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Photoacoustic Tomography with Temporal
Encoding Reconstruction (PATTERN) for
cross-modal individual analysis of the
whole brain

YuwenChen1,2,15, HaoyuYang3,4,5,15, Yan Luo 1,2,15, YijunNiu 3,4,15,MuzhouYu6,
Shanjun Deng 7, Xuanhao Wang8, Handi Deng1,2, Haichao Chen9, Lixia Gao 10,
Xinjian Li 10, Pingyong Xu 11,12, Fudong Xue11, Jing Miao13, Song-Hai Shi3,4,5,
Yi Zhong3,4,5, Cheng Ma 1,2 & Bo Lei 3,4,14

Cross-modal analysis of the same whole brain is an ideal strategy to uncover
brain function and dysfunction. However, it remains challenging due to the
slow speed and destructiveness of traditional whole-brain optical imaging
techniques. Here we develop a new platform, termed Photoacoustic Tomo-
graphy with Temporal Encoding Reconstruction (PATTERN), for non-
destructive, high-speed, 3D imaging of ex vivo rodent, ferret, and non-human
primate brains. Using an optimally designed image acquisition scheme and an
accompanying machine-learning algorithm, PATTERN extracts signals of
genetically-encodedprobes fromphotobleaching-based temporalmodulation
and enables reliable visualization of neural projection in the whole central
nervous systemwith 3D isotropic resolution.Without structural and biological
perturbation to the sample, PATTERNcanbe combinedwith otherwhole-brain
imagingmodalities to acquire thewhole-brain imagewith both high resolution
and morphological fidelity. Furthermore, cross-modal transcriptome analysis
of an individual brain is achieved by PATTERN imaging. Together, PATTERN
provides a compatible and versatile strategy for brain-wide cross-modal ana-
lysis at the individual level.

In brain research, cross-modal analysis is becoming increasingly
important to deepen our understanding of brain function and mal-
function. Despite the substantial improvement in the imaging cap-
abilities, the development of a whole-brain imaging system that is
highly compatible with othermodalities has been overlooked. Current
whole-brain optical imaging techniques can visualize the distribution
of neurons and biomolecules, neural circuits, and patterns of neuronal
activity1–8. Specifically, the sectioning tomographic techniques such as
fluorescence micro-optical sectioning tomography (fMOST)1,4, serial
two-photon tomography6, and block-face serial microscopy

tomography (FAST)5, enablebrain-widefluorescence imaging at single-
neuron resolution3. Light-sheet fluorescence microscopy (LSFM) cou-
pled with tissue clearing methods is another effective approach to
achieve whole-brain fluorescence imaging with higher imaging
speed2,7,9.

Although these optical imaging strategies are widely used in
neural circuitry studies, they have serious limitations. For a single
mouse brain, these methods usually take more than one week for
sample preparation, processing, and imaging5,10, which limits the
overall throughput and challenges these methods from scaling up to
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image larger animal models such as rats, ferrets, and non-human pri-
mates.More importantly, the likelihood of either altering the structure
or biological state of the sample or completely destroying it during the
sample preparation and imaging processes makes it challenging for
researchers to conduct precise geometric and structural analysis and
constrains subsequentmeasurements, such asmetabolomic, genomic,
and transcriptomic analyses3,5,9,11. While parallel measurements of dif-
ferent samples have enabled whole-brain high-dimensional integrated
atlases in homogeneous and standardized animalmodels12,13, analyzing
cross-modalities in individual brains still requires the development of a
high-throughput and non-destructive whole-brain imaging method
that preserves both the structural and biological integrity.

Photoacoustic computed tomography (PACT) is potentially cap-
able of fast, nondestructive, structural, and molecular imaging of
individual animal brains14–19. In PACT, brain samples are illuminated by
short laser pulses. By converting light energy into ultrasound emission
via the photoacoustic (PA) process, PACTdetects the ultrasound signal
and recovers images with optical absorption contrast and ultrasonic
resolution. Since PACT relies on scattered rather than ballistic photons
for image formation, its penetration depth is well beyond the one-
millimeter diffusion limit of traditional optical microscopy, in the
range of severalmillimeters to several centimeters20, depending on the
required image resolution. This method can also image the distribu-
tion of extrinsic molecular probes or products of reporter genes by
means of spectral or temporal unmixing15,21–26. Although the spatial
resolution of PACT is poor compared to that of standard optical
microscopy, in the range of several tens to several hundreds of
micrometers, it can still enable a number of first-of-its-kind cap-
abilities, as demonstrated by this paper.

Although existing PACT systems have shown the possibility of
whole-brain imaging22–24,26,27, their performance does not meet the
standard for practical uses as a cross-modal brain analysis platform.
Many PACT systems employ ultrasound transducer arrays that are
geometrically focused in the elevational direction19,28–30, resulting in a
large missing cone in this direction, within which all spatial frequency
components are lost. The presence of the missing cone in the spatial-
frequency domain is a significant contributor to image artifacts and
resolution degradation. As a result, for three-dimensional (3D) ima-
ging, the elevational resolution is usually more than five times larger
than the in-plane resolution.Moreover, themissing cone notonly blurs
the image but also renders certain features invisible due to the bipolar
and coherent nature of the PA signals, a phenomenon known as the
limited-view problem31–33. Although by scanning a specially designed
transducer array, the missing cone can be eliminated or reduced14,17,34,
a compromisemustbemadeamong resolution, imaging speed,fieldof
view (FOV), and sensitivity.

In this study, we propose a PACT imaging system employing a
focused half-ring ultrasound transducer array with a translation-
rotational scanning strategy35–38. The FOV of the image can cover a
ferret or marmoset brain, up to 24mm in diameter, with an isotropic
resolution of approximately 140μm over the entire FOV. The design
allows us to acquire high-quality PA images at a relatively low cost and
in a relatively short time. Taking advantage of the photobleaching of
the fluorescent tags39 that exhibit a characteristic temporal decay, we
designed the scanning sequence to specifically extract the signals from
the tags, using a single illumination wavelength. We utilized photo-
bleaching, which is typically seen as a hindrance, in a new way to
suppress the intrinsic tissue background, resulting in the generation of
3D PA images of enhanced detection sensitivity specifically for these
fluorescent tags (Fig. 1a). We further enhanced the detection accuracy
by deep learning. Accordingly, we named our new imaging technology
Photoacoustic Tomography with Temporal-Encoding Reconstruction
(PATTERN).

Wedemonstrated the compatibility and versatility of PATTERNby
imaging common fluorescent proteins40 such as iRFP713 andmScarlet,

to achieve highly specific imaging of brain regions and their projec-
tions. Thus, PATTERN provides a new optical approach to visualize
brain-wide neural connectivity with nondestructive sample prepara-
tion, high imaging speed, moderate resolution, and reliable accuracy.
Based on the minimal influence of PATTERN on brain tissue, we can
combine it with other whole-brain imaging modalities, such as fMOST
and LSFM, to obtain 3D images of the whole brain with both high
resolution and morphological fidelity. This approach can effectively
identify and correct the alterations caused by sample preparation to
both morphology and fluorescence signals. Furthermore, PATTERN
demonstrates the capability of analyzing brain-wide cross-modal data
from individuals, encompassing various imagingmodalities, biological
measurements, or sequencing data. Specifically, we show PATTERN-
based integration of 2D spatial transcriptomic data with whole-brain
optical information, potentially enabling the creation of a 3D cross-
modal connectivity and transcriptome map.

Results
Near isotropic photoacoustic imaging of PATTERN
The PATTERN system was upgraded from a conventional PACT sys-
temwith a half-ring array transducer tominimize the cost and system
complexity (Fig. 1b, Supplementary Fig. 1 and Supplementary
Movie 1). The original PACT system41 only scans linearly along the
elevational direction in 3D imaging. The restricted acceptance angle
of the transducer array leads to diminished resolution along the
scanned direction. In PATTERN, we address this issue by rotating the
system tomitigate the limited-viewproblem (Supplementary Note 1).
The 3D images acquired at different scan angles are combined to
reconstruct a 3D volumewith near isotropic resolution (Fig. 1c–g). To
maximize the signal-to-noise ratio (SNR), the image of each angle was
filtered by a multi-angle filter and then summed (Fig. 2a and Sup-
plementary Figs. 2, 3). We refer to each translation-rotational scan
procedure as a “scan cycle”.

The resolution enhancement was verified by imaging latex beads
with diameters of 20 μm. A single scan cycle took 133 s, providing
resolutions along x, y, and z of 137 ± 15.1μm, 115 ± 24.3μm and
143 ± 20.1μm, respectively (n = 345 beads;mean± standarddeviation),
which was almost isotropic as expected (Supplementary Fig. 4). In
comparison, the elevational and in-plane resolutionsweremeasured to
be 1084μm and 123μm for the translational scan alone (Supplemen-
tary Fig. 2b, c). The spatial frequency distributions (SFDs) corre-
sponding to several linear scans at various angles, as well as the
ultimate image reconstructed at the end of a scan cycle, suggest that
the missing spatial frequency components were recovered by the
scanning process (Fig. 2b). Meanwhile, we show the dramatic differ-
ence between images of the same brain reconstructed by single-angle
and multiangle scans (Fig. 2c). It is obvious that the elevational reso-
lution is significantly improved, while an in-plane feature becomes
sharper due to reduced contamination by the out-of-plane sig-
nals (Fig. 2d).

Temporal encoding and unmixing of fluorescent tags by
PATTERN
PA images have a strong intrinsic tissue background. The PA signal
from aggregated somas was comparable to that of the fluorescent
protein (Fig. 2e). To show the superiority of temporal unmixing over
spectral unmixing in the translation-rotational scan scheme, we tested
both methods. During the scan process, repeated laser exposure
caused signal decay due to photobleaching (Supplementary Fig. 5a, b).
The change in the signal strength distorts the measured PA spectrum,
making spectral unmixing extremely complex. In addition, in our
spectral sweeping window (680–1064 nm), there is a limited variety of
usable fluorescent tags (Supplementary Fig. 5c). Conversely, the tem-
poral unmixing method involves single-wavelength operation only,
thus making full use of the pump laser (532 nm) to detect red
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fluorescent proteins (i.e., mScarlet). These factors prompted us to
adopt the temporal unmixing method to improve the sensitivity to
signals from the labels. Compared to using intensity alone without
employing temporal encoding, PATTERN’s detection sensitivity of
fluorescent proteins is significantly enhanced (Fig. 2f). To clarify how
we quantified this sensitivity improvement, we examine a thin slice
(Fig. 1g). The conventional approach for distinguishing fluorescent
labels from intrinsic background involves applying a threshold set at
the maximum value of the intrinsic background signal. In Fig. 2f, this
threshold is referred to as the “background roof” and is depicted as the
red dashed line. Signals exceeding this threshold are identified as
originating from fluorescent tags, while signals with amplitudes below
the threshold are considered background. It is evident that this
thresholding method is highly insensitive, resulting in the discarding
of a substantial portion of the actual signal. In contrast, the novel
temporal decoding method implemented by PATTERN ensures the
effective removal of the unbleachable background. The background-
rejection threshold can be set to three times the noise standard
deviation (STD), denoted as the “PATTERN noise floor” and illustrated
by the green dashed line in Fig. 2f. This approach significantly

improves sensitivity by preserving a larger portion of the real signal.
We ensured that the small region chosen to compute the STD of the
noise contained no signal by cross-referencing it with the confocal
imaging results. By comparing the two thresholds, a gain of 12 was
achieved, indicating the enhancement in detection sensitivity (Fig. 2f).
Such enhancement was validated across the three different types of
fluorescent proteins (Supplementary Fig. 6). Moreover, the resolution
of the PATTERN-resolved features was the same as that of the intrinsic
PA contrast (Fig. 1d).

Based on the rotation-translation scan strategy and the temporal
unmixing method, we performed two optimization steps: (1) for a
single sample, we applied multiple scan cycles (typically 8 cycles) to
effectively bleach the fluorescent tags, ensuring a sufficient extent of
bleaching (Fig. 1c). Moreover, the 3D images with different scan angles
in adjacent cycles can also be fused into a 3D image with the ultimate
high resolution. By doing so, only a few scan cycles can produce many
high-resolution 3D images to improve the credibility of the bleaching
curve fitting (Fig. 2a, e). (2) In a single scan cycle, the rotation angle
followed a jumping sequence of 0°, 90°, 45°, −45°, …, which ensures
that the k-space was filled relatively uniformly. In contrast, if we were
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to scan in the angular direction in an incremental manner (0°, 5.625°,
11.250°,…), uneven filling of k-space in the azimuthal direction occurs
due to the gradual signal decay from photobleaching, leading to a
reduction in both image quality and fidelity of the bleaching curve
(Fig. 2a and Supplementary Figs. 7, 8).

To prevent any ambiguity, we utilize the term “PA signal/image” in
the currentwork to refer to signals and image features that correspond
to the intrinsic tissue background. Such background contrast, depic-
ted in grayscale across all subfigures (except Fig. 2g), is potentially
attributed to lipids19. Conversely, we employ the term “PATTERN sig-
nal/image” to refer specifically to signals and image features that are
derived from temporal encoding, as illustrated using pseudocolor
superimposed on the grayscale background. Moreover, we use the
term “fluorescence signal/image” to indicate signals and images that
are generated through purely optical imaging techniques.

Due to the nondestructiveness of PATTERN,wewere able to verify
the fidelity of the signal from the labeled positions by invasive fluor-
escence imaging. This was achieved by sectioning the mouse brain
after PATTERN imaging, followed by investigating the slice under a
confocal microscope (Supplementary Fig. 9). We compared the his-
tograms of the PATTERN signals before and after confocal-imaging-

guided corrections, which shows that PATTERN is accurate (Fig. 2f).
Additional experiments indicated that for best performance, a
“bleaching extent to noise ratio” (BNR) (seeMethods) exceeding 47 dB
was required, whereas the minimum BNR for the PATTERN approach
was approximately 25 dB (Supplementary Fig. 10). The weak PATTERN
signal slightly above the noise floor exhibits some false positives
because of artifacts in the raw PA images42.

For further improving our system, we next used confocal micro-
scopy images as a reliable reference and employed a denoising con-
volutional neural network (DnCNN)43 to remove the potential false-
positive signals (Fig. 2a). Relying on a single-batch learning strategy,
DnCNNwas capable of extracting artifacts in the vicinity of true signals
(Fig. 2g, Supplementary Fig. 9). Themajority of the artifacts caused by
the unideal response of the ultrasound transducers (Supplementary
Fig. 11) were effectively eliminated without causing severe false-
negative signals compared to traditional deconvolution meth-
ods (Fig. 2h).

PATTERN-based whole-brain optical imaging
In light of the data above showing the capability of PATTERN for
whole-brain optical imaging with isotropic resolution, large FOV, and
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high imaging speed, we next imaged the ex-vivo brains of different
animal models. PATTERN achieved whole-brain imaging of mouse,
rat, ferret, and marmoset brain with high geometric fidelity (Fig. 3a
and Supplementary Movie 2) and enabled quantitative morpho-
metric analysis of different brain regions (Fig. 3b, c). Utilizing
photobleaching-based temporal encoding, the PATTERN system has
been enhanced to detect fluorescent proteins within brain tissue
effectively. To further validate the accuracy of our system for fluor-
escent protein detection, we employed confocal data from the same
brain samples, which contained both AAV-expressed iRFP713 (for
PATTERN imaging) and EGFP (for confocal imaging). Using confocal
images as the references, PATTERN images showed consistent
fluorescent signals (Fig. 3d). This consistency encouraged us to
explore more neuroscience applications. Firstly, PATTERN exhibited
the ability to visualize the implants in the brain such as the optical
fibers used in optogenetics and the electrodes used in electro-
physiology (Supplementary Fig. 12a–d). Secondly, based on the reli-
able detection of PA signals and the large FOV enough for
simultaneously imaging two brains of mice (Supplementary
Fig. 12e, g), PATTERN could also quantify viral vector expression in
brains with the injection of different viral types (canine adenovirus
type 2 (CAV2) or AAVretro) (Supplementary Fig. 12e, f), or different
injection strategies (same total viral titer with different volume of

injection) (Supplementary Fig. 12g, h), which could assist the opti-
mization of virus injection experiments. More importantly, PATTERN
could image neural connectivity via visualizing brain-wide neuronal
projections and we showed an example of the projection from the
dorsal subiculum (dSub) to the downstream, such as mammillary
bodies (MM) and entorhinal cortex (EC) (Supplementary Fig. 13).
Remarkably, PATTERN could image the entire central nervous system
of a mouse, allowing tracing the long-range projections, such as the
projection from the motor cortex to the spinal cord (Fig. 3e–j and
Supplementary Movie 3). We also validated that the details of these
cortico-spinal projections acquired by PATTERN matched well with
fluorescence imaging data (Fig. 3k and Supplementary Fig. 14).
Overall, these results demonstrated that PATTERN provided a new
method for whole-brain structural and fluorescent signal imaging
within 20min.

PATTERN for visualizing neural connectivity of the brain
Revealing the connectivity of the brain is crucial for understanding its
functions and dysfunctions44,45. Since PATTERN can achieve reliable 3D
whole-brain optical imaging, we sought to explore its potential to
visualize neural circuits. For that purpose, we injected anAAVvector to
express iRFP713 fused with EGFP in the brain area of interest, allowing
us to validate the PATTERN-traced projections by subsequent other
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optical imaging methods (Fig. 4a). We first utilized PATTERN to image
theprojections of the anterior insular cortex (AI).Weobserved that the
AI projects to the other parts of the cerebrum and brainstem such as
the caudoputamen (CPu) in the striatum, the basolateral amygdala
(BLA), and the thalamic nucleus (MD) in the thalamus (Fig. 4b, c and
SupplementaryMovie 4). The resultswere consistentwith the confocal
data of the same brain sample (Fig. 4d) and the data from Allen Brain
Atlas46,47 (Supplementary Fig. 15). Accordingly, we compiled a sum-
mary of the major downstream brain regions of AI (Fig. 4e) and the
results were consistent with previous studies48. We also verified the
ability of PATTERN to trace neural projections via comparing the data
from LSFM imaging combined with tissue clearing and foundmatched
signals in the same brain with AAV injection in the dorsal subiculum
(dSub) (Fig. 4f, g, Supplementary Movie 5). Consequently, PATTERN
could help us summarize the projections from the AI, dSub, and BLA
(Supplementary Fig. 16) to their downstream (Fig. 4h). Thus, our
results demonstrated that PATTERN could acquire reliable projection
information and exhibited the capability to be a new tool for whole-
brain connectivity analysis.

Cross-modalwhole-brianoptical imaging via the combinationof
PATTERN with fMOST or LSFM imaging
Compared to other brain-wide optical approaches3,7,9,11, a significant
advantage of PATTERN is the capability to nondestructively image the

whole-brain structure and fluorescence distribution with high geo-
metric fidelity. Thus, our system showed the potential for the analysis
of cross-modal data from the same brain when combined with other
imaging modalities. We next utilized the 3D structure acquired by
PATTERN as a template to correct the anisotropic deformations
caused by sample preparation of fMOST and tissue clearing, enabling
precise morphological analysis. Accordingly, we proposed a pipeline
for the correction, in which the tested brain was initially imaged by
PATTERN and then by another imaging method. These cross-modal
data allowed us to align the deformed fMOST or LSFM images to the
PATTERN-acquired images (Fig. 5a). Based on the contour of PATTERN
data, such alignment49 rectified the deformations in the fMOST50

(Fig. 5b, c and Supplementary Movie 6) and LSFM51 data (Fig. 5d, e and
Supplementary Movie 6). Furthermore, this strategy was applicable in
brains with considerable heterogeneity, where a reference template
for correction and alignment was lacking.We imaged an aged rat brain
with neurodegeneration (Alzheimer’s disease)52 by PATTERN, followed
by tissue clearing and LSFM imaging51. Utilizing the self-to-self tem-
plate acquired by PATTERN, we could correct the anisotropic mor-
phological changes (Fig. 5f and Supplementary Movie 7) caused by
sample preparation (Supplementary Fig. 17).

In addition to morphological deformation, the sample prepara-
tion for sectioning tomography and tissue clearing may also reduce
fluorescence integrity or introduce autofluorescence noise7,9,11. To
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Fig. 5 | Combination of PATTERN imaging with fMOST or LSFM. a Schematic of
the cross-modal correction strategy. Partially createdwith BioRender.com released
under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Interna-
tional license https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en.
b–f Cross-modal correction applied to fMOST and LSFM images (b), 3D and
representative coronal sections of the brain that underwent fMOST; (d), 3D and
representative coronal sections of the brain that underwent uDISCO; (c) and (e),
Comparison of coronal sections before and after correction. f Horizontal sections
of an AD rat brain that underwent iDISCO. The yellow dashed line represents the
contour of fMOST or LSFM, white represents PATTERN, and blue represents the
corrected result. g Schematic of AAV expressing EGFP and iRFP713 fusion protein.

h Experimental flowchart for correction of fluorescence signals via PATTERN.
Partially created with BioRender.com released under a Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 International license https://
creativecommons.org/licenses/by-nc-nd/4.0/deed.en. i Representative coronal
sections of brainwith fusion protein that underwent PEGASOS. j 3D structureof the
brain with fusion protein. k–m Magnified view of the regions indicated by the
colored box in (j). White arrows represent the false-positive signals; yellow repre-
sents the unbleachable signal, dSub dorsal subiculum, EC entorhinal cortex, MM
medial mammillary nucleus, RSP retrosplenial area, NDB nucleus of the diagonal
band, OB olfactory blub, HY hypothalamus.
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address this issue, we used the designed AAV vector expressing a
fusion protein of iRFP713 and EGFP (Fig. 5g), which could be detected
by both PATTERN and other whole-brain imaging methods with
identical spatial distribution. We then injected the AAV into the dSub
and performed PATTERN analysis before tissue clearing with
PEGASOS53 and LSFM (Fig. 5h).We found that somePATTERN-detected
projections that were reported in the Allen Brain Atlas46,47 (Supple-
mentary Fig. 16a) were not detected by LSFM imaging, whichmight be
caused by fluorescence reduction or autofluorescence interference
during tissue clearing11. Using our cross-modal correction (Fig. 5i, j),
PATTERN could provide a preliminary view and guidance for analyzing
these possible false-negative signals (Fig. 5k, l). In addition, our system
could also distinguish the unbleachable impurities from the fluor-
escent proteins based on temporal unmixing (Fig. 5m). Overall, PAT-
TERN shows compatibility with other imaging modalities and the
potential to create a brain atlas with both high resolution and mor-
phological fidelity (Supplementary Fig. 18a–e), which provides the
basis for cross-modal analysis of individual brains.

PATTERN-based cross-modal transcriptome analysis of an
individual brain
The involvement of the spatial transcriptome in the cross-modal ana-
lysis is crucial for understanding cell identity and function in the tissue
context. Despite recent efforts in cross-modal brain-wide analysis13,54,
there are still limitations in combining whole-brain fluorescence
information with omics analysis in the same brain. Based on the non-
destructiveness of PATTERN imaging, we sought to incorporate
PATTERN-acquired 3D whole-brain fluorescence data into gene activ-
ity profiles to instruct 2D transcriptome analysis (Fig. 6a). We first
verified that imaging by PATTERN did not cause significant changes to
the sample at the protein and RNA levels (Supplementary Fig. 18f, g).
Thus, we designed a pipeline in which whole-brain fluorescence ima-
ging by PATTERN was performed before tissue slicing for spatial
transcriptome sequencing (Fig. 6a, Supplementary Fig. 18h). Conse-
quently, we could align spatial transcriptome data to PATTERN-
acquired images (Fig. 6b, c). Guided by fluorescent signal, we could
select the region of interest from the whole profiles for subsequent
analysis (Fig. 6d). Following this pipeline, we injected AAV-U6-
shRNA(c-Fos)-CMV-iRFP713 into part of the hippocampus, then tested
whether and how the knockdown of c-Fos, an immediate early gene
related to learning and memory55, changes the transcriptome of hip-
pocampal CA1 region after behavioral stimuli (Fig. 6a). We focused on
the stratum oriens (so) and the stratum pyramidalis (sp) of the hip-
pocampal CA1. The result showed that all data from these regions were
clustered into 5 subclusters by using Seurat spatial transcriptome
analysis method (Fig. 6e). In particular, two subclusters (subcluster-3
from CA1so and subcluster-5 from CA1sp) were found in the groups
with AAV infection rather than control groups without virus injection
(Fig. 6h). According to PATTERN-detected fluorescent signal, we could
identify the iRFP713-positive region as the c-Fos knockdown region
and found that most spots from these two subclusters were iRFP713-
positive (Fig. 6f, g) and the spatial distribution of such spots matched
well with iRFP713-positive region of CA1 (Fig. 6h). Supportively, the
gene expression pattern of those two subclusters and PATTERN-
selected iRFP-positive spotswerealso consistent (Fig. 6i). These results
demonstrated that this 2D spatial transcriptome analysis can be gui-
ded by PATTERN-acquired 3D fluorescence information. Together,
PATTERN provides a comprehensive solution for integrating brain-
wide 3D fluorescence information with molecular omics analysis to
achieve multidimensional and cross-modal exploration.

Discussion
Brain-wide and cross-modal analysis is a promising approach for fur-
ther understanding brain function at different levels. Existing whole-
brain optical imaging approaches have provided opportunities to

achieve multimodal brain atlases in standardized and homogeneous
animalmodels12,13. However, when it comes to studying neural diseases
or new mammalian models with large individual heterogeneity,
achieving individual-level cross-modal analysis still faces significant
challenges. PATTERN, our newly developed whole-brain PA imaging
platform, addresses these challenges by allowing minimal sample
preparation damage and high-speed imaging of the whole brain and
spinal cord. This nondestructive approach allows for subsequent
analysis of the same sample, facilitating cross-modal analysis of an
individual brain. The development of PATTERN enables brain-wide
optical and multi-omics analysis to capture individual variation, ulti-
mately leading to a more comprehensive understanding of brain
diversity.

Comparison of PATTERN with other PA brain imaging studies
Given its capacity to identify optical absorption contrasts in deep tis-
sue with high resolution, PA imaging has gained much attention in
brain research. Recently, various PA imaging systems have been
developed to meet the specific needs of different neuroscience stu-
dies. Contrasts between oxyhemoglobin and deoxyhemoglobin have
renderedPA imaging aneffective tool for visualizing thedistributionof
oxygen saturation14,19, especially when combined with functional
magnetic resonance imaging (fMRI)56. Using exogenous fluorescent
probes, PA imaging has been also explored for visualizing enhanced
molecular details deep within the brain19. With the enhancement of
temporal resolution, PA imaging has also demonstrated its capability
to detect GCaMP signals27. However, the ability and sensitivity of
detecting fluorescent proteins, which are prominent requirements for
neuroscience studies, are still not further optimized in most PA ima-
ging techniques. Thus, the primary focus of the PATTERN system was
to improve sensitivity and image fidelity across a broader range of
fluorescent proteins, thereby extending the potential applications of
PA imaging in neuroscience studies.

To meet the requirement of high-resolution and high-throughput
whole-brain PA imaging, a system with point-like ultrasound transdu-
cers is preferred for the best imaging quality (isotropic
resolution)14,27,34,57. However, the reported PA systems of this kind, to
our knowledge, are not suitable for the tasks reported in the current
work. Difficulties include low resolution or sensitivity to clearly dis-
tinguish brain regions, limited FOV for large brains, and excessive laser
exposure for fluorescent proteins (Supplementary Fig. 19). Challenges
arise due to the difficulty in manufacturing sensitive, broadband, and
small-footprint ultrasound transducers. In this study, we employed a
relatively simple and cost-effective imaging configuration to achieve
both good image quality and high sensitivity tomolecular probes. The
filtered multi-angle reconstruction procedure, designed specifically
for the translation-rotational scanning strategy (Supplementary
Fig. 20), can be better understood by visualizing it in the spatial fre-
quency domain, which allows for the optimization of scanning
parameters38. Additionally, several measures can be implemented to
enhance PATTERN’s performance and impact. Firstly, faster lasers or
potentially, some deep-learning-based image fusion approaches58 can
be employed to accelerate the imaging process, while the imaging
resolution can be improved by using ultrasound transducers with
larger bandwidths. Specifically, the utilization of transducers with a
frequency response ranging from direct current (DC) to 22MHz has
demonstrated the ability to achieve a resolution of approximately
50μm57, which is comparable to the resolution achieved in all-optical,
large-FOV brain imaging58,59. Secondly, regardless of the detailed
implementations, the PATTERN concept is adaptable to PAT platforms
involving various scan strategies and could potentially enhance their
sensitivity to fluorescent proteins. Thirdly, with the bleaching non-
linearity of the fluorescent proteins calibrated, their molecular con-
centrations can potentially be quantified by PATTERN (Methods and
Supplementary Figs. 21 and 22). Lastly, the background rejection
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capability of PATTERN can be further explored for in vivo applications
(Fig. 2e and Supplementary Fig. 23).

It has been shown that the use of photoswitchable proteins
significantly improves intrinsic tissue background rejection, thus
enhancing sensitivity to molecular labels22. However, compared to
traditional fluorescent proteins40, further development of photo-
switchable proteins is required to address the diverse needs in
various neuroscience studies. Thus, in PATTERN, we employed the
photobleaching process instead of the photoswitching process, to
ensure compatibility with routine labeling strategies (Supplemen-
tary Note 2). Compared to the multispectral unmixing method,
temporal encoding is immune to the spectral coloring effect22,23 and

involves only a single-wavelength operation. Currently, temporal
encoding schemes typically require a relatively weak bleached sig-
nal so that the light fluence distribution inside the sample is not
significantly affected. When the above assumption is invalid, errors
can be generated, appearing as ripples superimposed on the mea-
sured bleaching curve in Fig. 2e. When such unwanted modulations
are strong, the reliability of the temporal-encoding scheme
decreases in analogs to the spectral-coloring problem in multi-
spectral PA imaging26. For molecular probes that are difficult to
photo-bleach, the traditional spectral-domain demodulation
scheme can be used. Using the spectral unmixing method, we suc-
cessfully imaged the distribution of DiR, a chemical dye that is

Fig. 6 | PATTERNfor cross-modal transcriptomeanalysis ofan individualbrain.
a Pipeline of combining PATTERN and spatial transcriptome. Partially created with
BioRender.com released under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International license https://creativecommons.org/licenses/by-nc-
nd/4.0/deed.en.bRegion-basedUMAPclustering and spatialmapof a hemisphere.
c 3D alignment of spatial transcriptome data to whole-brain images by PATTERN.
d Pipeline of fluorescence alignment for the CA1 example. UMAP clustering of

CA1 spots labeled by brain-region (e) or fluorescence (f). g Relative ratio of
fluorescence-positive spots in each subcluster. Specifically, a CA1sp subcluster and
a CA1so subcluster were labeled intensively. h Spatial identification of subclusters
and manipulated regions. i Differential gene expression of different subclusters.
Transcriptome-based selected subclusters are highly correlatedwith fluorescence-
positive subclusters at the gene expression level. A two-sidedWilcoxon Rank Sum
test was performed and the p value was adjusted based on bonferroni correction.
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difficult to bleach in comparison to fluorescent proteins (Supple-
mentary Fig. 12a).

Comparison and combination of PATTERN with other whole-
brain optical imaging technologies
Due to the limitations of optical microscopy imaging depth, serial sec-
tioning and tissue clearing methods are used to achieve complete
whole-brain imaging with high spatial resolution (Supplementary
Table 1)2,3,6,9. However, both strategies require a sample preparation
process that involves morphological and biological changes, sig-
nificantly influencing accurate geometric measurement, precise fluor-
escence signal analysis, and automatic registration of brain samples.
Moreover, many of these sample preparation methods discard biologi-
cal activity or damage themolecular information of the original sample,
hindering the possibility of testing the sample in other modalities.

Compared with these strategies, PATTERN could also achieve
reliable 3D visualization of brain-wide neural projections even
extending from the cortex to the spinal cord with isotropic resolution.
More importantly, the non-destructive sample preparation process
and high-speed imaging process minimize the physical and physiolo-
gical perturbations to the tested brain sample. Consequently, our
systemprovides a novel approach to brain-wide optical imaging with a
larger FOV, higher imaging speed, and minimal tissue perturbation.

Nonetheless, PATTERN is not intended to replace or compete with
existing high-resolution brain-wide imaging techniques but aims to
work in combination with existing high-resolution brain-wide imaging
techniques to achieve a more efficient and precise whole-brain optical
analysis. PATTERN can capture images of freshly removed and
untreated brain tissue, without causing structural and biological chan-
ges, allowing the samebrain sample tobe subsequently imagedbyother
high-resolution methods such as fMOST and LSFM with tissue clearing.
By combining these cross-modal data, we could utilize the PATTERN-
acquired image to rectify morphological and signal changes for other
whole-brain imaging modalities, resulting in 3D whole-brain data with
bothhigh resolution andmorphologicalfidelity.While aligning thebrain
from inbred animal models to a standard-brain template can partially
correct deformation, challenges remain in animal models with high
heterogeneity. Our system can effectively tackle these challenges in
higher mammalian models and brain disease models.

In addition, high-resolution whole-brain imaging can often incur
significant time and economic costs. Currently, there are no effective
approaches to assess the information on injection sites of vectors,
fluorescence expression intensity or signal loss during sample pre-
paration. Coexpressing an infrared protein and a visible protein in the
brain sample provides a viable means of pre-evaluating the quality of
fluorescent labeling via PATTERN imaging. As demonstrated in the
current work, photobleaching of the infrared protein does not affect
thedownstreamfluorescence imagingof the visible proteins.Due to its
capacity to obtain the whole-brain 3D fluorescence distribution in a
fast, nondestructive, and high-throughputmanner, PATTERNprovides
a new way of quickly and conveniently previewing the fluorescence
signal quality of samples. It provides effective evaluation and guidance
before conducting subsequent high-resolution imaging experiments
or other high-cost experiments, such as single-cell sequencing and
spatial transcriptomics. Therefore, incorporating PATTERN into the
specimen analysis pipeline enhances the success rate and reduces
overall costs. Notably, emerging magnetic resonance (MR)-based
reporter gene imagingdemonstrates the potential for non-destructive,
in vivo whole-brain detection of gene-expression patterns60. However,
the diversity of available labels for this approach is still limited.

Cross-modal analysis guided by PATTERN
Although cross-modal analysis among different samples shows the
power to uncover brain functions and dysfunctions12, challenges remain
in applying bothwhole-brain fluorescence imaging and analysis of other

modalities to an individual brain. By combining PATTERN imaging and
spatial transcriptome analysis of the same brain sample, we confirmed
the possibility of using the 3D image obtained by PATTERN to guide
transcriptomic analysis, enabling amore comprehensive understanding
of spatial transcriptomic data. Given the numerous bioindicators for PA
imaging that have been developed17,61,62, PATTERN-based cross-modal
analysis has the potential to analyze multiple modalities in conjunction
with 3Dfluorescent information in various animalmodels, since a similar
approachwas performed inAlzheimer’s diseasemodels at the 2D level63.
Thus, PATTERN provides a versatile tool for analyzing individual brains
using multiple modalities, enabling a flexible cross-modal analysis of an
individual brain.

Methods
PATTERN
PATTERN uses a rotatable PACT system as its basic setup, which
includes an excitation laser, scanning stages, and an ultrasound
detection module (Supplementary Fig. 1). To ensure optimal system
performance and user-friendliness, we incorporated a half ring array
transducer with a 55mm radius from ULSO TECH Co., Ltd. into the
design. This transducer has a central frequency of 5.5MHz, a detection
bandwidth of 60% at −6 dB, and comprises 128 elements, each with a
1.32mm (width) by 20mm (height) aperture, which provides a
cylindrical focus with numerical aperture. The ultrasound signal was
recorded using a low-noise data acquisition system equipped with 128
channels (MarsonicsDAQ128, Tianjin Langyuan Inc.) with a sampling
rate of 40MHz and a dynamic range of 14 bits. The DAQ software
allows for the real-time reconstruction of individual frames of PA sig-
nals, enabling the verification of data quality.

To achieve the specified imaging strategy, two motors were
employed: a direct-drivemotor (ADRS-200-M-A-NS, Aerotech Inc.) and
a linear motor (ANT 25 L, Aerotech Inc.) for rotation and translation of
the ultrasound transducer, respectively. The linearmotor’s translation
speed was set to 6mm/s, corresponding to a step length of 0.6mm,
which is smaller than the raw elevational resolution. Furthermore, the
translation range was adjusted to ±9.6mm for single mouse brain and
whole CNS imaging and ±12mm for multi mouse brains, rat brain,
and ferret brain imaging, in line with the FOV size. To minimize the
potential side effects of PA signal bleaching during the scanning pro-
cess, a jumping sequence was applied for every scan cycle. The 32
rotation angles of the scan cycle were followed by a series of jumps to
new angles in the following order: 0°, 90°, 45°, −45°, 22.5°, −67.5°,
67.5°, −22.5°, 11.25°, −78.75°, 56.25°, −33.75°, 33.75°, −56.25°, 78.75°,
−11.25°, 5.625°, −84.375°, 50.625°, −39.375°, 28.125°, −61.875°, 73.125°,
−16.875°, 16.875°, −73.125°, 61.875°, −28.125°, 39.375°, −50.625°,
84.375°, and −5.625° (Supplementary Fig. 7). It is worth noting that the
rotation axiswas carefully adjusted topass through the centralpoint of
translation, and its accuracy was verified via bead imaging.

The excitation of PA signals was carried out using an optical para-
meter oscillator (LP604, Solar Laser) for iRFP and its pump source
(LQ929B, Solar Laser) for mScarlet. The optical parameter oscillator
delivered 680–1064nm wavelengths with a pulse repetition rate of
10Hz and a pulsewidth of 10 ns. In contrast, the pump source produced
wavelength of 532 nm. During imaging, the laser fluence at the sample
surface was 3.2mJ/cm² at 690nm for iRFP713, 3.4mJ/cm² at 697 nm for
SNIFP, 2.0mJ/cm² at 532 nm formScarlet, and 3.4mJ/cm² at 800nm for
cross-modal registration. These fluence values were empirically deter-
mined to ensure both detectable bleaching extent of fluorescent pro-
teins (favor high fluence, Supplementary Fig. 10) and high image quality
of the bleached features (favor low fluence, Supplementary Fig. 7). To
conveniently adjust the light spot size on the sample, a customized
expander comprising three lenses (GCL-010112A, GCL-010166A, and
GCL-010329, DahengOptics) was used to expand the beam. The sample
holder contained 2.25% w/w agarose (agarose G-10, BIOWEST) mixed
with 3% v/v Intralipid-30% (Kelun Pharmaceutical Co., Ltd.) to increase
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light scattering, allowing some incident light to scatter back to the
sample. Additionally, a customized optical shutter assembled using a
servermotor (GM6020,DJI) and a 3D-printedbladewas used to regulate
the laser’s exposure to the sample.

In addition, a perfusion module was utilized to maintain a liquid
environment consistent with body fluid. For the PA imaging procedure
followed by other imaging modalities, the imaging chamber was per-
fused with PBS; for imaging followed by other biological measure-
ments, aCSF was used tominimize biological changes at themolecular
level of the brain tissue27 (Supplementary Fig. 18f–h).

Data reconstruction and postprocessing
The recorded data underwent reconstruction using the delay and sum
(DAS) algorithm, resulting in the production of 2D PA image stacks.
DAS was used because of the fast reconstruction speed without
sacrificing image SNR for high throughput imaging. Subsequently,
these stacks were interpolated using an FFT method to generate 3D
images with relatively poor elevational resolution. To improve the
elevational resolution, a multiangle fusion procedure was applied
consisting of the following steps: (1) Rotating and registering 3D ima-
ges of 32 different angles into the same coordinates. (2) Transforming
the images into the frequency domain, followed by filtering and
summing. (3) Inversely transforming the uniformly-filled spatial fre-
quency signal back into the spatial domain, resulting in a near isotropic
3D volume (Supplementary Fig. 2). The filter in (2) was designed to
normalize the uneven sampling density in k-space. Specifically, at each
scanning angle, a thin disk oriented along that angle is accessed within
k-space. After completing a full scanning cycle, the disk undergoes a
full rotation.When these disks are superimposed, the central portion is
weighted more heavily. As a result, we attenuated the amplitude of
each frequency component by its overall weight, while preserving the
original phase. To prevent the introduction of extraneous noise,
amplitudes beyond the frequency support of thefilter were set to zero:

H θð Þ= S θð Þ � 1P
θS θð Þ , ð1Þ

where S θð Þ represents a transfer function corresponding to a
translationally-scanned tomogram at angle θ:

S θð Þ= step kx cos θð Þ � ky sin θð Þ+We

� �
� step kx cos θð Þ � ky sin θð Þ �We

� � ð2Þ

We is the cutoff spatial frequency in elevational direction, and
stepðÞ denotes the step function.

All of these procedures were performed using a GPU-accelerated
programcoded inPython3.8. The voxel sizewas set to 75 × 75 × 75μm³
to balance the reconstruction quality against video memory
consumption.

The multiangle fusion procedure was repeated for every adjacent
32 angles in the whole scanning process, with eight scan cycles usually
performed, creating 225 3D volumes in total (angle number per scan
cycle × (scan cycle number-1) + 1 = 32 × (8-1) + 1 = 225). To ensure more
accurate analysis, the last 224 volumes were registered to the first
volume (unbleached state) using ANTS, an open-source registration
software. Thus, a bleaching curve of each voxel was acquired with a
temporal sample point of 225. These curves were then used to calcu-
late the PATTERN signals. In our algorithm, we fit the PA amplitude
decay curve using

A tð Þ=a � exp �btð Þ+ c, ð3Þ

where the parameter b represents the bleaching rate, a is the PA signal
strength of the fluorescent tag which contributes to the useful signals,

referred to as “PATTERN signals” in the current work, and c is the PA
signal strength of any unbleached background chromophores, refer-
red to as “PA signals” in the current work. To optimize computational
speed, the process of curve fitting is divided into the following steps:
Initially, an exhaustive search for the bleaching ratebwas conducted in
parallel using GPU. The searching interval, 0 ≤ b ≤0.09 per transla-
tional scan, was confirmed to fully cover the bleaching rates of dif-
ferent brain samples. A set of bleaching rates, typically comprising 12
rates to achieve a balance between accuracy and calculation speed,
was employed to generate an equal number of corresponding
bleaching curves. Subsequently, the correlation coefficient between
the experimental data and each preset curve followed by its absolute
value was calculated to estimate the confidence of the corresponding
bleaching rate. Ultimately, the preset curve associated with the rate
with the highest confidencewas used to determine both the amplitude
of the decreasing part (PATTERN signal) and the amplitude of the
constant part (PA signal) through linear unmixing. To guarantee the
stability of the calculation, when the bleaching rate was determined to
be exceptionally small (e.g.,b =0.0001), the PATTERN signalwas set to
zero. This precaution was taken to prevent the inversion of a low-rank
matrix. Physically, setting the PATTERN signal to zero signifies
classifying the voxel as unbleachable. The PATTERN signal amplitude
was then transformed into PATTERN signal intensity using absolute
value manipulation (Supplementary Fig. 5d). The calculation was
applied voxel by voxel using GPU for acceleration. A typical volume of
256× 256× 256 took ~11min using TITAN RTX.

The obtained results underwent further processing to enable
visualization. Initially, the imaging feature, such as amouse brain along
with the agarose-based sample holder, was segmented using Amira
software. Subsequently, a 3DMonteCarlo simulation, conducted using
MCXLAB64 (Supplementary Methods), was employed to simulate the
light fluence distribution, considering μa = 0.005 and g =0.9 for the
brain, and μa = 0.002 and g =0.98 for the sample holder (agarose). We
utilized a uniform light source covering the inner surface of the sample
holder to replicate the experimental conditions. The resulting light
fluence distribution was then applied to compensate for the optical
attenuation within both the PA image (background) and the PATTERN
image (fluorescent signal). The compensated results were rendered
using Amira.

MATLAB was employed to perform additional data analyses, such
as k-space visualization and histograms, while ImageJ was used to
acquire line profiles of slice images.

Quantification and signal non-linearity
The PA amplitudes PðtÞ (as a function of the scanning time t) can be
expressed as65:

P tð Þ / ΓηthC0I expð�kIβtÞ, ð4Þ

where Γ is the Grueneisen coefficient, and ηth is the percentage of the
absorbed photon energy that is converted into heat. C0 is the con-
centration ofmolecules, and I is the excitation intensity. The factor kIβ

represents the bleaching rate inwhichk is a constant factor and β is the
intensity power dependence with β ≥0. In PATTERN, a 3D image is
computed by integrating a number of 2D frames, mathematically:

A tð Þ /
Z t +T

t
P τð Þdτ ð5Þ

HereA(t) is the amplitude of the signal acquired by the multiangle
fusion process, and T is the scanning time of a single cycle.
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Collectively, we get:

A tð Þ /
ΓηthC0I

kIβ
1� exp �kIβT

� �� �
exp �kIβt

� �
ð6Þ

This equation represents the exponential decay of raw PA
signals over the entire scanning procedure (including many
cycles), a relationship that has been experimentally validated and
applied in our study. Furthermore, the interconnection between
amplitude and bleaching, mediated by the excitation intensity,
offers a methodology for calibrating the parameter β using the
data presented in Supplementary Fig. 6 through the sub-
sequent steps:
(1) Fit AðtÞ of different positions with exponential function

A tð Þ=a � expð�btÞ, obviously we get

kIβ =b, ð7Þ

and

ΓηthC0I

kIβ
1� exp �kIβT

� �� �
=a ð8Þ

(2) Calculate the equivalent excitation intensity Ieq / I:
Substitute the Eq. 7 into Eq. 8, we can calculate excitation
intensity I using:

I =
1

ΓηthC0
� ab
1� exp �bTð Þ ð9Þ

Notice that Γ and ηth are constants for the same type of protein,
and C0 was kept as a constant for the whole tube, we define the
equivalent excitation intensity Ieq as fellow:

Ieq =
ab

1� exp �bTð Þ ð10Þ

Obviously, we get I / Ieq.
(3) Calculate the intensity power dependence factor β using least

squares method:

ln kð Þ � βln ΓηthC0

� �
β

" #
= XXT
� ��1

X lnðbn× 1Þ, ð11Þ

in which X is a matrix of 2 by n:

X =
11 ×n

ln Ieq
� �" #

2 ×n

ð12Þ

By calibrating the nonlinearity parameter β, we developed a
methodology for quantifying C0, as detailed in the following steps:
(1) Use PATTERN approach to get PATTERN signal amplitude a,

bleaching rate b and PA signal (background) of a voxel.
(2) Calculate the equivalent molecule concentration Ceq / C0:

Eliminate excitation intensity I with Eq. 7 and Eq. 8 and extractC0:

C0 =
k

1
β

Γηth
� ab

β�1
β

1� exp �bTð Þ
ð13Þ

Notice that Γ , ηth, k and β are all constants for the same type
of protein, we define equivalent molecule concentration Ceq

as follow:

Ceq =
ab

β�1
β

1� exp �bTð Þ ,
ð14Þ

which is related to the real molecule concentration (Ceq / C0).

Registration
Cross-modal 3D data registration was performed using the open-
source software ANTs. First, a PA template volumewas generated by
additional scan cycle results with excitation at 800 nm or unmixed
PA image results. The 800 nm result was favored over the unmixed
PA result due to lower noise contamination. When scanning time
was limited strictly (i.e., experiment in Fig. 5), the unmixed PA result
was used. The light-sheet, fMOST, and PATTERN results were initi-
ally resampled to a voxel size of 12.5 × 12.5 × 12.5 μm3. Then, the
‘ElasticSyn’ transform type was employed to align the light-sheet/
FMOST results with the PA template. Additionally, the MRI data
were resampled to 75 × 75 × 75 µm3 and aligned with the PA tem-
plate. To align the confocal signal with the 3D PATTERN results,
well-trained human expertsmanually selected a corresponding slice
in the PATTERN data. Next, 2D registration between the DAPI
staining channel in confocal microscopy and the matching position
of the PA template volume was performed using MATLAB. This
yielded a transformation matrix that was subsequently applied to
the iRFP signal in confocal microscopy. For transcriptome analysis,
the chosen tissue slices underwent hematoxylin-eosin (HE) staining
prior to the transcriptome test. Manual alignment of PATTERN data
and HE staining results was performed by human experts to guide
the alignment of transcriptome results.

The brain atlases of mice, rats, ferrets, and marmosets were
aligned with the PA template to obtain a transfer matrix that was
applied to annotate atlas locations and calculate the brain region
volumes46,66–68. The volume of virus infection was derived by counting
the number of voxels whose fluorescence results were above a pre-
defined threshold.

Bleaching extent and PATTERN sensitivity
The degree of photobleaching is influenced by local optical fluence
and the concentration of fluorescent proteins. We modulated photo-
bleaching by varying the light fluence at different positions within the
scattering media. The optical properties of the phantom were
designed tomimic those of brain tissue69 In our experiment, we used a
suspension of intralipid-30% with a v/v ratio of 3.6% to imitate brain
tissue. We placed a PTFE tube filled with purified fluorescent proteins,
which had an inner diameter of 0.3mm, in the intralipid suspension.
We tested three types of fluorescent proteins: iRFP713, mScarlet, and
SNIFP, excited at wavelengths of 690nm, 532 nm, and 697 nm,
respectively.

Due to surface tension, the surface of the suspension exhibited a
slight curvature. To calculate the distance, we selected a relatively flat
portion of the surface (Supplementary Fig. 6a). In the image, the tube
was manually segmented and served as the reference standard in our
evaluation, providing reigonof interest (ROI) for subsequential analyse
as well. We calibrated the bleaching extent against the noise floor of
our system, defined as the extent of bleaching to noise ratio (BNR). In
this context, “bleaching extent” is defined as the magnitude of signal
reduction:

BNR=20lg
maxtðPAamplitudeÞ �mint PAamplitudeð Þ

std noiseð Þ

� �
ð15Þ

The standard deviation was estimated using a manually selected
region that did not contain fluorescent proteins.
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Common accuracy analyses involving receiver operating char-
acteristic (ROC) curve and The area under the curve (AUC) were
performed.

For both the traditional method and the PATTERN method, we
characterized the sensitivity using SNR. Signals outside the ROI were
confirmed to be generated from the system noise, and inside was the
superposition of protein signals and system noise. We computed SNR
according to the following equation:

SNR=
Pin ROI � Pout ROI

Pout ROI
ð16Þ

where P is the power of the corresponding signal, calculated by

Pregion =

P
regionpixel value

2

pixel number
ð17Þ

Rotation order
The rotation order of PATTERN was designed and verified via simula-
tion using MATLAB (Supplementary Figs. 7, 8). All parameters used in
the simulation were consistent with those employed for the real
samples. For comparison purposes, a sequential scan scheme, −90°,
−84.375°…, 0°…, 84.375°, was simulated as the control group. During
the simulation, we assumed that a point source (1 × 1 pixel at the center
of a 256× 256 grid) was bleached during a scan cycle. We assessed the
image degradation resulting from photobleaching by comparing the
reconstructed image with the ground truth using cosine similarity.
Next, a line source (1 × 256 pixels at themiddle of a 256× 256 grid) was
bleached during an eight-cycle scan. The center pixelswere counted to
plot the ‘bleaching curve’. By altering the orientation of the line source,
we generated a series of distorted bleaching curves. The envelopes of
these curves, plotted alongside the actual bleaching curve, demon-
strate that distortion exacerbates with increasing bleaching rates.
Utilizing these distorted bleaching curves, we quantified the estima-
tion errors for both the PATTERN signal and the bleaching rate, pre-
senting them as an upper limit of the relative error.

Dataset construction
The brain samples were first subjected to PATTERN to collect the
iRFP713 signal prior to sectioning and confocal microscopy to collect
the EGFP signal. The two modalities were then equally normalized.
Well-trained human experts would subsequently manually annotate
the artifacts in the PATTERN signals, based on the results of confocal
microscopy, which serve as the reference. In addition, this labeling
method is able to avoid the generation of false positives, yet there still
exists the potential for unlabeled artifacts, which can be further
improved. The artifact-free images after correctionwerematchedwith
the original data and incorporated into the dataset. For each brain,
approximately 100 pairs of coronal sections from different locations
were generated, and each dataset for a distinct brain region consisted
of data from at least three brains. The PATTERN signal processing and
dataset generation were managed in Amira 2019, and the confocal
signal was processed in ZEISS ZEN3.6.

DnCNN method
A deep-learning method based on denoising convolutional neural
networks (DnCNN) was adopted to remove the artifacts. The network
is divided into three parts: a layer of Conv+ReLU, several layers of Conv
+BN+ReLU, and a layer of Conv, with a total of 20 layers of three parts.
During the training phase, only a single labeled image was input into
thenetworkeach time, and thenetworkparameterswere updated. The
neural network implicitly learned the artifacts of each image to achieve
the distribution of the artifacts across the entire dataset. The Mean
Squared Error (MSE) loss function was employed as the training

criterion over 50 epochs, during which the network effectively filtered
out pure artifacts to generate the output. For each brain region, a
dataset consisting of more than 100 pairs of images with and without
artifacts was used for training, and more than 50 pairs for testing.
Some of the representative hyperparameters used during training are
provided below: batch size = 1, training epochs = 50, and learning
rate = 1× 10−3. When the epoch reached 30, the learning rate was
reduced by a factor of 10. To make the network more generalized,
traditional data augmentation strategies were also applied, including
flipping, rotating, and intensity changes. During the evaluation phase,
imageswith artifactswere inputted, and the trainedDnCNNoutput the
pure artifacts of the image. Subtracting the input and output could
obtain a clean image free of artifacts. Three indicators were used to
measure the artifact-removal effect on the DnCNN method and the
deconvolution method. GT recall represents the true signal retention
rate; noise recall is the artifact removal rate; MSE loss represents the
difference between the image after removing artifacts and the
real image.

Animals
Throughout the development, testing, and application process of our
entire system, we used various animals including male and female
mice, male and female rats, male and female ferrets, and a female
marmoset. All experimental procedures of rodents and ferrets were
approvedby the InstitutionalAnimalCare andUseCommittee (IACUC)
of Tsinghua University and were performed using the principles out-
lined in the Guide for the Care and Use of Laboratory Animals of
TsinghuaUniversity. Allwild-typeC57BL/6Jmice, BALB/cmice, SD rats,
and transgenic mice were purchased and maintained under standard
conditions by the Animal Research Center of Tsinghua University.
Animals were housed five (formice) or two (for rats) per cage with free
access to food and water while under a 12-h light-dark cycle (light on
from 7p.m. to 7 a.m.). The AD rat we used is the wild-type SD (Sprague
Dawley) rats, and AppNL-G-F rats were bred in the animal facility of
Tsinghua University. For the fMOST brain and AD rat brain, only the
contour information of the brain is addressed in this article, further
physiological investigations will be reported in future studies. Trans-
genic mice were genotyped through PCR using genomic DNA and
Jackson Laboratories-provided primers. All studies and experimental
protocols were approved by the Institutional Animal Care and Use
Committee (IACUC) at Tsinghua University and the animal protocol
number is 21-ZY1. Most of the data came from separate samples.
Especially, the imaging data from a brain that was injected with AAV-
hsyn-iRFP-EGFP in AI was used in Fig. 3d for signal comparison and
Fig. 4b–d for visualization of AI projectome. The imaging data from a
brain which was in was injected with AAV-hsyn-iRFP-EGFP in dSub was
bothused inFig. 4f, g for visualizationof dSubprojectome andFig. 5j, k
for signal correction.

The marmoset brain sample we used was from Gao Lixia’s lab at
Zhejiang University. It was housed, maintained, and bred at the Zhe-
jiang University Interdisciplinary Institute of Neuroscience and Tech-
nology (ZIINT) Non-Human Primate Center located at the Huajiachi
Campus, Hangzhou, Zhejiang Province, China. All experimental pro-
cedures were approved by the Zhejiang University Animal Care and
Use Committee.

Viral constructs
The AAV2/9-hsyn-iRFP713, AAV2/9-hsyn-EGFP, AAV2/9-hsyn-DIO-iRFP,
AAV2/9-hsyn-DIO-EGFP, AAV2/9-hsyn-EGFP-iRFP, AAV2/9-hsyn-mScar-
let, AAV2/9-hsyn-Cre, AAV.PHPeB-GfaABC1D-iRFP713, AAV.PHPeB-
GfaABC1D-EGFP (OBiO), CAV-CMV-Cre (WZ Biosciences Inc.),
AAVRetro-Cre-mcherry (Taitool), AAV2/9-U6-shRNA(c-Fos)-CMV-
iRFP713 (Brain Case), The viral concentration of all viruses was adjus-
ted to 2–5 × 1012 viral genomes (vg)ml−1 for injection. Viruses were
subdivided into aliquots and stored at −80°C until use.
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Stereotactic injection and optical fiber or steel wire implant
Mice were anesthetized with 2.5% avertin in saline (350mg/kg, 350ul/
25 g). Bilateral craniotomies were performed using a 0.5mm diameter
drill, and corresponding volumes of virus was injected into the target
brain region using a 10μl nanofil syringe controlled by UMP3 and
Micro4 system (WPI) with a speed of 60 nl/min. The injections were
bilaterally targeted to −2.0mm AP, ± 1.5mmML, and −1.4mm DV,
200nl, for CA1 region; −1.9mm AP, ± 1.3mmML, and −2.0mm DV,
200nl, for dDG region; −1.4mm AP, ± 3.3mmML, and −4.84mm DV,
50 nl, for BLA region; +2.0mm AP, ± 2.2mmML, and −3.1mm DV,
200nl, for AI region; −2.6mm AP, ± 4.5mmML, and −3.9mm DV,
100nl; −2.6mm AP, ± 4.5mmML, and −3.9mm DV, 100 nl, for LEC
region; +0.3/−0.1/−0.5/−0.9/−1.3mm AP, ± 1.5mmML, and −1.0mm
DV, 5 sites each side, 400nl each injection site, for motor cortex. In
some experiments, we also used small volume injections to achieve
partial infection. After the injection, the needle remained in place for
10minutes to ensure that the virus spread to the targeted areabefore it
was slowly withdrawn. For intraspinal injection, mice were first anes-
thetized by 2.5% avertin in saline. Fur on the back were shaved and an
incision was made along the rostral-caudal axis to expose the intra-
thecal spaces corresponding to L2-L6. Muscle was appropriately cut
off to expose the injection site. Two injectionsweremade at both sides
of intrathecal spaces. 800nl virus was injected per injection at the
speed of 5 nl/sec below the surface of the spinal cord 300 to 500 μm.
The needle was left 3min after injection.

Formice optic fibers and steel wire implanting, a Doric fiber-optic
patch cord (200μm core diameter; Doric Lenses) or a steel wire
(80μm core diameter) was inserted into the brain with DiR dye
(DiIC18(7); 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine
iodide) on its surface. A surgical screw was threaded into the skull to
provide an extra anchor point. Dental cement (Teets Cold Cure; A-M
Systems) was applied to securely fix the optical fiber implant. After
surgery, the mice were allowed to recover for at least 2 weeks before
conducting all subsequent experiments.

Western blotting
Isolated hippocampi or other brain regions were homogenized with
cell lysis buffer (Beyotime, Cat. No. P0013) with protease inhibitors.
The protein concentration was determined using the BCA protein
assay kit (Beyotime, Cat. No. P0012). For the detection of the levels of
total actin, AMPK, PAMPK, PMK2, PPMK2, 7μl of homogenates was
separated by SurePAGE (GenScript, Cat.No. M00665) and transferred
to nitrocellulose membranes (Pall Corporation, Cat. No. 66485).
Membranes were blocked with BSA solution (5% BSA in TBS and 0.1%
tween 20) for one hour at room temperature. Subsequently, mem-
branes were individually incubated with primary antibodies against
actin, AMPK, PAMPK, PMK2, PPMK2, (mouse anti-β-actin, Biodee,
DE0620, RRID:AB_2737288, 1:8000; rabbit anti-AMPK, Cell Signaling
Technology, CST2532, RRID:AB_330331, 1:1000; rabbit anti-PAMPK,
Cell Signaling Technology, CST2535, RRID:AB_331250, 1:1000; rabbit
anti-PKM2, Cell Signaling Technology, CST3198, RRID:AB_2252325,
1:1000; rabbit anti-PPKM2, Cell Signaling Technology, CST3827, RRI-
D:AB_1950369, 1:1000) overnight at 4 °C. All the HRP-conjugated sec-
ondary antibodies (horse Anti-mouse IgG, HRP-linked Antibody, Cell
Signaling Technology, 7076 s, RRID:AB_330924, 1:2000; goat Anti-
rabbit IgG, HRP-linked Antibody, Cell Signaling Technology, 7074 s,
RRID:AB_2099233, 1:2000) were used at 1:2000 dilutions for mem-
branes incubation at room temperature for one hour. Image quantifi-
cation analysis of bands of the western blots were calculated by the
ImageJ software (National Institutes of Health).

Fear conditioning training
The fear conditioning test was conducted by using the HABITEST
Modular Behavioral Test System. A Coulbourn Habitest chamber
(27 cm× 28 cm× 30.5 cm) had a stainless-steel rod floor that was

connected to a shock generator in a sound-attenuating box. In the five-
shock contextual fear conditioning task, the footshock (2 s, 0.8mA)
was delivered at 180 s, 240 s, 300 s, 360 s, and 420 s. Mice remained in
the conditioning chamber for a total of 450 s.

Histology
Tissue Preparation. Mice were deeply anaesthetized with 2.5% Avertin
in saline (500mg/kg, 500ul/25 g) and transcardially perfused, first
with cold PBS and then with cold 4% paraformaldehyde (PFA). For
subsequent western blot or spatial transcriptome analysis to do the
brain, the mice were perfused with cold aCSF only. The brains were
extracted, and postfixed in PFAovernight at 4 °C. Next, the brainswere
coronally sectioned at 60-μm sections through the targeted brain
regions using a vibrating blade microtome.

Immunohistochemistry. Floating sections were used in all the
following immunostaining experiments. Unless otherwise stated, all
incubations occurred at the room temperature. For Iba-1 immunos-
taining, sections were washed 3 times in 1 × PBS and rinsed in 1% Triton
X-100 for 15min before a blocking step in PBS with 0.5% Triton X-100
and 10% normal donkey serum for 1 h. Incubation with primary anti-
body was performed at 4 °C for 48 h (rabbit anti-Iba-1, Cell Signaling
Technology, 17198, RRID:AB_2820254, 1:1000) in PBS with 0.5% Triton
X-100 and 1% normal donkey serum. Sections were then washed 3
times in PBS and incubated with secondary antibody (donkey anti-GP
IgG Cy3, 706-165-148, RRID: AB_2340460, Jackson ImmunoResearch,
1:500) for 2 h. Sections were thenwashed 3 times in PBS and incubated
in DAPI thatwas diluted in PBS (1:3000) for 10min. Next, sections were
again washed in PBS for 3 times before beingmounted onto slides and
coverslipped with anti-fade mounting medium (Invitrogen).

Fluorescence imaging. Fluorescence was detected using an
Olympus SpinSR spinning disk confocal microscopy imaging system
for Figs. 3d, 4d, and Supplementary Fig. 15 with the aid of theOlympus
software. A Zeiss axio scan z1 was used for imaging for Figs. 3o, 6c–e,
and Supplementary Figs. 14 and 16 with the aid of the ZEN software
(black edition). Images were acquired with a 10× objective and colo-
calization was confirmed by a 3-D reconstruction of z series images.

fMOST
Protocols for Fluorescent micro-optical sectioning tomography
(fMOST) imaging were based on previously published methods with
minor modifications50. Briefly, the mice were intracardially perfused
with 4%paraformaldehyde in0.01Mphosphate-buffered saline, rinsed
with PBS buffer solution, gradient dehydration with ethanol, gradient
penetration with LR White resin and embedded with thermostatic
polymerized resin at 45 °C to achieve complete morphological main-
tenance characteristics and good mechanical cutting performance.
TDI fMOST two-color imaging system was used to cut through the
embedded mouse brain with a z-axis resolution of 1μm and a lateral
resolution of 0.35 × 0.35μm2. Imaging buffer containing propyl iodide
(PI) was used to obtain cell density information under 561 nm excita-
tion light. The final presented result was down-sampled to
1.75 × 1.75 × 50μm3. The sampling and fMOST imaging work was per-
formed by Song-Hai Shi lab at Tsinghua University.

Tissue clearing
uDISCO. The ultimate three-dimensional imaging of solvent-cleared
organs (uDISCO) method was performed using the previously pub-
lished methods51.

Briefly, immediately following transcardiac perfusion with PBS
and 4% PFA, brains were fixed in 4% PFA for 24 h. The fixed samples
were incubated in tert-butanol with a gradient concentration at
34–35 °C, followed by immersion in DCM for 45–60min at room
temperature. Then, samples were incubated in BABB-D at room tem-
perature until transparency was achieved. Samples could be stored in
BABB-D at room temperature in dark before imaging. The sampling

Article https://doi.org/10.1038/s41467-024-48393-z

Nature Communications |         (2024) 15:4228 14



step was performed by the instrument platform at Center of Biome-
dical Analysis, Tsinghua University.

iDISCO. Immunolabeling-enabled three-dimensional imaging of
solvent-cleared organs (iDISCO) method was performed on the AD
rat brain. The protocol was adapted from a previous study52 with
some modifications. All the procedures of tissue clearing and anti-
body incubation were appropriately extended to enhance the pene-
tration of antibodies into the rat brain. The primary antibody is a
murine chimaeric IgG2a/κ antibody that targets Aβ40 and Aβ4270

with a volume of 100 μl before diluting, per sample. The second
antibody is Alexa Fluor 647 donkey anti-mouse IgG (Invitrogen,
Lot:819571) for a volume of 100 ul before diluting per sample. These
antibodies were generously provided by Bai Lu’s lab at Tsinghua
University.

PEGASOS. Polyethylene glycol-associated solvent system (PEGA-
SOS) was used as the tissue clearing technique according to pre-
viously published methods53. Immediately following transcardiac
perfusion with PBS and 4% PFA, brains were fixed in 4% PFA for 24 h
and then treated with Quadrol decolorization solution for 48 h at
37 °C. Next, samples were immersed in gradient delipidation solu-
tions at 37 °C for 2 days under constant shaking, followed by dehy-
dration solution treatment for 2 days. Finally, samples were
immersed in BB-PEG clearing medium for a minimum 1 day until
reaching transparency. Agar embedding was performed during the
sample preparation of Abnormal Brain in order to maintain mor-
phological stability. Samples were then preserved in the clearing
medium BB-PEG at room temperature. The sample preparation step
was conducted at the instrument platform at Center of Biomedical
Analysis, Tsinghua University.

Light-sheet microscopy
Whole brain fluorescence z-stack imaging was performed using a
light sheet fluorescence microscope (Zeiss Lightsheet Z.1, Imaging
objective 5X/0.16, Illuminating objective 5X/0.1). Stitching and three-
dimensional reconstruction were performed with Imaris9.7.2
(Bitplane).

MRI experiment on mouse
Briefly, the mice were scanned in horizontal MRI scanners (9.4 T/
30 cm, Bruker BioSpec 94/30, Germany, software ParaVision for MRI
acquisition). Anesthesia was induced with 3% isoflurane (R5835, RWD
Life Science) and maintained during scanning using 1.5% isoflurane
supplemented with 93% oxygen. The body temperature was kept at
37 °C through the circulatingwater tank (SC100-S5P, THERMOHAAKE,
USA), and the respiratory status is monitored in real time through the
ERT module (Model 1030, SA Instruments Inc., USA). A T2-weighted
structural image was acquired by using T2 _Turbo _ RARE sequecne
with following parameters: Number of slices = 59, TR= 5849ms, TE =
33.79ms, flip angle = 90°, FOV = 16 × 15mm2, matrix size = 212 × 212,
slice thickness = 0.3mm ETL = 10, NEX = 5, TA = 10min and 14 s. Total
imaging time including animal positioning was around 1 h. The
experiment was performed at the Tsinghua Laboratory of Brain and
Intelligence, Beijing.

Visium sequencing samples preparation
In order for the virus to be fully expressed, the conditioned fear
experiment is performed three weeks after the injection. And the
perfusionwas scheduled one hour after the CFC to sequence c-Fos and
related genes. The mice were only perfused with cold aCSF. The brain
was separated rapidly and imaged by PATTERN. For the convenience
of cutting the brain, we first pre-cooled the brain on dry ice for a few
seconds. Then, the target brain was cut into the right shape and put
into the dry ice waiting for the next sample. A set of samples was first

embedded in an 8mm×8mm×4mm silicone tank to limit the total
volume and was finally embedded in a full-size box.

Visium sequencing libraries preparation
The Visium Spatial Gene Expression Slide & Reagent kit (10X Geno-
mics) was used to construct sequencing libraries according to the
Visium Spatial Gene Expression User Guide (CG000239, 10X Geno-
mics). A 10um frozen tissue section was placed on one of the Visium
gene expression slide capture areas in a slide. After tissue Hematoxylin
and Eosin (H&E) staining, bright-field images were acquired as
described in the Spatial Transcriptomics procedure. Tissue permea-
bilization was performed for an optimal minute, as established in the
TO procedure. Then reverse transcription experiment was conducted
and sequencing libraries were prepared following the manufacturer’s
protocol.

Sequencing
Sequencing was performed with a Novaseq PE150 platform according
to the manufacturer’s instructions (Illumina) at an average depth of
300 million read-pairs per sample.

Seurat analysis
The Seurat package was used to perform gene expression normal-
ization, dimensionality reduction, spot clustering, and differential
expression analysis. Briefly, spots were filtered for minimum
detected gene count of 100 genes. Normalization across spots was
performed with the SCTransform function and 3000 highly variable
genes were selected for principal component analysis. For spot
clustering, the first 20 PCs were used to build a graph, which was
segmented with a resolution of 0.5. The Wilcox algorithm was used
to perform differential gene expression analysis for each cluster via
the FindAllMarkers function. Genes with fold change >2 and adjust
p < 0.05 were defined as significantly differentially expressed genes.
Notably, Seurat::FindAllMarker was used to find differential genes
expression in Fig. 6i. A two-sided Wilcoxon Rank Sum test was
performed and the p value was adjusted based on bonferroni
correction.

Statistics
Statistical analyses were performed in GraphPad Prism. All data were
analyzed with an unpaired t test, one-way ANOVA, or two-way ANOVA
where appropriate. The data were shown as the mean± SEM. and n.s.
(ns) indicates non-significance (p >0.05). The significance level were
set to P =0.05. Significant levels for comparison: *p < 0.05; **p <0.01;
***p <0.001; ****p < 0.0001.

Schematic
Figures 3e, 4a, 5a, 5h, and 6a were created with BioRender.com.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw data of spatial transcriptome have been deposited in the National
Center for Biotechnology Information’s Sequence Read Archive with
accession numbers PRJNA1091401. The processed spatial tran-
scriptome analysis is available at https://github.com/CaA2318777/
PATTERN/tree/main/SpatialTranscriptome. Processed PA imaging
data generated in this study have been deposited in the figshare
database under the accession link https://figshare.com/s/
c0f6139f729b97b21028. Source data are provided as a Source Data
file. Raw data of PA and other imaging modality are available upon
responsible request due to their large size. Source data are provided
with this paper.
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Code availability
We have uploaded all the code produced in this project to a public
database. The link to access them is https://github.com/CaA2318777/
PATTERN.
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