kidney
(marker selection: GSE59157; mixture generation: GSE50874), liver
(marker selection: GSE61258; mixture generation: GSE61278), small
intestine (marker selection: GSE73832; mixture generation:
GSE50475) and blood (marker selection: GSE48472; mixture gen-
eration: GSE84003). In silico mixtures of all tissues were generated,
which were subsequently used for assessment of deconvolution
performance.

For generation of the in vitro datasets, DNA was extracted from
purified natural killer cells, B-cells, monocytes, neutrophils, CD4+, and
CD8+ T-cells, which were mixed in prespecified proportions and ana-
lyzed on EPIC arrays43. Cells were isolated using immunomagnetic
labeling. Neutrophils were isolated by separating leukocytes using
HetaSep followed by density gradient separation and neutrophil
negative selection. All other cell types were negatively isolated from
untouchedperipheralmononuclear cells by indirect immunomagnetic
cell labeling (i.e., CD14, CD19, CD56, CD4T, and CD8T). Proportions of
whole-blood samples were quantified using flow cytometry. Lastly, in
silico mixtures were constructed by selecting randomly generated
fractions for each cell type and computingmethylation values for each
CpG of which each cell type contributes proportionally to its assigned
fraction. For each in silico mixture, methylation signals for each of the
cell types were sampled from one randomly selected sample of the set
of methylome profiles for that cell type, to reflect the actual technical
variation in samples between mixtures.

Immune cells. Immune cell array datasets were selected based on the
availability of methylation data for either purified cell types or whole-
blood sampleswithmatched cytometry-determinedproportions. Both
array-based, i.e., 450 K HumanMethylation (marker selection:
GSE71244, GSE65097; mixture generation: GSE35069, in vitro and
cytometry-quantified: GSE77797) and EPIC (marker selection:
GSE110554; mixture generation: GSE103541 and GSE129376; in vitro:
GSE110554), and sequencing datasets were included so comparisons
between data formats were possible.

For the marker selection of sequencing data, the GSE186458
dataset was used. Benchmarking of cell fraction deconvolution was
performed on in silico sequencing read mixtures of several indepen-
dent sequencing datasets acquired from the European Genome-
Phenome archive: EGAD00001000710, EGAD00001001189,
EGAD00001001261, EGAD00001001473, EGAD00001002460 and
EGAD00001002508. For building these in silico mixtures, as total
sequencing depth varied greatly between samples, all samples of one

specific cell type were combined into 1 large mixture from which
random sequencing reads were then sampled.

Proportions of array-based whole-blood samples were quantified
using flow cytometry40. In silico mixtures were constructed by select-
ing randomly generated fractions for each cell type and computing
methylation values for each CpG of which each cell type contributes
proportionally to its assigned fraction. For each in silico mixture,
methylation signals for each of the cell types were sampled from one
randomly selected sample of the set ofmethylome profiles for that cell
type, to reflect the actual technical variation in samples between
mixtures. Alternatively, sequencing-based in silico mixtures were
constructed similarly by selecting randomly generated fractions for
each cell type and combining n sequencing reads of each cell type
contributing proportionally to their specific assigned fraction.

Marker selection
Reference CpGs were selected using an adaptation of the algorithm
used by Luo et al. 39.We initially selectedCpGs for each of the k tissues/
cell types showing Benjamini–Hochberg adjusted significant Welch
two-sample t-testp-values (significance level of 5%) computedbetween
methylation values of the target group and all other groups. The
highest of all pairwise computed p-values was selected, to ensure high
cell/tissue specificity. Secondly, from these CpGs we selected 100
CpGs with the highest mean methylation differences between the
target group and all other groups. This resulted in k × 100 CpGs that
make up the complete marker set.

For selection of DMRs used in WGBS deconvolution, we applied
the same strategy with the added constrained that regions were not
allowed to overlap.

Processing of WGBS data
Raw sequencing reads were aligned to the GRCh37 genomeusing bwa-
meth v0.2.5, trimmed using Trim Galore v0.6.6, deduplicated using
Picard v3.1.0 and lastly methylation values were extracted using
MethylDackel v0.6.052–55.

Normalization workflow
Predictive performance of cell fractions was assessed between seven
normalization conditions, including (column-wise) Z-score, (column-
wise) min-max normalization, quantile normalization, log normal-
ization, and no normalization.

Regular and column-wise Z-score normalization was performed
by applying the following formula to the dataset:

f xð Þ= x � μ

σ
ð1Þ

Regular and column-wise min-max normalization was performed
by applying the following formula to the dataset:

f xð Þ= x �Min xð Þ
Max xð Þ �Min xð Þ ð2Þ

Quantile normalization attempts to equalize two distributions in a
rank-based way. For this study, we applied the ‘normalize.quantiles’
function of the ‘preprocessCore’ R-package v1.62.156.

Finally, log normalization was performed by applying the follow-
ing formula to the dataset:

f xð Þ= loge xð Þ ð3Þ

Deconvolution workflow
A total of 16 deconvolution algorithmswere included for comparisons.
For linear models, cell fractions are reflected by the coefficients of the
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model, as these coefficients resemble the contribution of each cell
type. As the most basic model, we included ordinary least squares
regression (OLS). Additionally, we also included several regularization
models, such as elastic net, ridge, and lasso regression29. Some other
constrained statistical algorithms included in the assay are bounded-
variable least squares (BVLS), least trimmed squares (LTS), non-
negative least squares (NNLS), linear constrained projection (CP), and
robust partial correlation (RPC). For NNLS and BVLS, we applied the
model without adjustments for deconvolution28,35. Additionally, we
included several tailored deconvolution software packages, such as
Minfi using CP, MethylResolver and FARDEEP using LTS, DCQ using
elastic net regression, Meth atlas using NNLS, and EpiDISH using
RPC31–34,36,38. Furthermore, expectation-maximization algorithms are
leveraged by EMeth-Binomial, EMeth-Laplace, EMeth-Normal, and
ICeDT30,37.

Deconvolution algorithms were stripped from any inherent nor-
malizations, such that only one normalization algorithmwas applied at
a time. Finally, the predictive accuracy of the algorithms between all
the included conditions were compared.

Statistics and reproducibility
Deconvolution accuracy was assessed using a set of 3 metrics: Spear-
man’s R2, Jensen–Shannon divergence (JSD) and root mean squared
error (RMSE) between predicted values and actual values for cell
fractions. Additionally, we evaluated an accuracy score, combining all
3 metrics:

Accuracy score=
rank R2

� �
+ rank RMSEð Þ+ rank JSDð Þ

3
ð4Þ

Ranks were assigned based on the order of highest to lowest
values for R2 and lowest to highest values for RMSE and JSD. Normality
was assessed using Shapiro–Wilk test. P-values were calculated by two-
sided student’s t-tests, Mann–Whitney U-tests, Dunn’s tests, and
Spearman’s rank correlation. No statistical method was used to pre-
determine the sample size. Two samples were excluded from the
analyses because of outlying methylation values. The experiments
were not randomized. The Investigators were not blinded to allocation
during experiments and outcome assessment.

Software
All downstream analyses were performed using R v4.1.1 and
Python v3.8.11.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used in this study from the Gene Expression Omnibus (GEO)
are available under the following accession codes: GSE59157,
GSE50874, GSE61258, GSE61278, GSE73832, GSE50475, GSE48472,
GSE84003, GSE71244, GSE65097, GSE35069, GSE77797, GSE110554,
GSE103541, GSE129376 and GSE186458. The data used in this study
from the European Genome-phenome Archive (EGA) are available
under the following accession codes after data access authorization:
EGAD00001000710, EGAD00001001189, EGAD00001001261,
EGAD00001001473, EGAD00001002460 and
EGAD00001002508. Source data are provided with this paper.

Code availability
Relevant code for simulation of deconvolution benchmarking on a
demo dataset is available at https://github.com/
FunctionalEpigeneticsLab/DNAme-deconvolution-benchmarking57.
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