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Accelerating reliable multiscale quantum
refinement of protein–drug systems enabled
by machine learning

Zeyin Yan 1, Dacong Wei1, Xin Li1 & Lung Wa Chung 1

Biomacromolecule structures are essential for drug development and bioca-
talysis. Quantum refinement (QR) methods, which employ reliable quantum
mechanics (QM) methods in crystallographic refinement, showed promise in
improving the structural quality or even correcting the structure of bioma-
cromolecules. However, vast computational costs and complex quantum
mechanics/molecular mechanics (QM/MM) setups limit QR applications. Here
we incorporate robust machine learning potentials (MLPs) in multiscale
ONIOM(QM:MM) schemes to describe the core parts (e.g., drugs/inhibitors),
replacing the expensive QM method. Additionally, two levels of MLPs are
combined for the first time to overcome MLP limitations. Our unique MLPs
+ONIOM-based QR methods achieve QM-level accuracy with significantly
higher efficiency. Furthermore, our refinements provide computational evi-
dence for the existenceof bonded andnonbonded formsof the FoodandDrug
Administration (FDA)-approved drug nirmatrelvir in one SARS-CoV-2 main
protease structure. This study highlights that powerful MLPs accelerate QRs
for reliable protein–drug complexes, promote broader QR applications and
provide more atomistic insights into drug development.

Accurate atomic structures of biomacromolecules are vital for mole-
cular property prediction, binding pose estimation, as well as under-
standing ligand binding site recognition and biocatalysis. Additionally,
this structural information plays an indispensable role in the rational
development and design of new drugs with high potency and selec-
tivity that specifically target the binding site1–3. In this regard, X-ray
diffraction (XRD) has long been one of the most powerful methods to
determine the atomic structures of many biomacromolecules. Struc-
tural determination often relies on standard X-ray crystallographic
refinement methods, in which the molecular mechanics (MM) force
field is combined with experimental (XRD) data to derive reasonable
chemical structures4,5. However, the development of forcefields (using
limited parameters) to give reliable structures of diversified drug
molecules has long been challenging due to the enormous variety of
chemical space (with many element–element combinations) and
complex electronic effects (such as conjugation/delocalization)6.

Recent breakthroughs in the development of various artificial intelli-
gence (AI) methods (e.g., AlphaFold or RoseTTAFold) can predict
impressively reasonable atomic structures of some proteins7,8. Unfor-
tunately, these AI-based methods (such as AlphaFold) still cannot
easily predict reliable biological structures containing cofactors or
drugs/inhibitors, due to scarce experimental structural data9,10.

On the other hand, the development of quantum refinement (QR,
pioneered by Ryde)11, which replaces the MM method with more
accurate quantum mechanics (QM) methods, can overcome the chal-
lenges of reliably describing various drug structures12. In fact, the QR
method has been successfully applied to some protein–drug/inhibitor
systems, such as acetylcholinesterase with the anti-Alzheimer drug
donepezil13 and serine proteases with benzamidinium-based
inhibitors14. These successful applications of QR to biomacromole-
cules have demonstrated many promising results in improving the
structural quality and even giving the correct structures15–19. Moreover,
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recent developments in QR combined with multiscale11,13,15–22, linear-
scale QM23,24, fragmentation25–28 and quantum-embedding22 methods
by different groups further boost or improve the refinement process.
Nevertheless, compared to the fast MM methods usually used in
crystallographic refinements, the much higher computational costs
and complex setup of QM/MM systems hinder the broad applications
of QR to many biological systems.

Recently, active AI method development (such as machine
learning potentials (MLPs)) has emerged as a promising alternative
that can quickly predict energy and related gradients after trainingQM
energies and gradients with very large datasets of various atomic
configurations. MLPs are remarkable for their robustness and for
accuracy comparable to that of high-level ab initio methods used to
generate training data29–32. ANI series using deep neural networks
(DNNs) are powerful and successful MLPs (achieving density func-
tional theory (DFT) or coupled-cluster (CC) accuracy) that have
attractedmuch attention in recent years33–35 due to their flexibility and
transferability to a wide range of molecules and systems. However,
MLPs are still less transferable than QM methods and are generally
limited to closed-shell, neutral organic compounds. The Dral group
elegantly developed a general-purpose artificial intelligence–quantum
mechanical method 1 (AIQM1) to approach coupled-cluster (CC)
accuracy36 by combining the Δ-machine learning (ML) strategy37 and

semi-empirical (SE) method38, using ANI-type neural network (and
datasets) potentials and D4-dispersion39 as corrections. The AIQM1
method displayed good accuracy even for challenging systems (such
as ions and excited states). Additionally, several groups adoptedML to
replace or correct the expensive QM method in ab initio QM/MM
methods40–42 to enhance accuracy and reduce the high computational
cost of QM/MMmolecular dynamics simulations43–48. Inspired by these
encouraging results in newMLPs, we envision thatMLPs will introduce
a new opportunity to develop a faster and more accurate QR
method49,50, since high-level CC methods are rarely used in QR appli-
cations due to their prohibitive computational costs22.

In this study, MLPs are incorporated for the first time as the high
layer (Fig. 1a) in the multiscale QR method22, in which the expensive
QM method(s) is replaced by the much faster ANI or AIQM1 method.
Due to the high dependence on training data, the MLPs are limited to
few elements (e.g.,: AIQM1: C, H, O, N; ANI-2x: C, H, O, N, F, Cl, S) or
specific systems (ANI: neutral systems). To apply refinement of drug/
inhibitor molecules containing more elements and to overcome such
limitation while maintaining the highest accuracy on the core drug/
inhibitor structures, two different levels (CC- andDFT-quality) ofMLPs
(denoted asMLP-CC andMLP-DFT) were further combined for the first
time through an extrapolativeOurownN-layered Integratedmolecular
Orbital and molecular Mechanics (ONIOM) approach and introduced

Fig. 1 | Schematic workflow and selected protein–drug/inhibitor systems.
a Schematic workflow for our multiscale quantum refinements (QRs) on
protein–drug/inhibitor systems combined with machine learning potentials
(MLPs). The multiscale method combined with MLPs was highlighted. b Chemical
structures of ten selected drugs/inhibitors (QR10 dataset; the negative and positive
charged groups were marked by red oval and blue circle, respectively). The drug/

inhibitor that contains only H, C, N, and O elements were highlighted using blue
background color, whereas the drug/inhibitor that contains also S, F, and Cl ele-
ments were highlighted using red background color. The drug/inhibitor name,
related target protein name, and PDB ID are included beneath the image. Those for
the other 40 drugs/inhibitors evaluated in our study are also given in Supple-
mentary Figs. 1–4.
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in our ONIOM QR schemes (i.e. ONIOM2(MLP:MM), ONIOM3(MLP:-
SE:MM), especially the unprecedented ONIOM3(MLP-CC:MLP-
DFT:MM) and ONIOM4(MLP-CC:MLP-DFT:SE:MM) schemes, see
Table 1). The geometries of 50 different protein–drug/inhibitor sys-
tems were then refined and evaluated by various above-mentioned
ONIOM-based QR schemes (Fig. 1, Supplementary Figs. 1–4, and
Table 1), along with X-ray experimental data. Our results demonstrate
that these MLPs+ONIOM-based QR schemes can successfully reach
QM-level accuracy withmuch higher efficiency, which should promote
much broader applications of QR methods and be helpful for drug
development/design. Moreover, our refinements offer computational
evidence for coexisting the bonded and nonbonded forms of the FDA-
approved drug nirmatrelvir in one crystal structure of SARS-CoV-2
main protease (MPro), which should be helpful for designing better
SARS-CoV-2 drugs.

Results
Drug/Inhibitor structures in the gas phase
To assess the performance of a few MLPs, geometry optimization of
our selected 50 drugs/inhibitors (QR50 dataset, Figs. 1b, 2 and Sup-
plementary Figs. 1–4; the optimized geometries are provided in Sup-
plementary Data) in the gas phase was first performed using the
ωB97X-D/6-31G(d), AIQM1, ANI-1ccx, ANI-2x, ANI-1x, and second-
generation Geometry, Frequency, Noncovalent, eXtended Tight
Binding (GFN2-xTB) methods. Compared to the reliable results opti-
mized by the (QM) ωB97X-D method, our structural analysis shows
that median absolute deviation (MAD) in the bond distances, angles
and rotatable dihedrals of the drug/inhibitor molecules by the MLPs
(AIQM1, ANI-2x) and SE (GFN2-xTB) methods vary by 0.005–0.008Å,
0.6–0.9° and 11.2–16.1°, respectively (Table 2). In general, all MLPs led
to similar drug/inhibitor structures to those optimized by the DFT
method with all the median (white dots) and the highest deviation
distribution (maximum width) locations close to zero (Fig. 2). How-
ever, the GFN2-xTB method underestimated bond distances, with a
median bond deviation distribution close to −0.01 Å.

To further evaluate the accuracy of the MLPs methods for more
different functional groups51, a new computational benchmark dataset
taken fromPDBbind v2020 (denoted as PB20-QM, https://github.com/
oscarchung-lab/PB20-QM) containing 12,963 drug/inhibitormolecules
as well as its two smaller sub-datasets (PB20-QM-8 k: 8776 molecules
containing, C, H, O, N, F, S, and/or Cl elements; and PB20-QM-3 k: 3156
moleculesmainly containing, C, H, O, and/orN elements) were also set
up for geometry optimization by the different methods (Table 2).
Compared to the reliableωB97X-Dmethod, our computational results
show thatMAD in thebonddistances, angles and rotatabledihedrals of
the drug/inhibitor molecules by the MLPs (AIQM1, ANI-2x) and SE
(GFN2-xTB) methods vary by 0.003–0.006Å, 0.4–0.6°, and
26.7–32.0°, respectively (Table 2).

In addition, the drug/inhibitor molecules containing charged
group(s) were generally found to have larger structural deviations
(e.g., MAD) when optimized by all MLPs and SE methods than the
neutral drug/inhibitor cases (Table 2), except the dihedrals in PB20-
QM-3k possibly due to its scarce systems. For the neutral cases, these
MLPs showed higher accuracy than GFN2-xTB with smaller structural
deviation in bond (ΔMAD: 0.002–0.004 Å) and angle (ΔMAD:
0.1–0.2°) compared to the DFT method. The dihedral deviations for
the AIQM1 and GFN2-xTB methods are generally comparable and
smaller than those forMLPANI-2x. Even theANI-seriesMLPswere not
primarily designed for charged systems, the ANI-2x method still
showed a small structural deviation (MAD: <0.009 Å (bond), <0.2°
(angle)) for those containing charged group(s). In comparison, the
CC-level MLP AIQM1 method gives superior results to the ANI-series
MLPs. Therefore, these MLPs, particularly the CC-quality AIQM1
method, can give reliable structures for drug/inhibitor systems at
much lower computational costs. Moreover, apart from the charge
effect, the structural flexibility of the drug/inhibitor molecules is
another key important factor in the larger RMSDs in the gas phase
(Supplementary Table 36).

Table 1 | Computational chemistry methods in our quantum
refinementsa

Methods

M1 ONIOM2(DFT:MM)

M2 ONIOM2-EE(DFT:MM)

M3 ONIOM2(ANI-2x:MM)

M4 ONIOM2(ANI-1ccx:MM)

M4a ONIOM3(ANI-1ccx:ANI-2x:MM)b

M5 ONIOM2(AIQM1:MM)c

M5a ONIOM3(AIQM1:ANI-2x:MM)b

M6 ONIOM2(SE:MM)

M7 ONIOM3(DFT:SE:MM)

M8 ONIOM3(ANI-2x:SE:MM)

M9 ONIOM3(ANI-1ccx:SE:MM)

M9a ONIOM4(ANI-1ccx:ANI-2x:SE:MM)b

M10 ONIOM3(AIQM1:SE:MM)c

M10a ONIOM4(AIQM1:ANI-2x:SE:MM)b

M6R ONIOM2(SE:MM)d

aωB97X-D/6-31 G(d) as the density functional theory (DFT) method, ANI-2x (machine learning
potentials with DFT accuracy, MLP-DFT), ANI-1ccx (machine learning potentials with coupled-
cluster accuracy, MLP-CC) and AIQM1 (MLP-CC) as machine learning potentials (MLPs), Amber
ff14SB as the MM method, and GFN2-xTB as the semi-empirical (SE) method.
bTwomachine learningpotentialswere used to describe the drug/inhibitormolecules due to the
element limitations (C, H, O, N) of ANI-1ccx and AIQM1.
cAIQM1 combined with GFN2-xTB methods were used to describe the drug/inhibitor molecules
containing P or Br elements due to the element limitations (C, H, O, N) of AIQM1.
dThe high layer ofM6R includes the drug/inhibitor molecule and its neighboring residues
within 3Å.

(b)

(a)

(c)

n = 891 n = 704

n = 1278 n = 993

n = 473 n = 408

Fig. 2 | Comparison of the optimized structure in the gas phase. Violin plots of
deviation in (a) bond distances (Δr), (b) angles (Δθ) and (c) rotatable dihedrals (Δϕ)
for the selected 50 drug/inhibitor structures (QR50 dataset) optimized in the gas
phase, usingmachine learning potentials (MLPs including coupled-cluster accuracy
(MLP-CC): AIQM1, and density functional theory accuracy (MLP-DFT): ANI-2x), and
the semi-empirical (SE) GFN2-xTB method compared to the (DFT) ωB97X-D/6-
31G(d) method. ONIOM(MLP:ANI-2x) method was used for the molecules con-
taining F, Cl and/or S elements, when AIQM1 was used. ONIOM(MLP:SE) method
was used for the molecules containing P and Br elements when AIQM1 or ANI-2x
was used. The number of data was given in each plot. The white dots indicate the
median values and the inner boxplots indicate the interquartile range. Source data
are provided as a Source Data file.
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Quantum refinement of protein–drug/inhibitor systems
These MLPs were further introduced into ONIOM-based QR
schemes to refine the structures of the 50 protein–drug/inhibitor
systems (Fig. 1 and Supplementary Figs. 1–4; the refined geometries
are provided in Supplementary Data). Compared to the X-ray crystal
structures, the real-space difference density Z (RSZD) scores of
these 50 drugs/inhibitors (except nirmatrelvir, acylated ceftazi-
dime, and isatin, including its covalent linkages) after various QRs
were reduced by 1.0–1.1 on average (Fig. 3a and Supplementary
Table 25), showing structural improvement by the QRs. The most

significant improvement was found in nirmatrelvir for one SARS-
CoV-2Mpro system and isatin for DJ-1 system, whose RSZD scores can
be significantly decreased from 7.6/6.0 (X-ray crystal structure) to
0.5–1.0/0.9–2.1, respectively, due to the consideration of two con-
formers (vide infra).

In agreement with the above-mentioned smaller RSZD scores
after QRs, the electron density analysis also demonstrated noticeable
improvement of electron density around all refined drug/inhibitor
binding sites generally (Fig. 4 and their corresponding electron density
maps given in Supplementary Information). For instance, the electron

(b)

(c)

(d)

(e)

(a)

n = 901 n = 704

n = 1292 n = 993

n = 486 n = 408

n = 24 n = 26

n = 24 n = 26

Nirmatrelvir     

Isatin

Taurocholic     

Darunavir 

Fig. 3 | Comparison of the quantum refinement results. Boxplots of deviation of
(a) real-space Z-difference (RSZD) scores as well as (b) strain energy (ΔΔE,
kcal·mol−1), in which the boxplots indicate median (center line), upper and lower
quartiles (box limits), aswell aswhiskers (1.8× (X-ray) and 4.0× (QRs) × interquartile
range in (a); 3.3× (X-ray) and 8.2× (QRs) interquartile range in (b)). Outlier points
(with much larger deviations) were also marked using red circle, blue triangles,
black rhombus, and purple square for four drugs/inhibitors. Most of these outliers
aremainly attributed to their poor geometry in the X-ray crystal structure, whereas
QRs on the Isatin systemwere found to have modestly larger deviations in four QR

schemes. Violin plots of the deviations of (c) bond distances (Δr), (d) angles (Δθ)
and (e) rotatable dihedrals (Δϕ) of drugs/inhibitors in the selected 50
protein–drug/inhibitor systems afterM1–M10 quantum refinement approaches
compared to M7 (ONIOM3(DFT:SE:MM)). The X-ray results were taken from the
experimental structures without further refinement. The white dots in violin plots
indicate the median values and the inner boxplots indicate the interquartile range.
The number of data was given in each plot. Source data are provided as a Source
Data file.

Table 2 | Comparison of the optimized structures in the gas phase for different datasets

QR50a PB20-QM-3ka PB20-QM-8ka

AIQM1b,c ANI-2xc xTB AIQM1b,c ANI-2xc xTB ANI-2x xTB

All systems (50)d (3156)d (8776)d

Bond (Å) 0.005 0.006 0.008 0.004 0.003 0.006 0.003 0.006

Angle (°) 0.6 0.9 0.8 0.4 0.5 0.6 0.6 0.7

Dihedral (°) 11.6 16.1 11.2 26.7 32.0 28.0 32.6 29.0

Neutral group(s) (24)d (3061)d (7260)d

Bond (Å) 0.004 0.003 0.007 0.004 0.003 0.006 0.003 0.006

Angle (°) 0.5 0.6 0.7 0.4 0.4 0.6 0.5 0.7

Dihedral (°) 10.6 12 10.6 27.2 32.5 28.6 35.2 31.6

Charged group(s) (26)d (95)d (1516)d

Bond (Å) 0.006 0.009 0.010 0.005 0.004 0.005 0.004 0.006

Angle (°) 0.7 1.3 0.9 0.6 0.8 0.8 0.8 0.8

Dihedral (°) 12.7 21 11.9 18.2 25.0 18.5 25.9 21.5
aQR50: our selected 50 drugs/inhibitors (Fig. 1b andSupplementary Figs. 1–4); PB20-QM-3k: the smallest subset dataset of PB20-QMcontaining 3156 drugs/inhibitors (3125molecules containingC,
H,O and/or N elements, 15 molecules containing F, Cl and/or S elements, and 16molecules containing B, P, Se, Br and/or I elements); PB20-QM-8k: a smaller subset dataset of PB20-QMcontaining
8776 drug/inhibitors containing C, H, O, N, F, Cl and/or S elements.
bONIOM(MLP:ANI-2x) method was used for the molecules containing F, Cl and/or S elements, when AIQM1 was used.
cONIOM(MLP:SE) method was used for the molecules containing B, P, Se, Br and/or I elements, when AIQM1 or ANI-2x was used.
dNumber of the drugs/inhibitors.
Median absolute deviation (MAD) of the optimized bond distances, angles, rotatable dihedrals in thegas phaseusingAIQM1, ANI-2x, andGFN2-xTB (xTB)methods compared to thedensity functional
theory (DFT, ωB97X-D/6-31G(d)) method for the QR50, PB20-QM-3 k, and PB20-QM-8 k datasets.
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density maps for imatinib, osimertinib, and CPI-0610 systems showed
better density fitting after our QRs. Moreover, compared to the X-ray
electron density maps, the discrepancy with the experimental obser-
vations was significantly reduced (i.e., fewer green and/or red con-
tours) by our QRs. In addition, for the case of the imatinib-tyrosine
kinase system, the electron density maps around the imatinib binding
site (Fig. 4b) are almost identical for refinements using the schemes
based on DFT (ONIOM3(DFT:SE:MM), M7) and MLPs (ONIOM3(ANI-
2x:SE:MM) and ONIOM3(AIQM1:SE:MM), M8 and M10, respectively).
This improved electron density surrounding the pyridine, pyrimidine
and N-phenylbenzamide moieties may result from their changed
dihedrals (black: from 179.9° (X-ray crystal structure) to 162.6°~164.9°;
red: from 4.2° (X-ray crystal structure) to 44.3°~48.6°). Consequently,
the negative RSZD score decreased from -1.8 (X-ray crystal structure)
to –0.1~0.0 after various QRs (Supplementary Fig. 19).

In addition, the computed strain energies (Fig. 3b) of these 50
drugs/inhibitors were considerably reduced by 27.1~31.4 kcal·mol−1

after various QRs on average. The greatest reduction in strain energy
was observed in the taurocholic acid-CmeR (from 239.8 to approxi-
mately 78.7–85.6 kcal·mol−1) and darunavir-HIV-1 (from 117.3 to
approximately 14.1–20.4 kcal·mol−1) systems after our QRs. This strain

can be attributed to the underestimated C–S bond (b5: 0.18–0.22 Å
shorter) of taurocholic acid and twoC–Cbonds (b3 and b4: 0.25~0.28 Å
shorter) of darunavir in the X-ray structures (Fig. 1b, Supplementary
Fig. 78, and Supplementary Table 18). Therefore, these computational
results illustrate that all QR schemes (M1–M10) clearly improved the
local drug/inhibitor binding sites compared to those in the X-ray
crystal structures.

Moreover, our structural analysis (Fig. 3c–e) further revealed that
the bond distances, angles, and rotatable dihedrals of the drugs/inhi-
bitors after refinement by various QR schemes remained consistent
with the most reliable ONIOM3(DFT:SE:MM) method (M7). Compared
to the X-ray structures, darunavir, oseltamivir, and osimertinib struc-
tures refined using methods M1–M10 displayed the largest absolute
bond deviation (b1: 0.19~0.21 Å, b2: 0.18~0.20Å, b3: 0.28~0.29Å, b4:
0.25~0.26 Å; Supplementary Table 18) among the other drug/inhibitor
systems, which canaccount for the veryhigh strain energies computed
in these X-ray structures (96.3–117.3 kcal·mol−1, see Supplementary
Table 26). Additionally, the largest absolute angle and dihedral
deviations (using methods M1–M10) were found in our refined nir-
matrelvir (a1: 14.9°~17.5°) and imatinib (d1: 37.7°~49.9°) structures
(Supplementary Table 18), respectively.

Fig. 4 | Our own N-layered Integrated molecular Orbital and molecular
Mechanics (ONIOM) scheme with machine learning potentials (MLPs), and
electron density maps. a Chemical structures of imatinib, CPI-0610 (with the
ONIOM(MLP-CC:MLP-DFT) scheme) and osimertinib. Structures for the binding
sites of (b) imatinib in spleen tyrosine kinase (PDB ID: 1XBB), (c) CPI-0610 in bro-
modomain (PDB ID: 5HLS) and (d) osimertinib in EGFR (PDB ID: 6JX4) from various

quantum refinements using M7, M8 (M9a), M10 (M10a) and the X-ray crystal
structures, including the electron densitymaps (2mFo-DFcmaps, contoured at 1.0σ

(blue), mFo-DFc maps, contoured at +3.0 σ (green), and mFo-DFc maps, contoured
at –3.0 σ (red)). The X-ray results were taken from the experimental structures
without further refinement. MLP-CC (coupled-cluster quality of MLP); MLP-DFT
(density functional theory quality of MLP).
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Combination of two MLPs through ONIOM
Since CC-level MLPs (ANI-1ccx and AIQM1) can only be applied to
limited elements (H, C, N, O), these higher-level MLPs cannot be
employed to describe broader drug/inhibitor systems with more ele-
ments (F, S, Cl). To overcome this limitation and describe more drug/
inhibitor systems, two different levels of MLPs were combined for the
first time through an extrapolative ONIOM scheme, in which themajor
core structures are describedby thehigher-levelMLP-CCmethod (ANI-
1ccx or AIQM1) and the remaining parts containing other elements are
described by the lower-level MLP-DFT (ANI-2x) method (Fig. 4a). This
new combination of two MLPs enables the unprecedented
ONIOM3(MLP-CC:MLP-DFT:MM) (M4a and M5a) and ONIOM4(MLP-
CC:MLP-DFT:SE:MM) (M9a andM10a) schemes for our QRs on the 20
selected protein–drug/inhibitor systems containing F, Cl or S element
(Supplementary Fig. 3).

Pleasingly, our refined CPI-0610 structure in bromodomain
obtained by these ONIOM4-based schemes can give similar electron
density around the binding site to the reliable ONIOM3(DFT:SE:MM)
M7 scheme, with reduced discrepancy (i.e., fewer red and/or green
contours) from the experimental observations (Fig. 4c and Supple-
mentary Fig. 66). This improved electron density in the CPI-0610 sys-
tem after these ONIOM4(ANI-1ccx:ANI-2x:SE:MM)- and
ONIOM4(AIQM1:ANI-2x:SE:MM)-based (M9a and M10a, respectively)
QRsmight result from the changeddihedrals (black: from−45.4° (X-ray
crystal structure) to −36.5°~−35.6°; red: from −177.8° to −168.5°~
−165.8°) and changed p-ClC6H4 angle (blue: from 117.7° (X-ray crystal
structure) to 114.4°~114.5°). Likewise, their RSZD scores for the CPI-
0610 systemwere reduced from 1.3 (X-ray crystal structure) to 0.7–0.8
after these ONIOM4-based QRs. Moreover, the RMSD for the CPI-0610
structure refined by the ONIOM4(MLP-CC:MLP-DFT:SE:MM) scheme
with reference to ONIOM3(DFT:SE:MM) (M7) was very small (bonds <
0.009Å, angles < 0.8°, dihedrals < 2.6°). Similarly satisfactory refined
results were also found in the other 19 systems (e.g., RSZD scores
reduced by 0.4–7.1, Supplementary Table 25). Consequently, these
findings show that these unique ONIOM4(MLP-CC:MLP-DFT:SE:MM)
and ONIOM3(MLP-CC:MLP-DFT:MM) schemes can improve
protein–drug/inhibitor structures (comparable to the DFT method)
with higher computational efficiency, suggesting that the combination
of several levels of MLPs via the ONIOM approach offers a promising
avenue for overcoming some limitations of MLPs and enhancing their
advantages.

Combined MLP-CC/SE methods for broader drug molecules
Moreover, the higher-level AIQM1 and GFN2-xTB methods were fur-
ther combined through the ONIOM scheme for our QRs on the three

selected protein–drug/inhibitor systems (Supplementary Fig. 4), in
which the major core of the drug/inhibitor structures and their
remaining parts containing other elements (P or Br) are described by
theAIQM1and SEmethods, respectively. TheRMSDandMAD for these
refined drug/inhibitor structures with reference to ONIOM3(DFT:-
SE:MM) (M7) were very small (RMSD: bonds <0.011 Å, angles < 0.7°,
dihedrals< 2.6°; MAD: bonds < 0.011 Å, angles < 0.5°, dihedrals < 2.3°).
Moreover, our refined drug/inhibitor structures can give similar elec-
tron density around the binding site to the reliable M7 scheme (Sup-
plementary Figs. 186, 191, and 229). What’s more, their RSZD scores
were reduced from 1.4–3.9 (X-ray crystal structure) to 1.3–2.5 after
these QRs. Therefore, these results show that the combined MLP-CC
with SE method can further resolve the limitations of MLPs and be
applied to much more elements and molecules.

Correlation
Pleasingly, the use of these MLPs as the QM method successfully
accelerated our QR processes with comparable accuracy to QM (e.g.,
RSZD score, strain energy and geometrical parameters). Additionally,
MLP-CC based schemes, (M4-M5 and M9-M10) gave the lowest RSZD
scores among our ONIOM2- and ONIOM3-based QRs for 39 of the
50 selected systems (Supplementary Table 25), even lower than the
DFT-based ONIOM3(DFT:SE:MM) M7 scheme. Figure 5 displays the
correlation (R2) of the refined bond distances, angles, rotatable dihe-
drals, RSZD scores and strain energy obtained by the M8, M10, and
M6R schemes (ONIOM3(ANI-2x:SE:MM), ONIOM3(AIQM1:SE:MM) and
ONIOM2(SE:MM), respectively) compared to those obtained by theM7
scheme. The refined bond distances and angles obtained by the M8,
M10 andM6Rwere in very goodagreementwith thoseobtainedby the
M7 for thedrug/inhibitor systemscontainingboth charged andneutral
groups (bond distances: R2 > 0.988; angles: R2 > 0.962). In contrast,
their rotatable dihedrals, RSZD scores, and strain energies showed a
clear disparity between the systems containing neutral and charged
groups.

For neutral systems, MLP-based (ONIOM3(ANI-2x:SE:MM), ONIO-
M3(AIQM1:SE:MM), M8 and M10, respectively) and SE-based
(ONIOM2-(SE:MM), M6R) schemes gave RSZD scores (R2 > 0.971)
consistent with those of the DFT-based scheme (ONIOM3(DFT:-
SE:MM), M7). Likewise, the M8, M10 and M6R schemes also showed
good agreement for the dihedrals (R2 > 0.935). Moreover, the MLP-
DFT-based (M8) andMLP-CC-based (M10) schemes gave similar strain
energies to those of the DFT-based scheme (R2: 0.996 and 0.992,
respectively), significantly better than the those of SE-based scheme
(M6R, R2: 0.910). On the other hand, for the systems containing
charged group(s), as ANI-type MLPs were not developed for charged

(b) Charged(a) Neutral  

Numbers: 901       1292     486         24         24 Numbers: 704       993      408         26          26

Fig. 5 | Accuracy of different QR schemes. Correlation (R2) of the refined bond
distances, angles, rotatable dihedrals, real-space Z-difference (RSZD) scores, and
strain energy for the drugs/inhibitors containing (a) neutral and (b) charged
group(s) by the M8, M10 and M6R schemes (ONIOM3(ANI-2x:SE:MM),

ONIOM3(AIQM1:SE:MM) and ONIOM2(SE:MM), respectively) compared to those
obtainedby theM7 scheme (ONIOM3(DFT:SE:MM)). Numbers of dataweregiven in
each plot. Source data are provided as a Source Data file.
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systems, the M8 scheme gave the lowest R2 values for the angles
(0.962), dihedrals (0.924) and strain energy (0.869). However, allMLP-
based schemes (M8-M10) still showed RSZD scores consistent with
those of the DFT-based scheme (M7; R2: 0.995–0.996), as well as the
SE-based scheme (M6R, R2: 0.996). Promisingly, the AIQM1-based
scheme (M10) showed high R2 on the bonds (0.995) and dihedrals
(0.974). Therefore, compared to the reliable DFT-based scheme, these
MLP-based schemes displayed good performance (structures, RSZD
scores and strain energy) in our QRs of neutral systems, and the
AIQM1-based scheme can offer high accuracy for the challenging
charged cases.

Structural comparison in the gas phase and in proteins
Figure 6 shows RMSDs (with reference to the DFT method) of all
computed drug/inhibitor structures in the gas phase and in proteins.
The RMSDs of the optimized drug/inhibitor structures in the gas phase
(0.40–0.74 Å for ANI-2x, AIQM1, and GFN2-xTB) were significantly
higher than their corresponding structures in proteins refined by QRs
(0.02–0.03Å:M8,M10, andM6R relative toM7). These results can be
attributed to the much higher structural flexibility in the gas phase,
compared to the confined space of the protein-binding sites. More-
over, the RMSDs for the drugs/inhibitors containing charged group(s)
were found to be slightly larger than those for the neutral drugs/
inhibitors when ANI-2x were used, possibly due to the aforementioned
limitation of ANI methods. Encouragingly, the higher-level AIQM1
method can give better performance of the optimized drug/inhibitor
structures in the gas phase (charged: 0.49 Å; neutral: 0.59Å) than the
ANI-2xmethod (charged: 0.74 Å; neutral: 0.67 Å). Overall, these results
demonstrate that QRs using MLPs (especially the more accurate CC-
level AIQM1) can provide reliable drug/inhibitor structures in proteins
(comparable to the DFT level), although larger structural errors were
observed in the gas phase.

Efficiency
In termsof computational costs,QRsusing theseMLPs are significantly
more efficient than the DFT method as the high level (Table 3). For
instance, QRs of imatinib in spleen tyrosine kinase required approxi-
mately 144 CPU core-hours (Intel Xeon Gold 5218) for the DFT-based
(ONIOM2(DFT:MM), M1) scheme, but only about 1.5–2.4 core-hours
for the MLP-based (ONIOM2(ANI-2x:MM) and ONIOM2(AIQM1:MM),
M3 and M5, respectively) and SE-based (ONIOM2(SE:MM), M6)
schemes. Alternatively, QR using the robust M3 scheme was first per-
formed, followed by additional refinement using M1 (M3→M1).
Approximately 54.8 CPU core-hours were required in this dual refine-
ment approach to reach the genius DFT accuracy. For the case of
nirmatrelvir in the SARS-CoV-2MPro, QRs using theMLP-based schemes
(M3,M5 andM6) required about 6.7–31.5 core-hours, which wasmuch
faster than using the DFT-based M1 scheme (3948.4 core-hours). A

dual refinement approach (M3→M1) also significantly reduced the QR
time (626.8 core-hours). These benchmark results demonstrate that
QRs using MLPs can give reliable results with much lower computa-
tional costs. Computational time can also be reduced using a dual
refinement approach using MLPs followed by the DFT method as the
high level.

Two conformers of nirmatrelvir in SARS-CoV-2 MPro

The electron density map around the nirmatrelvir binding site in the
crystal structure of wild-type SARS-CoV-2 MPro shows pronounced red
contours around the C–S covalent bond linkage to the Cys145 (Fig. 7a).
Unfortunately, our QRs performed by several schemes (M1–M10) only
marginally alleviated this substantial discrepancy in the electron den-
sity and slightly reduced the RSZD score from 7.6 (X-ray structure) to
5.8 (Supplementary Table 38). The electron density discrepancy in the
C–S bond linkage after these QRs remained severe (Supplementary
Fig. 42). On the basis of the reversible C–S bond formation
mechanism52, the possible existence of both bonded and nonbonded
conformers (Fig. 7a, b) was further considered in our QRs.

These two conformers were first individually refined using the
DFT-based ONIOM3(DFT:SE:MM)M7 scheme. The refined results were
then combined with different ratios of occupation of the two con-
formers. Our refined results suggest that an occupation ratio of
approximately 7:3 (bonded: nonbonded) gives the greatest structural
improvement with the lowest RSZD scores (0.5, Fig. 7b) as well as the
marked improvement of the electron density (Fig. 7c). Similarly,
ONIOM QRs using the other MLP-based schemes (ONIOM3(ANI-
2x:SE:MM), ONIOM3(ANI-1ccx:SE:MM) and ONIOM3(AIQM1:SE:MM),
M8-M10, respectively) and the same occupation ratio (7:3) also pro-
vided significant improvement in the electron density (Fig. 7c) and the

Table 3 | Efficiency of the quantum refinements

System M1 M3 M5 M6 M3→M1

Imatinib 144.0 1.9 2.4 1.5 54.8

Rivaroxaban 188.4 53.1 50.9 15.0 186.1

Oseltamivir 1004.0 56.9 60.8 47.7 232.6

Ciprofloxacin 5987.6 350.8 426.9 323.2 2994.1

Mometasone 1328.1 162.2 1061.6 153.9 1188.1

CPI-0610 168.8 3.2 204.7 23.1 129.4

Darunavir 185.8 158.5 67.1 73.0 117.6

Ibrutinib 541.4 171.8 401.0 46.8 253.0

Osimertinib 5798.5 812.3 265.5 198.7 196.3

Nirmatrelvir 3948.4 6.7 10.3 31.5 626.8

Computational cost (CPU core-hours) of different quantum refinements for the ten selected
systems shown in Fig. 1. All calculations are performed on an Intel Xeon Gold 5218 CPU.

Fig. 6 | Structural comparison in the gas phase and in proteins.Boxplots of root
mean square deviation (RMSD) of structures optimized using the ANI-2x, AIQM1,
and (SE) GFN2-xTB methods compared to the (DFT) ωB97X-D method for the
neutral drugs/inhibitors (26 structures) in the gas phase (orange) and in the pro-
teins after quantum refinement (blue) and for the charged drugs/inhibitors
(26 structures) in the gasphase (red) and in theproteins after quantum refinements

(pink). aThosewithRMSDrange from0 to 3.5 Å; (b) ThosewithRMSDrange from0
to 0.1 Å. The boxplots indicate median values, interquartile range, minimum and
maximum value, and individual data points. The black dots indicate the average
values. TheQRdata by theM7,M8,M10 andM6R schemes (ONIOM3(DFT:SE:MM),
ONIOM3(ANI-2x:SE:MM), ONIOM3(AIQM1:SE:MM) and ONIOM2(SE:MM), respec-
tively) were used. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-48453-4

Nature Communications |         (2024) 15:4181 7



RSZD scores (from 7.6 (X-ray crystal structure) to 0.5–0.7 only).
Moreover, the computed strain energy was substantially decreased by
30.2–36.8 kcal·mol−1. Again, the refined results using the MLP-based
schemes (M8-M10) were very similar to those using the DFT-based
scheme (M7) with derivation of RSZD scores < 0.2 only and almost
identical electron density maps (Fig. 7c). Consequently, our QR results
provide computational evidence of the coexistence of the bonded and
nonbonded forms of nirmatrelvir in the crystal structure of SARS-CoV-
2 MPro, which should afford important structural information for
designing better SARS-CoV-2 drugs. Moreover, large RSZD score and
electron density discrepancy of the key C–S bond linkage were
observed in another crystal structure of wild-type SARS-CoV-2 MPro

(PDB ID: 7SI9, Supplementary Table 42 and Supplementary Fig. 52),
which may also imply the coexistence of the bonded and nonbonded
forms. Furthermore, the coexistence of the bonded and nonbonded

formswere recently proposed in another crystal structure of wild-type
SARS-CoV-2 MPro (PDB ID: 7VH8)52.

Discussion
In this study, machine learning potentials (MLPs) were proposed and
utilized to replace the reliable but expensive QM method and to
accelerate multiscale QR processes for the first time. To overcome the
element restrictions in some MLPs, two different levels of MLPs were
also combined by an extrapolative ONIOM approach and then applied
as the unprecedented ONIOM3(MLP1:MLP2:MM) and
ONIOM4(MLP1:MLP2:SE:MM) schemes for QR. Our QR results
demonstrated that MLPs (especially the high-level AIQM1 method
reaching coupled-cluster accuracy) could achieve highly accurate
drug/inhibitor structures in 50 different protein–drug/inhibitor sys-
tems, comparable to the results of the reliable DFT method, with

Fig. 7 | Quantum refinements of SARS-CoV-2 MPro. a Nirmatrelvir bonded to
Cys145 in the X-ray structure and refined by M7 quantum refinement scheme,
including the electron density maps. bNirmatrelvir nonbonded to Cys145 and real-
space Z-difference (RSZD) scores of the Cys145 residue and nirmatrelvir (4WI) in
wild-type SARS-CoV-2MPro refined byM7-based quantum refinement with different
occupations (bonded: nonbonded). c Structures of the nirmatrelvir binding site in

SARS-CoV-2 MPro refined by various quantum refinement schemes (M7, M8, and
M10a) with anoccupation ratio of 7:3 (bonded: nonbonded), including the electron
densitymaps (2mFo-DFcmaps, contoured at 1.0 σ (blue), mFo-DFcmaps, contoured
at + 3.0 σ (green), and mFo-DFc maps, contoured at −3.0 σ (red)). The X-ray results
were taken from the experimental structure without further refinement. Source
data of panel (b) are provided as a Source Data file.
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computational costs significantly lower by roughly two orders of
magnitude. Moreover, our QR results provided computational evi-
dence of coexisting the bonded and nonbonded forms of the FDA-
approved drug nirmatrelvir in one crystal structure of SARS-CoV-2
MPro, which should provide new structural insights for drug design for
SARS-CoV-2 treatment. Our proof-of-concept study showed that
powerful MLPs can accelerate the QR of protein–drug/inhibitor com-
plexes with high accuracy, which should promote more QR applica-
tions and provide new atomistic insights into molecular recognition,
catalysis, and drug development. Additionally, apart from X-ray crys-
tallography, we believe that MLPs could be helpful for modern struc-
tural determination methods of biomacromolecules (e.g. Cryo-EM,
MicroED)53,54. Furthermore, computational benchmark datasets (PB20-
QM, PB20-QM-8 k and PB20-QM-3 k) were set up to evaluate the
structural reliability of 3–19 k drug/inhibitor molecules computed by
the DFT, MLPs and/or SE methods, which hopefully help future
development of better DFT, MLPs and/or SE methods for drug/inhi-
bitormolecules.We are also optimistic that with the advances of more
high-level andgeneralMLPsdevelopedbydifferent groups55–59, the fast
and reliable QR of diverse biosystems will be routinely performed on
any normal desktop computer in the future.

Methods
Multiscale QR methods using MLPs
On the basis of our previous ONIOM-based QR method22, the total
energy function of the entire system is given by Eq. 1:

Etotal = EONIOM + ωα*Exray ð1Þ

EONIOM2 high:lowð Þ = Ehigh,model + Elow,real � Elow,model ð2Þ

EONIOM3 high:medium:lowð Þ = Ehigh,model + Emedium,intermediate � Emedium,model

+ Elow,real � Elow,intermediate

ð3Þ

where EONIOM represents the energy contribution from ONIOM-based
calculations60, Exray stands for the energy contribution derived from
the crystallographic penalty and ωα is the weighting factor that
balances the contributions of each term. Equations 2 and 3 represent
the two- and three-layer ONIOM schemes, respectively.

In general, flexible ONIOMmethods can significantly improve the
structure of active sites by ONIOM2(QM:MM), ONIOM2(SE:MM), and/
or ONIOM3(QM:SE:MM) schemes. To reduce the computational cost
of the QM method and to accelerate the ONIOM-based QRs, a few
MLPs (ANI-2x, ANI-1ccx, and AIQM1)33,35,36 are employed to replace the
QM method, i.e., ONIOM2(MLP:MM) and ONIOM3(MLP:SE:MM)
schemes. However, CC-level MLPs (MLP-CC, such as ANI-1ccx and
AIQM1) were only trained on systems containing H, C, N, and O ele-
ments, while DFT-levelMLPs (MLP-DFT, such as ANI-2x) was trained on
systems containing H, C, N, O, F, S, and Cl elements. To extend the
MLP-CC applications tomoredrug/inhibitormolecules containing F, S,
Cl elements, two different levels of MLPs were further combined
through an extrapolative ONIOM approach (ONIOM2(MLP-CC:MLP-
DFT), Eq. 4). Such ONIOM2(MLP-CC:MLP-DFT) part was then used to
replace the Ehigh,model part in ONIOM2(QM:MM) in Eq. 2 or that in
ONIOM3(QM:SE:MM) in Eq. 3 to derive unique ONIOM3(MLP-CC:MLP-
DFT:MM) and ONIOM4(MLP-CC:MLP-DFT:SE:MM) schemes, respec-
tively. To further apply MLP to even boarder drug/inhibitor molecules
containing P or Br element, AIQM1 (or ANI-2x) and SE methods were
also combined to describe the drug/inhibitormolecules by theONIOM
approach (Eq. 5), which replaces the Ehigh,model part in

ONIOM2(QM:MM) in Eq. 2 or that in ONIOM3(QM:SE:MM) in Eq. 3.

EONIOM2ðMLP�CC:MLP�DFTÞ = EMLP�CC,model + EMLP�DFT ,real � EMLP�DFT ,model

ð4Þ

EONIOM2ðMLP:xTBÞ = EMLP,model + ExTB,real � ExTB,model ð5Þ

Combination of two different MLP levels can readily be applied
and extended to an additive QM/MM framework (Eqs. 6–7)60–62.

EMLP�CC=MLP�DFT=MM = EMLP�CC,model + EMLP�DFT ,intermediate

� EMLP�DFT ,model + EMM + EMLP�DFT�MM

ð6Þ

EMLP�CC=MLP�DFT=xTB=MM = EMLP�CC,model + EMLP�DFT ,intermediate1

� EMLP�DFT ,model + ExTB,intermediate2

� ExTB,intermediate1 + EMM + ExTB�MM

ð7Þ

The experimental part Exray (Eq. 1) was obtained from the Crys-
tallography and NMR System (CNS) program63.

Protein preparations
All experimental data and protein–drug/inhibitor crystal structures
were obtained from the Protein Data Bank (PDB)64–72. The CNS topol-
ogy and parameter files of these drug/inhibitor molecules can be
generated from PRODRG and ATB servers. Prior to ONIOM QR calcu-
lations, the proteins were first prepared by determining the proto-
nated state and the rotamer of some amino-acid side chains (see
details in the Supporting Information), as well as addition of hydrogen
atoms. The rotamer of the amino-acid side chain was determined by
WHATCHECK and our visual examination. The addition of hydrogen
atoms and optimization of the hydrogen-bond network were then
performed using PDB2PQR 3.5.2 program. The protonated states of
the titratable residues were assigned on the basis of estimated pKa
results computed from PROPKA 3.0 program at the pH of crystal-
lization, while the protonated states of the drug/inhibitor molecules
were generally assigned by cross-validation of MolGpka, Graph-pKa,
and pkasolver. All added hydrogens were firstly optimized using
ONIOM2(DFT:MM) with fixing the heavy atoms.

ONIOM QR calculations
Various ONIOM-based schemes were used to assess performance of
our QRs (M1–M10, Table 1), after the protein preparations. All QRs
were conducted using our ONIOM_QR code22. Various ONIOM-based
ONIOM2(QM:MM), ONIOM2(MLP:MM), ONIOM2(SE:MM),
ONIOM3(QM:SE:MM) andONIOM3(MLP:SE:MM) schemesweremainly
performed using Gaussian 16. A popular ωB97X-D functionals as the
DFT method combined with 6–31 G(d) basis sets was employed as the
QM method73. ANI-1ccx33, ANI-1x34, ANI-2x35, and AIQM136 methods
were used as MLPs. GFN2-xTB method was employed as the SE
method74, and Amber ff14SB force fields served as the MM method75.
The ANI and AIQM1 methods were performed using TorchANI76 and
MLatom77, respectively, which were called through Gaussian external
interface to achieve two-layer ONIOM2(MLP-CC:MLP-DFT) (such as
ONIOM2(ANI-1ccx:ANI-2x) and ONIOM2(AIQM1:ANI-2x)), three-layer
ONIOM3(MLP-CC:MLP-DFT:MM) and four-layer ONIOM4(MLP-
CC:MLP-DFT:SE:MM) schemes. Additionally, optimization of these
drug/inhibitor molecules in the gas phase using ANI-2x, ANI-1x, ANI-
1ccx, AIQM1, GFN2-xTB, and ωB97X-D/6-31 G(d) as well as, for some
molecules containing P, Br elements, ONIOM2(AIQM1:GFN2-xTB)
methods were carried out to analyze the MLPs performance using
Gaussian 16 as the geometry optimizer.Moreover, effects of dispersion
correction, DFT functional, and diffuse functions in theQMmethod on
our QRs of the selected 10 drug/inhibitor (shown in Fig. 1) were
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examined. These selected 10 drug/inhibitor-protein structures refined
based on M1 quantum refinements using ωB97X/6-31 G(d), ωB97X-D/
6-31 +G(d) or M06-2X/6-31 G(d) method as the QM method are very
similar as those by ωB97X-D/6-31 G(d) method (MAD: 0.001 Å,
0.0–0.1° and 0.2–0.3°, respectively; Supplementary Table 3).

For our two- and three-layer ONIOM QR calculations/setup (see
the Supplementary Information for details), the drug/inhibitor mole-
cules (except Nirmatrelvir in wild-type SARS-CoV-2MPro, ceftazidime in
beta-lactamase, and isatin in DJ-1) were set as the high-layermodel part
and theoptimized region, aswell as themedium layer in the three-layer
ONIOM methods included neighboring residues within a radius of
3.0 Å to themodel part. In the case of the SARS-CoV-2Mpro system, the
Nirmatrelvir drug and its linkage CYS145 residue were defined as the
high-layer model part and optimized region. Similarly, in the case of
the beta-lactamase and DJ-1 systems, the drug/inhibitor and its cova-
lent linkage residue were defined as the high-layer model part and
optimized region. For the systems containing H, C, N, and O elements,
M4, M5, M9 and M10 QR schemes were used. Whereas, for the 20
drug/inhibitor systems containing H, C, N, O, F, Cl, and S elements,
M4a, M5a, M9a, and M10a QR schemes were used. ONIOM(MLP:SE)
methodwas used for the threemolecules containing P andBr elements
when AIQM1 or ANI-2x was used. Furthermore, the highest-methods
combination used in this study was considered to be the most reliable
computational method: ONIOM3(DFT:SE:MM) (M7). All refined results
by different methods were generally used to compare with those
by M7.

The convergence conditions (atomic unit) for our QR calculations
were kept consistent with the default settings in Gaussian 16:ΔE < 10−5,
Stepmax < 1.8 × 10−2, StepRMS < 1.2 × 10−2, ∇Emax < 4.5 × 10−3,
∇ERMS < 3 × 10−3. The weighting factor ωα was derived from CNS for
each system (see details in the Supporting Information). Analysis on
the refined results (including electron density, and real-space differ-
ence density Z (RSZD)) score were carried out using Refmac5, and
Edstats modules implemented in CCP4i2 8.0. Electron density maps
were drawn using Pymol. The strain energy was determined by calcu-
lating the QM energy difference between the fully-optimized ligand in
the gas phase and the refined ligand extracted from the protein at the
ωB97X-D/6-31 G(d) level.

Gas-phase geometry optimization
All drug/inhibitor molecules were also optimized by the above-
mentioned DFT, MLPs, and SE methods using Gaussian 16 as the geo-
metry optimizer. In addition, effects of dispersion correction, DFT
functional anddiffuse functionswere also examinedusing the selected
10 drug/inhibitor (shown in Fig. 1). These molecules optimized by
ωB97X/6-31 G(d), ωB97X-D/6-31 +G(d) or M06-2X/6-31 G(d) method
are very similar as those byωB97X-D/6-31 G(d)method (MAD: 0.001 Å,
0.1–0.2°, and 7–16°, respectively; Supplementary Fig. 6, and Supple-
mentary Table 2). Therefore, ωB97X-D/6-31G(d) was used as the DFT
method in this study.

Datasets setup
Our drug/inhibitor molecules downloaded from PDBbind v2020
dataset were used to set up a benchmark dataset (denoted as PB20-
QM), which contains 12,963 drug/inhibitor molecules after removing
metal-containing systems. The protonation states of all these mole-
cules remain preserved as those in the PDBbind v2020 dataset, except
for minor corrections (to fix very poor or wrong positions of H atoms
based on their corresponding PDB structures) in some molecules.
Classification of charged group(s) in these molecules was based on
protonation state(s) given in the PDBbind v2020 dataset. Geometry
optimization for all molecules in this PB20-QM dataset in gas phase
were conducted by the above-mentioned DFT and SE methods. In
addition, two smaller sub-datasets (PB20-QM-8k: 8776 molecules
containing, C, H, O, N, F, S, and/or Cl elements; and PB20-QM-3k: 3156

moleculesmainly containing, C, H, O, and/orN elements) were also set
up. Geometry optimization for all molecules in this PB20-QM-8k
dataset were conducted by the above-mentioned DFT, SE, and ANI-2x
methods, whereas those in PB20-QM-3k dataset were performed by
the above-mentioned DFT, SE, AIQM1, and ANI-2x methods.

Data availability
The crystal structures and experimental data used in this work are
available in the RSCB Protein Data Bank (https://www.rcsb.org/) under
the PDB IDs listed in the paper. All the supporting data are provided in
the main text and Supplementary Information. Our PB20-QM bench-
mark datasets have been deposited in our GitHub repository (https://
github.com/oscarchung-lab/PB20-QM). The optimized/refined geo-
metries of the QR50 dataset in this study are provided in Supplemen-
tary Data file. Source data are also provided with this paper. Source
data are provided with this paper.

Code availability
All original code is publicly available at https://github.com/
oscarchung-lab/ONIOM_QR/releases 2.0.0 as well as Zenodo (https://
doi.org/10.5281/zenodo.10828284)78.
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