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Severe drought exposure in utero associates
to children’s epigenetic age acceleration in a
global climate change hot spot

Xi Qiao 1,8, Bilinda Straight 2,8 , Duy Ngo1,8, Charles E. Hilton3,
Charles Owuor Olungah4, Amy Naugle5, Claudia Lalancette 6 &
Belinda L. Needham7,8

The goal of this study is to examine the association between in utero drought
exposure and epigenetic age acceleration (EAA) in a global climate change hot
spot. Calculations of EAA in adults using DNAmethylation have been found to
accurately predict chronic disease and longevity. However, fewer studies have
examined EAA in children, and drought exposure in utero has not been
investigated. Additionally, studies of EAA in low-income countries with diverse
populations are rare. We assess EAA using epigenetic clocks and two DNAm-
based pace-of-agingmeasurements fromwhole saliva samples in 104 drought-
exposed children and 109 same-sex sibling controls in northernKenya.Wefind
a positive association between in utero drought exposure and EAA in two
epigenetic clocks (Hannum’s and GrimAge) and a negative association in the
DNAm based telomere length (DNAmTL) clock. The combined impact of
drought’s multiple deleterious stressors may reduce overall life expectancy
through accelerated epigenetic aging.

Climate change will have substantial consequences for human health.
Moreover, a disproportionate impact is predicted in communities
engaging in climate-sensitive livelihoods such as pastoralism. This is
particularly true in global hot spots such as East Africa and for vul-
nerable groups such as pregnant individuals, young children, and the
elderly. Adapting to climate change requires enhanced understanding
of factors for resilience versus vulnerability, and their biological aswell
as behavioral mechanisms. Numerous studies have linked in utero
exposure to severe drought to adverse pregnancy outcomes and
alterations in offspring growth and body composition1–4. However,
drought has multiple, simultaneous impacts on the mother, such as
exacerbated food and water insecurity (often with accompanying
dehydration), and psychosocial stress5,6. Although there is some lim-
ited evidence for biologicalmechanisms for individual drought-related
stressors, particularly in animal studies7,8, the biological mechanisms

and lifelong implications of drought’s combined impact for child
outcomes are not well understood9.

Accelerated molecular aging as measured through epigenetic
“clocks” is emerging as a potentialmechanismwhereby psychosocially
and physiologically stressful conditions lead to adverse health condi-
tions and mortality10. Yet there are no human studies to date that
measure associations between epigenetic aging and early life exposure
to the climate change impacts of severe drought. Moreover, there are
scant studies of epigenetic aging in low-income countries with ethni-
cally and racially diverse populations11. In addition to the importanceof
diversity to understanding biological aging in humans globally, these
populations are among the most vulnerable to the effects of climate
change12.

DNA methylation (DNAm) levels at numerous cytosine-
phosphate-guanine sites (CpGs) have been found to be accurate
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biomarkers ofmolecular aging,more promising thanother biomarkers
of biological aging13. Utilizing machine learning methods, a number of
epigenetic clocks have been developed to predict biological age, life-
span, and mortality by regressing chronological age, health-related
outcomes, or biomarkers on a set of CpGs, selecting the most infor-
mative ones14.

Previous studies have shown that higher epigenetic age relative to
chronological age, i.e., epigenetic age acceleration (EAA), predicts
poor health outcomes, particularly metabolic syndrome and other
chronic diseases, and earlier age at death15,16. Fewer studies assess EAA
associations in children, although recent studies in children have
linked EAA to a variety of exposures in utero, including metabolic
disorders such as gestational diabetes mellitus, maternal tobacco
smoking, and indoor particulate matter absorbance17,18.

Our study employs a quasi-experimental same-sex sibling design
to examine offspring outcomes of exposure in the first trimester of
gestation in utero to a 2008–2009 severe drought in East Africa. Even
with humanitarian support from the World Bank and the European
Union, the drought brought devastating consequences to pastoralist

communities in northern Kenya, including the Samburu, who are the
focus of our study19. Drought monitoring experts consider the
2008–2009 drought to be severe as measured meteorologically, in
terms of rangeland, need for food aid, and with respect to livestock
losses – which were 57% for cattle and 65% for sheep19. Although our
Samburu study partners report pregnancy as a stressful time overall,
they report substantially more distress during pregnancies in the
2008–2009 drought compared to pregnancies with same-sex sibling
controls conceived after the drought resolved and unexposed to
severe drought in utero20. In Fig. 1, we draw on CHIRPS data21 to pro-
vide rainfall z-scores for drought-exposed versus unexposed preg-
nancies basedon the 40-year cumulativemean rainfall during the same
period. The rainfall period is based on health records and participant
reports of the location for each of their pregnancies.

We have previously reported that severe drought exposure in
utero associated to lower child body weight and higher peripheral
adiposity independently ofmicroclimate variation20. Additionally, we
have previously reported differential epigenome-wide DNAm pat-
terns based on severe drought exposure, as well as potential CpG
sites that mediate the association between drought exposure and
child body weight and potentially peripheral body fat22. In the pre-
sent study,we hypothesize an associationbetween drought exposure
in utero and EAA. We provide a conceptual diagram for our study
in Fig. 2.

For assessing EAA, we use the most widely validated first gen-
eration clocks for consistency with other studies, including those in
children. Horvath’s clock is drawn from a variety of tissues from indi-
viduals representing a broad age range (0–100 years), and is accurate
in young children23, although racialized group membership for the
training data was only partially reported (non-Hispanic White;
Taiwanese)24. The similarly pan-tissue skin and blood clock (trained on
ages 0 to 94 years) has been found to have even higher accuracy for
age estimation than Horvath’s clock25. Hannum’s single-tissue clock
might be less accurate in children for age estimation, although it is a
more accurate predictor of life expectancy14 and several studies have
found significant associations in children based on early life
adversity26. The training data set for Hannum’s clock included 426
White and 230 Hispanic individuals, ages 19–101 years27.

While first generation clocks were developed to predict chron-
ological age, second generation clocks were trained specifically to
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Fig. 1 | Rainfall comparison by pregnancy. Rainfall z-scores in comparison to 40-
year mean for 3-month period leading to conception (indicative of pasture quality
in first trimester) by pregnancy and mother’s reported residence, using CHIRPS
rainfall data. Figure shows mean z-scores by pregnancy and location for drought-
exposed and unexposed pregnancies in dry (blue columns) and wet (orange col-
umns) seasons. Source data are provided as a Source Data file.
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Fig. 2 | Conceptual model for study. Drought exposure during pregnancy indi-
cated (gold sun and red thermometer weather symbols and brown diagram of
pregnant woman) hypothesized to predict child outcomes (brown infant diagram)
through biological mechanisms of aging and phenotypic plasticity (blue DNA
symbol), tested in this studywith epigenetic age acceleration (blue forward arrows)
using multiple epigenetic clocks, as labeled in Figure as follows: 1st generation

clocks (blue clock)–Horvath,Hannum, SkinBlood, identified as lifespanpredictors;
2nd generation clocks (green clock) – PhenoAge, GrimAge2, DNAmTL, identified as
disease and mortality predictors; 3rd generation pace of aging predictors (yellow
clock) – DunedinPACE, DunedinPoAm38; and pediatric clocks (orange clock) –
PedBe and Wu, identified as child health and disease predictors.
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predict diseases and mortality. We use the PhenoAge28 and GrimAge29

clocks for their reported relative precision in predicting disease-
related aging and mortality, as well as two recent clocks
(DunedinPoAm3830 and DunedinPACE31) that were developed to
measure the pace of aging over time based on adult samples32,33.
DunedinPACE provides refinements that increase its precision, while
DunedinPoAmhas been around longer and therefore featured inmore
studies. Racialized identities of participants for training data were not
identified for GrimAge or PhenoAge, although, for GrimAge, stratified
validation testing was performed based on racialized group member-
ship (Black, White, Hispanic) and education levels. Dunedin was
trained almost entirely on White New Zealanders of a broad range of
socioeconomic backgrounds. We also test the DNAmTL, which was
developed based on leukocyte telomere length in adults ages 22–93
years (19% European and 81% African ancestry) but is applicable to
children. DNAmTL was validated in samples derived from participants
identified as European, African, and Hispanic ancestries. Telomeres
(the protective caps at the ends of chromosomes) shorten with each
cell division, as well as in response to oxidative stress; shortened tel-
omere length has been found to associate to psychosocial stress, age-
related diseases, and mortality34,35. The DNAmTL reflects the replica-
tive history of cells, negatively correlates with age in different tissues
and cell types and is a strongpredictor ofmortality andmultiple health
outcomes36.

Most clocks were trained on adults, or, in the case of Horvath’s
clock, on all ages. Since our study is in children, we include two
pediatric clocks. The PedBE clock was developed from buccal epi-
thelial cells (from predominantly White participants) for use speci-
fically in children ages zero to twenty years37. A very recent pediatric
clock, Wu’s clock, was trained on children using blood samples of
children ages 9–212 months of age. Training data included partici-
pants identified as White, Asian, African-American, and multiple
racialized identities, although this information was only available for
2 out of 11 data sets. In validation tests, gender and ethnicity did not
seem to influence epigenetic age acceleration. Based predominantly
on CpG sites in genes relevant to development and aging, the clock
was designed to predict age-related diseases at young ages to allow
positive interventions38.

Results
Maternal exposures and descriptive statistics
This study aims to examine EAA in children exposed to severe drought
in utero (N = 104) compared to same-sex siblings unexposed to severe
drought in utero (N = 109). Figure 3 shows the top self-reported
stressors reported for drought pregnancies. We have previously
reported all stressors: there were significantly higher frequencies of
most stressors reported for drought compared to typical season
pregnancies, indicative of the cumulative, exacerbated stress char-
acteristic of drought22. Descriptive statistics for variables included in
the model are shown in Table 1. More girls than boys are seen in our
study. Exhaustive descriptive statistics and additional cultural context
for maternal stressors have been provided previously20,22.

Epigenetic clocks and epigenetic age acceleration
The average chronological age of our study sample is 6.72 years. Based
on the same-sex sibling design, drought-exposed siblings are, on
average, older than same-sex siblings conceived after the severe
drought resolved. Themeans of the estimated epigenetic ages are 7.27
(PedBE), 6.25 (Wu), 8.39 (Horvath), 18.32 (Hannum), 4.02 (skin &
blood), −3.32 (PhenoAge), 32.28 (GrimAge2), 7.19 (DNAmTL), and 4.02
(skin & blood). Age prediction accuracy is measured by the Pearson
correlation (r) between the epigenetic clocks and child chronological
age39, and we found that all estimated biological ages from epigenetic
clocks are correlated to child chronological age (Table 2, Fig. 4a), with
the skin & blood clock showing the highest accuracy of age prediction
(r =0.86), PedBE the next (r = 0.80), Horvath (r = 0.72) and Wu
(r =0.68) slightly lower and DNAmTL the lowest (r =0.05). Estimated
epigenetic ages from different clocks are also correlated with each
other (Fig. 4a), i.e., Horvath and skin & blood (r =0.79), PedBE and skin
& blood (r =0.78), Wu and skin & blood (r =0.72), Hannum and
GrimAge2 (r =0.72), Wu and Horvath (r =0.69), and PedBE and Hor-
vath (r = 0.61). DNAmTL is negatively correlated with five of the esti-
mated epigenetic ages (Hannum (r =0.68), GrimAge2(r =0.67),
PhenoAge (r =0.35), Wu (r = −0.11), PedBE (r = −0.06)). For DNAm
based aging pace measurements, DunedinPACE negatively correlates
with chronological age (mean= 1.32, r = −0.35,) while DunedinPoAm38
shows a weak positive correlation with age (mean= 1.16, r =0.18). For
EAA and aging pacemeasurements, the correlation between estimated
EAA from GrimAge2 (EAAGrimAge) and EAADunedinPACE (r =0.74),
between EAAHannum and EAAGrimAge (r = 0.70), between EAAHannum and
EAADunedinePACE (r =0.63), and between EAADNAmTL and
EAADunedinePoAm38 (r = 0.52) are higher than positive correlations
between any other two EAA measures (Fig. 4b). EAA estimated from
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Fig. 3 | Frequently reported pregnancy stressors by percentage reported. Top
stressors reported as experienced during drought pregnancy shown in comparison
to reporting of those same stressors during drought-unexposed pregnancy (N
reporting = 104 Drought-exposed, N reporting = 109 Drought-unexposed), based
on percentage of women reporting the stressor by pregnancy. Stressors as indi-
cated infigure columns are livestock deaths (blue), food insecurity (orange), feared
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blue), water insecurity (green), tooweak towork (navy), forced towork too hard by
husband during the pregnancy (brown), denied foodby husband during pregnancy
(husband refusing to provide food) (dark gray). Source data are provided as a
Source Data file.

Table 1 | Descriptive statistics for drought exposure and
covariates

Mean (SD) N (%)

Maternal exposure

Drought exposed 104/213 (49%)

Unexposed 109/213 (51%)

Child’s sex

Female 115/213 (54%)

Male 98/213 (46%)

Gravida 3.08 (2.21)

Child birth season

Wet 126/213 (59%)

Dry 87/213 (41%)

Epithelial cell proportiona 0.24 (0.12)

Fibroblast cell proportiona 0.02 (0.01)
aCellular heterogeneity: Immune cells are reference. Source data are provided as a source
data file.
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DNAmTL clock is negatively correlated with the majority of the age
pace and acceleration measures (Hannum (r = −0.75), GrimAge2
(r = −0.71), DunedinPACE (r = −0.67), PhenoAge (r = −0.44), Wu
(r = −0.19), PedBE (r = −0.16)). As expected, none of the EAAs are
associated with chronological age (r = 0).

Association of severe drought exposure in utero with EAA
The posterior mean and 95% highest posterior density (HPD) interval
of the estimated association of maternal exposure to severe drought
with EAAs and aging pace measurements from our multivariate linear
mixed effectmodel (seeMethods) are summarized in Table 3. Detailed
estimated regression coefficients showing the association between
EAAmeasures andmaternal exposure to severe drought, child gender,
and other covariates are shown in Supplementary Table 1. Drought
exposure is positively associated with EAA using Hannum’s clock
(posterior mean= 1.34, 95% HPD= (0.74, 1.96)), and GrimAge2 (pos-
terior mean = 1.31, 95% HPD= (0.61,1.97)), but negatively associated
with EAA from DNAmTL clock (posterior mean = −0.13, 95% HPD=
(−0.24, −0.04)). Similar results were obtained using the frequentist
approach (Supplementary Table 2) as an alternative strategy, with an
additional significant finding of a negative association with Dune-
dinPACE (with a small effect size, estimated regression coefficient is
−0.03, adjusted p-value = 0.01).

Discussion
In this study of the association between exposure to severe drought in
utero and EAA in children, drought exposure associated to multiple
clocks. We found a positive association in offspring born to mothers
exposed to severe drought during pregnancy based on the Hannum’s
(first generation) and GrimAge (second generation) clocks, potentially
indicating accelerated biological aging in children exposed to severe
drought in utero. Additionally, we found a negative association based
on DNAmTL. A negative association with DNAmTL is in the expected
direction, as shorter telomere length is associated with increased
morbidity and mortality. The significance with Hannum is consistent
with other studies in children26, while GrimAge has been found sig-
nificant in a recent study of in-utero exposure to the Great Depression
(based on economic fluctuations)40. Results were null for two first
generation clocks (Horvath’s, SkinBlood), third generation (Dunedin
PACE, Dunedin PoAm38), and the two pediatric clocks (PedBe, Wu).
The association of in utero drought exposure with DunedinPACE was
statistically significant using the frequentist approach, although we
approach this finding with caution, as the frequentist method is more
susceptible to Type 1 error (see Methods).

Epigenetic clocks areonly in their seconddecadeof development,
and much remains to be understood about them from a mechanistic
perspective41. The lack of concordance between clocks tested on the
same exposure has been a common feature of epigenetic aging stu-
dies. This may partly reflect differences in the way each clock was
developed, including participant characteristics of the training sets
and the tissues used10,14.

Additionally, however, biological aging is a multicausal phenom-
enon, involving accumulated damage, abnormalities, and decline
genetically and epigenetically throughout the organism42–44. Thus,
different epigenetic clocks as well as their DNAm components likely
capture distinct mechanisms of biological aging41. There are multiple
theories about why aging occurs: Two prominent theories point to (a)
accumulateddamage relevant to tradeoffs thatprioritize reproduction
over expensive maintenance; and (b) programmatic effects of fitness
promoting genes that have deleterious consequences later in life44.
Either way, consistent with life history theory45, reproduction is
prioritized and the developmental period leading to reproduction is
characterized by molecular precision. In adults, EAA indicates rela-
tively more molecular damage (loss of precision) relevant to disease
processes that reduce life expectancy, although there isn’t agreement
concerning EAA’s causal centrality in these declines28. In children, in
contrast, a role in development and/or early life programming has
been proposed, although relating these changes to lifetime health is
still not well understood46.

More understanding is needed about the differences between and
within epigenetic clocks as they relate to different molecular
mechanisms of early life programming, biological aging, chronic dis-
eases, and mortality. A recent study that clustered 5,717 CpGs from
fifteen of the best-known clocks into twelve modules offers intriguing
insights41. The study examined seven out of ten of the clocks tested in
our study (DunedinPACE, Wu, and PedBE were not included). Notably,
two of the three clocks that were significant in our study (GrimAge and
DNAmTL) were found to be similar in composition, together with
DunedinPoAm. Since DunedinPACE is a refinement of DunedinPoAm,
it is possible that that its composition might also be similar. These
three clocks included higher proportions of modules most predictive
of mortality risk, two of which also seemed to increase exponentially
during development. In contrast, Horvath’s, SkinBlood, PhenoAge, and
Hannumclocks hadhigher proportions ofmodulesweakly or inversely
predictive of mortality risk – seeming to create a counteracting effect.
However, Hannumwas distinctive in that it lacked amodule present in
the other six of these clocks.

As expected in global hot spots for climate change vulnerability,
severedrought inour study is characterizedby amultitudeof stressors

Table 2 | Descriptive statistics for chronological age, epige-
netic clocks, aging pace measures, and age acceleration
measures, with pearson correlation coefficients for associa-
tions with chronological age

Mean SD Maximum Minimum Pearson corre-
lation coeffi-
cients with
chronological
age

Child chron-
ological
age (years)

6.72 1.96 9.61 1.81 1

Epigenetic clocks

PedBE 7.25 1.15 10.16 3.99 0.80

Wu 6.25 1.66 10.17 0.51 0.68

Horvath 8.39 2.77 15.40 2.72 0.72

Hannum 18.32 3.62 31.02 8.71 0.38

Skin & blood 4.02 1.44 8.13 0.73 0.86

PhenoAge −3.32 6.49 17.39 −21.04 0.51

GrimAge2 32.28 3.93 48.24 23.66 0.25

DNAmTL 7.19 0.28 7.78 6.13 0.05

Aging pace
measures

DunedinPACE 1.32 0.14 1.78 1.01 −0.35

DunedinPoAm38 1.16 0.07 1.32 0.99 0.18

Age acceleration
measures

EAAa
PedBE 0.00 0.69 1.95 −1.98 0

EAAWu 0.00 1.21 2.67 −3.39 0

EAAHorvath 0.00 1.92 5.59 −3.89 0

EAAHannum 0.00 3.35 11.50 −7.48 0

EAASkin&Blood 0.00 0.73 2.62 −2.14 0

EAAPhenoAge 0.00 0.69 1.96 −1.98 0

EAAGrimAge2 0.00 1.77 5.14 −3.58 0

EAADNAmTL 0.00 3.35 11.50 −7.48 0
aEAA denotes the epigenetic age acceleration, which is calculated as the resulting residuals of
regressing epigenetic clock on child’s chronological age. For example, EAAPedBE is the epige-
netic age acceleration derived by taking the residuals after regressing PedBE clock on child’s
chronological age. Source data are provided as a source data file.
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that individuals experienced during their pregnancies22. Most fre-
quently reported pregnancy stressors relate to livelihood, food and
water insecurity, and intimate partner violence and control. This sug-
gests possibilities for behavioral adaptations that might reduce preg-
nancy stressors and increase climate resilience. Biologically, pregnant
individuals’ response to these stressors would be expected to activate
the hypothalamic-pituitary-adrenal (HPA) axis. The biological
mechanisms for the adaptive response in offspring as it relates to
adverse health outcomes and EAA are not as well understood47,
although life history theory predicts a faster reproductive trajectory
(also involving the HPA axis) as one possibility45. Earlier age at
menarche has been found to positively associate to EAA in one study48,
although a subsequent study testing whether earlier age at menarche
mediated the association between early life stress and adult EAA had
mixed results47. Risks for cardiovascular disease and metabolic syn-
drome have also been found to be associated with earlier age at

menarche, although causation is not established49. Some of the com-
ponents of the clocks that were significant in our study were found
strongly associating to cardiovascular outcomes and age at
menopause41. Notably, we have previously found DNAm mediators of
the association between drought and children’s body composition
near genes relevant to insulin secretion, cardiac function, and cell
metabolism, which suggests possible mechanisms for our study’s EAA
findings22. Longitudinal studies are needed to better address the EAA
and lifetimehealth implications of early life exposure to climate stress.

Methods
Data collection ethics
All data collection and analysis methods conformed to the principles
stated in the Declaration of Helsinki and were approved by Western
Michigan University Human Subjects Institutional Review Board [Pro-
tocol #17-05-09] and Kenya’s National Commission for Science,
Technology & Innovation [NACOSTI/P/18/7558/22142; P/19/7558/
30004]. All recruitment and informed consent materials were trans-
lated and back translated by a multilingual team that included Sam-
buru community partners. The study was explained in the Samburu
vernacular at community meetings and to parents and child partici-
pants at each data collection visit, with consent (and assent for child
participants) obtained at each visit. The study was initiated prior to
2018 IRB rules and is subject to reconsent based on individual subject
and Indigenous community agreements.

Data collection
For this same-sex sibling pair study, we recruited rural Samburu
women who had a child exposed in the first trimester of gestation to
the peak months of the 2008–2009 drought (N = 104), and one or
more children of the same sex unexposed to severe drought in utero
(N = 109). Children’s ages (range: 1.81–9.61 years) were documented
with vaccination records and birth certificates and calculated to age in
years (minimum of two decimal points). Sex of all participating chil-
dren as identified by parents and children matched sex reported in
health records. We conducted qualitative and ethnographically-
grounded interviews to elicit reproductive histories, lifetime
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Fig. 4 | Correlation matrices of epigenetic clocks and epigenetic age accelera-
tions (EAAs). Figure 4a illustrates the correlation matrix for various epigenetic
clocks, while Fig. 4b displays the matrix for correlations between epigenetic age
acceleration (EAA) and aging pacemetrics. The term “EAAPedBE” refers to the EAA

estimated using the PedBE clock, a naming convention consistent across other EAA
measurements presented. Positive correlations are denoted by red shades, whereas
negative correlations are indicated in blue, with darker shades signifying stronger
absolute correlation values. Source data are provided as a Source Data file.

Table 3 | Regression coefficients and 95% highest posterior
density (HPD) of drought exposure from the multivariate
linear mixed effect model

Posterior mean Lower 95% HPD Upper 95% HPD

EAAPedBE
a 0.11 −0.17 0.31

EAAWu −0.02 −0.37 0.33

EAAHorvath −0.31 −0.81 0.18

EAASkin&Blood −0.09 −0.33 0.21

EAAHannum 1.34 0.74b 1.96b

EAAPhenoAge 0.78 −0.59 2.15

EAAGrimAge2 1.31 0.61b 1.97b

EAADNAmTl −0.12 −0.24b −0.04b

DunedinPACE −0.03 −0.13 0.07

DunedinPoAm38 0.01 −0.09 0.10

Bold indicates significant associations. Source data are provided as a source data file.
aEAAPedBE denotes the epigenetic age acceleration of PedBE clock.
b95% HPD interval not containing zero will be considered as significant association.
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stressors, and stressors for each pregnancy22. Based on the same-sex
sibling design, socioeconomic variables status was the same for
drought-exposed and unexposed siblings. The study’s epigenetic
component was based on children’s saliva samples obtained using
Oragene-500 kits, as saliva is minimally invasive and appropriate for
field conditions.

DNA methylation
To generate an epigenome-wide dataset of DNAm, we utilized the
Illumina MethylationEPIC (EPIC) BeadChip array-based platform. This
platform enabled us to gather molecular data comprising over
850,000 methylation marks per individual. To perform the Illumina
MethylationEPIC BeadChip array analysis, saliva samples were sent to
The University of Michigan’s Epigenomics Core for DNA extraction,
quality control, and processing. DNA was extracted from saliva using
the PureGene Cell and Tissue Kit, according to the protocol suggested
for Oragene collection kits (DNA Genotek document PD-PR-00212).
Samples were quantified using the Qubit high sensitivity dsDNA assay,
and their high molecular weight quality assessed with the TapeStation
genomic DNA kit. For each sample, 250 ng were bisulfite converted
with Zymo’s EZ DNA Methylation kit and using the manufacturer’s
incubation parameters specific for Illumina MethylationEPIC arrays.
Cleaned up samples were then sent to the UM DNA Sequencing core
for hybridization to the Infinium MethylationEPIC BeadChip array,
washing, and scanning, according to the manufacturer’s instructions
(Illumina EPIC Datasheet).

Epigenetic clocks and epigenetic age acceleration
Epigenetic clocks. Horvath’s pan-tissue clock and Horvath’s skin and
blood clock are tissue independent clocks and the PedBE is derived
from buccal epithelial cells. In contrast, Hannum’s single-tissue clock,
based on adult blood samples, has higher accuracy for predicting
lifespan27, and accuracy using saliva samples is improvedwith cell type
deconvolution50,51. Based on beta-value of DNAm, the PedBE, Horvath,
Hannum, skin & blood clocks, PhenoAge, and DunedinPACE were
obtained using theR packagemethylCIPHER fromMorganLevineLab52,
and DNAmTl and DunedinPoAm38 were estimated using R package
dnaMethyAge from Github53. Wu’s clock was trained on children’s
blood samples, and itwas estimated by using the coefficients provided
in Wu’s original paper38. GrimAge2 was estimated using the algorithm
provided by the authors of DNA methylation GrimAge version 254.
More than 80% of the required CpGs are present for all clocks, and
missing CpGs are filled with median values from reference dataset54.

Epigenetic age acceleration. From these biological age estimates
obtained using the epigenetic clocks, we calculated EAA to measure
whether the individuals are biologically younger or older than their
chronological age. The PedBE EAA response variablewas calculated by
using the residuals from a linear model that regresses PedBE clock on
the child’s chronological age55. Similarly, we computed the other EAA
response variables using the Wu, Horvath, Hannum, skin & blood,
PhenoAge, GrimAge2, and DNAmTL clocks by taking residuals after
regressing the corresponding clock on the child’s chronological
age10,55. The DunedinPACE and DunedinPoAm38 directly measure the
pace of aging, and therefore could serve as the response variables
as EAAs.

Maternal exposure
Our study focused on first trimester exposure to the 2008–2009
drought as a critical developmental window. We restricted our early
gestational drought exposure window to peak months of the drought
to capture the highest possible contrast to same-sex siblings not
exposed to the 2008–2009 or another severe drought in utero. While
this was themost rigorous design to avoid confounding based on early
life exposure to the 2008–2009 severedrought, itmeant thatdrought-

exposed children were older than same-sex sibling controls. One child
was excluded from the models due to the mother moving outside the
drought-catchment area throughout the pregnancy.

Covariates
Maternal parity, birth season, sex, cellular heterogeneity, socioeconomic
and demographic variables Gravida indicates the number of pregnan-
cies a woman had prior to the target pregnancy. The child’s birth
season is a binary variablemeasuringwhether the child was born in the
dry or wet season. Child’s sex is male or female. Our study is based on
whole saliva. We adjusted for cell-type effects, the fractions of a priori
known cell subtypes, Epithelial (Epi), Fibroblast (Fib), and Immune
cells (ICs, as reference) calculated using the R package, “EpiDISH”50.
The methods have been described in detail previously22. Based on the
same-sex sibling pair design, household demographic variables were
the same for drought-exposed and unexposed siblings and therefore
not included in models.

Statistical analysis
Due to the same-sex sibling study design and correlation among the
eight EAAs (estimated from the PedBE, the Wu, the Horvath, the
Hannum, the skin & blood, the PhenoAge, the GrimAge2 and the
DNAmTl clocks) and two aging pace response variables (DunedinPACE
and DunedinPoAm38), we employed amultivariate linearmixed effect
model (MLME) with sibling identifier as random effect to investigate
the association between in utero drought exposure and EAA.

We consider the following MLME model:

Yij =β0 +β1T ij +β2Xij +bj + ϵij
bj ∼MVN 0,Σb

� �

ϵij ∼MVNð0,ΣeÞ
ð1Þ

where Yij = ðY ij,1,Y ij,2,Y ij,3,Y ij,4,Y ij,5,Y ij,6,Y ij,7,Y ij,8,Y ij,9,Y ij,10ÞT is a 10 by 1
vector of EAA measures and aging pace outcomes of ithchild of jth
mother, and Y ij,1 denotes the EAA estimated from PedBE clock, Y ij,2

from Horvath clock, Y ij,3 from Hannum clock, and so on. T i represents
binary exposure of drought, and Xij is a vector of adjusted covariates:
maternal parity, child sex, child birth season, and estimated cell
composition variability. In addition, ϵij and bj are 10 by 1 vectors of
error terms and random intercept, and we assume they are identically
and independently distributed (i.i.d.) frommultivariate normal (MVN)
distribution of mean 0 and variance-covariance matrix of Σe and Σb.
Moreover, we assume that ϵij and bj are independent. Let
β1 = β1,1,β1,2,β1,3,β1,4,β1,5,β1,6,β1,7,β1,8,β1,9,β1,10

� �T be a 10by 1 coefficient
vector representing the associationof EAAs anddrought exposure, i.e.,
β1,1 measures the association of EAA estimated from PedBE clock and
early gestational drought exposure. The proposedMLMEmodel in Eq.
(1) can be fitted for all EAA measures simultaneously, and it can
incorporate not only the correlation of children within mother, but
also the association of multiple EAA measures by utilizing the random
effects. Since the EAA measures are highly correlated as shown in
Fig. 4a, the multivariate modeling approach is more powerful than
univariate approach56.

Moreover, the MLME provides a solution to the multiplicity issue
by summarizing simultaneously all EAAmeasures of interest insteadof
fitting many separate univariate linear mixed effects models for each
EAA. For frequentist approach, a maximum likelihood (ML) approach
basedon the jointmarginal likelihoodof EAAmeasures can be used for
estimating the fixed and random effects parameters in MLME model.
However, the ML approach requires numerical integration techniques
with respect to the randomeffects and the largenumber of parameters
included in the models. To overcome the computational burden, we
utilize the Bayesian approach in conjunctionwithMarkov chainMonte
Carto (MCMC) methods, i.e., Gibbs sampling, to obtain the posterior
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distribution of theparametersof interest for parameter estimation and
inference. We use the standard conjugate prior distribution for the
parameters of interest, that is non-informative multivariate normal
distribution for regression coefficients in (1), i.e., β1 ∼MVNð0, 109I10Þ,
where I10 is the 10 by 10 identity matrix, and inverse-Wishart dis-
tribution for variance and covariance matrix of random effect bj and
error terms ϵij, Σb,Σe ∼ IW 10,I10

� �
:Under this setting, we assumed the

independent prior information on β1,bj, Σb and Σe. The number of
interactions of Gibbs samplingwas 20,000with the first 5000 samples
discarded as burn in. Using the R package MCMCglmm, we obtained
themarginal posterior distribution, and computed the posteriormean
and 95% highest posterior density (HPD) interval of regression
coefficients57. The convergence in MCMC for each parameter in the
MLME model was further inspected using the trace plots. Our statis-
tical analyses were performed using R Version 4.1.2, and we used 0.05
to be a significance threshold.

Strengths and limitations
Our study contributes to ethnic diversity of EAA research and adds
much needed climate exposure findings. Also, it contributes findings
from a population engaged in a climate-vulnerable livelihood, based
on findings from an underrepresented ethnic group in northern Kenya
living in a global hot spot for climate change vulnerability. Our same-
sex sibling studydesign is an additional strength. Also, by analyzing the
EAA response variables simultaneously using a multivariate approach,
we account for the correlations between EAA measures, thus
decreasing the likelihood of a Type 1 error without requiring any
additional multiple testing adjustment. Limitations of our study
include the fact that drought-exposed siblings are older than unex-
posed siblings. However, the EAA measures do not associate sig-
nificantly to chronological age, and all children (both drought-exposed
and unexposed) were under ten years old and pre-pubertal based on
observed Tanner stage. Another limitation is that it is possible that our
models are biased towards the null for some clocks, based on differ-
ences between participant characteristics of our study sample and
those of participants used to develop the clocks24. Watkins and col-
leagues have recently pointed out a lack of attention given to partici-
pant characteristics for samples on which clocks are based in spite of
the recognized problem raised by a tendency to use unrepresentative
sociodemographic samples. These authors suggest that researchers
working with existing clocks should compare participant character-
istics of their study to characteristics of participants used in the
development of the clocks to the extent that information is available24.
We have described available information for each clock in the main
text for this reason.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The source data for all Figures and Tables, including data used to
support the findings of this study are supplied with this paper in the
Source Data file. Rainfall variables for Fig. 1 were calculated from high
resolution publicly available historical data (CHIRPS) on the Famine
Early Warning Systems Network (FEWSNET: https://earlywarning.usgs.
gov/fews). DNA methylation data are based on the Illumina Methyla-
tionEPIC (EPIC) BeadChip array-based platform. The individual-level
DNA methylation data and the CHIRPS individual-level location and
pregnancy-timed data (used for illustration purposes in Fig. 1, not for
data analyses) are available under restricted access due to privacy and
ethical restrictions because the research partners of this study are a
vulnerable group of African Indigenous peoples. Access can be
obtained by contacting the corresponding author (bilinda.s-
traight@wmich.edu) as follows: Queries for access to verify results will

receive a response within 2 weeks, and access will be granted as
immediately as possible after approval from the Western Michigan
University IRB, but in no more than 2 weeks from approval. Access for
new studies will receive a response within 2 weeks and will be subject
to restrictions imposed by Kenya’s National Commission for Science,
Technology, and Innovation (NACOSTI) and the Indigenous commu-
nity. • Epigenetic clocks were derived using R package methylCIPHER
from MorganLevineLab, R package dnaMethyAge from Github, R
functionderived fromoriginal clockpaper, andRcodeprovidedby the
authors of “DNA methylation GrimAge version 2”. • Cell type propor-
tions were estimated using R package EpiDISH. • Figures 1 and 3 were
generated using Microsoft Excel for Mac Version 16.83. • Figure 4 was
generated using R packages ggcorrplot and patchwork. •All code is run
in R version 4.1.2. • Statistical analyses were conducted using the fol-
lowing packages: MCMCglmm, lmerTest and lme4. Source data are
provided with this paper.

Code availability
R Code used for analyses can be found at: https://github.com/
DuyNgoStats/BayesianEAA. and at the following https://doi.org/10.
5281/zenodo.10854895. Code Detailed Description. Step 1: Missing
Values and Imputation. • Check methylation sites missing value per-
centage andfill themissing valuewithmedian value fromthe reference
dataset. Step 2: Epigenetic Clock and Age Acceleration Estimation. •
Calculate Epigenetic clocks using R package methylCIPHER and dna-
MethyAge. • Regress each clock on chronological age and take the
corresponding residual as the Epigenetic age acceleration measure.
Step 3: Cell Type Estimation. • Estimate the cell type proportion (Epi-
thelial, Fibroblast, with Immune cells as reference) with beta values of
CpG sites using R package EpiDISH. Step 4: Multivariate Linear Mixed
EffectModel (MLME) andMCMCDiagnostics. • Set up prior distributions
for MLME model parameters. • For the MLMEmodel, age acceleration
measures serve as the multivariate dependent variables, with drought
as the exposure variable and cell type, maternal parity, child’s sex, and
child’s birth season as covariates. • Inspect MCMC samples with trace
plots and density plots.
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