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Structural insights into drug transport by an
aquaglyceroporin

Wanbiao Chen1,10, Rongfeng Zou2,10, Yi Mei3,4,5,10, Jiawei Li1,6, Yumi Xuan1,
Bing Cui1,7, Junjie Zou2, Juncheng Wang8, Shaoquan Lin9, Zhe Zhang 3,4,5 &
Chongyuan Wang 1

Pentamidine andmelarsoprol are primary drugs used to treat the lethal human
sleeping sickness caused by the parasite Trypanosomabrucei. Cross-resistance
to these two drugs has recently been linked to aquaglyceroporin 2 of the
trypanosome (TbAQP2). TbAQP2 is the first member of the aquaporin family
described as capable of drug transport; however, the underlying mechanism
remains unclear. Here, we present cryo-electron microscopy structures of
TbAQP2 bound to pentamidine or melarsoprol. Our structural studies, toge-
ther with the molecular dynamic simulations, reveal the mechanisms shaping
substrate specificity and drug permeation. Multiple amino acids in TbAQP2,
near the extracellular entrance and inside the pore, create an expanded con-
ducting tunnel, sterically and energetically allowing the permeation of pen-
tamidine and melarsoprol. Our study elucidates the mechanism of drug
transport by TbAQP2, providing valuable insights to inform the design of
drugs against trypanosomiasis.

Trypanosomes are protozoan parasites that cause human sleeping
sickness and animal trypanosomiasis1,2. Pentamidine and melarsoprol
have been used as anti-trypanosomatid drugs for over 70 years and
remain crucial therapeutic options3. Pentamidine and other diamidine
drugs typically accumulate to very high concentrations in the trypa-
nosome’s mitochondrion, where they bind to the kinetoplast DNA,
inhibiting both replication and transcription4–6. However, the
mechanismof action ofmelarsoprol and other arsenical drugs remains
unclear7. Cross-resistance between melarsoprol and pentamidine
(melarsoprol-pentamidine cross-resistance, MPXR) was observed fol-
lowing the introduction of these drugs, leading to 20–30% treatment
failure8. Subsequent studies have suggested that this cross-resistance
results from lower uptake rates of these drugs rather than from

mutations in their targets9. The first gene implicated in MPXR was the
aminopurine transporter TbAT1/P210. Subsequently, two additional
transporters were described as high-affinity pentamidine transporter
(HAPT1) and low-affinity pentamidine transporter (LAPT1)11,12. HAPT1
was identified as TbAQP2 through a genome-scale RNA interference
screen and was found to be the primary determinant of MPXR
(Fig. 1a)10,13–16.

Aquaporin family, comprising aquaporins and aquaglyceroporins,
are major intrinsic proteins that facilitate the passive transport of
water, glycerol, and other small solutes17. T. brucei encodes three
aquaglyceroporins, namely AQP1, AQP2, and AQP3, exhibiting a broad
permeability profile for small solutes, including water, glycerol,
methylglyoxal, L-lactate, D-lactate, and acetate18. Sequence analysis
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revealed that TbAQP1 and TbAQP3 encode canonical selectivity filters,
whereas TbAQP2 possesses a unique selectivity filter15. Previous stu-
dies have indicated that TbAQP2 transports pentamidine and mel-
arsoprol via direct permeation16,19,20. However, melarsoprol and
pentamidine exhibit significant structural differences compared to
typical AQP substrates. While water (18 Da), urea (60Da), and glycerol
(92Da) are typical AQP substrates with hydrophilic properties, mel-
arsoprol (398Da) and pentamidine (340Da) have much larger mole-
cular weights and predominantly hydrophobic and dicationic organic
properties, respectively. These substantial differences have sparked
debates regarding the ‘drug channel’ hypothesis of TbAQP2. An
alternative proposition, the ‘porin-receptor’ hypothesis, suggests that
drug uptake occurs through binding to TbAQP2, followed by
endocytosis21. To investigate the mechanism of TbAQP2-dependent
uptake of anti-trypanosomatid drugs, we determine high-resolution
cryo-electron microscopy (cryo-EM) structures of TbAQP2 in its
substrate-free and drug-bound states. Our structural analysis unveils
that pentamidine and melarsoprol are accommodated in wide con-
ducting tunnels through hydrophobic interactions and hydrogen
bonds. Comparisons with canonical water- or glycerol-permeable
AQPs indicate that multiple substitutions in pore-lining residues and
rearrangements near the extracellular entrance of TbAQP2 result in an
expanded conducting pore, enabling the accommodation and per-
meation of pentamidine and melarsoprol.

Results
Functional reconstitution and structure determination
To investigate the transport activity of TbAQP2 in a simpler manner,
we developed the cell-based uptake assay using the fluorescent
analog of pentamidine (stilbamidine) as a substrate7. In contrast to
uninfected HEK293 cells, those infected with TbAQP2 displayed
robust uptake of stilbamidine (~60% positive) within 1min (Supple-
mentary Fig. 1a, b). Thus, TbAQP2-dependant uptake of stilbamidine
in mammalian cells recapitulates the rapid uptake of pentamidine
observed in Trypanosomes.

For cryo-EM studies, full-length TbAQP2was expressed inHEK293
cells, subsequently purified, and reconstituted into lipid nanodiscs
(Supplementary Fig. 1c–e). We determined high-resolution 3D recon-
structions of TbAQP2 alone and in complex with pentamidine or
melarsoprol, at overall resolutions ranging from 3.0 to 2.45Å (Sup-
plementary Figs. 2–4). These reconstructions facilitated the buildingof
atomicmodelswith accurate stereochemistry that correlatedwell with
the observed cryo-EM density (Supplementary Table 1). TbAQP2
exhibited the canonical aquaporin fold, featuring eight transmem-
brane helices (TM1-TM8) connected by six loops (loop A-loop F), and
with both the N and C termini positioned on the cytoplasmic side of
the membrane (Fig. 1b–e). Four TbAQP2 monomers assembled and
formed a tetramer with a fourfold symmetry, closely resembling other
aquaporins (Fig. 1b–c).

Conducting pore and selectivity filter
Each monomer of TbAQP2 features a conducting pore that extends
~25 Å from the extracellular vestibule to the intracellular vestibule.
(Fig. 2a–d). The substrate selectivity of AQPs is thought to be con-
trolled by a selectivity filter (SF) situated below the extracellular ves-
tibule (Fig. 2a–d)22–26. In conventional AQPs, a distinctive feature
known as the aromatic/arginine motif (ar/R) in the selectivity filter
plays a crucial role in determining selectivity. For channels selective to
water, the selectivity filter consists of four highly conserved residues
(F58, H182, C191, and R197 in bovine AQP1) (Fig. 2a, e). The histidine
residue projects towards the pore, constricting its diameter to less
than 2.0 Å (Fig. 2a, d, e), effectively preventing the passage of glycerol
or other solutes. In glycerol-permeable channels, also known as
aquaglyceroporins, the selectivity filter is formed by three bulky resi-
dues (W50, F190, and R196 in PfAQP from the malarial parasite Plas-
modium falciparum), with the side chain of phenylalanine pointing
outward from the pore (Fig. 2b, d, f). This outward orientation relieves
the constriction to approximately 3.5 Å, allowing the passage of gly-
cerol (Fig. 2b, d, f). TbAQP2, however, deviates from the typical
aquaglyceroporin by lacking the ar/R motif found in canonical AQPs
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Fig. 1 | Structure of TbAQP2. a Schematic representation of membrane trans-
porters involved in the uptake of trypanocides pentamidine and melarsoprol.
There are threemembrane transporters involved in pentamidine uptake. The high-
affinity pentamidine transporter (HAPT1, identified as TbAQP2), the P2 aminopur-
ine transporter (TbAT1/P2), and the low-affinity pentamidine transporter (LAPT1),
with Km values of ~36 nM, ~430 nM and ~56 µM, respectively. TbAQP2/HAPT1 is the
main contributor to pentamidine sensitivity in Trypansome. Panel A created with

BioRender.com and released under a Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International license.b, c 3Dcryo-EMreconstruction
(b) and structure (c) of TbAQP2 in an apo-state viewed parallel to the membrane,
with subunits colored separately. d Topology of TbAQP2. e cartoon representation
of the TbAQP2 monomer colored the same as in d, viewed extracellularly. In
e, helices are shown as cylinders.
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and the bulky residues observed in glycerol-permeable PfAQP. (Sup-
plementary Fig. 5). Contrary to conventional AQPs, TbAQP2 features a
distinct motif (I110, V249, A259, and L264) in its selectivity filter. This
unique motif creates a significantly wider and more hydrophobic
selectivity filter, providing steric and hydrophobic environments
conducive to the passage of larger organic molecules, such as penta-
midine and melarsoprol (Fig. 2c, d, g). Our structural analysis aligns
with this observation. Notably, earlier studies demonstrated that
mutating these selectivity filter residues to larger counterparts (I110W
or L264R) completely abolished pentamidine uptake into trypano-
some parasites20.

In canonical AQPs, a distinctive “fireman’s grip-like” structure is
formed in themiddle of the conductingporeby twoAsn-Pro-Alamotifs
(NPA/NPA) (Supplementary Fig. 6a, b). The conserved asparagine (Asn,
N) residues within these motifs play a crucial role in orienting water
during channel traversal and preventing proton transport22–26.
TbAQP2, on the other hand, exhibits a similar fold with the motifs
NS131A/NPS263 (Supplementary Fig. 6c). Interestingly, a hydrogen
bond between the hydroxyl group of S263 and N261, not observed in
other AQPs, is formed in TbAQP2 (Supplementary Fig. 6a–c). While
these residues, S131 and S263, do not directly line the pore through
which pentamidine passes (Supplementary Fig. 6c), their role in sub-
strate binding is evident. When these unique NSA/NPS motifs in
TbAQP2 are replaced with canonical NPA/NPA motifs, there is a sig-
nificant ~20-fold decrease in pentamidine uptake, indicating the
involvement of these serine (S) residues in substrate binding20. Nota-
bly, although S131 and S263 might not directly interact with pentami-
dine, replacing S263 with alanine disrupts the hydrogen bond to N261,

resulting in impaired substrate binding and transport (Supplementary
Fig. 6c and Supplementary Movie).

In addition to differences in the selectivity filter and NPA motif, a
significant distinction lies in the “neck” region between the NPA motif
and the intracellular vestibule of TbAQP2 compared to other AQPs.
The neck of TbAQP2 is notably wider (with a radius of ~2.5 Å) than that
of water-specific or glycerol-permeable channels (with radii of ~1.5 Å)
(Fig.V). Structural superposition indicates that the expansion of the
neck is not caused by alterations in the pore-lining residues but rather
by an outward rearrangement of TM5 and the loop connecting TM6
and TM7 (loop F) (Fig. 2k, i and Supplementary Fig. 7d). In canonical
AQPs, TM5 and loop F are stabilized by a delicate hydrogen bond
network involving highly conserved residues (such as E144, T189, and
G190 in BtAQP1 from the bovine, Bos taurus, or E141, T188, and G189 in
PfAQP from the malarial parasite Plasmodium falciparum) (Supple-
mentary Fig. 7a, b). However, in TbAQP2, loop F becomes decoupled
from TM5, leading to the outward reorganization of loop F and TM5
and, consequently, the expansion of the neck (Supplementary Fig. 7).
Overall, these structural differences, including substitutions in resi-
dues lining or near the pore, contribute to an expanded selectivity
filter and neck in TbAQP2, favoring the binding and subsequent per-
meation of pentamidine and melarsoprol.

Pentamidine binding
To gain further insights into the mechanism of substrate binding and
permeation, cryo-EM studies were conducted on TbAQP2 in the pre-
sence of drug substrates. Through optimized sample preparation
procedures, structures of the channel bound to pentamidine or
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melarsoprol were determined at resolutions of 2.45 Å. Clear cryo-EM
densities inside the conducting pore corresponding to the substrates
were identified (Supplementary Fig. 3h). By comparing these struc-
tures with the apo-state structure, it was discovered that neither
pentamidine nor melarsoprol induces significant conformational
changes in the channel (rootmean squaredeviation from the apo-state
structure of 0.25 Å² or 0.37Å², respectively) (Supplementary Fig. 8).
Due to their relatively large sizes, only single pentamidine or mel-
arsoprol molecules were observed inside the pore (Fig. 3a, b), in con-
trast to a line of water or glycerol molecules observed in the pore of
canonical AQPs (Fig. 3c), suggesting a distinct permeationmechanism
for these antimicrobials.

Pentamidine was found to be bound in a highly extended con-
formation, with one of the amidine groups entering the intracellular
vestibule of TbAQP2 (Fig. 3a). This suggests that the pentamidine-
bound structure represents a pre-entry state. The binding tunnel
involves the selectivity filter, NPA motif, and neck. The upper benza-
midine moiety of pentamidine was bound in a pocket near the selec-
tivity filter, formed by a series of hydrophobic residues (I110, V114,
M260, V245, V249, L258, A259, and L264) (Fig. 3a, d, e). The penta-
nediol moiety was accommodated by residues surrounding the NPA
motif (L118, V133, L218, L219, V222, and I241) (Fig. 3a, d, e). In addition
to hydrophobic interactions, the amide groups of N130 and A259
formed hydrogen bonds with the oxygen atom of the pentanediol
moiety (Fig. 3d, e). This finding helps explain previous observations
that substitutions of the ester groups with thioether or amide groups
significantly decrease the uptake efficiency of these compounds20.

Furthermore, the lower benzamidine moiety of pentamidine engaged
in π-stacking interactions with F226 and H128, further contributing to
high binding affinity (Fig. 3d, e). Aligning with our structural observa-
tions, mutagenesis of these substrate-binding residues resulted in
significant decreases in TbAQP2-dependent uptake of stilbamidine
(Supplementary Fig. 9).

It is worth mentioning that D265, previously implicated in the
direct binding of pentamidine in the ‘porin-receptor’ mode21, is not
within direct bonding distance to pentamidine in our cryo-EM struc-
ture. Instead, it forms a salt bridge with a neighboring R269 (Supple-
mentary Fig. 10). This suggests that the reduced pentamidine
internalization in the D265Amutant is likely due to an allosteric effect
that alters packing, electrostatic, and hydrogen bonding networks
critical for maintaining the ‘fireman’s grip’ of TbAQP2 and promoting
substrate binding and internalization.

Melarsoprol binding
In contrast to the binding site of pentamidine, which was located on
the intracellular side of the pore, melarsoprol was accommodated in
the middle of the pore (Fig. 3b). To minimize steric clashes, melarso-
prol appeared to adopt an approximately planar conformation, with
the melamine moiety close to the extracellular side and the dithias-
rolane moiety pointing towards the intracellular side (Figs. 3b and
4a, b). The melamine moiety of melarsoprol was bound within the
selectivity filter through hydrophobic packing interactions with the
pore-lining residues I110, M196, V249, and L264, and a hydrogen bond
with the carbonyl group of A259 (FigV). The dithiasrolane moiety of
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melarsoprol was buried in a flat hydrophobic pocket formed by resi-
dues L118, L129, V222, and I241 (Fig. 4a, b).

We identified a chiral carbon (C2 atom) in the dithiasrolane moi-
ety of melarsoprol, presenting two possible chiral configurations
(Fig. 4c, d). During cryo-EM sample preparation, a mixture of mel-
arsoprol diastereomers was added to the TbAQP2 sample with a ~20-
foldmolecular excess (seeMethods). The high-quality cryo-EMdensity
inside the pore exhibited excellent correlation with one melarsoprol
molecule in the C2(R) configuration (Fig. 4c). To explore the impact of
chirality at the C2 atom on melarsoprol binding, we modeled a mole-
cule in the C2(S) configuration into the same binding site (Fig. 4d,
lower panel). Structural analysis revealed the emergence of severe
steric clashes between the carbinol group of melarsoprol and nearby
pore-lining residues (V222 and I241) (Fig. 4d, lower panel). Collectively,
these results indicate configuration-selective binding of melarsoprol
through TbAQP2.

Molecular dynamic simulations
To explore the permeation pathway of pentamidine, we conducted
umbrella sampling (US) simulations to derive free-energy profiles.
Initially, steered molecular dynamics simulations (SMD) were
employed to pull pentamidine from the binding site in two directions
along the conducting pore, mimicking both association and dissocia-
tion processes. These simulations generated the necessary windows
for the subsequent US simulation. Within the US simulation, a har-
monic potential was applied to restrain the ligand in eachwindow, and
free-energy profiles were then reconstructed using the Weighted His-
togram Analysis Method (WHAM). Our results indicated that the
pentamidine binding site corresponds to the minimum free-energy
location within the conducting pore (Fig. 5a), consistent with our
structural observations. Specifically, our simulations revealed that the
energy barrier for pentamidine to exit the channel towards the cyto-
plasmwas approximately 10 kcal/mol, while the barrier to exit towards
the extracellular side was around ~14 kcal/mol. Notably, experimental
studies have indicated a strong dependence of pentamidine uptake on
the membrane potential in trypanosomes (approximately −125mV for
T. brucei)27. To investigate the impact of membrane potential on pen-
tamidine permeation, we conducted simulations in the presence of a
negativemembrane voltage. Notably, the entry energy barrier towards
the cytoplasm decreased to ~5 kcal/mol, while the exit energy barrier
towards the extracellular side increased to ~24 kcal/mol (Fig. 5a). These
findings suggest that, in the presence of membrane potential, penta-
midine has a greater tendency to enter the cytoplasm than to exit the

cell. This aligns with experimental observations showing significant
accumulation of pentamidine at mM levels inside trypanosome para-
sites, and no detectable pentamidine efflux when extracellular drug
was removed4,28. Our simulations have revealed that in the presence of
membrane potential, pentamidine exhibits a notable preference for
entering cells over exiting, as indicated by the differences in energy
barriers. This distinctive behavior shares some similarities with
inwardly rectifying ion channels, such as the mitochondrial calcium
uniporter29.

Residue W192, situated near the extracellular vestibule of
TbAQP2, seems to play a role in the uptake of pentamidine, as evi-
denced by significantly reduced pentamidine uptake upon
mutagenesis20. Despite the absence of direct interactions between
pentamidine andW192 in our cryo-EM structure, a detailed analysis of
simulation results identified a local minimum free-energy site in the
pentamidine permeation route (Fig. 5a, b). In this structural snapshot,
pentamidine adopts an extended conformation, with one amidine
group entering the selectivity filter (Fig. 5b). The other amidine group
is positioned in the extracellular vestibule, forming a pi-pi interaction
with W192 (Fig. 5b). To further probe the interaction between W192
and pentamidine, we utilized MM/GBSA simulation to calculate the
interaction energies of pentamidine with wild-type TbAQP2 and the
W192Amutant, using the localminimumcaptured in theUS simulation
as the starting coordinate. The binding energy of theW192Amutant to
pentamidine decreased by 4.2 ± 0.2 kcal/mol compared to the wild-
type protein. Therefore, our calculations suggest that W192 likely
serves as a docking site for pentamidine during its permeation through
TbAQP2.

Discussion
Aquaporins are a class of transmembrane proteins that facilitate the
passive transport of water, glycerol, and other small solutes17. To date,
TbAQP2 is the only aquaporin reported to uptake drug-likemolecules,
and it is a key determinant of cross-resistance between melarsoprol
and pentamidine in human trypanosomosis. However, the uptake
mode of these anti-trypanosomatid drugs has been under debate, with
both the ‘drug channel’ and ‘porin-receptor’ hypotheses proposed to
explain the underlying mechanism16,19–21. Our structural studies and
molecular dynamic simulations strongly support the ‘drug channel’
hypothesis.

Melarsoprol and pentamidine markedly differ from typical AQP
substrates due to their larger size and increased hydrophobicity,
suggesting a distinct mechanism underlying their permeation. Our
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structural analyses reveal variations at multiple residues lining or near
the pore, resulting in a wide and hydrophobic conducting pore. This
configuration allows for the sterically and energetically favorable
permeation of pentamidine and melarsoprol. Furthermore, our
resolved structures for TbAQP2-drug complexes, inwhichmelarsoprol
and pentamidine were captured in extended conformations within the
conducting pore, likely representing the pre-entry state, elucidate the
mechanism of substrate binding, permeation, and mutation-
associated resistance.

Pentamidine uptake in T. brucei is markedly hindered by the
knockdown of genes encoding plasma membrane H+-ATPases
responsible for maintaining the plasma membrane potential or by the
addition of ionophores (including carbonyl cyanide m-chlorophenyl
hydrazone [CCCP], nigericin, and gramicidin). This observation indi-
cates that a negativemembrane potential inside the cellmay act as the
driving force for pentamidine uptake3,14,20.

In line with this hypothesis, our simulations clearly demonstrate
that the energy barrier for entering the cytosol dramatically decreases
(by 4.2 ± 0.2 kcal/mol) when a negative membrane voltage is applied.
In contrast to pentamidine uptake, melarsoprol uptake appears to be
insensitive to membrane potential20, suggesting that high binding
affinity and a concentration gradient are the main driving forces.
Despite melarsoprol having the highest efficiency among all melami-
nophenyl arsenicals used clinically in treatment against human trypa-
nosomiasis, post-treatment reactive encephalopathy occurs in 5–10%
of all patients treated with melarsoprol, leading to an overall fatality
rate of ~50% for the patients occurred encephalopathy3,30. Thus, there
is an urgent need to design melarsoprol analogs with milder side
effects, using our structure of the TbAQP2-melarsoprol complex as a

starting point. It will be worth investigating if the introduction of
positively charged groups into melarsoprol creates membrane
potential-motivated force and boosts its uptake by TbAQP2.

Our work elucidates the molecular mechanism underlying the
aquaporin-dependent uptake of the trypanocides pentamidine and
melarsoprol. This mechanism is distinct from the receptor-mediated
uptake observed for the trypanocide suramin31. Thefindings presented
here also offer a framework for the potential design of analogs or
trypanocides. This could pave theway for improved treatment options
against trypanosomiasis.

Methods
Protein expression and purification
Trypanosoma brucei Aquaglyceroporin 2 (UniProt: Q6ZXT3) was eval-
uated using the fluorescence-detection size-exclusion chromato-
graphy (FSEC) screening technique32. cDNA encoding full-length
TbAQP2 was synthesized (Sangon Biotech (Shanghai) Co., Ltd.), and
ligated into a mammalian cell expression vector32 to encode a protein
containing a C-terminal twin-strep tag. The expression plasmid was
transfected into HEK293S GnTI- cells (ATCC, # CRL-3022) for transient
expression. In brief, 1mg of plasmid and 3mg of PEI40K (YEASEN,
#40816ES.) were mixed in 100mL Freestyle 293 media (Gibico,
#12338018), incubated at room temperature for 30min, and the mix-
ture was added to 1 L of HEK293S GnTI- cells (~2.0 × 106 cells/mL) in
Freestyle 293 media supplemented with 1% FBS (TransSerum, #PS301-
02). After incubation at 37 °C for 16 h, 10mM sodium butyrate (Cool-
aber, #CS9931-100g) was added, and the cells were cultured at 30 °C
for another 48 hbeforeharvesting. Forpurification, the cell pellet from
1 L of culture was resuspended in 40mL buffer A (40mM HEPES pH
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7.4, 150mMNaCl, 0.15mg/mL DNase I, 1.5μg/mL Leupeptin, 1.5μg/mL
Pepstatin A, 1mM AEBSF, 1mM Benzamidine, and 1mM PMSF). Cells
were disrupted by homogenization on ice. The membrane pellet was
harvested by centrifugation at 70,000× g at 4 °C for 30min, then
resuspended in 40mL buffer A. The membrane was solubilized by
adding n-dodecyl-β-d-maltopyranoside (DDM, Anatrace) to a final
concentration of 1%, and stirred at 4 °C for 1 h. Solubilized proteins
were separated from the insoluble fraction by centrifugation at
70,000 × g at 4 °C for 40min, and the supernatantwasfiltered through
a 0.45-μm polystyrene membrane (NEST). Two milliliters of STarm
Streptactin Beads 4FF (Smart-Lifesciences, #SA092100) were incu-
bated with the sample with agitation at 4 °C for 1 h. The beads were
washedwith 50mLbuffer B (20mMHEPES pH 7.4, 150mMNaCl, 1mM
DDM). TbAQP2 protein was eluted by incubating buffer B containing
5mM biotin (Beyotime), and further purified by size-exclusion chro-
matography (SEC) on a Superose 6 increased, 10/300 GL column (GE
Healthcare) equilibrated with buffer B. Mutations were generated
usingQ5 Site-DirectedMutagenesis Kit (NewEnglandBioLabs Inc.) and
verified by DNA sequencing. The mutant proteins were expressed and
purified using a procedure similar to that of the wild-type protein.

Nanodisc reconstitution
The fractions obtained from size-exclusion chromatography (SEC)
were combined and concentrated to ~0.5mL (~1mg/mL) using a
Vivaspin 2 concentrator (100 kDa cutoff). This concentrated sample
was thenmixed with nanodisc scaffold protein (MSP1D1, 5mg/mL, in a
buffer containing 20mM Tris-HCl, pH 7.8, 100mM NaCl, 0.5mM
EDTA, and 5mM sodium cholate) along with a lipid/DDM mixture
(17mM DDM, 10mM lipids: POPE (Avanti): POPC (Avanti) with a 1:1
weight ratio) at a molecular ratio of 4:5:200 (TbAQP2: MSP1D1: lipid).
After incubating for 1 h at 4 °C, ~250mg of wet Bio-Beads SM2 (Bio-
Rad) were added, and the sample was rotated at 4 °C overnight to
remove detergent. To eliminate empty nanodiscs, the sample under-
went further purification using STarm Streptactin Beads 4FF. In brief,
the nanodisc sample was bound to 0.3mL Streptactin Beads with
rotation at 4 °C for 30min, washedwith 10mLbuffer C (20mMHEPES,
pH 7.4, 150mM NaCl), and then eluted with 1mL buffer C containing
5mM biotin. The nanodisc samples were further purified by SEC
(Superose 6 Increased, 10/300 GL column) in 20mM HEPES, pH 7.4,
150mM NaCl. The peak fractions were collected, concentrated to
around 1mg/mL (using Vivaspin 2, 100 kDa cutoff), and immediately
used for cryo-EMgrid preparation. For the preparation of the TbAQP2-
drug complex, pentamidine (Sigma, from a 20mM stock in DMSO) or
melarsoprol (Toronto Research Chemicals, from a 20mM stock in
DMSO) was added to the TbAQP2 sample to a final concentration of
~200 µM. The mixture was then incubated for 30min on ice before
cryo-EM grid preparation.

EM sample preparation and data acquisition
For cryo-EM grid preparation, 4μL of the purified sample was applied
to glow-discharged (10 s) Quantifoil R 1.2/1.3 grids (Au 400; Electron
Microscopy Sciences). The grids were then plunge-frozen in liquid
nitrogen-cooled liquid ethane using a VitrobotMark IV (ThermoFisher
Scientific). The Vitrobot was operated at 4 °C, with a blotting time of
2–4 s, using a blot force of ‘0’, and maintaining 100% humidity.
Micrographs were collected with a Titan Krios microscope (Thermo
Fisher Scientific) operating at 300 kV, equipped with a K3 Summit
detector (Gatan) in super-resolution mode. Details of all datasets can
be found in Supplementary Table S1. All datasets underwent proces-
sing using the same general workflow, as outlined below.

Cryo-EM structure determination
Supplementary Figs. 2 to 4 show cryo-EMworkflows. Image processing
was performed in cryoSPARC v.233 and RELION 3.134. Movie stackswere
gain-corrected, twofold binned, motion-corrected, and dose-weighted

in MotionCor235. Contrast transfer function (CTF) estimates were
performed using Patch CTF estimation in cryoSPARC v.2, and micro-
graphs with CTF fit resolutions better than 3.5 Å were selected using
Manually Curate Exposures in cryoSPARC v.2. Particles were auto-
picked using 2D Template picker in cryoSPARC v.233.

For the dataset of TbAQP2 without a substrate, 1,127,412 particles
were extracted from836micrographs in cryoSPARC v.2 with a binning
factor of 3 for ab initio reconstruction andheterogeneous refinements.
The particles were subjected to one round of heterogeneous refine-
ment in cryoSPARC v.2 to remove erroneously picked particles.
Selected particles (325,497) were reextracted with a binning factor of 1
and subjected to several rounds of heterogeneous refinement (using
C1 symmetry) to remove those particles that did not yield high-
resolution reconstructions. After the heterogeneous refinement pro-
cedure, 153,589 particles were selected, reextracted, and subjected to
non-uniform refinement with C4 symmetry, which yielded a recon-
struction at 3.7 Å overall resolution. After one round of Bayesian pol-
ishing in RELION 3.1, the particles were subjected to CTF (both global
and local) and non-uniform refinements in cryoSPARC v.2, resulting in
a map at 3.0 Å overall resolution. The final reconstruction was further
improved by density modification using the two unfiltered half-maps
with a soft mask in Phenix36, and then resampled to a pixel size
of 0.756Å.

For the dataset of the TbAQP2-pentamidine complex, 6,944,526
particles were extracted from 3,998 micrographs in cryoSPARC v.2
with a binning factor of 3 for ab initio reconstruction and hetero-
geneous refinement. The particles were subjected to one round of
heterogeneous refinement in cryoSPARC v.2 to remove erroneously
picked particles. Selected particles (1,883,669) were reextractedwith a
binning factor of 1 and subjected to several rounds of heterogeneous
refinement (using C1 symmetry) to remove those particles that did not
yield high-resolution reconstructions. After the heterogeneous
refinement procedure, 990,813 particles were selected, reextracted,
and subjected to 3Dclassification inRELION3.1. 539,330particles from
the two best classes were selected and subjected to non-uniform
refinement with C4 symmetry, which yielded a reconstruction at 2.9 Å
overall resolution. After one roundof Bayesian polishing in RELION3.1,
the particles were subjected to CTF (both global and local) and non-
uniform refinements in cryoSPARC v.2, resulting in a map at 2.6 Å
overall resolution. Another round of Bayesian polishing, and followed
CTF (both global and local) and non-uniform refinement in cryoSPARC
v.2 improved the resolution to 2.45Å. The final reconstruction was
further improvedby densitymodification using the twounfiltered half-
maps with a soft mask in Phenix36, and then resampled to a pixel size
of 0.756Å.

For the dataset of TbAQP2-melarsoprol complex, 7,752,452 par-
ticles were extracted from 4,636 micrographs in cryoSPARC v.2 with a
binning factor of 3 for ab initio reconstruction and heterogeneous
refinement. The particles were subjected to one round of hetero-
geneous refinement in cryoSPARC v.2 to remove erroneously picked
particles. Selected particles (1,907,100) were reextracted with a bin-
ning factor of 1 and subjected to several rounds of heterogeneous
refinement (using C1 symmetry) to remove those particles that did not
yield high-resolution reconstructions. After the heterogeneous
refinement procedure, 580,515 particles were selected, reextracted,
and subjected to 3D classification in RELION 3.1. 379,081 particles from
the two best classes were selected and subjected to non-uniform
refinement with C4 symmetry, which yielded a reconstruction at 2.8 Å
overall resolution. After one roundof Bayesian polishing in RELION3.1,
the particles were subjected to CTF (both global and local) and non-
uniform refinements in cryoSPARC v.2, resulting in a map at 2.5 Å
overall resolution. Another round of Bayesian polishing, and followed
CTF (both global and local) and non-uniform refinement in cryoSPARC
v.2 improved the resolution to 2.45Å. The final reconstruction was
further improvedby densitymodification using the twounfiltered half-
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mapswith a soft mask in Phenix36, and then resampled to the pixel size
of 0.756Å.

Atomic models were built de novo, refined in real space in
COOT37, and further refined in real space using PHENIX38. The final
models have good stereochemistry and Fourier shell correlations
(FSC) with the cryo-EMmaps (Supplementary Fig. 2 to 4, and Table S1).
Structural figures were prepared with Pymol (pymol.org), ChimeraX39,
Chimera40, MOLE41, CAVER42, LIGPLOT43, and HOLE44.

Molecular dynamic (MD) simulation
The OPM webserver was utilized to align the experimental structures
within the lipid bilayer45. Membrane systems were constructed using
the CHARMMGUI membrane building tool46. For protein and lipids,
CHARMM36m force field parameters were used47, while CGenFF
parameters were used for the ligand48. The protein-ligand complexes
were embedded in a lipid environment consisting of 128 POPC mole-
cules, accompanied by 19507 TIP3P water molecules and 0.15M NaCl,
resulting in final systems containing 79485 atoms. MD simulations
were conducted using GROMACS-2023.249. The systems underwent an
initial energy minimization step with 50000 steps employing the
steepest descent algorithm. Subsequently, temperature equilibration
was performed in the NVT ensemble at 310 K for 200 ps, followed by
density equilibration in the NPT ensemble at 310K and 1 atm for 10 ns.
During the equilibration steps, heavy atoms were constrained using a
harmonic restraint with a force constant of 1000 kJmol−1 nm−2. The
cutoff for the nonbonded interactions was set to 10Å, and long-range
interactions were recovered by the particle mesh Ewald (PME) sum-
mation method50. The equilibrated system was then used for sub-
sequent simulations.

Cell-based TbAQP2 transport assays
The wild type and mutants of TbAQP2 were expressed in HEK293S
GNTI- cells using the Bac-Mam system. In brief, recombinant bacu-
lovirus was generated in Spodoptera frugiperda Sf9 cells. After three
rounds of amplification, P3 viruses were introduced to the culture
when HEK293S GNTI- cells reached a density of ~3.0 × 106 cells/mL.
Approximately 12–16 h post-transfection, 10mM sodium butyrate
was supplemented to the culture at 30 °C. Following an additional
60 h of incubation, cells were harvested by centrifugation and
reconstituted to a concentration of 1 × 106 cells in Freestyle 293
media. Subsequently, cells were stained with 5 μmol/L stilbamidine
(MedChemExpress, #HY-U00007A) at room temperature for 1min.
After washing and centrifugation, cells were resuspended in 1x PBS
buffer and analyzed using a flow cytometer (Agilent Technologies,
Inc., USA). All graphs were generated using FlowJo and GraphPad
PRISM 6.0 software.

Umbrella sampling (US) simulation
The cryo-EM structure of pentamidine-bound TbAQP2 was used as the
starting structure. Steered molecular dynamics simulation (SMD) was
carried out to generate the windows for the US simulation. The ligand
was pulled along two directions separately, with one to the extra-
cellular side and the other to the intracellular side. The distance
between the current pentamidine position and that of pentamidine in
the initial binding mode is used as the reaction coordinate (the dis-
tance for the initial statewas set to 0.0 nm). For pulling pentamidine to
the intracellular side, the distance is defined as positive, while that for
pentamidine to the extracellular side is negative. A slow pulling rate
(1 nm/100 ns) with a spring constant of 100 kJ/mol/nm2 was used.
Using thewindows generated by SMD, aUS simulationwas performed,
with the space between the two adjacent windows set to 0.1 nm. Two
sets of US simulations were conducted, one featuring a static electrical
field of 0.04 V/nm perpendicular to the membrane, and the other
without such a field. Each window was simulated for 20 ns. The final
analysis was performed with the weighted histogram analysis method

(WHAM), discarding the first 5 ns of each window51. After the analysis,
the free-energy profiles of pentamidine to the inner and outer mem-
brane were merged, using the same protocol as reported previously52.

MM/GBSA
The initial binding mode was determined via a clustering analysis
protocol. Following this, the binding pose underwent a 5 ns-long
unbiased MD simulation. To assess the effect of the W192A mutation
on the binding mode’s stability, we performed MM/GBSA calculations
using the gmx_MMPBSA script53. The first 4 ns of the simulation tra-
jectory were omitted from the analysis. Three independent simula-
tions were performed.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
authors upon request. Atomic coordinates and maps of the TbAQP2,
TbAQP2-pentamidine complex, and TbAQP2-melarsoprol complex
structures have been deposited in the PDB (accession numbers 8JY7,
8JY8, and 8JY6) and EMDB (EMD-36722, EMD-36723, and EMD-36721,
respectively). Files relating to MD simulations (equilibrated system,
parameter files for performing umbrella sampling, MD trajectories for
the MM/GBSA analysis) have been uploaded to Zenodo [https://
zenodo.org/records/11172197]. All data needed to evaluate the con-
clusions in the paper are present in the paper and/or the Supple-
mentary Materials.
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