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A fully autonomous robotic ultrasound
system for thyroid scanning

Kang Su 1,9, Jingwei Liu 1,9, Xiaoqi Ren2,3,9, Yingxiang Huo 2,3,9,
Guanglong Du 1,9 , Wei Zhao4, Xueqian Wang 5 , Bin Liang6 , Di Li7 &
Peter Xiaoping Liu 8

The current thyroid ultrasound relies heavily on the experience and skills of
the sonographer and the expertise of the radiologist, and the process is phy-
sically and cognitively exhausting. In this paper, we report a fully autonomous
robotic ultrasound system, which is able to scan thyroid regions without
human assistance and identify malignant nod- ules. In this system, human
skeleton point recognition, reinforcement learning, and force feedback are
used to deal with the difficulties in locating thyroid targets. The orientation of
the ultrasound probe is adjusted dynamically via Bayesian optimization.
Experimental results on human participants demonstrated that this system
can perform high-quality ultrasound scans, close to manual scans obtained by
clinicians. Additionally, it has the potential to detect thyroid nodules and
provide data on nodule characteristics for American College of Radiology
Thyroid Imaging Reporting and Data System (ACR TI-RADS) calculation.

Ultrasound (US) diagnosis is widely used in examining organs, such as
the liver, gallbladder, pancreas, spleen, kidney, and thyroid1–6. How-
ever, the qualities of US diagnosis rely heavily on the experience and
skills of the sonographer and radiologist7–9. The acquisition of US
images usually exhibits variability among clinicians, and even the same
examinermaypotentially produce very different results fromdifferent
scans10. Furthermore, the standard practice of having patients to
assume a supine position and maintain still- ness during examinations
canpresent challenges, as these requirementsmay not always bemet11.
Consequently, operator-dependency and patient-specific factors
introduce inconsistency and unreliability into US diagnosis results12.

From pure human control to complete autonomy, the level of
autonomy of medical robots can be classified into different
categories13,14. According to the framework presented in ref. 13, the
level of autonomy includes level 0, which is defined as no autonomy,
e.g., tele-operated systems or prosthetic devices; level 1, robotic

assistance, the robot guides the human during a task while the human
maintains a continues control; level 2, task autonomy, the robot pro-
vides discrete rather than continuous control over a specific task; level
3, conditional autonomy, the system is capable of generating different
task strategies but relies on the human’s selection or approvement;
level 4, high autonomy, the system is capable of making medical
decisions but onlywhen supervisedby aqualifiedphysician; level 5, full
autonomy, the robot can perform the entire procedure without any
human involvement. Under the concept of the autonomy level of
medical robots (Level 0–5), the autonomy level of ultrasonic inspec-
tion robots (Level 0–3) has been defined at present. Level 0 is defined
as “manual probe manipulation”, the proposed tele-echography
systems15–19. The US robotic system in Level 1 utilizes visual servo
technology to allow the robot to automatically track desired image
features20–23 and compensate for unnecessary patient movement dur-
ing remote operation. Level 2 is described as performing autonomous
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US acquisition along a manually planned path24,25. The US robotic
system in Level 3 can autonomously plan and perform US acquisition
without any instruction from a human operator but requires the
supervision of an operator26–29.

With the improvement of the autonomy of ultrasonic inspection
of robots, substantial advancements in the field have been achieved,
providing promising solutions to improve the accuracy and efficiency
of US procedures. The prerequisite for robotic US acquisitions is to
plan the scanning path to ensure finding a desired imaging plane or
covering a selected region of interest. In general, existing systems
typically rely on global information of the target tissue acquired from
preoperative medical images or surface information obtained from
external sensors27,30,31. Given the inherent variability in individual
anatomy and the dynamic of humanmotion, executing a scanning task
based on a predetermined trajectory presents significant challenges.
To address these difficulties, Jiang et al.32 integrated the feedback of
segmented images into the control process. Zhan et al.33 have pro-
posed a visual servoing framework for motion compensation. How-
ever, thesemethods usually assume that the target features exist in the
US image, and once the features are lost, the control methodsmay fail.
In an effort to apply online image-guided methods to define the
scanning trajectory and derive clinically relevant information out of
the 3D reconstructed image, Zielke et al.34 implemented in-plane
navigation specifically designed for robotic sonography in thyroid
volumetry.However, in actual clinical practice, sonographers oftenuse
a combination of multiple views, such as transverse and longitudinal
scans, for the identification and diagnosis of both benign and malig-
nant pathologies35. Furthermore, the increased autonomy of the US
robotic system may lead to a higher risk of injury to patients due to
machine failure, so the clinical effectiveness of the system needs to be
further studied. Although many implementations have been
proposed36–40, the overall success scanned rate is low due to the dif-
ferences between human bodies. To this end, the fully autonomous
robotic diagnosis system adapted to clinical practice is still challen-
ging, as it calls for more perception, planning, and control on the part
of the robot while taking into account patient safety.

In order to eliminate the above obstacles, we developed a fully
autonomous robotic ultrasound system (FARUS), as shown in Fig. 1. To
the best of our knowledge, this is the first in-human study of fully
autonomous robotic US scanning for thyroid. In conventional US
examinations, the process involves a division of responsibilities
between sonographer and radiologist. However, the presented FARUS
integrates the both roles into a single autonomous unit. Here, we
achieved a human-like fusion of both in-plane and out-of-plane scan-
ning, allowing for comprehensive scanning of the thyroid region, and
providing a detailed evaluation of the anatomy. The FARUS overcomes
the challenges associated with the localization of thyroid targets
through a reinforcement learning strategy. It enables to optimize the
orientation of the probe based on Bayesian optimization. It also uses
deep learning techniques for real-time segmentation of the thyroid
gland and potential nodules. As a result, this system provides a con-
venient autonomous tool integrating nodule detection, lesion locali-
zation and automatic classification.

The second contribution of this work lies in the practical realiza-
tion and clinical application of the FARUS, which achieves high-quality
US images in comparison with those manually collected by sono-
graphers, and realizes accurate and real-time detection of thyroid
nodules. We investigated the validity of our approach by conducting a
comparative evaluation of FARUS-driven diagnostic results for thyroid
nodules against the established hospital benchmark. We have con-
ducted extensive evaluations and studied the system’s performance
and reliability. Our work addresses the gap between existing research
and clinical application by demonstrating the deployment of this sys-
tem in a real-world clinical setting.

Results
System design for autonomous ultrasound imaging
The robotic scanning procedure comprises four phases, mirroring the
clinical workflow: thyroid searching (TS), in-plane scanning (IPS), out-
of-plane scanning (OPS), andmulti-view scanning (MVS), asdepicted in
Fig. 1a. An overview of our autonomous robotic system for thyroid
scanning and real-time analysis is presented in Fig. 1e. The system
consists of a six-degree-of-freedom UR3 manipulator that carries a
linear US probe, a US probe fixture and a six-axis force/torque sensor.
The high-frequency 2D linear US probe enables the optimal depth
penetration within the superficial location of the thyroid tissue. The
six-axis force/torque sensor can detect three orthogonal forces and
torques between the humanneck and probe. The Kinect camera tracks
3D view skeleton joints of the human body, while its 2D view provides
visual feedback for the operator supervising the robotic system. It is
remarkable that the entire scanning process, including thyroid
searching, force control, image quality optimization, and suspected
nodule detection was completed autonomously.

The following describes the thyroid scanning workflow of the
proposed FARUS, as in Fig. 1b–d. First, the participant was instructed
to turn his/her head after applying US gel to the neck skin. The scan-
ning range was specified as a rectangular area with a length of 6.47 cm
and awidth of 5.48 cm. The contact forcewithin the range of 2.0N and
4.0N was maintained to ensure sufficient pressure and prevent
pressure-induced shapedistortionof the thyroid anatomy. The thyroid
search procedure began when the probe reached the estimated posi-
tion given by skeleton joint locations. Due to individual anatomical
variations, the thyroid gland may not be immediately visible in the US
image obtained at the probe’s estimated position. In such case, we
used reinforcement learning to adjust the probe’s movement until the
thyroid gland is accurately located. The search procedure was finished
when the gland region, segmented by our gland segmentation model,
exceeds a predetermined threshold. Subsequently, the probe orien-
tation was optimized through Bayesian optimization41, see Fig. 1c. In
the IPS procedure, the probe scans upward until the upper thyroid
lobe end is invisible, then scans downward. Nodule locations are
recorded during detection by our segmentation network. Out-of-plane
scanning is employed for previously recorded nodules while avoiding
clavicle and jaw collisions. The scanning halts if FARUS detects sig-
nificant participant movement. Finally, we use the ACR TI-RADS scor-
ingmethod to classify nodules as either benign ormalignant, based on
their distinct characteristics, see Fig. 1f.

Deep learning for gland and nodule segmentation
For a fully autonomous robotic thyroid scan, real-time location infor-
mation of thyroid lobes and nodules is crucial. Given the stable char-
acteristics of healthy thyroid lobes and the diverse nature of nodules,
we used two separate networks for the thyroid lobe and nodule seg-
mentation tasks, respectively, as in Fig. 2a. Each model incorporates a
pre-trained encoder for feature extraction and employs the UNet42

architecture for the decoder, generating masks from extracted fea-
tures. To train the nodule segmentation networkwith prior knowledge
from the thyroid lobe mask, thyroid lobe pseudo-labels are generated
for nodule images. Spatial and feature constraints are then applied to
enhance nodule segmentation based on these pseudo-labels. The
spatial constraint ensures proximity to the thyroid lobe, while the
feature constraint emphasizes regions with similar gray values. To
address overfitting with limited samples, a two-step approach is
employed: pre-training on a nodule source dataset followed by fine-
tuning on our smaller dataset.

To understand the segmentation preferences of the gland seg-
mentation model across different slices, we used Grad-CAM43 to visua-
lize the fourth level output of the encoder. In Fig. 2b, the highlighted
regions aremore closely alignedwith the areasof interest during central
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Fig. 1 | Description of the thyroid scan procedure and the proposed FARUS.
aThe four-stage thyroid scanprocedureusedby clinical doctors. Stage I: the doctor
placed a US probe below the thyroid cartilage and found the thyroid lobe in the US
image; Stage II: the doctor performed IPS from the breastbone to the hyoid bone,
and backward; Stage III: the doctor performed OPS to screen for thyroid disease;
Stage IV: the doctor checkedmulti-view of the thyroid. b–dControl architecture of
the full autonomous control strategy for robotic thyroid ultrasound imaging.
Initially, we plan the preliminary scanning path through the human skeleton and

subsequently complete the thyroid search process using reinforcement learning
and thyroid segmentation. Gland and nodule identification are performed using a
pretrained gland segmentation model and a weakly supervised nodule segmenta-
tion model, respectively. Throughout the scanning process, we used Bayesian
optimization to adjust the scanning angle. Additionally, we combined IPS and OPS
to performmulti-angle scanning for suspected nodule areas. e The overview of the
experimental setup. f FARUS enables estimate TI-RADS level with key character-
istics of nodules.
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thyroid scanning. However, when scanning the upper pole of the thyr-
oid, the attention map reveals other targets, such as muscles. To
address cases where the thyroid target is small or even invisible, we
introduced reinforcement learning to the thyroid search process, see
“Thyroid search and probe orientation optimization” section. Figure 2c
shows the segmentation results of our proposed VariaNet on three
types of thyroid nodules. Here, VariaNet-B, VariaNet, and VariaNet+
denote models trained with different types of loss functions: no addi-
tional loss, feature loss only, and a combination of feature and spatial
loss, respectively. VariaNet-T represents the refinedmodel, trainedwith
adual loss function and sourcedomaindata. The integrationof distance
loss was critical to constrain hypoechoic nodules, which often
have similar gray value distributions to other tissues, and thereby
minimize the false positive rate. At the same time, the implementation
of feature loss improved the segmentation performance on isoechoic
nodules, especially in caseswhere the gray values of the nodules closely
match those observed in the thyroid region. In addition, the application
of transfer learning augmented with prior knowledge proved to be
effective in strengthening the robustness of the network, as evidenced
by the segmentation of hyperechoic nodules. In Fig. 2d, a comparative
evaluation between our proposed VariaNet and other semantic seg-
mentation models shows that the fusion of weakly supervised learning
improves the segmentation capabilities of the nodule network. The
proposedVariaNet exceeds the baselinemodel VariaNet-B by0.97% IoU
score on the SCUTN1k testset. We present ROC curves to intuitively
illustrate the performance of the proposed method, proving that Var-
iaNet outperforms other existing methods due to the tailor-made loss
function, see Fig. 2e.

Thyroid search and probe orientation optimization
An important problem in robotic thyroid scanning is the localization of
the thyroid on the body surface. We present a coarse-to-fine approach
to thyroid localization. In the coarse estimation step, the neck region is
identified by human skeletal key points. Notably, the thyroid lobemay
not be visible based on the location predicted by the skeletal data,
because the anatomy of the neck varies widely in different popula-
tions. Therefore, we added the fine-tuning step to further localize the
thyroid lobe. To enable robotic scanning in such a case, we used
reinforcement learning to determine the location of the thyroid.

Figure 3 shows the training process of Deep Q-Network (DQN)
learning with panoramic environment. The process starts with
sequences of data that are collected and labeled manually. We labeled
each sequence of thyroid images a goal or an ideal position for model
to learn as shown in Fig. 3a. After that, each of sequence of image will
be aligned and attached to be a panorama as shown in Fig. 3b. Then a
bunch sequence of image will be randomized and generated into
panoramas as shown in Fig. 3c, d. There is a sliding window will slide
according to the action given by the agent. To mimic the real envir-
onment when sometimes the probe is not fully attached, we combine
simulated view with the random noise as shadow mask, to generate
imperfect thyroid images thatmimic the appearancewhen the probe is
not fully attached, as shown in Fig. 3e. Figure 3f presents the results of
the training evaluation for reinforcement learning. During the
exploration stage, which comprises the initial 30,000 steps. Figure 3g
illustrates a progressive increase in the mean reward, indicating the
gradual improvement of the RLmodel’s performanceon the given task
as it continues to learn over time. Figure 3h depicts the process of
thyroid scanning facilitated by the DQN Learningmodel in the context
of FARUS. TheDQN learningmodel enables the robotic arm to execute
movements based on the input received fromUS images. As illustrated
in Fig. 3h, the model accurately predicts the required movements to
guide the robotic arm effectively.

In the first and fourth images, the probe is first attached to the
patient’s neck. The model then predicts the appropriate directions for
the robotic arm to move in each frame. The blue bar represents the

model’s predictions for movement to reach the ideal position. The
green bar represents the model’s prediction for maintaining a sta-
tionary position once the ideal position is reached. Conversely, the
yellow bar represents the model’s predictions when the patient is
already in motion. The DQN learning model instructs the robotic arm
to move to the right based on the first thyroid image until the arm
reaches the position with the ideal thyroid image, as shown in the
second thyroid image. Notably, our proposed FARUS can effectively
guide the robotic armevenwhen thepatient ismoving. For example, at
6.3 s, when the patient’s neck moves to the left, the model adjusts the
position of the robotic arm accordingly, resulting in the leftward
movement shown in the third thyroid image. In the fourth thyroid
image, the robotic arm is attached to themid-neck region, which is not
the correct location to detect the presence of the thyroid gland in the
neck. The model guides the robotic arm to move to the left until it
reaches the ideal position. In addition, even in the absence of thyroid
presence in the fifth image, the model has learned to predict the ideal
position and guides the robotic arm to stop at that position. The DQN
learning model in FARUS demonstrates its ability to accurately guide
the robotic arm during thyroid scanning, even in the presence of
patient movement or the absence of the thyroid gland.

Experienced sonographers usually fine-tune the probe angle
after locating the thyroid to obtain high-quality US images. To imitate
such an expert behavior, an autonomous robotic system should
assess the quality of US images and feed them back to adjust the
probe orientation. However, taking into account the limited resolu-
tion of the Kinect and potential participant movements during the
scan, the pre-estimated normal vector cannot be directly applied as
the normal vector for subsequent scans. To tackle this problem,
Bayesian optimization algorithm with image entropy as the loss
function was used to obtain a better probe orientation with very few
adjustments. Although some statistical methods such as grayscale,
confidence map and root mean square error (RMSE) have been pro-
posed, there is still no gold standard for evaluatingUS image quality44.
In this work, we used the image entropy to evaluate US image quality
because it is highly effective for image processing and can be used
to assess texture in images based on a statistical measure of
randomness45.

In many instances, Bayesian optimization (BO) outperforms
expert as well as other state-of-the-art global optimization algorithms.
Bayesian optimization constructs a surrogate model for the objective
function and quantifies the uncertainty through Bayesian inference.
This surrogate model determines where the next candidate will be, as
in Fig. 4a. The significant differences in image entropy values were
observed after the BO phase for 89 participants (Fig. 4b). During the
BO phase, the position of the US probe remains constant; therefore,
probe orientation and contact force are the two major factors in the
entropy value of the US image. We consider a limited budget of N = 5
iterations to speed up the BO phase. The entropy of the US image
varies from 7.172 to 7.173 in 5 iterations, and the max entropy corre-
sponding to the optimal orientation was reached at the second itera-
tion (Fig. 4c, d). When the number of iterations reached 5, a higher
drop in performance was observed due to its exploration nature.
During this experiment, the probe was initially set at a relatively opti-
mal angle, resulting in a less noticeable entropy increase before and
after Bayesian optimization. However, between 21.3 and 24.8 s, the US
probe underwent a 10-degree angle adjustment, revealing that the
entropy value of the US image responded more sensitively to angle
changes compared to image confidence. This sensitivity could be
attributed to the level of contact between the skin and the probe. As
illustrated in Fig. 4e, there is a positive relationship between the image
entropy and confidence map46 that evaluates the contact condition at
each pixel. As the entropy value consumes less computation, it allows
for a real-time control of image quality. To further explore the influ-
ence of contact force on image quality, we conducted an investigation
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Fig. 2 | Thyroid gland and nodule segmentation with deep learning networks.
a Thyroid and nodule segmentation network based on pre-training and weakly
supervision. The feature and spatial losses are used to provide prior knowledge to
the network considering the diversity of nodule samples and the space constrain
between thyroid lobes. b Thyroid lobe segmentation based on pre-training. c Our

proposed VariaNet and its variants predict results for different types of nodules.
d Comparisons with the existing segmentation models on the SCUTN1K testset
(best result in bold). e Receiver Operating Characteristic (ROC) curve of different
algorithms on the SCUTN1K testset. Source data are provided as a Source Data file.
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Fig. 3 | Training process of DQN learning in panoramic thyroid environment.
a A sequence of image is collected and labeled manually. b The alignment of
sequence image into panorama. c Blending images in a random sequence.
d Generated panorama. e The simulation of panorama-base sliding window.

f Average reward vs. step. g Average episode length vs. step. h Trained model’s
prediction vs. time (please refer to Supplementary Movie 1 for additional details).
Source data are provided as a Source Data file.
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Fig. 4 | Bayesian orientation (BO) optimization. a Overview of Bayesian optimi-
zation. Example illustrating a Gaussian process surrogatemodel fitting to data derive
fromaunknown target and its expected utility functionmaximizing to select the next
candidate. b The boxplot displaying the significant differences in image entropy
values after BO phase for participants (n=89); the top, middle, and bottom bound-
aries of the boxplots represent 25th, 50th, and 75th percentile, respectively; the small
squares represent the mean. Outliers defined when value larger than 1.5*IQR+ 75th
percentile; ****p <0.0005, p value obtained with a paired, two-sided t-test. c, d Probe
orientation optimization procedure shown the five decisionsmade by BOwith image

entropy as loss function (please refer to Supplementary Movie 2 for additional
details). e The relationship between image entropy and mean confidence46 that
characterize the contact condition of US image, as seen in a positive correlation
between two evaluation metrics. f Force values greater than 2N do not cause major
changes in the median entropy. The 13,256 pairs of data from 9 participants (n= 9)
weredivided into 10groups andplayback sampled800 times for eachgroup; the top,
middle, and bottom boundaries of the boxplots represent 25th, 50th, and 75th per-
centile, respectively; the stars represent the median. Outliers defined when value
larger than 1.5*IQR+ 75th percentile. Source data are provided as a Source Data file.
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involving nine participants. Each participant was instructed to apply
varying levels of force on the US probe, positioned at the robot’s end,
while ensuring safety under continuous manual monitoring. Figure 4f
demonstrates that when the contact force between the probe and the
skin exceeds 2N, the median of the image entropy value remains
stable. Taking scanning comfort and safety into account, we set the
maximum contact force at 4N.

Fully autonomous robotic ultrasound imaging
In actual clinical practice, sonographers frequently employ a combi-
nationofmulti-view scanningmethods to conduct comprehensive and
detailed diagnosis of suspected nodules. Drawing inspiration from this
clinical experience, once FARUS finds a suspected nodule in the
transverse scan, the longitudinal scan will also be performed for fur-
ther investigation. As displayed in Fig. 5a, we have achieved full
autonomous scanning based on the fusion of force and visual infor-
mation. Figure 5b shows the robotic scanning procedure for the right
thyroid lobe of oneparticipant. During the transverse scanning,we can
see how the thyroid area increases first and then decreases, beginning
with the appearance of the upper pole and ending with the dis-
appearance of the lower pole. Moreover, shadows were avoided and
thyroid lobes were centered with control strategy. The contact force,
probe position and probe orientation are shown in Fig. 5c. As illu-
strated in Fig. 5c, noticeable fluctuations in the force value are
observed during the initial 20 s of the transverse scan. This phenom-
enon arises as the US probe transitions from themiddle of the thyroid
toward the upper pole, following Bayesian optimization. The contact
between the probe and the skin is affected by the surrounding thyroid
cartilage at the upper pole, causing an unstable change in force during
this movement. A similar instability is also observed during the scan-
ning of the lower pole of the thyroid. Analysis of the probe’s position
change reveals that FARUS maintains a constant speed in the Z-axis
direction throughout the transverse scanning process. However, non-
uniform adjustments occur in the Y andX directions, which are related
to centering the thyroid gland. In the longitudinal scanning process, if
multiple nodules are detected, their image features and location
information are combined to determine whether these nodules were
scanned during the transverse scanning process. This determination is
achieved by matching the position of the nodules within the thyroid.

For the evaluation of theUS imagequality, four evaluationmetrics
including confidence map46, centering error, orientation error and
image entropy were used to characterize the contact condition, thyr-
oid visibility, orientationperformance, and texturedetails ofUS image,
respectively. From Fig. 5d–g, in the first 20 s, the entropy value and
confidence value of the image increase as the probe makes contact
with the patient, while the centering error and orientation error
decrease. After 25 s, themean value of the centering error of the image
decreases to 0, indicating the completion of the thyroid search pro-
cess and the image centering process. In the subsequent Bayesian
optimization process, the entropy increase point is not distinctly
visible due to variations in the optimization time for each patient. The
centering error remain relatively stable between 25 and 100 s. After
150 s, the mean square error of confidencemap, orientation error and
image entropy increases, which is associated with the additional
OPS phase.

ACR TI-RADS risk stratification using FARUS
In this study, we present the FARUS system, designed for scanning,
detection, and classification of nodules in a sample of 19 patients. The
ACR TI-RADS47 is employed for nodule classification based on their US
characteristics. Additionally, we conduct a comparative analysis
between FARUS-generated classifications and evaluations provided by
professional sonographer. Figure 6a displays five nodules that
demonstrate complete agreement with the sonographer’s diagnosis.
Results from the scoring and classification process by FARUS,

following ACR TI-RADS criteria, are in Fig. 6b. To assess the echo-
genicity, composition, and echogenic foci of the thyroid nodule, we
analyze the distribution of pixels in the thyroid gland and the nodule
(Fig. 6c). In Fig. 6b, the nodule’s composition is categorized as solid,
leading to a score of 2, while its echogenicity is classified as hypo, also
resulting in a score of 2. The nodule demonstrates a well-defined
boundary and a regular shape, contributing to a score of 0. Addition-
ally, the comparison of height and weight exceeds 1, resulting in a
score of 3. Lastly, no echogenic foci are observed within the nodule,
leading to a score of 0. The total score amounts to 7, leading to the
classification of the nodule as level 5 or highly suspicious. Another
example of a nodule has a mixed composition, leading to a score of 1,
and its echogenicity as hypo, resulting in a score of 2. The nodule’s
characteristic features, including a clear boundary and regular shape,
warrant a score of 0 points. Additionally, the comparison of height and
weight yields a score of 0 as it is less than 1. Furthermore, no presence
of peripheral calcification within the nodule leading to a score of 0.
Consequently, the cumulative score amounts to 3, classifying the
nodule as level 3 or mildly suspicious.

According todoctor’s evaluation, 17 individualswere found tohave
nodules, while 2 individuals showed no presence of nodules. Our
developed system, FARUS, identified 13 individuals as having nodules
and 6 individuals as having no nodules. The scoring and recommended
management of 24 nodules among the 13 individuals detected by both
FARUS and the doctorwere compared. Each nodule detected by FARUS
was matched to the doctor’s report based on its location and shape.
Table 1 shows the comparison between FARUS and doctor scoring and
the classification of thyroid nodules (please refer to Supplementary
Data 1 for more details). Among the 24 nodules assessed, 10 were
diagnosed with the same score distribution by both the doctor and the
developed FARUS. This can be attributed to the US image’s appropriate
brightness and contrast, resulting in well-distributed pixels. Addition-
ally, 8 nodules exhibited a score difference of 1, primarily attributed to
discrepancies in echogenicity or composition classifications. There
were four nodules with a score difference of 2 and another with a score
difference of 4, possibly caused by different classifications in both
echogenicity and composition. Nodule size variations in the scan may
be attributed to differences in patient positioning: the doctor scans in a
supine position, while FARUS scans in an upright sitting position due to
security concerns. The doctor’s report indicates that out of the 19
patients, one patient has two nodules requiring fine-needle aspiration
(FNA) and follow-up, respectively. For this patient, FARUS results were
consistent with the doctor’s assessment. In the cases of the nodule #5,
diagnostic inconsistency arose from variations in echo characteristics,
leading to divergent recommended management.

The main reason for the different classifications by FARUS is the
use of a probe different from the one used by the doctor. The doctor’s
probe consistently produces a specific color of the thyroid gland for
eachpatient, while the brightness and contrast of US images produced
by our probe may vary across different patients with varying ages and
weights. The proposed FARUS system classified nodules, with com-
plete agreement in 10 out of 24 cases with the doctor’s diagnosis.
Furthermore, for the remaining nodules, the discrepancies were pri-
marily limited to 1 score difference, mainly arising from variations in
echogenicity and composition. Current volunteer participants typi-
cally have low-risk nodules and clinical FNA is not recommended.
Although FARUS has demonstrated feasibility and potentiality in
nodule detection and data collection for ACR TI-RADS classification,
further clinical studies are essential to assess its safety as a screening
tool for probably or definitely malignant nodules.

Discussion
Current US examination relies on sonographers to perform scanning
operations. Patients often need to make an appointment for US
examinations, resulting in long waiting times and often delays in
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Fig. 5 | Fully autonomous ultrasound imaging. a The control strategy of FARUS.
The autonomous scanning is achieved based on the fusion of force and visual
information. b, c Evolution of force, probe position, and probe orientation for a
patient with nodules during the experiment, which included the transverse scan-
ning phase and longitudinal scanning phase. During the transverse scanning phase,
the orientation of the probe at the end of the robot remained unchanged. Guided
by the thyroid gland segmentation network, FARUSmaintained the thyroid lobe in
the center while moving the probe from the upper pole to the lower pole of the
thyroid. When the nodule segmentation network detected a suspected nodule, the

location of the suspected nodule was recorded. In the longitudinal phase, FARUS
re-scanned the suspectednodules fromadifferent angle todeterminewhether they
were lesions (please refer to Supplementary Movie 3 for additional details).
d–g Performance of the scanned image quality of FARUS on 19 patients. The per-
formance metrics for evaluating the US image quality included confidence map,
centering error, orientation error and image entropy. The shadowed area repre-
sents mean ± SD over the different experiments, while the curves inside the sha-
dowed areas are the average results. Source data are provided as a Source Data file.
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treatment. At the same time, last decades have seen a rise in thyroid
nodules. The detection and diagnosis of thyroid nodules still rely
heavily on the expertise and experience of doctors. Comparedwith the
traditional manual diagnosis or remote diagnosis, this fully autono-
mous robotic system adopts a patient-centered concept, allowing the
patient to be examined in a more comfortable way. Furthermore,
FARUS is suitable for rapid screening in out-patient clinics and remote
low-level centers as it enables scan autonomouslywithout intervention.

In this study, we developed an automated US diagnostic robot
with artificial intelligence, which can accurately diagnose thyroid
nodules. It is expected tobe equippednot only in specializedhospitals,

but also in clinics and remote areas. This non-invasive, rapid, and
accurate screening strategy can provide an early warning of thyroid
nodule development. The system operates on an autonomous scan-
ning mode, a notable advantage of which is the no need of direct
contact between medical staff and patients. This configuration effec-
tively minimizes the risk of transmitting infectious diseases between
patients and healthcare providers.

Currently, most US robotic systems studies do not include com-
parisons with doctors, nor do they evaluate participants’ satisfaction.
As shown in Table S1, we recruited 14 sonographers from 7 hospitals to
make evaluations of our acquired transverse and longitudinal images,

Fig. 6 | Scoring and classification of thyroid nodules based on ACR-TIRADS.
a Indicative nodules identified with FARUS and the respective US images provided
by doctors. b Examples of two separate nodules, with accompanying explanations

of their TIRADS scores. c Correlation between number of pixels over brightness in
thyroid image. Source data are provided as a Source Data file.
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assigning scores quantified into five levels ranging from 1 to 5. Speci-
fically, a score of 1 denoted “very poor”, 2 denoted “poor”, 3 denoted
“medium”, 4 denoted “good”, and 5 denoted “very good” image qual-
ity. It shows that the images acquired by the FARUS have good quality,
centrality and integrity. According to Fig. 7, most participants who
took part in the scanning felt safe with our system and experienced no
adverse reactions, such as pain and other discomfort. Certain

participants expressed feelings of anxiety regarding the robot scan
and harbored concerns regarding its safety. The majority of the par-
ticipants expressed that US robots cannot replace doctors, primarily
due to doctors’ possession of a vast repository of medical knowledge,
which the robots lack at the current moment. Moreover, doctors
occupy a pivotal position as esteemed medical experts and trust-
worthy sources of aid.

Table 1 | Comparison of thyroid nodule scoring and recommendation between FARUS and doctor based on ACR TI-RADS

No Name Nodule Size Diagnosed by Composition Echogenicity Margin Shape Echogenicity foci Total Difference Recommendation

1 Patient 1 #1 3.9mm FARUS 2 2 0 3 0 7 0 No FNA

3.2mm Doctor 2 2 0 3 0 7 No FNA

2 Patient 2 #2 3.0mm FARUS 2 2 0 0 0 4 2 No FNA

4.5mm Doctor 1 1 0 0 0 2 No FNA

3 Patient 3 #3 6.6mm FARUS 0 0 0 0 0 0 0 No FNA

6.9mm Doctor 0 0 0 0 0 0 No FNA

4 Patient 3 #4 5.9mm FARUS 2 1 0 0 0 3 1 No FNA

6.1mm Doctor 1 1 0 0 0 2 No FNA

5 Patient 4 #5 12.4mm FARUS 2 2 0 0 0 4 1 Follow-up

12.8mm Doctor 2 1 0 0 0 3 No FNA

6 Patient 5 #6 4.2mm FARUS 2 2 0 0 0 4 4 No FNA

3.4mm Doctor 0 0 0 0 0 0 No FNA

7 Patient 5 #7 6.9mm FARUS 2 1 0 0 0 3 0 No FNA

6.9mm Doctor 1 2 0 0 0 3 No FNA

8 Patient 6 #8 6.2mm FARUS 1 2 0 0 0 3 1 No FNA

5.5mm Doctor 1 1 0 0 0 2 No FNA

9 Patient 7 #9 6.7mm FARUS 1 2 0 0 0 3 0 No FNA

7.8mm Doctor 1 2 0 0 0 3 No FNA

10 Patient 7 #10 7.3mm FARUS 2 2 0 0 0 4 1 No FNA

7.2mm Doctor 1 2 0 0 0 3 No FNA

11 Patient 7 #11 6.6mm FARUS 2 2 0 0 0 4 2 No FNA

6.2mm Doctor 1 1 0 0 0 2 No FNA

12 Patient 7 #12 1.8mm FARUS 2 2 0 0 0 4 2 No FNA

2.4mm Doctor 1 1 0 0 0 2 No FNA

13 Patient 7 #13 3.1mm FARUS 2 2 0 0 0 4 2 No FNA

2.8mm Doctor 1 1 0 0 0 2 No FNA

14 Patient 8 #14 7.8mm FARUS 1 2 0 0 0 3 1 No FNA

7.6mm Doctor 1 1 0 0 0 2 No FNA

15 Patient 8 #15 4.3mm FARUS 1 1 0 0 0 2 0 No FNA

4.4mm Doctor 1 1 0 0 0 2 No FNA

16 Patient 8 #16 7.1mm FARUS 1 1 0 0 0 2 0 No FNA

7.5mm Doctor 1 1 0 0 0 2 No FNA

17 Patient 8 #17 1.7mm FARUS 1 1 0 0 0 2 0 No FNA

1.9mm Doctor 1 1 0 0 0 2 No FNA

18 Patient 8 #18 3.1mm FARUS 1 1 0 0 0 2 0 No FNA

4.1mm Doctor 1 1 0 0 0 2 No FNA

19 Patient 9 #19 18.6mm FARUS 1 2 0 0 0 3 0 Follow-up

19.1mm Doctor 1 2 0 0 0 3 Follow-up

20 Patient 9 #20 10.4mm FARUS 1 2 0 0 2 5 0 FNA

10.6mm Doctor 1 2 0 0 2 5 FNA

21 Patient 10 #21 5.8mm FARUS 1 2 0 0 0 3 1 No FNA

8.2mm Doctor 1 1 0 0 0 2 No FNA

22 Patient 11 #22 3.0mm FARUS 1 2 0 0 0 3 1 No FNA

3.6mm Doctor 1 1 0 0 0 2 No FNA

23 Patient 12 #23 17.0mm FARUS 2 1 0 0 0 3 0 No FNA

18.2mm Doctor 2 1 0 0 0 3 No FNA

24 Patient 13 #24 8.9mm FARUS 2 1 0 0 0 3 1 No FNA

9.7mm Doctor 1 1 0 0 0 2 No FNA
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To compare the image quality of robotic US scans with that of
manual scans, we invited five doctors with between 3 and 15 years of
experience to scan the thyroids of 13 participants. In Fig. 8a, the
FARUS completed transverse and longitudinal scanning in the same
manner as a doctor. In the OPS phase, FARUS can detect suspected
nodules aswell as cover the carotid arteries. During the IPS phase, the
FARUS was able to scan a continuous area from the upper pole to the
lower pole of the thyroid gland, while ensuring that the thyroid gland
was centered. As shown in Fig. 8b–e, there is still variation among
doctors when using entropy, center error, mean confidence, and left-
right intensity symmetry (LRIS) as image evaluation metrics. Speci-
fically, LRIS refers to the ratio of gray scale distribution between the
left and right sides of US images. Therefore, we performed a com-
parative analysis of five doctors as a group with robot performance.
Figure 8f–i shows some similarity in the evaluation metrics between
the robot and the doctors for both the IPS and OPS phase. The cen-
tering error of the IPS phase of robotic US scans is smaller than that
observed in scans conducted by five doctors. This difference can be
attributed to the robot control process. Additionally, differences in
scanning method and range may also contribute to differences in
entropy value, mean confidence, and image grayscale distribution
between robot and doctors.

We also compared the probe motion of the robotic scanning
with that ofmanual scanning. The probemotion data during doctors’
scanning process were recorded with a probe motion sensor. As
compared tomanual scanning, the robotic scanning wasmore stable
in terms of force and velocity, as in Table S2. In general, humanswere
more efficient than FARUS. The FARUS took 213.0 ± 85.3 s to com-
plete a single thyroid lobe scan for 70 participants, while five doctors
spent 67.2 ± 27.6 s to complete the scan for 13 participants. These
differences can be attributed to dynamic path planning and force-
controlled feedback, the former to compensate the motion and the
latter to ensure participants’ comfort. Moreover, a conservative
speed is implemented in our FARUS system to ensure the safety of
participants.

The FARUS comprises three primary stages: scanning, detection,
and classification, each of which plays a crucial role in influencing
FARUS’s performance. During the detection stage, the main challenge
faced by FARUS in detecting nodules is primarily attributed to the size
and echogenicity of the nodules. Table 2 shows missed and possible
false positive thyroid nodules detected by FARUS. The results of this
study indicate that smaller nodules, such as #25, #26, #27, #28, #29
and #30 present greater difficulty for FARUS to detect. Similarly,
nodules with isogenic properties, such as #31 and #32, also pose
challenges for FARUS’s detection capabilities. Moreover, the FARUS
identified some nodules for which the doctor did not (#33, #34, #35
and #36). We sought opinions from multiple doctors and a firm con-
clusion could not be reached by doctors. In an exercise of prudence,
we considered these occurrences as possibly false positives.

The FARUS needs improvement in the future due to its limitations,
especially for small-scale and low-contrast nodules. The existing nodule
dataset lacks sufficient diversity in terms of nodule size. Artifacts in
ultrasound images were not considered in our current algorithm.
Additionally, work needs to be done to incorporate video streams.

Methods
Human participants and safety
All experiments with human participants were performed with the
approval of the Guangzhou First People’s Hospital Review Board
(K-2021-131-04). Our researchers explained the entire process to all
participants, and all participants signed an informed consent form.
Furthermore, we obtained consent from participants confirming their
understanding of the open access nature of this journal.

With the approval of the ethical review committee,we recruitedof
three distinct groups of participants. The participants were over
18 years old, and of both sexes. None of the participants had following
cases: (1) neck trauma or failure to heal after surgery; (2) inability to
maintain a stable head position;(3) history of US gel allergies; (4) his-
tory of surgical resection of both thyroid lobes. The first group pre-
dominantly comprised college students, and we manually collected
thyroid US data from 66 volunteers within this group using handheld
US equipment. Simultaneously, we employed FARUS system to
autonomously scan 70 volunteers (20–30 years of age, 19 females,
41males), 13 of whomwere scannedmanually by 5 doctors. To address
the limitations of handheld US equipment in accurately diagnosing
nodules, we opted to employ portable US equipment to gather two
additional sets of data. The second set of data was obtained from
thyroid US scans of 29 middle-aged and elderly individuals within the
community, chosen specifically to facilitate the training of the nodule
segmentation network. Finally, the third group was composed of 19
patients (age 53.05 ± 5.90 years old, 12 females, 7 males) who under-
went robotic thyroid scanning. This group played a pivotal role in
verifying the diagnostic performance of our FARUS system. The
recruitment bias primarily arises from the geographic scope of
recruitment, limited to a specific region in China.

To ensure the safety of the participants, these five approaches
were implemented in the FARUS system: (1) All theparticipants needed
to complete an US gel allergy test before thyroid scanning. (2) The
FARUS system used the UR3 collaborative robot, which will stop by
itself in the event of a collision and a safety staff has been monitoring
the operation of the robot arm. (3) We limited the working area of the
robot arm (R < 45 cm), and once it crosses the working area, it will be
forcibly stopped. (4)We set the contact force between 2.0N and 4.0N
to ensure adequate contact with the skin and to prevent pressure-
induced distortion of the thyroid anatomy. If the force exceeds 4.5N,
the robot will be automatically stopped. 5. The chair that participants
used during scanning hadwheels so that participants couldmove back
if they felt uncomfortable.

Fig. 7 | Subjective Evaluationof FARUSScanningThroughQuestionnaire Assessment.A clear trend of agreement or disagreement ismore obviouswhen the entire bar
(100%) is shifted left or right (n = 70). Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-48421-y

Nature Communications |         (2024) 15:4004 12



Thyroid modeling
For the estimation of the thyroid scanning range,weobtained the head
and neck CT images from the Southern Hospital of Southern Medical
University. Those contrast-enhanced CT images were used to establish

the 3D model of the thyroid. We selected 500 contrast-enhanced CT
sequences from patients with thickness ranging from 0.625mm to
0.9mm formodeling. This included 250male and 250 female patients,
aged between 7 and 82. The CT images were acquired with Philips

Fig. 8 | EvaluationofUS scans collected by the FARUS andfivedoctors. a The in-
plane/out-of-plane US image sequences acquired by the FARUS and five experi-
enced doctors on the same two participants. The green contour in the US images
represent the segmented suspicious nodules by our proposed VariaNet, while the
yellow contour represent the segmented thyroid lobe by our pre-trained gland
segmentation model. b–e Violin plots illustrating the four evaluation metrics
between FARUS and five doctors. Dashed line indicates median; dotted lines indi-
cate 25th and 75th percentiles; n = 13 participants. f–i Boxplots displaying the four

evaluation metrics between FARUS and five doctors. ROPS robotic out of-plane
scanning, DOPS doctor out-of-plane scanning, RIPS robotic in-plane scanning, DIPS
doctor in-plane scanning, LRIS left–right intensity symmetry. The top, middle, and
bottom boundaries of the boxplots represent 25th, 50th, and 75th percentile,
respectively; the small squares represent the mean. Outliers defined when value
larger than 1.5*IQR+ 75th percentile; n = 13 participants; p value obtained with
bootstrap tests; ****p <0.0005. Source data are provided as a Source Data file.
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Gemini TF PET/CT scanner, and the resolution of the acquired DICOM
data is 512 × 512. We used samples that represented all age group
populations and covered people with body mass index (BMI) ranging
from 17.1 to 27.8.

We defined 60marker points to label the thyroid gland (see Fig. S1).
They were 2 points above and below the isthmus of the thyroid; 8 points
in the sagittal plane of the left and right lobes of the thyroid; and 2 points
on the left and right of the entire thyroid cross-section; for the left and
right lobes of the thyroid above the isthmus. The height is divided into
five equal parts, and 4 points are marked on the upper, lower, left, and
right sides of the 4 cross-sections, for a total of 32 points; After manually
markingall thekeypoints, ourcustomPythonprogramwill generatea3D
model and measure the average measurements of the various parts.
Through this model, we obtained the morphological data of the thyroid.
The averageheight of thyroid glandwas 4.76 (±0.57) cm, and the average
unilateral leaf width and thickness was 1.48 (±0.34) cm and 1.52 (±0.22)
cm, respectively. Through regression analysis, we found that the width,
length, thickness, and volume of the thyroid gland had very low corre-
lations with gender, age, height, and weight. For this reason, the scan
lengthwas set to6.47 cmbasedon the3σ rule, and the scanwidthwas set
to 5.48 cm that was the probe width of 4.0 cm plus the average
thyroid width.

Thyroid gland and nodule segmentation
We introduce a novel architecture called VariaNet, specifically
designed for thyroid and nodule segmentation, as illustrated in Fig. 2a.
The VariaNet architecture consists of twomainmodels: the firstmodel
is responsible for thyroid gland segmentation, utilizing ResNet1848 as
the encoder and UNet as the decoder. Our training dataset, SCUTG8K,
is employed for training thismodel, using thedice loss as loss function.
The secondmodel, focused to nodule segmentation, uses ResNeXt 50
as the encoder and UNet as the decoder, integrating a custom loss
function. Due to dataset variations from different US probes, the
training process for thyroid nodule segmentation is divided into two
stages. Initially, we use TN3K49 and our dataset, SCUTN10K, as the
thyroidnodule imagedataset for training themodel. The secondphase
involves the application of transfer learning. During this phase, we use
our dataset, SCUTN1K, which is generated using our specific probe, to
train the thyroid nodule model.

To improve the segmentation performance of solid nodules, we
introduce two tailor-made loss functions. Firstly, the feature loss
function assigns higherweights to the isogenicpartwithin thenodules’
area. This attention mechanism, represented by the Gaussian mask of
the image, allows VariaNet to focus on the isogenic region within the
nodule, consequently enhancing the segmentation results. The

definition of the feature loss is as follows:

Lf eat = 1�
dpred \ gt
dpred∪ gt

dpred =WGauss � Npred

WGauss = 1� e
� gt�gavgð Þ2

2gstd
2

ð1Þ

where Npred represent the prediction of the nodule mask, and gt
denote the ground truth of the nodule mask. The variables gavg and
gstd correspond to the mean and standard value, respectively, of the
gland lobe intensity derived from the pseudo label, as illustrated in
Fig. 2a. The second loss function used is called distance loss. The pri-
mary objective of this loss function is to assign increased weights to
the false positives present in the model’s prediction mask. The Dis-
tance Loss is constructed based on a distance mask that is calculated
using the distances to the pseudo gland label. It is defined as:

Ldist =W
dist �Gpred ð2Þ

Wdist =
0 p 2 Gpred

minðxb,ybÞ 2 Boundary
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxp � xbÞ2 + ðyp � ybÞ2

q
p =2Gpred

8<
:

ð3Þ

where Gpred represent the prediction of the gland mask, and xb,yb
� �

denote the boundary of the gland mask. The fundamental insight
underlying this loss function is that the thyroid nodule mask must be
spatially confinedwithin orprecisely alignedwith the boundaries of the
thyroid gland mask. Figure 2a shows feature loss presented by the
gaussianmask, IoU loss andDistance LosspresentedbyDistancemask.
By combining feature loss, distance loss and IoU loss, we develop iso-
hybrid loss for segmentation in the three-level aspect echogenicity-,
position- and map-level, which able to capture three aspects of
segmentation. The iso-hybrid loss is defined as:

LIsoHy = Liou +αLf eat +βLdist ð4Þ

The framework is implemented using PyTorch 1.10.0 with CUDA
11.3 support.When the ImageNet pre-trained encoder is accessible, it is
employed to initialize the model’s weights. During training, a batch
size of 8 is utilized, and the ADAM optimizer is employed to optimize
the model for a total of 40 epochs.

Table 2 | Missed and possible false positives thyroid nodules detected by FARUS

No Name Nodule Size Diagnosed by Composition Echogenicity Margin Shape Echogenicity foci Total Recommendation

1 Patient 14 #25 4mm Doctor 2 1 0 0 0 3 No FNA

2 Patient 14 #26 3.7mm Doctor 2 2 0 0 0 4 No FNA

3 Patient 15 #27 2mm Doctor 1 2 0 0 0 3 No FNA

4 Patient 9 #28 3mm Doctor 1 1 0 0 0 2 No FNA

5 Patient 13 #29 3mm Doctor 0 0 0 0 0 0 No FNA

6 Patient 16 #30 2.3mm Doctor 0 0 0 0 0 0 No FNA

7 Patient 17 #31 4.7mm Doctor 1 1 0 0 0 2 No FNA

8 Patient 8 #32 23mm Doctor 2 1 0 0 0 3 No FNA

9 Patient 14 #33 4.5mm FARUS 2 1 0 0 0 3 No FNA

10 Patient 14 #34 7.0mm FARUS 2 2 0 0 0 4 No FNA

11 Patient 2 #35 5.5mm FARUS 2 1 0 0 0 3 No FNA

12 Patient 2 #36 11.0mm FARUS 1 2 0 3 0 6 Follow-up
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Scan planning
We used the Microsoft Azure Kinect DK depth camera to produce an
initial scanning plan. We set up a Kinect camera at a distance of about
1.2m from the seat, a height of about 1.5m, and a 45° angle to the front
of the seat. The camera acquisition parameters were set as: the color
camera was set to a resolution of 1280 × 720, and the field of view was
90° × 59°; the depth camera was set to WFOV 2 × 2 binned, the reso-
lution was 512 × 512, and the field of view was 120° × 120°; The frame
rate was set to 30 FPS. We estimated the thyroid location using the
neck and head skeleton joint points. Given variations in thyroid anat-
omyamongpopulations, we introduced aprocess to locate the thyroid
lobe. This involved utilizing ultrasound guidance and image segmen-
tation for precise determination of its position.

The robotic scanning involved switching between IPS and OPS
phases, asmentioned in the “Systemdesign for autonomousultrasound
imaging” section. The IPS phase started with an optimized initial
orientation achieved throughBayesian optimization. Inspired by the IPS
procedure introduced in ref. 34, the probe then scanned upward and
downward until both ends of the thyroid lobe were no longer visible in
the segmentation image. During the IPS phase, VariaNet recorded sus-
picious nodule locations, guiding the subsequent OPS phase. To simu-
late doctors’ multi-view scanning, the OPS phase begins with a 60°
probe rotation, followed by movement along the principal axis, cover-
ing a range of 12mm. The image-based probe adjustment was achieved
by calculating the intensity distribution of the US image as well as the
center of mass in the segmentation mask, which enabled to prevent
shadowing and keep the thyroid lobe in the center of the image.

Robotic scanning
The platform consisted of a UR3 robot that was a six-degree-of-
freedom robotic arm with a repeatability of 0.1mm, a working radius
of 500mm, and a maximum load of 3 kg. We used the real-time port
formonitoring,which fedback the status of the robot armat a speedof
125Hz. For general robotic arm commands, such as motion com-
mands, we sent them through the secondary port, which received
commands at 10Hz. Moreover, we used SolidWorks to design a fixture
for the probe, which was 3D printed with photosensitive resin. To
avoid excessive pressure on theparticipants, we attached theUSprobe
to the robot flange with four flexible spring-loaded connection
(Fig. S2). And the length of the entire robot end effector was 242mm.
We used a SonoStar C5 Laptop Color Doppler Ultrasound System. This
US depth was between 18mm and 184mm, the US frequency range
was 6.5MHz to 10MHz. The original US data had a resolution of
512 × 512 and were stored in the AVI format.

Prior to scanning, participants assumed a seated position on a
chair and adjusted their posture. Subsequently, the Kinect camera
captured a depth map, which was then employed to generate a 3D
point cloud of the environment. This point cloud underwent analysis
for real-time detection and tracking of the human body joints by the
Kinect body-tracking algorithm50. Then the position of the thyroid was
estimated based on spatial information derived from tracked human
skeleton joints. The robot approaches the pre-estimated position at a
speed of 10mm/s. When the distance between the probe and partici-
pant is approximately less than 200mm, the speed of robot end
effector will be reduced to 5mm/s. The FARUS started scanning pro-
cedure when the probe reaches the pre-determined position and the
force is in the range of 2.0N to 4.0N. During the scanning process, the
participant was allowed to move slightly and the robot was able to
adapt to the participant’s movement through the force control and
image servo. However, the scanning will be terminated if FARUS
detects that the participant moves more than 2 cm left or right within
1 s, or 5 cm forward or backward.We chose the Robotiq FT300-S as the
force/torque sensor. ItsmaximumrangewasFx =Fy =Fz = ± 300N, and
the sensor signal noise was 0.1N. The control terminal read force
information in real time at a speed of 100Hz.

Control strategy
During robotic scanning, the control strategywedeveloped allows us to
adjust the position and orientation of the probe autonomously. The US
probe has a total of six degrees of freedom that can be adjusted. As
illustrated in Fig. 5a, force control can be used to control one degree of
freedom: the amount of translation of the robot in theYp direction. The
degreeof freedomofUSprobe rotation around theYp axis is controlled
by switching between transverse and longitudinal views. Bayesian
optimization is applied to control the rotational degrees of freedom of
the probe around the Zp axis. The remaining three degrees of freedom
are determined by the US image. Degrees of freedom in theXp axis and
Zp axis translation of the US probe are controlled by the image seg-
mentation results. While the degree of freedom of US probe rotation
around the Xp axis is controlled by image intensity distribution.

Keeping the contact force applied to the body under control is
vital to the safety of the participants. The external forces f and torques
τ measured in the force sensor frame F is a 6-D vectorH= ðf TτT Þ. The
force/torque vector in the probe frame P can be written as:

pHp =
pFf ðH� fFg

gHg Þ ð5Þ

where gHg 2 R6 is the gravity force of the US probe, and represent the
transformation matrix from frame F to frame P and the transforma-
tion matrix from the probe’s inertial frame to frame F , respectively.
Our objective is to control the force along the y-axis in the probe frame
P, we define the target contact force as:

tf =Sy
pHp ð6Þ

where Sy = (0 1 0 0 0 0). According to the visual servo control law
_s = Lsvc

51, the control law for the force control task is given by:

vf = � λf
k
ðSy

pFf ðH� f Fg
gHg Þ � t*f ÞST

y
ð7Þ

where λf is the force control gain, t*f is the desired force value and k is
the human tissues stiffness that is usually set in [125, 500] N/m
according to ref. 52.

The sweeping trajectory T is defined by N waypoints
w0,w1, . . . ,wn

� �
and a speed v to travel along the trajectory. The

waypoint w0 is defined as the position where the probe orientation is
optimized after Bayesian optimization procedure. In the case of scan-
ning toward the upper or lower poles of the thyroid, the next waypoint
wi would be a stride from the previous waypointwi�1. The position and
orientation of the probe is adjusted after each step ofmovement by: (1)
a translation along theYp axis to achieve sufficient contact between the
probe and theneck. (2) a translation along theZp axis to ensure that the
segmented thyroid is located in the center of US image. (3) A sideway
correction to avoid the shadowing. Similar to ref. 34, the image-based
sideway correction is carried out in an iterative manner:

Rstep =

1 0 0

0 cosðθstepÞ �sinðθstepÞ
0 sinðθstepÞ cosðθstepÞ

2
64

3
75 ð8Þ

Rn =Rstep � Rn�1 ð9Þ

where Rstep is the rotation matrix defined by the rotation adjustment
step of θstep in the Yp-Zp plane, Rn represents the probe orientation
after n adjustments.

Thyroid nodules scoring and classification
The ACR TI-RADS is a risk stratification system designed to help radi-
ologists categorize thyroid nodules based on their US characteristics47.
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It provides a standardized way to assess the risk of malignancy for
thyroid nodules, which can then guide themanagement and follow-up
recommendations for patients. Figure 6b illustrates a sample outcome
obtained from the ACR-TIRADS calculation:
(1) Echogenicity, composition and echogenic foci: to assess the

echogenicity, composition, and echogenic foci of the thyroid
nodule, we analyze the distribution of pixels in the thyroid gland
and the nodule, as depicted in Fig. 6c. Initially, we create a smooth
line graph representing the pixel distribution in the thyroid gland
and calculate the line averageof thenumber of pixels. By selecting
thyroid gland pixels above this line average, we determine the
meanand standard deviation. Using the samemethod,we identify
thyroid nodule pixels and calculate the percentage of echogeni-
city, composition, and presence of echogenic foci based on spe-
cific boundaries, such as cystic, hypo-genicity, iso-genicity, hyper-
genicity, and calcification.

(2) Margin and shape: the determination of the thyroid nodule’s
margin involves two factors. Firstly,weconsider theboundary line
of the nodule, assessing distinctive pixels on its outer and inner
edges. This factor is calculated by determining themean standard
deviation of 10 perpendicular pixels along each pixel of the
nodule’s boundary line (5 inner pixels + 1 mid pixel + 5 outer pix-
els). Secondly, we analyze the shape of the boundary line by cal-
culating the intersection over union (IoU) between the nodule and
the fitted ellipse. The aspect ratio is another important shape
characteristic, indicating the ratio of depth to width and revealing
whether the nodule appears taller-than-wide. This aspect ratio
provides valuable insight into the tumor’s growth pattern and is
associated with an elevated risk of malignancy if it is higher.

Statistics and reproducibility
No statisticalmethodwas used to predetermine sample size. To assess
the robotic image quality of US scans, we employed the FARUS system
to autonomously scan 70 college students (n = 70). Additionally, to
investigate the diagnostic performance of our FARUS system, robotic
thyroid scanning was performed on 19 patients (n = 19). Overall, the
robotic thyroid scans were successfully performed on 89 participants.
Additionally, a transparent reporting of a multivariable prediction
model for individual prognosis or diagnosis (TRIPOD) checklist is
provided as Supplementary Table S3.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Themaindata generated in this studyhavebeendeposited in thegithub:
https://github.com/Ciel04sk/SCUT_Thyroid_DataSet/tree/main53. The
graph and table datawithin thiswork areprovided in the Supplementary
Information/Source Data file. Source data are provided with this paper.

Code availability
The code for this study have been deposited in the github: https://
github.com/Ciel04sk/SCUT_Thyroid_DataSet/tree/main53.
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