
Article https://doi.org/10.1038/s41467-024-48434-7

DeepDive: estimating global biodiversity
patterns through time using deep learning

Rebecca B. Cooper 1,2 , Joseph T. Flannery-Sutherland 3 &
Daniele Silvestro 1,2,4

Understanding how biodiversity has changed through time is a central goal of
evolutionary biology. However, estimates of past biodiversity are challenged
by the inherent incompleteness of the fossil record, evenwhen state-of-the-art
statistical methods are applied to adjust estimates while correcting for sam-
pling biases. Here we develop an approach based on stochastic simulations of
biodiversity and a deep learning model to infer richness at global or regional
scales through time while incorporating spatial, temporal and taxonomic
sampling variation. Our method outperforms alternative approaches across
simulated datasets, especially at large spatial scales, providing robust
palaeodiversity estimates under a wide range of preservation scenarios.
We apply our method on two empirical datasets of different taxonomic and
temporal scope: the Permian-Triassic record of marine animals and the Cen-
ozoic evolution of proboscideans. Our estimates provide a revised quantita-
tive assessment of two mass extinctions in the marine record and reveal rapid
diversification of proboscideans following their expansion out of Africa and
a >70% diversity drop in the Pleistocene.

Changes in biodiversity through time reflect fundamentalmechanisms
of species diversification and extinction; estimating their dynamics is
crucial to understanding the history of life. The fossil record provides
empirical evidence on which to base estimates, offering insight to the
processes of extinction, recovery, expansion and faunal and floral
turnover, while setting the context in which drivers of biodiversity
change are interpreted1–5. Fundamental questions in evolutionary
biology such as whether or not there are global limits to biodiversity6,7,
or how biodiversity has evolved, shaped by environmental change,
mass extinctions, and biotic interactions8–12 rely on our ability to infer
diversity patterns in deep time.

While the fossil record is the most direct evidence of past biodi-
versity dynamics, it is influenced by a plethora of preservation and
sampling biases. These biases reflect variation in sampling and digiti-
sation efforts, accessibility of fossil sites, intrinsic preservation
potential of different organisms, habitats, and geographic regions and
their geological history13–16. The result is that the fossil record is an

incomplete sample of past biodiversity, plagued by temporal, spatial
and taxonomic heterogeneities, which lead to an inferred mismatch
between true and sampled diversity patterns14,17,18.

Efforts to tackle this issue have resulted in a range of widely-used
methods that estimate diversity trajectories through time while
accounting for variation in sampling intensity. These include several
rarefaction methods19–22, maximum likelihood or Bayesian models
based on Poisson sampling processes23,24, and lower-bound richness
extrapolators20,25–27. While these methods mostly focus on accounting
for variation in preservation rates through time, they do not address
variation in the geographic scope, temporal duration or environmental
representation of sampling28. Thus, spatial and temporal hetero-
geneity of the fossil record still invariably hampers global biodiversity
estimates even after sampling standardisation29, and a recent analysis
of the shallow marine fossil record found that spatial sampling het-
erogeneity accounts for 50-60% of changes in standardised richness
estimates14. The increasing appreciationof the extent of these biases in
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the fossil record calls for a shift in research efforts toward more spa-
tially explicit studies of diversity through both space and time17,30.
Recent efforts reflect this shift24,26,31,32 and make progress towards
reconciling an understanding of the impact of spatiotemporal biases
with methods to combat these or with theoretical models to simulate
plausible biodiversity patterns33–35. Yet, spatially explicit methods have
mostly been used to estimate variation in regional diversity through
time and among regions14,24,29,36, without providing a direct solution to
the problem of estimating change in global diversity. Taxonomic bia-
ses also remain unaccounted for in the current range of available
methods despite widespreadproblems from variable preservation and
sampling of taxa18,37–39. While some models can account for different
preservation rates across lineages24,40, they do not explicitly account
for the effects these biases have on unobserved lineages.

Here we present a framework for estimating biodiversity through
time from fossil data coupling amechanistic simulation approach with
inference based on deep learning. We assess the performance of our
approach, named DeepDive (Deep learning Diversity Estimation)
through extensive simulations, demonstrating its ability to accurately
estimate diversity trajectories even in the presence of strong temporal,
spatial and taxonomic sampling biases. We then use DeepDive trained
models to estimate global biodiversity dynamics for two animal
groups: marine animals from the Late Permian to Early Jurassic24 and
the mammalian clade Proboscidea41.

Results
An approach to infer biodiversity through time
We developed a framework to estimate biodiversity trajectories con-
sisting of two main modules: 1) a simulation module that generates
synthetic biodiversity and fossil datasets and 2) a deep learning fra-
mework that uses fossil data to predict diversity through time (Fig. 1).
The simulation module is designed to generate datasets that reflect
our understanding of the processes of speciation, extinction, fossili-
sation and sampling. The simulator generates realistic diversity tra-
jectories, encompassing a broad spectrum of regional heterogeneities
(e.g. Supplementary Fig. 1). Simulated data also include fossil occur-
rences and their distribution across discrete geographic regions and
through time, which are generated to reflect a wide range of spatial,
temporal and taxonomic sampling biases (Supplementary Fig. 2).
These data are used to train a deep learning model based on a recur-
rent neural network (RNN42–46) implemented in the second module.
The RNN uses features extracted from the fossil record such as the

number of singletons or the number of localities per region through
time to predict the global diversity trajectory. Biogeographic infor-
mation detailed in the simulationmodule is reflected in these features.
By training themodel onmanydifferent datasets the parameters of the
RNN learn the general properties of the fossil record and are optimised
to predict biodiversity trajectories across different evolutionary sce-
narios and sampling biases.

The DeepDive approach also allows us to tailor the set of training
simulations to specific empirical clades by adding temporal and bio-
geographic constraints as we demonstrate with two empirical studies.
This means that we can inform our trained models based on a priori
empirical knowledge thatmight not be directly observable in the fossil
record of the clade of interest, such as changes in connectivity
between landmasses or ocean basins known from geological records
and models, or previously inferred mass extinction events. For exam-
ple, custom training simulations for the Proboscidea-like model
include a requirement to start with the origination of the clade in
the time frame and 5 continental regions that are only allowed to
be occupied by simulated species at the estimated times that the clade
moved into those continents, and an end constraint ofminimum three
extant species. Changing biogeographies can be defined by altering
simulation parameters e.g. by increasing dispersal connectivity when
two regions merge or taxa migrate into a new region, or variable rates
of dispersal and connectivity can be used. In custom training simula-
tions for themarine data, simulations start and endwithmany taxa and
have a probability ofmass extinctions informed by the twomajormass
extinction events known in the time frame of the study. The distribu-
tion of parameters in the simulated datasets can be compared to those
in the empirical occurrence data, to ensure the range of parameters
that are expected based on the empirical data fall within the range the
model has had the opportunity to learn from. In this way, it is possible
to customise simulations, and thereby customise models trained on
these data, to a wide variety of potential evolutionary scenarios while
ensuring training sets are relatable to the empirical case. More details
are provided in the Methods with parameters and notation sum-
marised in Supplementary Table 1.

Performance of DeepDive
We validated the performance of the DeepDive trained models
through extensive simulations covering a wide variety of diversifica-
tion scenarios, generating training sets to optimise the models and
assessing their performance on independently generated validation

Fig. 1 | Representation of the DeepDive workflow. Biodiversity simulations gen-
erate global and regional diversity trajectories which are passed to a fossilisation
and sampling simulator where these data are degraded to emulate the fossil record
through time and across regions. The diversity trajectory and the simulated fossil
record are then fed to a recurrent neural network (RNN). The RNN is trained tomap

the features of the fossil simulations back to the original simulated diversity curves
from the biodiversity simulator in order to estimate biodiversity through time. The
settings of the biodiversity and fossilisation simulators should be customised to
reflect the spatial and temporal distributions observed in the empirical data (see
e.g. histograms (Figs. 4–5)). Proboscidea silhouettes from phylopic.org.
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and test sets. We used a re-scaled mean squared error (rMSE) calcu-
lated after re-scaling both the simulated and the predicted diversity
trajectories to a range between 0 and 1 and the coefficient of deter-
mination applied to the untransformed diversity (R2) as performance
metrics of the model. These allowed us to assess how accurately
the predicted biodiversity matched the simulated trajectory, on a
relative scale. Although we focus on relative diversity in our simula-
tions, as this allows for fairer comparison with the subsampling
approach of Shareholder Quorum Subsampling (SQS), the output of
DeepDive quantifies absolute diversity through time. We therefore
also report mean squared error (MSE) between the simulated and
predicted diversity trajectories to quantify the accuracy of DeepDive.

We tested a range of model architectures to evaluate the optimal
configuration (Supplementary Table 2) and found that most models

perform similarly well within a range of validation MSE around
0.114−0.132 and test MSE between 0.197−0.229. This indicates that
predictions are consistent across a range of parameterisations within
our RNN framework. The predictions were accurate across a wide
range of trajectory scenarios, in most cases closely matching
the simulated ones (Supplementary Fig. 3 and Fig. 2A). To quantify the
uncertainty associated with predictions, we included a Monte Carlo
dropout layer46 and made multiple predictions for each model. We
combined the predictions from Monte Carlo dropout across different
trained models to obtain 95% confidence intervals around diversity
estimates. We found that while the predictions closely resemble the
patterns of the simulated biodiversity values, simulated values are not
in the 95%confidence intervals obtained throughMonteCarlo dropout
in a non-negligible fraction of time bins across the test set simulations.

Fig. 2 | TheDeepDive approach (blue) can reduce errors and improveR2 relative
to SQS (red) under different bias conditions. Accuracy of biodiversity estima-
tions relative to simulated diversity for test datasets where (A) shows estimates
made using DeepDive and (B) SQS at quorum level 0.6, in both cases the black line
of slope 1 indicates the goal of these methods to make as close to a 1:1 estimate as
possible. The variation in R2 and relative MSE where (C) shows estimates on a test
set generated under the same parameters as the training set, and for test sets
generated to under different parameterisation to represent conditions of strong
(D) temporal, (E) taxonomic and (F) spatial bias and for patterns that are rare in the

training simulations (G) mass speciation and mass extinctions, (H) diversity
dependence followed by mass extinction (see “Methods” for more details) for
DeepDive and SQS.Data are presented asmedian values +/− the interquartile range,
whiskers at 1.5 IQR. n = 100,000 (100 time bins × 1000 simulations). We note that
the performance of DeepDive trained models substantially improved for settings
(G) and (H) after re-training the model including sudden changes in speciation and
extinction rates and diversity dependent processes in the simulations (Supple-
mentary Fig. 7).
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Specifically, the median coverage, i.e. the fraction of simulated values
included in the 95% interval, was 66% across test simulations (Fig. 3),
reflecting a tendency in Monte Carlo dropout to underestimate true
uncertainty intervals47.

We evaluated how the performance of the DeepDive trained
models is affected by variation in the quality of the fossil record, which
we quantified as (1) completeness (fraction of species with at least one
fossil occurrence); (2) preservation rate (average number of fossil
records per lineage per time bin); (3) number of sampled species; (4)
the duration of taxa; (5) the duration of clades. DeepDive predictions
weremost accurate, as expected, inmore complete datasets, with high
preservation rates andmore sampled species. Low error (rMSE <0.01)
was found in most simulations with completeness exceeding 0.2 (i.e.,
where up to 80%of specieswere not sampled in the fossil record), with
increasing frequency of datasets with higher error at lower com-
pleteness levels (Supplementary Fig. 4A). We observed a similar trend
with preservation rates, with variation in rMSE being lowest for data-
sets with higher preservation (Supplementary Fig. 4B) with the mag-
nitude of error only increasing substantially above 0.01 in datasets
with fewer than ~200 sampled species (Supplementary Fig. 4C).
Whether a clade becomes extinct by the end of the time frame of the
analysis or remains extant has no substantial effect on the accuracy
(Supplementary Fig. 4D). Predictions tend to be more error prone in
datasets characterised by on average short-lived species, while we

found no clear relationship between clade duration and the MSE
scores (Supplementary Fig. 4E–F).

Comparison to SQS
We compared DeepDive with SQS19,27, one of the most widely-applied
methods for estimating diversity trajectories from fossil data48–51. Since
SQS estimates relative diversity, we used the rMSE and R2 metrics to
compare their performances. On analysis, DeepDive trained models
outperformed SQS with lower relative median rMSE by more than one
order of magnitude and a higher median coefficient of determination
(0.958 vs 0.432) across test simulations (Fig. 2). Notably, DeepDive
estimation appears to bemore robust to gaps in the data and to better
capture the overall biodiversity dynamics including both smooth and
suddendiversity changes (Supplementary Fig. 3).While bothDeepDive
and SQS estimates were negatively affected by low levels of com-
pleteness and preservation rates (Supplementary Fig. 5), DeepDive
maintained substantially more accurate predictions across the entire
spectrum of sampling scenarios (Supplementary Fig. 4).

We tested five additional simulated datasets (100 simulations in
each case), which reflected strong conditions of temporal, taxo-
nomic, and spatial biases, and patterns of diversity change that were
not explicitly included in the initial training set: diversity dependence
followed by a mass extinction and simulations with multiple mass
speciation and mass extinction events, using both methods
(Fig. 2D–H). The coefficients of determination showed that temporal
variation of sampling rates can be effectively corrected for under
both methods, although DeepDive estimates were more accurate.
Taxonomic and, to a larger extent, spatial biases led instead to a
substantially higher discrepancy between the two methods. In the
case of strong spatial biases, the median R2 exceeded 0.9 for
DeepDive, dropping to ca. 0.25 for SQS estimates.Whenpatterns that
are rare in the training set are analysed the performance of themodel
decreases to levels similar to SQS in terms of R2, while still main-
taining substantially lower rMSE (Fig. 2G–H). However, the inclusion
of mass speciation and diversity dependence in the training set of a
re-trained model improves accuracy (Supplementary Figs. 6–7).
Inclusion of patterns such as diversity dependence followed by mass
extinction can also reduce errors around estimation of mass extinc-
tion events (Supplementary Fig. 8).

Estimating diversity from empirical data
We apply the DeepDive approach to two empirical datasets of dif-
ferent taxonomic and geographic scope and use our predictions to
evaluate relative and absolute biodiversity changes through time.
The first is a genus-level dataset ofmarine animals spanning from the
Late Permian to the Early Jurassic comprising 71,386 occurrences
across 5312 genera of bryozoans, cnidarians, brachiopods, molluscs,
echinoderms, foraminiferans, arthropods, chordates, poriferans and
retarians (see “Methods”). The second is a species-level fossil dataset
of the order Proboscidea, which include modern elephants and their
extinct relatives, comprising 2104 occurrences across 180 species
(see “Methods”).

We trained models based on simulated datasets, reflecting the
number and duration of empirical time bins in each dataset, and
including where possible diversity and spatial constraints (see “Meth-
ods” formore details). The features in the simulated datasets cover the
range of features observed in the empirical datasets (Figs. 4–5). After
evaluating the accuracy of the models (Supplementary Tables 3–4) we
estimated diversity trajectories for the two datasets.

Marine diversity declines between the Late Permian and the
earliest Triassic, with the loss of up to 58% of genera (Fig. 6) at the
time of the Permian-Triassic mass extinction (PTME), although lower
magnitudes are possible (mean 24% loss of genera). The number of
genera recovered in the Early Triassic and surpassed pre-PTME levels
in the Middle Triassic. Diversity declines more gradually through the

l

Fig. 3 | Coverage of DeepDive predictions on simulated diversity curves.
DeepDive estimates (blue) and simulated diversity (green) through time where
diversity exceeds zero demonstrating variable coverage where (A) shows the
maximum coverage 100%, (B) the median coverage at 66% and (C) the minimum
coverage of 0% of DeepDive estimates across 1000 test sets.
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Late Triassic, followed by a sharper decline across the Triassic-
Jurassic boundary with the loss of as many as 66% of genera (mean
loss of 42% genera).

We estimated the diversification history of the proboscidean
clade since its origin in the early Cenozoic (66–60Ma) and inferred a
gradual diversity increase through time leading to an estimated spe-
cies richness of 10-20 species by the start of theMiocene (Fig. 7). In the
Early Miocene (23–15Ma) we detected a steep increase in diversity,
leading to as many as 35–78 contemporary elephant species roaming
Earth in the Middle to Late Miocene. Diversity remains relatively high
and variable in the Pliocene and the start of the Pleistocene before
crashing during the Pleistocene with 10–27 species at the end of the
study interval (a loss of on average 65% species, maximally 87%,
minimally 32%). In the light of this reconstruction, the modern diver-
sity of three species results from over 70% species loss since the
Pleistocene (2.58Ma) (maximal loss 89%, mean 85%).

Discussion
Recent research has shown that current methods to estimate biodi-
versity through time fail to account for biases in the data that are likely
widespread across all fossil datasets, with severe impacts on the
reliability of the predicted patterns14,29. Yet, the fossil record remains
the most direct imprint left by the unfolding of life on Earth and
computational methods can help us toward a more realistic inter-
pretation of these data52.

We present an approach for studyingmacroevolutionary changes
in diversity from fossil data at large spatial scales, including globally,
while accounting for temporal, taxonomic, and spatial sampling bia-
ses. Simulation-basedmodel training provides us with the opportunity
to capture complex biases in the fossil record that are difficult to
implement in alternative available methods, which are primarily
intended to correct for variation in sampling intensity through time.

Indeed, although methods like SQS are widely used for standardising
diversity estimates, their intended purpose is to standardise samples
to equal sampling intensity or completeness; they are not designed to
control for variation in the scope of the accessible sampling universe,
which is of central importance when estimating global diversity.

The deep learningmodels we use for inference allow connections
to be made without attempting to explain how biases translate to a
result, therefore making fewer prior assumptions and incorporating
the potentially complex interactions between sampling efforts, true
diversity, and their variation within and across datasets. Any prior
assumptionsmade are parameterised explicitly in training simulations
andmust be justified, therefore the framework can potentially be used
to assess impact of different sets of assumptions on biodiversity
inference by generating models and test sets under different para-
meterisations.We found ourmodel to be accurate across a wide range
of diversity and sampling scenarios and to strongly outperform the
most widely used current approach across simulations, indicating that
this combination of mechanistic modelling and deep learning is worth
the additional computational burden required compared withmost of
the existing alternative methods. DeepDive can produce accurate
predictions with more depauperate fossil records, fewer sampled
species, and at lower levels of completeness and preservation rates
compared with alternative approaches (Supplementary Figs. 4–5). The
accuracyofDeepDive estimates is highestwhen the truediversification
scenario is present in the range of simulated training scenarios,while it
decreases when diversification dynamics are absent or extremely rare
in the training simulations. In both cases, relative MSE remains lower
than with SQS estimates (Fig. 2G–H).

Unlike other unsupervised approaches19,23,24, the method pre-
sented here uses mechanistic generative models within a supervised
learning framework to estimate diversity through time. The approach
capitalises on the fact that generating simulated data under complex

Fig. 4 | Variation in DeepDive simulations relative to marine empirical data.
Histograms of the number of (A) taxa, (B) occurrences, (C) singletons, (D) endemic
taxa, (E) the range-through diversity, (F) localities, (G) taxa per region, (H) occur-
rences per region, and (I) localities per region, per time bin where the range of

values across 1000 Permo-Triassic marine-like DeepDive test simulations is shown
in blue and empirical values from the uncorrected fossil dataset in orange. Features
that describe the dataset are contained within the range of simulated values.
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Fig. 5 | Variation in DeepDive simulations relative to proboscidean
empirical data. Histograms of the number of (A) taxa, (B) occurrences, (C) sin-
gletons, (D) endemic taxa, (E) the range-through diversity, (F) localities, (G) taxa
across per region, (H) occurrences per region, and (I) localities per region, per time

bin where the range of values across 1000 proboscidean-like DeepDive test simu-
lations is shown in blue and empirical values from the uncorrected fossil dataset in
orange. Features that describe the dataset are contained within the range of
simulated values.

Fig. 6 | DeepDive estimated diversity for Permo-Triassic marine genera.
Diversity declines at the Permo-Triassic mass extinction (PTME) but appears to
surpass pre-PTME levels in the Middle-Late Triassic. Diversity declines in the Late

Triassic before more substantial diversity losses around the time of the Triassic-
Jurassic mass extinction (TJME). Previously inferred extinction events marked in
red. Silhouette from https://freesvg.org.
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scenarios of species diversification and fossil preservation in time and
space is computationally less challenging thanderiving and optimising
the likelihood of the data under the same scenarios. A similar concept
is also at the basis of othermethods for inference such as approximate
Bayesian computation, where simulations are used to bypass the cal-
culation of the likelihood of the data given a model and its
parameters53–55. The flexibility of the implemented generative models
used here is demonstrated by the wide spectrum of biodiversity tra-
jectories and preservation and sampling biases our model is able to
reproduce (Supplementary Fig. 3). Because DeepDive uses a super-
vised learning framework, the accuracy of its predictions rely on the
fact that the training set encompasses a sufficiently wide range of
scenarios such that the empirical data we analyse fall within this range.
Thus, there is a risk that a trained model generates erroneous pre-
dictions when faced with input data that differ substantially from the
simulated training data56. This could occur if, for instance, a particular
scenario like a mass extinction or a specific biogeographic sampling
bias were present in the empirical dataset but not in the training set.
This rationale was the basis for of our implementation of a simulation
module that can capture a very wide range of scenarios, which indeed
characterise the resulting datasets (Supplementary Fig. 3). We also
showed that our framework lead to a substantial overlap between the
features of the simulated datasets and those of empirical datasets
(Figs. 4–5), thus suggesting that the training set has the breadth
required to encompass the observed fossil patterns. The simulator
needed to be highly computationally efficient, to allow for a reason-
ably fast generation of thousands of datasets. Thus, our simulations
take a number of shortcuts by not modelling explicitly biotic interac-
tions and simplifying biogeography to a predefinednumber of discrete
geographic regions. Bioregions could be informed by using methods
such as network community detection57,58 or minimum spanning
trees24,29, to ensure they reflect the biogeographic structure of the
data. While there cannot be certainty that all possible diversification
and sampling scenarios are accounted for in anymodel or training set,

the generative models implemented in DeepDive can be extended to
accommodate other patterns and biases in addition to those con-
sidered here. This could potentially include individual-based time and
space specific simulations such as those presented in the gen3sis
software34, with the caveat thatmore complex simulationswill increase
the computational cost of the model.

Machine learning methods have recently gained increasing trac-
tion in macroevolutionary research. For instance, unsupervised
machine learning has been used to estimate species co-occurrence
probability and turnover through time59. Supervised models, such as
gradient boosted trees, random forests and neural networks, have
been used to predict the selectivity ofmass extinctions based on traits
and last appearance dates observed in the fossil record60–64, and to
predict the effects of extinctions on food webs based on modern
species observations65. Machine learning approaches are also gaining
traction in morphological studies66 and in tasks such as determining
taxonomy from images67,68. Supervised models have also been used to
predict changes in paleo-vegetation based on expert-based inter-
pretation of plant micro-fossils69. We chose to use recurrent neural
networks in our implementation as they provide a direct way to learn
from time-series, in this case fossil features through time, accounting
for temporal dependencies in the data, and output another time series
(diversity through time). We note, however, that our modular imple-
mentation would easily allow for the testing and comparison of dif-
ferent statistical or machine learning models. These could include
predictive methods adapted for time series analysis, such as auto-
regressive models, generalised additive models, regression trees and
random forests70,71.

Training supervised learning models require knowledge of a
ground truth, i.e. a labelled dataset on which the model can be trained
on to make predictions56. However, in the case of palaeodiversity, and
in much of macroevoutionary research, e.g. phylogenetic inference,
the ground truth is unknown and cannot be experimentally verified.
This means that both unsupervised and supervised models cannot be

Fig. 7 | DeepDive estimated diversity for Proboscidea. There is an estimated gradual increase in the number of species during the Paleogene followed by more rapid
accumulation in the Early Miocene, followed by an abrupt loss of biodiversity in the Pleistocene. Silhouette from phylopic.org.
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independently validated beyond assessing their performance with
simulations24,72. Unsupervisedmodels rely on probabilisticmodels that
describe a process mechanistically (e.g. speciation, extinction, and
sampling in the diversity estimators implemented in TRiPS23 and
mcmcDivE24). Recent studies have shown that the same mechanistic
processes can be used—in the absence of ground truth data—to
generate datasets to train supervised deep learning models, achieving
similar or better performance compared with probabilistic inference
methods. These have been used to estimate age-dependent
extinction73, population genomics parameters74,75 and birth-death
rates in a phylogenetic context76. Our approach shows that coupling
mechanistic generative simulations with supervised learning models
can generate robust estimations of paleodiversity, strongly out-
performing alternative methods across simulations especially in the
presence of spatial biases.

Our empirical results suggest that marine diversity declined from
the Late Permian into the Early Triassic across the Permo-Triassicmass
extinction (PTME)77 losing up to 58% of genera, comparable with some
previous estimates78 butwith potentially lowermagnitudes of diversity
loss than previously hypothesised (mean loss 24%)78–80. Lower esti-
mates may result in part from attempts to account for the regional
variability of the mass extinction event, indeed heterogeneous
responses have been documented across the globe in data analysed
here24. From the PTME onward genus diversity accumulates to its
highest point in the study interval at the start of the Late Triassic
before entering long term decline. Diversity declines through the
Middle and Late Triassic, prior to the Triassic-Jurassic mass extinction
(TJME)81 and our analyses indicate a sharp drop around that time. The
global signal of extinction recovered is strong despite regionally het-
erogeneous impacts of the event24. Patterns of genus-level diversity
loss occurring in the lead up to and at the TJME are broadly consistent
with previous hypotheses on global biodiversity changes at this
time81–83. However, we note that comparing magnitudes of diversity
loss estimated at the PTME and the TJME are at odds with what is
expected from the literature. The exact magnitude of mass extinction
events may be difficult to compare due to massive differences in
sampling between the Late Triassic and Early Jurassic. Further, tests of
the DeepDive trained models have shown that we expect slightly ele-
vated errors after mass extinctions (Supplementary Fig. 8) and there-
fore wemust be careful when interpreting our estimations at the PTME
and TJME.

General diversity trends found inour analysis of the proboscidean
dataset are broadly consistent with previous hypotheses41, as expected
given the estimated elevated levels completeness of their fossil
records84. Yet, our estimates reveal that many more species of the
elephant familymight have existed that have not been (yet) recovered
in the fossil record. The low initial species-level diversity undergoes a
gradual increase from the Paleocene to the end of the Oligocene,
suggesting that diversityfluctuations observed in previous estimations
might result from sampling biases rather than changes in diversifica-
tion dynamics41. Species richness begins to accumulate at greater
levels from the start of the Miocene, following the expansion of ele-
phants out of Africa facilitated by the formation of the Gomphother-
ium landbridge around 21–19 Ma85. This rapid diversification event is
associated with increased ecomorphological exploration, niche parti-
tioning and reduced competition among proboscideans during this
time41. Our results potentially indicate a peak in genera level diversity
shortly following the Mid-Miocene Climatic Optimum (17-15 Ma)86,87.
Diversity plateaued throughout the latter partof theMiocene, Pliocene
and beginning of the Pleistocene (2.58Ma) with an estimated standing
diversity of 37 to 75 elephant species during the Middle-Late Miocene,
exceeding the maximum diversity recovered in other analyses and
potentially representing a global carrying capacity for these mega-
herbivores. Between 10 and 27 species are recorded at the end of the
study interval after a Pleistocene diversity crash, broadly agreeingwith

previous findings41,88 and demonstrating the extraordinary magnitude
of megafauna diversity loss in the recent past. This reduction in
diversity eventually leading to three extant species has been attributed
to global cooling with greater and more frequent fluctuations in
temperature89, reduced productivity and ecological disturbance90,
anthropogenic interactions88,91,92 or possibly some combination of
these changes93.

The estimation of variation in global biodiversity through time is
crucial to understanding the evolution of life on Earth and yet remains
a highly challenging task given the temporally, spatially and tax-
onomically biased nature of the fossil record17, and because it is
impossible to experimentally validate the accuracy of the estimations
with real worlddata. Themethodproposedheredevelops anapproach
to the estimation of biodiversity through timeby combining biological
models of evolution with fossilisation and sampling processes, leading
to a realistically incomplete and biased fossil record. These generative
models are then integrated within a deep learning predictive model
which produces accurate diversity estimates based on simulations and
realistic predictions for empirical clades.We think this approachpaves
the way for a re-assessment of the major transitions and biodiversity
dynamics across many lineages in the history of life.

Methods
A biodiversity simulation framework
The initial simulation has three main goals: to simulate diversity tra-
jectories using a birth-death process, to simulate the biogeography of
taxa (where they occur in a defined number of discrete geographic
regions given a number of fossil localities), and to degrade the data to
simulate the fossil record via the implementation of preservation and
sampling biases. Our simulation framework is designed to allow for
maximum flexibility in how the processes are modelled, such that the
simulations capture the broadest spectrum of scenarios of varying
diversification, extinction and sampling, while still allowing for highly
efficient modelling to enable the generation of thousands of datasets.

Species origination and extinction times are generated using a
stochastic birth-death process94,95. We use time-forward simulations in
which the time of origin (tO) is randomly drawn from a uniform dis-
tribution, here set to tO ∼U½30,100�. Speciation and extinction rates
are drawn independently from a uniform distribution U½0:05,0:5�, i.e.
reflecting a range of values commonly found in empirical fossil
datasets96,97 and are allowed to vary through time using a piece-wise
constant model where the number of rate shifts are drawn from a
Poisson distribution, Poi(4), and times of rate shifts drawn indepen-
dently for speciation and extinction from a uniform distribution
U½tO,0�, where0 represents the present. In addition, there is possibility
of a mass extinction occurring within a time bin with probability here
set to pME = 0.01 permillion of years.We constrained the incidence of a
mass extinction to occur only if at least 10 ormore lineages are present
prior to that time bin, to prevent simulating clades from going extinct
before accumulating a sufficient number of species for followup ana-
lyses. A mass extinction is simulated by setting the extinction prob-
ability for that time bin to μME ∼U½0:8,0:95�, consistent with empirical
estimations (e.g. 90% species loss for the Permian-Triassic extinction77,
30–80% species loss for the Triassic-Jurassic extinction78), while events
of smaller magnitude can still occur through the piece-wise rate var-
iation. Depending on the rate dynamics and on the stochasticity of the
simulation, the clade may or not have extant descendants. We con-
strain the simulated datasets to a total diversity between 100 and
5000 species by discarding simulations not meeting or exceeding this
target. These lineages are then counted across a set number of time
bins of arbitrary size (here we use 100 time bins of 1 Myr) to generate
the simulated global biodiversity trajectory. The birth-death settings
used here ensured that a wide range of diversity trajectories were
generated (Supplementary Fig. 3). Additionally, the settings can be
customised to reflect empirical expectations related to specific
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datasets, for instance conditioning on survival for clades with extant
species or changing the expected frequency and magnitude of mass
extinctions (see Empirical Analysis).

Simulated species are assigned to apredefinednumberofdiscrete
biogeographic regions to simulate their biogeographic distribution.
This allows us to apply spatially non-homogeneous variation in sam-
pling, which has been shown to play an important role in diversity
patterns in the fossil record14,17,29,98. Assignment of geographic ranges
to each species depends upon three sets of parameters: the relative
size of the region, the probability of origination at the region, and a
distance matrix describing the connectivity among regions.

Relative region sizesmodulate the relative diversity of each region
as an approximation of a regional carrying capacity. The relative size of
each region da is drawn from a Dirichlet distribution

fd1 . . . ,dAg∼Dirðα . . . ,αÞ×A ð1Þ

where A is the number of regions and the concentration parameter (α)
describes how similar the values drawn for size will be across regions
(e.g. α > > 1 leads to regions of similar size). The Dirichlet values are
then multiplied by the number of regions (A) to re-scale the mean
relative size across regions to 1. Alpha can be either initialised with a
fixed value or drawn from a random distribution. The relative carrying
capacity of a region i, which we indicate with κi, is further determined
by parameter k, linking region sizes to their probability to host a
species such that k > > 1 increases the difference between large and
small regions while k < < 1 reduces the link between region size and
their probability to host species. The κ values can be interpreted as
proxies for relative carrying capacity of each region and sampled from
a Dirichlet distribution

Z b

a
fκ1 . . . , κAg∼Dirðd1 × k . . . ,dA × kÞ ð2Þ

Species geographic ranges are established by first drawing one initial
regionwhere a species is present and then by sampling the presenceof
the species in other regions based on a distance matrix. We indicate
with Rs the initial region of species s. The initial regions are generated
as a function of relative carrying capacity such that species are more
likely to be initialised within larger regions (depending on the para-
meter k), thus introducing a species-area relationship, based on a
multinomial distribution

Rs ∼Mðκ1 . . . , κAÞ ð3Þ

Our simulation additionally allows for the carrying capacities to vary
over time. In particular, given a vector of carrying capacities at time
0, κð0Þ

1 , . . . κð0Þ
A , the carrying capacities at time t are defined as:

κðtÞ
1 , . . . κðtÞ

A = S log κð0Þ
1

� �
+ c1 × t, . . . , log κð0Þ

A

� �
+ cA × t

� �
ð4Þ

where c is a region-specific slope defining how the carrying capacity is
varying over time, and S(v1,…, vA) is the SoftMax function:

vi =
expðviÞP
jðexpðvjÞÞ

ð5Þ

Thus, in our simulations regions can have different relative carrying
capacities and these carrying capacities can vary through time (Sup-
plementary Fig. 9A). The flexibility of this parameterisation reflects the
fact that a regions carrying capacity does not only depend on its size
but on other factors too, such as productivity or climate, which can
change through time7,33.

Given the initial region of a species (Rs = i), we then sample whe-
ther the species also occurs in other regions as a function of a species-

specificdispersal ratews and a vector defining the relative distances (δij
for j ≠ i) between i and all other regions. After drawing the dispersal
rate from a Weibull distribution ws ~W(ϕ,ψ) and the distance matrix
from a uniform distribution δij ∼Uð0,δmaxÞ, the probability for species
with initial range i to also occur in region j is defined as:

Pð jjiÞ= exp � δij

ws

� �
ð6Þ

Thus, the probability of occurring in other regions increases with
higher species dispersal rate and with lower distance to the initial
region.

Fossilisation
After generating the complete evolutionary and biogeographic history
of a simulated clade, with species origination and extinction and their
spatial distribution, we degrade these data to simulate an incomplete
and biased fossil record. We designed the simulation of fossil data
aiming to capture the wide range of sources of bias and incomplete-
ness expected in empirical fossil datasets. Specifically, we introduce
heterogeneity in the fossil sampling rates across regions and taxa, and
through time.

First, we draw for each region and time bin a number of fossili-
ferous localities within which fossil occurrences may be sampled. The
expected number of localities in a region in a time bin ismodelled as a
function of a region-specific rate, the region size, a time-dependent
rate and random effects. This approach provides a flexible framework
to incorporate a wide range of plausible sampling biases. For each
region a∈ {1,…,A}, we draw a region-specific rate from a gamma dis-
tributionwith shape and rate parameters αr ,βr 2 R+ multiplied by the
relative size of the region da:

ra ∼ Γðαr ,βrÞ×da ð7Þ

Thus the expected number of fossiliferous localities in a region is
a function of its size (larger regions will tend to harbour a larger
number of localities), while the gamma distributed multiplier allows
regions to differ in their intrinsic potential for fossilisation per unit of
area. We then model sampling heterogeneity through time based on a
pattern randomly selected from two implemented patterns: a con-
sistent trend toward improved sampling through time with random
variation, and a piece-wise constant model with random shifts. In the
former pattern the mean sampling rate at time t is defined as

EðlogðqtÞÞ= logðq0Þ+ ζ × t ð8Þ

such that q0 is the rate at the present (t =0) and ζ≤0 implying constant
or decreasing rates moving back in the past. Log rates through time
(Supplementary Fig. 9B) are then drawn from a normal distribution
centred in EðlogðqtÞÞ and with standard deviation σ 2 R+ modelling
random variation around the general trend determined by the slope ζ:

logðqtÞ∼N EðlogðqtÞÞ,σ
� � ð9Þ

The second pattern of heterogeneity through time is gener-
ated through a number of preservation rate shifts drawn from a
Poisson distribution, in our simulations set to Poi(4). The times of
rate shifts were drawn from a uniform distribution and the pre-
servation rates between shifts were sampled from

logðqtÞ∼N logðq0Þ,σ
� � ð10Þ

In addition to modelling regional and time-specific rate variation,
we include the possibility of complete gaps in the fossil record
determined by an absence of fossil localities at given times and
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regions. We model the occurrence of a gap for each time bin t and
region a as a random draw from a Bernoulli distribution:

zat ∼Bernoullið1� pgapÞ ð11Þ

where the parameter pgap∈ [0, 1) defines the probability of a gap, such
that increasing pgap results in a higher frequency of gaps in the fossil
record. Finally, we include region and time-specific random effects
with median η 2 R+

εat ∼η× em ð12Þ

where the multiplier m∼Uðlogð1=bÞ, logðbÞÞ adds an amount of sto-
chasticity around the median determined by a parameter b > 1.

We combine all elements defined above to obtain the expected
number of localities λat for each region a and time bin t

λat = ra ×qt × zat × εat ×Δt ð13Þ

where the rate is multiplied by the duration of the time bin (Δt) to
account for the fact that the number of sampling localities increases
with the duration of the temporal range considered. The number of
fossil localities lat in a region a in a time bin t is then sampled from a
Poisson distribution:

lat ∼Poi λat
� � ð14Þ

After obtaining the number of potential fossiliferous localities and
accounting for spatial and temporal biases, we determine which spe-
cies (if any) are preserved in each locality, based on their geographic
range and on species-specific preservation rates. These are assumed to
be gamma distributed, with ψs∼ Γ(m, θ), defining the expected num-
ber of fossils of a species sper locality, conditional on the species being
present in the region and at the time the locality records. Based on the
rate ψs, the probability of species s to leave at least one fossil occur-
rence in a locality ps (i.e. the probability to be found in the fossil record
of a locality) is defined as:

ps = 1� expð�ψsÞ ð15Þ

Thus, for a given region a at time bin t the fossil record is fat drawn
from a binomial distribution:

f at = Binðlat ,psÞ for s 2 Sat
� 	 ð16Þ

where lat is the number of localities and Sat is the set of species living in
region a at time t.

Parameter estimation
The simulated fossil record is summarised in a number of features that
are then used as the input of a deep learningmodel to infer variation in
global biodiversity (the total diversity across all regions studied)
through time. Features are estimated to describe the spatio-temporal
distribution of the fossil data and are defined as summary statistics
that can be computed for both simulated and empirical datasets.
Specifically, we implemented one-dimensional features that include
for each time bin the number of sampled species, occurrences, sam-
pled localities, singletons (species sampled only in one locality),
endemic species (species sampled only in one region), time bin dura-
tions and range-through diversity through time.We also included two-
dimensional features describing the number of sampled species,
localities, and occurrences per region and time bin.

We use a Recurrent Neural Network (RNN) tomake predictions of
diversity time series in a supervised learning framework. The RNNuses
the features extracted from the fossil record as input and maps them

to a prediction of number of species through time (output). Thus the
input is a matrix of shape (f, t), for f features and t time bins, and the
output is a vector of length t. The model contains bidirectional ‘long
short-termmemory’ (LSTM43,44) units that learn trends atdifferent time
scales, and additional fully-connected layers can be specified in the
model. The output at any given point in time (a biodiversity estimate in
a given time bin) is predicted based on a set of normalised features
specific to that time point (e.g. number of fossils, number of sampled
species) as well as predictions made for the previous and following
time bins. In this way the RNN accounts for the expected auto-
correlation of biodiversity time series. The RNN is also provided with
the simulated log-transformed biodiversity trajectory (using a
logðx + 1Þ transformation) obtained from the birth-death simulation
before fossil bias implementation for training. We use the mean
squared error (MSE) between simulated and predicted diversity as the
RNN loss function minimised during training.

Different model architectures are tested with 1 or 3 LSTM units,
with 32 and 128 nodes respectively, and tanh activation function and
sigmoid recurrent activation function. The LSTM units were either
directly connected to the output layer or to a fully connected network
with 2 hidden layers (32 or 64 nodes, with ReLU activation function
(Supplementary Table 2).We used a SoftPlus activation function99 to
obtain positive values of log-transformed diversity. We implemented
and trained the RNNmodel using the ADAM optimiser100. The training
was based on 100,000 simulations, 20% of which were used a valida-
tion set, and used a batch size of 100. The validation MSE was mon-
itored across the training epochs to prevent the model from over-
fitting through a patience parameter set to 50 epochs.

After selecting the best model as the one with the lowest valida-
tionMSE, we used it to predict diversity trajectories across a test set of
1,000 datasets. To estimate confidence intervals around diversity
predictions we used Monte Carlo dropout wherein a fraction of con-
nections in the last fully connected layer is randomly removed in each
iteration45,46. We performed 100 predictions for each dataset and
summarised them calculating the mean and 95% confidence interval
for each time bin.

We additionally evaluated the performance of the trained model
with coefficient of determination R2 and the relative MSE (rMSE; mean
squared error computed on simulated and predicted trajectories re-
scaled between 0 and 1), that are scale invariant and capture how
accurately the relative changes in biodiversity were predicted. Cover-
age, the fraction of simulated values included in the 95% confidence
interval, was also estimated. The test set was also analysed using the
SQS approach19,20 at quorum 0.6 using the software DivDyn101 in R
version 4.1.2102 and we computed R2 and rMSE for comparison with
DeepDive estimates.

To quantify the ability of DeepDive to correct for different types of
biases, we additionally simulated three testsets (each including 100
datasets) reflecting strong and specific biases (Fig. 2). Namely, we
simulated a case with strong temporal bias by implementing a 100-fold
variation in average sampling occurring across four time frames, with a
10-fold rate decrease between 33 and 22Ma and a 10-fold increase
between2Maand thepresent.We then simulated a strong taxonbiasby
setting the species-specific preservation potential based on a bimodal
distribution, such that the average variation across species reached one
order of magnitude. Finally, we implemented a strong spatial bias by
setting one of the five simulated regions to have an average sampling
rate 10 times higher than the average, and another region to a rate 10
times lower, thus introducing a 2 orders of magnitude spatial variation
in sampling.Wenote that thesedatasetsweregeneratedunderdifferent
parameter settings compared with the training set.

We additionally simulated datasets under birth-deathmodels that
were not explicitly included in the initial training data. First we gen-
erated a test set wheremass speciation (with speciation rates sampled
from Uð1,5Þ) and mass extinction (affecting 70–90% of the species)
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events occurred with with probability of 0.05 for each time bin. Sec-
ond, we simulated datasets with diversity dependent speciation103

based a carrying capacity sampled from Uð50,200Þ and two mass
extinction events fixed at 66 and 16Ma. After analysing these data with
the trained models, we re-simulated a training set that included these
two birth-death settings and trained a new models. This allowed us to
evaluate the improvement in the DeepDive predictions after the
inclusion of additional diversification scenarios. Simulations with fixed
times of mass extinction also allowed us to quantify the rMSE of the
predictions as a function of time, to evaluate to what extent the pre-
dictions error varies at time of sudden diversity change.

Empirical analyses with customised simulations
DeepDive was used to estimate biodiversity trajectories from two
recent case studies in the literature: Late Permian to Early Jurassic
marine fossils primarily sourced from the Palaeobiology Database
(paleobiodb.org/) and other datasets104 (see105 for full reference list) as
compiled by Flannery-Sutherland et al.24, and Cenozoic proboscideans
originally sourced from the New and Old Worlds database of fossil
mammals (nowdatabase.org/) and the Palaeobiology Database and
published literature as compiled by Cantalapiedra et al.41. Since the
features used as input in the DeepDive trained models include counts
of sampling localities, we used locality nameswhen available in the raw
datasets and otherwise defined localities as geographic points with a
unique set of co-ordinates from which fossils of the same age range
have been sampled. 100 replicates of age assignment are made for
occurrences in each dataset by drawing from a random uniform dis-
tribution between age range of the locality which they belong to. We
trained new models for each empirical dataset, incorporating in our
simulations prior knowledge about the analysed biological systems.
Specificallywe testedmodelswith 1–4 LSTM layers, and the addition or
absence of a fully connected layer. After finding similar fit across
models (Supplementary Tables 3–4) we decided to generate and
aggregate predictions from the empirical datasets based on allmodels.

For the genus-level marine occurrences, the spatially standardised
sampling regions from24 were used to define five geographic regions in
DeepDive: the South Panthalassic, North Panthalassic, Boreal, Tan-
garoan, West Circumtethys and East Circumtethys. 11 geological stages
from the beginning of the Wuchiapingian (259.51Ma) to the end of the
Sinemurian (192.9Ma) are set as the time bins. Custom training simu-
lations that reflect the general properties of the Permo-Triassic marine
fossil record were generated by providing the simulator with some a
priori information. Probability of a mass extinction is set to 0.029 per
my, equivalent to the expected two events that occurred in the 70 myr
time span of the dataset, i.e. the Permo-Triassic77 and Triassic-Jurassic81

mass extinctions. Thenumber of starting species at thebeginningof the
simulation is set between 100 and 1000, with no fewer than 100 species
extant by the end of each simulation. This ensures that the simulations
begin and endwithmany species still in existence, such that noneof the
simulateddiversity curves reflect theoriginationor extinctionof all taxa
studied as is appropriate when studying truncated datasets. 150,000
training and 1000 test sets were generated.

For the species-level proboscidean dataset, geographic regions
include Africa, Europe, Asia, North America and South America. 69
time bins averaging 1 ma in length are set spanning from the start of
the Danian (66Ma) to the end of the Holocene (0Ma). All simulations
in this case start from 1 species as the clade originates within the study
interval, with minimum extant species constrained between 3 and
30 such that simulated curves do not reach extinction of all taxa or end
below the number of living elephant species. The following geo-
graphical constraints were applied to the simulations: that elephants
are allowed to occupy Africa for the full time study interval41, that they
arrive in Europe and Asia between 33.9 and 27Ma41, in North America
between 20 and 16Ma41 and in South America between 5.3 and 0.8
Ma106. 150,000 training and 1000 test simulations were generated.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data, simulations and trained models used in this study are available
on a permanent repository at https://zenodo.org/records/10979237
(https://doi.org/10.5281/zenodo.10979237).

Code availability
DeepDive is implemented in Python 3.10, relying on the Tensorflow
v.2.8 library107 for the deep learning optimisation and on the numpy
v.1.22 (numpy.org) and scipy v.1.8 (scipy.org) libraries for numerical
simulations. The code and scripts are available at https://github.com/
DeepDive-project and at zenodo.org at https://zenodo.org/records/
10979237 (https://doi.org/10.5281/zenodo.10979237).
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