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Mapping recurrent mosaic copy number
variation in human neurons

Chen Sun 1,23, Kunal Kathuria 2,23, Sarah B. Emery3, ByungJun Kim1,
Ian E. Burbulis 4,5, Joo Heon Shin 2, Brain Somatic Mosaicism Network*,
Daniel R. Weinberger 2,6,7, John V. Moran 3,8, Jeffrey M. Kidd 1,3,
Ryan E. Mills 1,3 & Michael J. McConnell 2

When somatic cells acquire complex karyotypes, they often are removed by
the immune system. Mutant somatic cells that evade immune surveillance can
lead to cancer. Neurons with complex karyotypes arise during neurotypical
brain development, but neurons are almost never the origin of brain cancers.
Instead, somatic mutations in neurons can bring about neurodevelopmental
disorders, and contribute to the polygenic landscape of neuropsychiatric and
neurodegenerative disease. A subset of human neurons harbors idiosyncratic
copy number variants (CNVs, “CNV neurons”), but previous analyses of CNV
neurons are limited by relatively small sample sizes. Here, we develop an allele-
based validation approach, SCOVAL, to corroborate or reject read-depth
based CNV calls in single human neurons. We apply this approach to 2,125
frontal cortical neurons from a neurotypical human brain. SCOVAL identifies
226 CNV neurons, which include a subclass of 65 CNV neurons with highly
aberrant karyotypes containing whole or substantial losses on multiple chro-
mosomes. Moreover, we find that CNV location appears to be nonrandom.
Recurrent regions of neuronal genome rearrangement contain fewer, but
longer, genes.

It is inaccurate to view an individual’s genome as invariant from organ
to organ, or from cell to cell within an organ. For example, somatic
mosaicism among lymphocytes has been recognized since the 1970’s
with the discovery of somatic gene rearrangement at T cell receptor
and immunoglobulin loci1. In the late 90’s, advances such as spectral
karyotyping (SKY)2 and multiplex fluorescence in situ hybridization
(FISH)3 began to comprehensively map aneuploidy and chromosomal
translocations in metaphase spreads from cancer cells. These

approaches identified recurrent chromosomal translocations in pro-
liferative cancer cells4 leading, in part, to the identification of genomic
fragile sites that underlie the ontogeny of many cancers5. When
applied to neural genomes, SKY and FISH detected aneuploid
neurons6–8. Recent advances in single cell and bulk DNA sequencing
approaches have revealed abundant somatic mosaicism throughout
the human body9–13. Associated studies have linked environmental
mutagens to somatic mutations in the skin, bladder, and other
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exposed cells12,14,15. Rapidly dividing stem cell populations also incur
somatic mutations due to DNA replication errors. Clonal expansion of
variant genomes can, in turn, shape mosaicism among an individual’s
somatic cells16. Somatic mutations, accompanied by cell death, set the
stage for somatic selection during the lifespan of an individual.

Brain somatic mosaicism is associated with neurodevelopmental
disorders, especially epilepsy17–24. Unlike other organs, cerebral cor-
tical neurons arise in utero and are not replaced during normal human
lifespan25. Neural stem and progenitor cells proliferate rapidly during
human cortical development; these progeny overpopulate the devel-
oping cerebral cortex26–29. Somatic selection is one means by which
some progeny may thrive as cortical neurons while other progeny
succumb to neurodevelopmental cell death. The genomes of mature
cortical neurons contain hundreds of single nucleotide variants
(SNVs), some of which mark clonal lineages25–28. Long INterspersed
Element-1 (LINE-1) mobile elements retrotranspose during neurogen-
esis and contribute to brain somatic mosaicism in a subset of
neurons30–35. Although SNVs are numerous and accumulate through-
out life, relatively few are predicted to cause protein-codingmutations
with obvious consequences for affected neurons36,37. Megabase (Mb)-
scale copy number variants (CNVs) - typically sub-chromosomal dele-
tions—also contribute to brain somatic mosaicism38–40.

In non-diseased (neurotypical) brains, dozens of genes are
impacted in CNV neurons with substantial inter-individual variation in
the frequency of CNV neurons. CNV neurons aremore prevalent in the
frontal cortex of young individuals (n = 4 individuals <30 years old;
28.5% CNV neurons, 75/263) than in aged individuals (n = 5 individuals
>70 years old; 7.3% CNV neurons, 26/354)41. However, the small sample
sizes in previous studies (<100 neurons/individual)38–41 have limited
power to find recurrent patterns of genome rearrangement (i.e., CNV
hotspots) in any single individual. If present, recurrent sites of neu-
ronal genome rearrangement could be influenced by common chro-
mosomal fragile sites that are predisposed to genome
rearrangements42,43 or emerge via neurodevelopmental somatic
selection. Neither mechanism is mutually exclusive.

Here, we show that recurrent brain CNVs occur during an indivi-
dual’s development, moreover hotspots and cold spots for CNV loca-
tion are found among neurons in one individual’s frontal cortex. A
commercial droplet-based whole genome amplification (WGA)
method was used to generate Illumina sequencing libraries from 2125
frontal cortical neuronal nuclei from a previously characterized neu-
rotypical individual37,41. Read-depth analysis of each library is coupled
with phased germline single nucleotide polymorphisms (SNPs) to
develop a single cell SequencingCOVerage andALlele-based approach
(SCOVAL) that filters read-depth based deletion calls using con-
cordant, phased, loss-of-heterozygosity (LOH) information. In total,
2097 single neuron libraries pass quality controls (QC) and 10.8% (226/
2097) contain at least one Mb-scale CNV. An unexpected subpopula-
tion of these CNV neurons (65/226, 25%) have highly aberrant kar-
yotypes wherein multiple chromosomes harbor multiple deletions,
including six aneusomic neurons.When compared to a randommodel,
CNVs are depleted in gene-dense genomic regions. However, neuronal
genome rearrangements are more common in genomic regions that
contain genes encoded by more than 100 kilobases (kb) of genomic
sequence (herein defined as “long” genes).

Results
Determining the genetic architecture of individual neurons
Whole and sub-chromosomal CNVs have been reported in human
neurons by several previous studies that used three different WGA
approaches (degenerate oligonucleotide-primed(DOP)-PCR38–40,
StrandSeq44, or Picoplex41) followed by short read sequencing of
pooled single nucleus libraries. Each laboratory assessed 20 to 120
frontal cortical neurons in different individuals, and all WGA approa-
ches identified CNV neurons. Here, we applied a fourthWGA approach

(10X Genomics Single Cell CNV) that uses droplet-based microfluidics
to enable the analysis of hundreds to thousands of single nuclei from a
sample. In this approach, WGA is performed on thousands of nuclei,
each individually encapsulated in a hydrogel. Hydrogel beads retain
amplified genomic DNA, and are then microfluidically paired with
barcodes, leading to a library pool containing hundreds to thousands
of single nuclei.

We isolated neuronal nuclei from postmortem frontal cortex of a
49-year-old, male, neurotypical control by fluorescence-activated
nuclei sorting. Using NeuN-positive nuclei (Supplementary Fig. 1A),
two DNA libraries were prepared in separate lanes on the 10X Geno-
mics Chromium platform (Fig. 1A); each lane produced ~1000 single
neuronal genomic libraries with unique barcodes. The resultant
libraries (2125 total) were combined into one pool, which was
sequenced in two batches on an Illumina NovaSeq platform, achieving
an average of 2.83 ± 1.22 million reads per neuron. Following our pre-
vious approach41, we mapped reads to 5067 variable-sized autosomal
bins, each containing 500 kb of uniquely mappable sequence (mean
bin size = 569 kb, range = 501 to 2812 kb). Our quality control (QC) fil-
ters excluded 28 single neurons with aberrant bin-to-bin variance [i.e.,
median absolute deviation (MAD), 2097 (>95%) libraries passed QC]
and masked 308 genomic bins that were outliers in global read cov-
erage across all neurons (Supplementary Fig. 1B–D). We adapted
Ginkgo45 to call CNVs larger than 1Mb, defined copynumber (CN) state
thresholds (see Methods), and identified 2564 putative autosomal
CNVs (2401 deletions and 163 duplications) in 469 different neurons
(Fig. 1B and Supplementary Data 1).

To develop SCOVAL, we performed 10X Genomics linked-read
sequencing46 on dural fibroblast DNA from the same individual at high
coverage (~52.7X). This approach enabled the identification and
phasing of germline SNPs by isolating long DNA segments into bar-
coded short reads that could be used to reconstruct underlying hap-
lotypes into 2548 phased genomic blocks (mean 1178 kb ± 2034kb,
median 234 kb, max 17.15Mb). Within each of these phased blocks, we
further segmented the genome into windows of 20–100 phased het-
erozygous germline SNPs (mean= 107 kb, range = 0.687 to 1470 kb)
that were used to arbitrate predicted somatic deletions with phased
LOH. For each window of each cell, we counted the number of infor-
mative reads (e.g., reads that intersect with phased heterozygous
SNPs) on each haplotype.We then calculated the absolute log2 ratio of
the number of reads on each haplotype and integrated this ratio into
the filtering models (Fig. 1C). The application of our naïve Bayesian-
based pipeline (see Methods, Supplementary Fig. 2) identified 1985
regions with both sequence coverage and phased LOH support con-
sistent with heterozygous deletions in 231 neurons. We excluded
Gingko deletion calls where more than 75% of internal phased SNP
windows contained fewer than three informative reads and arrived at a
call set of 1853 heterozygous somatic deletions in 226 neurons.

SCOVAL produced a final deletion CNV set (Supplementary
Data 2) comprising 1957 somatic CNV calls (13.95Mb± 17.47Mb)
among 226 CNV neurons (~11%). These represent 76.3% of the initial
2564 read-depth predictions. Notably, CNV neuron prevalence (226/
2097 neurons) using droplet-basedWGA (10X) and SCOVAL is in good
agreement with previous read-depth based CNV detection using an
alternative WGA approach (Picoplex) from this individual (~11%; 11 of
99 neurons)41. Although the nature of single-cell DNA sequencing
prohibits the direct validation of identified CNVs, manual, subjective
inspection of read-depth and allele ratios are strikingly concordant.

Other candidate neuronal CNVs (i.e., duplications and homo-
zygous deletions) were more challenging to validate using SCOVAL.
Previous studies using read-depth alone reported more than two-fold
fewer duplications than deletions41. Using SCOVAL, we measured
allelic ratios between haplotypes to assess the 163 Ginkgo duplication
calls. The log2 ratios of haplotype-resolved alleles for each duplication
were not significantly different from randomly sampled euploid
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regions of that particular cell (one-tailed t-test, p value = 0.998, Sup-
plementary Fig. 3A). These findings suggest that greater single cell
sequencing coverage likely will be required for SCOVAL to assess
duplications in single neuron WGA data, although phased LOH may
also allow us to filter regions where Ginkgo reports false positives
(Fig. 1F, green arrow). Nevertheless, although some of these regions
may represent bona fide duplications, we opted to exclude putative
duplications with only Gingko support from further analysis in the
interest of evaluating a conservative call set.

Homozygous deletions have been uncommon in previous data-
sets and have distinct properties compared to heterozygous deletions.
Specifically, these deletions are not directly amenable to allelic mod-
eling as both haplotypes are absent, and any observed non-zero allele
ratios likely would be derived from mis-mapped reads. Thus, we
developed an additional filter to reduce the false positive rate for 106
putative homozygous deletions with read-depth support. We calcu-
lated a read-depth ratio for each Ginkgo window by comparing the
read-depth in every cell with the read-depth from bulk sequencing37

and derived a Gaussian mixture model to calculate the posterior
probability for putativehomozygousdeletions using these values from
our initial heterozygous and homozygous deletion calls (see Methods,
Supplementary Fig. 3B) This strategy found additional support for 86/
106 putative homozygous deletions (posterior probability >0.99,
Supplementary Fig. 3C). These 86 regions were included in our final
deletion call set for subsequent analyses of CNV locations. Impor-
tantly, homozygous deletions are only found in neurons with highly
aberrant karyotypes and all flank a heterozygous deletion (Fig. 1F, red
arrow), indicating that they are likely the result of two independent
and overlapping heterozygous deletions. Further, we identified 8

Ginkgo-called homozygous deletions that exhibited a read-depth and
allele ratio profile consistent with heterozygous deletions and reclas-
sified them as such (Supplementary Fig. 4).

We next assessed whether any of our somatic CNVs could
potentially represent germline variants that escaped our analytical
filters. We first examined the 10X linked-read data and called CNVs
using LongRanger and Manta (see Methods). We did not observe any
events larger than 1Mbp nor any that had any considerable overlap
with our somatic CNVs.We next examined theminor allele frequencies
of heterozygous SNPs across all cells within the coordinates of our
somatic CNVs and observed a median minor allele frequency (MAF)
ranging from 0.45–0.49 (Supplementary Fig. 2D), consistent with
typical diploid regions. Additionally, our detection resolution of
>1Mbp suggests that such events in the germline could presumably be
pathogenic and thus are unlikely, given that the donor was healthy at
the time of death. In aggregate, these results, coupled with the
pathogenicity of such large CNVs, suggest that the presence of
germline CNVs in our somatic set is unlikely.

SCOVAL was designed to identify idiosyncratic CNVs in human
neurons. Another single-cell CNV caller, CHISEL, was designed to study
tumor evolution and intra-tumor heterogeneity47. CHISEL and similar
approaches48 assume a higher frequency of tumor subclones
(>5–10%)49 than has been observed in CNV neurons41. When we tested
CHISEL using our single neuron data, almost all reported CNVs
(21,906) clustered collectively within 12 genomic loci (99.25% of CHI-
SEL calls) and were reported in more than 50% of neurons (Supple-
mentary Fig. 5). Notably, 11 of the 12 loci overlapped with SCOVAL
outlier bins that were associated with WGA artifacts (see Methods and
ref. 41). We next compared the remaining 165/21906 CHISEL CNV calls

Fig. 1 | SCOVAL: identification of copy number variation using read-depth and
allele imbalance. Overview of SCOVAL. A Single nuclei and bulk dural fibroblast
DNA were analyzed using 10X platforms. (Images from vecteezy.com) B Single
nuclei library quality is assessed based on median absolute deviation (MAD) and
copy number thresholds are established using population statistics. Graphs depict
schematized data; vertical red lines illustrate threshold strategy. C Candidate CNVs
are identified based on altered read depth across consecutive genomic bins.
D Heterozygous SNPs are phased using bulk linked-reads in chromosomal seg-
ments (“hap 1” or “hap 2”). E Absolute log2 ratios derived from “hap 1”/“hap 2” are

calculated across ~100 SNP windows (see text). A deletion with concordant loss of
heterozygosity (log2 ratio <> 0) is illustrated. F A highly aberrant CNV neuron (#5)
shows representative Gingko calls (blue bars), duplications (e.g., green arrow),
heterozygous deletions (e.g., black arrow), and homozygous deletions (e.g., orange
arrow) andqualitatively concordant increases in absolute log2 ratio (white<purple).
The genome is plotted from left to right on the x-axis, read-depth is in the upper
panel (CN state on the Y-axis), and absolute log2 ratios are reported in the
lower panel.
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with our final call set. These 165 calls were reported in only three
neurons, but 39 CHISEL CNV calls overlapped with 15 SCOVAL CNV
calls. Manual inspection of read-depth and LOH at the other 126 CHI-
SEL CNV calls found no subjective support (Supplementary Data 3).
Consistent with reports attempting to apply similar cancer-oriented
approaches for identifying somaticCNVs in neurons37, approaches that
rely on clonal information do not appear to be appropriate to study
brain somatic mosaicism.

Some CNV Neurons have highly aberrant karyotypes
SCOVAL identified 226 CNV neurons with at least one deletion. These
deletions ranged in size from 1Mb to whole chromosome losses (i.e.,
aneusomy). We also observed that when neurons harbored multiple
deletions, many clustered on single chromosomes. In contrast to a
uniform background model (see Methods and below), CNVs did not
appear to be distributed randomly among CNV neurons (Fig. 2A).
Forty-six CNV neurons contained a single deletion, but five contained
greater than 30 deletions. Apparent chromosomal monosomies (i.e.,
where all genomic bins reported a copy number (CN) state = 1) were
observed in six different neurons. One neuron (#1) wasmonosomic for
Chr5, another neuron (#7) wasmonosomic for Chr9, two neurons (#2,
#3) were monosomic for Chr13, and two other neurons (#4, #46) were
monosomic for Chr18 (Fig. 2B, C). All monosomic neuronal genomes
were highly aberrant andharboredmany additional deletions affecting
40–98% of other chromosomes (Fig. 2C and Supplementary Fig. 6A).

Among 65 CNV neurons with deletions affecting >5% of their genome,
48 contained at least one chromosome that was >50% monosomic.

We evaluated CNV locations in CNV neurons based on the per-
centage of each chromosome affected by CNVs (Fig. 2C) and found
two pairs of neurons (#17, #19 and #154, #155) that were nearly iden-
tical in their genomic read-depth patterns and could, in principle,
represent clonal “sister” neurons that arose from a common pro-
genitor cell during neurodevelopment (Supplementary Fig. 6B, C).
However, each of these pairs arose from the same 10X Genomics
Chromium lane; therefore, we cannot exclude the possibility that one
nucleus may have paired with two barcodes in a single droplet. Sub-
sequent analyses assume that these two pairs are highly concordant
technical replicates.

Hierarchical clustering (Fig. 2D) identified three other neurons
(cells #32, #33, and #47) with similar karyotypes that could, in princi-
ple, share identity by descent (Fig. 2E). Thus, we investigated whether
these deletions occurred on the same chromosomal phase block (i.e.,
haplotype). Multiple deletions in cells #32, #33, and #47 mapped to
Chr3; however, read-depth alone cannot assess whether these dele-
tions occur on the same physical chromosome.

Linked-read sequencing identified Mb-scale phase blocks. To
determine phasing at a chromosome level, we generated extended
phase blocks using three CNV neurons (cells #33, #10, and #5) that
contained overlapping deletions accounting for the full-length of Chr3
(Supplementary Fig. 7). Although CNV locations overlapped among
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tering identifies two groups (yellow, red) with the least divergence from similarity
(y-axis). E Red cluster neurons [cells #32, 33, and 47 in (C)] have similar CNV pro-
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read-depth (lower panel, blue = diploid) plots show overlapping deletions and LOH
for each haplotype.
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these three neurons (Fig. 2F), the Chr3 CNVs were constrained to one
haplotype in two neurons (cells #32 and #47), but occurred on the
other haplotype in the third neuron (cell #33). The presence of other
idiosyncratic CNVs suggest that these three neurons arose in distinct
neurodevelopmental lineages. The possible ontogeny of these chro-
mosomes might include chromosome mis-segregation, micronucleus
formation, and a chromothripsis-like event50–54. In any case, the strik-
ingly similar patterns of loss observed in these three neurons likely
represent recurrent rather than clonal events.

CNVs are not randomly distributed in neuronal genomes
The similar patterns of chromosomal loss observed in subsets of CNV
neurons led us to hypothesize that, in contrast to what has been
reported in other tissue types55, neuronal CNV locations may not arise
randomly. Thus, we generated a control dataset of randomly placed
deletions and explored whether neuronal genomes accumulate CNVs
in “hotspots” or are protected from CNVs in “cold spots.” Briefly, the
empirical call set was randomly rearranged, without collision, while
keeping the size and abundance of CNVs constant on a per-neuron
basis. We reasoned that randomly, and reiteratively, placing the “real”
CNVs throughout the genome would effectively generate a “random”

CNV landscape (Fig. 3A); thus, we performed 10,000 synthetic itera-
tions of real data to generate a null model. For analysis, the genome
was segregated into 567 contiguous 5Mb regions and the number of
simulated CNVs that overlapped each 5Mb genomic region (i.e., hits)
were counted to generate a null model.

A Gaussian-shaped distribution of CNVs/5Mb region was
observed in the null model, but empirical data was enriched for
observations at the extremities (Fig. 3B). Specifically, when empirical
P values were calculated for each 5Mb region, we found eighty-three
5Mb regions (14.6%) where observed CNVs occurred more frequently
than in the randommodel (“hotspots,” P value <0.05) and fifty-six 5Mb
regions (9.9%) where empirical CNVs overlapped less frequently than
in the null model (“cold spots,” P value >0.99) (seeMethods for P value
determinations). For example, fourteen 5Mb regions were hit at least
24 times by real CNVs, however this frequency (≥24 hits in a 5Mb

region) occurred inonly 0.5%of nullmodel permutations. Importantly,
no CNV-free region was observed in null model perturbations, but
seven CNV-free cold spots were found in empirical data.

CNVhotspots and cold spots clustered in several semi-contiguous
stretches of the genome (Fig. 3C). Eighty-three 5Mb hotspots clus-
tered into 47 distinct contiguous regions, whereas the 56 cold spots
clustered into 22 distinct contiguous regions. Intriguingly, individual
chromosomes also clustered as either hot or cold with respect to CNV
presence or absence. For example, 9/83 (~11%) and 15/83 hotspots
(~18%) clusteredonchromosomes 18 and 5, respectively, whereas 12/56
cold spot regions (21%) clustered on chromosome 1. Thirteen highly
aberrant neuronal genomes (containing ≥25CNVs in empirical data) all
had a CNV(s) that intersected hotspots, whereas only nine had CNVs
intersecting cold spots. Similarly, of the 112 CNV neurons that con-
tained between 1–5 CNVs, fifty-four had CNVs intersecting hotspots
and only seven hadCNVs intersecting cold spots. Overall, 163 neuronal
genomes had a CNV(s) overlapping a hotspot, whereas only 50 CNV
neurons overlapped cold spots.

One technical explanation for putative hotspots and cold spots is
differential chromatin accessibility during WGA. For example, hot-
spots may simply be a consequence of limited chromatin accessibility
leading to reduced genome amplification relative to coldspots. We
assessed this possibility by counting open chromatin peaks (NeuN+
nuclei from DLPFC56) in each 5Mb region and found the opposite
association. Cold spots (3943 peaks in 56 regions, 70.4 ± 52.1 peaks/
region), which are consistantly euploid and thus uniformly amplified,
are associated (P <0.0001 v. control)with fewer open chromatinpeaks
than control regions (54175 peaks in 404 regions, 134.1 ± 43.0 peaks/
region), and hotspots (12365 peaks in 83 regions, 149.0 ± 41.3 peaks/
region) are enriched (P <0.006 v. control) in open chromatin (Sup-
plementary Fig. 11C).

To extend these observation to other individuals and WGA
approaches, we generated a random permutation model of the ref. 41
neuronal CNV atlas. Given that these 867 neurons represent a com-
posite of 15 individuals ranging from<1 year-old to >90 years old, these
data are unpowered to identify hotspots. However, cold spots may be

Fig. 3 | Analysis of CNV distribution relative to randomnull model. A Empirical
read-depthplots of twoCNVneurons (left panels) and representative permutations
(right two panels) are displayed as in Fig. 1F. B Relative to 10,000 permutations of
real data (represented byblue dotted line and error bars), high and lowCNVburden
are enriched at the extremities of the Gaussian distribution (green bars). C Circos
plot shows that hotspots (red, outer tier) and cold spots (blue, outer tier) cluster on

distinct chromosomes. Thirty-three pathogenic CNVs (blue, purple, inner tier)
never overlap hotspots. Eleven (blue) overlap cold spots. D Violin plot (mean +/-
SD) showing gene enrichment in cold spots (left, N = 56, mean gene hits = 57.71 ±
58.93) and depletion in hotspots (right, N = 83, mean gene hits = 15.65 ± 32.40)
relative to other 5Mb regions (N = 404 controls, mean gene hits 37.79 ± 43.71) with
chi-square P <0.001 for cold spots vs. controls and hotspots vs. controls.
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conserved across individuals. As before, we generated a control data-
set of randomly placed deletions and again observed that every 5Mb
region is overlapped by CNVs in the null model, whereas 58 5Mb
regions are not overlapped by real data (Supplementary Fig. 11D). Cold
spots in the CNV atlas also cluster on few chromosomes and 40% of
these overlap cold spots identified in this study (Supplementary
Fig. 11E).

To examine if a neurobiological basis for a nonrandom distribu-
tion of CNVs in neuronal genomes may exist, we examined overlap
betweenhotspot and cold spot regions, and 33 germlineCNVs (fifty-six
5Mb regions) that are associated with adverse neurodevelopmental
phenotypes57. One-third (11/33) of these germline CNVs were in cold
spots. By comparison, none (0/33) of the germline CNVs overlapped
hotspots (Fig. 3C). The probability that a neuropathogenic germline
CNV occurs in any 5Mb genomic region by chance is approximately
33/567 (5.8%); however, empirical overlap was observed in 11/56
(19.6%) 5Mb cold spot regions. Gene content further distinguished
hotspots and cold spots from other control regions of the genome
(Fig. 3D). Cold spots typically were gene-dense (64.7 ± 56.2 genes per
5Mb region) and were not distributed uniformly when compared to
control regions of the genome (Supplementary Fig. 11A). By compar-
ison, hotspots typically were gene-sparse relative to cold spots
(32.6 ± 15.2 genes per 5Mb region).

Recurrent regions of neuronal genome rearrangement
The observation that neuronal deletions cluster in genomic hotspots
suggested that local genomic instability could, in principle, lead to
recurrent mosaicism among neurons. Recurrent regions of genome
rearrangement in cancer cells have led to the identification of drug
targets (e.g., the Philadelphia chromosome and BCR-ABL58) and have
been mechanistically associated with genomic fragile sites in long

genes59,60. To explore possible related mechanisms, we examined CNV
start or end locations (i.e., breakpoints) thatwere shared amongstCNV
neurons. Breakpoints are defined by one of the 5067 variably-sized
Gingko bins that each include 500 kb of mappable sequence. Among
these bins, 857 accounted for two or more CNV breakpoints (termed
CNVBs) (Fig. 4A, B), many of which (220/851; ~26%) fell within pre-
viously identified hotspots.

We next sought to determine whether the number of bins con-
taining more than two breakpoints was significantly different from a
random CNV distribution (i.e., the control set of CNV permutations).
Given variably-sized Gingko bins (Methods), we first assessed whether
Ginkgo bin size impacted breakpoint frequency. While bin size scaled
linearly with CNVB frequency in random permutations, this linear
relationship was not observed with empirical CNVBs (Fig. 4C). When
breakpoint counts are normalized by bin size, observed CNVBs cluster
more frequently in common bins than random CNVBs (one-sided t-
test, P value: 2.08*e-134), suggesting that CNVBs likely originate from a
nonrandom process (Fig. 4D).

Empirical CNVBs were further assessed for properties that might
suggest mechanisms of CNV formation. Recent studies have indicated
that somatic CNV hotspots in non-cancer systems are localized around
large (>500 kb) transcriptional units that formdue to replication stress
by a mechanism termed transcription-dependent double-fork
failure60,61. These findings motivate the hypothesis59,62,63 that longer
genes incur additional DNA double strand breaks (DSBs) during tran-
scripton which, in turn, lead to neuronal CNVs. Given that Ginkgo bins
are imprecise relative to the sequence context around structural
breakpoints64, we restricted our analysis to larger genomic features.
Gene content and gene expression levels were measured in CNVB
regions relative to random CNV permutations. We observed a sig-
nificant albeit modest enrichment of empirical CNVBs within long
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Fig. 4 | Recurrent CNV breakpoints across multiple neurons. A UCSC Genome
Browser view of all CNVs detected on Chromosome 1 (47 neurons, rows). Seven
neurons (red) contain CNVs that share a breakpoint region (CNVB).
B Representative CNVB (red) on Chromosome 1 overlaps (±250 kb) two genes
(lower panel). C Number of breakpoints identified in each Ginkgo bin (y-axis)

relative to bin size (x-axis), shown for bins containing two or more CNVs (red) and
averaged across all permutations in control set (blue line). D–F Violin plots show
real and permuted datasets, normalized by bin size, when examined for D number
of breakpoints, E number of long (>100k) genes (****p <0.0001 for one-tailed t-
test), and F transcripts per million bp (TPM) values of the longest gene in each bin.
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genes (which we define as >100 kb as in ref. 65, one-sided t-test, P
value: 1.32*e-5, 0.11-fold increase, Fig. 4E). However, gene expression
levels in the 49-year-old postmortem brain were similar in CNVB
regions relative to random permutations (Fig. 4F). Thus, neuronal
CNVs could arise by related, but perhaps different, mechanisms
associated with gene length.

Among 98 of the 226 CNV neurons, we observed 73 CNVs that
shared both 3’ and 5’ CNVBs. These may be recurrent CNVs (CNVRs).
Haplotype informationwas then used to determine if CNVRs support a
clonal relationship among neurons. Briefly, we used phased allele
ratios to compare whether CNVRs shared haplotypes by determining
the median of the differences between the minimum and maximum
log2 allele ratios observed in each SNPwindowwithin the CNVR across
all cells where it was identified, reasoning that lower log2 allele ratio
values would represent CNVRs on a shared haplotype (Methods,
Supplementary Fig. 8A). These calculations resulted in two apparent
distributions of both lower (32/73) and higher (41/73) delta log2 ratio
values. The lowest delta log2 ratio cluster contained the two pairs of
technical replicates (Fig. S5), indicating the veracity of our approach.
The remainingCNVRs exhibited a deltamedian log2 ratio larger than 5,
suggesting that these CNVs occurred on opposite haplotypes (Sup-
plementary Fig. 8B). However, all CNV neurons harboring CNVRs had
complex karyotypes with divergent CNV patterns across the genome
(e.g., Fig. S13). These findings suggest that shared CNVs are not
necessarily clonally-derived, but, instead, likely represent recurrent
events (Supplementary Fig. 8C, D). Of note, similar CNVRs were
observed in the analysis of cancer genomes and are referred to as
“mirrored-subclonal” CNVs47,66.

Discussion
The genetic landscape of humanneurons is amosaic of the individual’s
germline genome; it is likely that every human neuron accumulates
more than a thousand somatic variants over a person’s lifetime67–70.
Specific somatic mutations have been linked to overgrowth pheno-
types in patients with hemimegalencephaly and focal cortical
dysplasia20,71–73. Other studies report differential somatic mutation
burden in subsets of patients with autism17,23,62, schizophrenia74, and
neurodegenerative disease75–77. Mosaic Mb-scale CNVs alter the neu-
rogenetic landscape in dramatic ways, yet it is unknownwhether some
genomic regions are more, or less, prone to CNV occurrence than
other regions. The identification of CNV-prone or -resistant genomic
loci, if they exist, could indicate mechanisms for somatic CNV forma-
tion, and, possibly, reveal a role for CNV neurons in brain function and
disease.

Here we employed a droplet-based WGA approach to map CNVs
in 2097 frontal cortical neurons from a single neurotypical individual.
Technical barriers have limited previous studies to fewer than 100
neurons per individual and reported a total of 129CNVneurons among
879 frontal cortical neurons examined from 15 individuals41. We
developedSCOVAL to addveracity to read-depth-basedCNVdetection
through an analysis of haplotype dropout. We showed high con-
cordance between heterozygous deletions identified by read-depth
and by phased LOH in single neuronal nuclei. In this sample, we found
that 226/2097 (10.8%) of neurons harbor at least one Mb-scale CNV,
and that 2% of CNV neurons were aneuploid. Moreover, we found that
65/226 CNV neurons contained highly aberrant karyotypes.

By combining haplotype and read-depth approaches, we have
strong confidence that neuronal genomes contain large chromosomal
segments that are not sampled using single cell sequencing approa-
ches. This finding is consistent with previous reports that have exam-
ined a limited number of cells from neuronal and non-neuronal tissues
using multiple technologies. Although we posit that the assayed
sequence is missing because the corresponding segments have been
deleted in vivo, unexpected technical or biological factors may yet
contribute to the loss of signal. For example, neuronal preps exclude

micronuclei78; however, the appreciable occurrence of micronuclei in
neuronal tissue would still reflect an underlying alteration in genome
content in the brain. Similarly, the lack of validated duplications in
single-cell neuronal sequencing is striking. Ongoing development of
new WGA approaches79 and the application of long-read sequencing
technologies to single-cell genomics80 are poised to address these gaps
in future studies. Furthermore, while some technologies for deriving
long-range haplotype information are no longer commercially avail-
able (e.g., 10X Genomics linked-reads), the continued evolution and
adoption of long-read sequencing for genome assembly and
phasing81,82 will provide a solid and improved foundation for additional
single-cell studies using SCOVAL or similar strategies.

Our finding of a nonrandom distribution of 1861 deletions among
226 CNV neurons also allays concerns of random technical artifacts in
neuronal CNV detection. Spurious WGA events, such as uneven gen-
omeamplification, are expected to occur randomly across the genome
and are physically limited in size by the processivity of the polymerase
(<20 kb). Multiple WGA approaches have been performed on single
humanneurons; all of these reportedMb-scaleCNVs38–41. This technical
concern was addressed previously41 wherein a similar prevalence of
CNV neurons was observed in two samples from the same individual
(26-year-old), subjected to different WGA approaches. In Chronister
et al., parameter optimization on synthetic datasets limited read-
depth-based CNV detection to false positive rates <5%. Here, we pro-
vide additional lines of evidence that single-cell approaches for neu-
ronal CNV detection are robust to technical artifacts. First, we showed
that SCOVAL finds haplotype allele-level support for 76%of read-depth
based deletion calls. Importantly, 99% of >10Mb heterozygous dele-
tions received orthogonal support via phased LOH. Second, when
SCOVAL was applied to 2,097 neurons, the fraction of CNV neurons
observed (10.8%) was concordant with the fraction (11.1%) identified
using different chemistry on a smaller (99 neuron) sample from the
samebrain region. Perhapsmost strikingly, we identifiedCNVhotspots
and cold spots that were inconsistent with a random distribution of
technical artifacts. Moreover, these data resolve disparate reports
regarding aneuploid human neurons. Approaches that measured sin-
gle (or few) chromosomes in each neuron suggested that >10% of
neurons were aneuploid6,7. Extrapolations based on these data did not
account for unmeasured chromosomes in the same neuron, implicitly
assuming that every measured aneusomy represented a different
aneuploid neuron.We identified6 clearly aneuploid neurons, however,
52 neurons harbored deletions that covered >50% of atleast one
chromosome and could reasonably be scored as aneuploid by tradi-
tional hybridization-based approaches. Taken together, these obser-
vations find a frequency of substantial chromosome loss (52/2095,
2.5%) in this individual that is consistent with other reports of neural
aneuploidy44,83.

In addition to finding a nonrandom distribution of CNVs among
CNV neurons, we identified genomic hotspots that were impacted by
neuronal CNVs more often than expected by chance; the same
approach identified genomic cold spots. Further analysis of these
regions found high gene density in cold spots (64.7 ± 56.2 genes per
5Mb region), but a lower gene density (32.6 ± 15.2 genes per 5Mb
region) in hotspots. Complementary analysis identified 851 regions
with 2 or more CNV breakpoints (i.e., CNVBs), and found that 220 of
these refined previously defined 5Mb hotspots to ±0.5Mb. Hotspot
CNVBs were enriched for long (>100Kb) genes, consistent with the
paucity of genes found in these regions. In some cases, the functional
consequences of the CNVs are also suggested by associations between
long gene expression, neuronal development, and
neuropathologies84,85. For example, we identified seven neurons with
distinct CNVs sharing a breakpoint region within KCNT2, a long
(~380kb) gene that encodes an outward-rectifying potassium channel.
KCNT2 is important for neuron function and has been linked to several
developmental pathologies86–88 (Fig. 4B). KCNT2 exhibited a TPM of

Article https://doi.org/10.1038/s41467-024-48392-0

Nature Communications |         (2024) 15:4220 7



7.30, which falls within the expected range when considering the
expression of all long genes in this tissue (mean TPM 9.56± 19.82).

Our study reveals that CNV neurons with highly aberrant kar-
yotypes populate the neurotypical human frontal cortex. Although
their impact on neural circuits and behavior remains unknown, cross-
sectional studies indicate that CNV neurons are selectively vulnerable
to aging-related loss41. The extent to which recurrent CNV sites are
shared among individuals is not yet known; neither is it known if cold
sites are refractory to CNV formation or are detrimental to neuronal
survival during development. Nevertheless, we report candidate
genomic regions that incur frequent neuronal gene rearrangement
provides a rationale for tractable and scalable targeted single-cell
sequencing. Many interesting questions follow from this study,
including whether cold spots in neurotypical individuals are instead
aberrant in individuals with neurological disease.

Methods
Sample and sequencing library preparation
The research in this project complies with all relevant ethical regula-
tions. Postmortem human brain tissue was obtained at the time of
autopsy via audiotaped witnessed informed consent from the legal
next-of-kin allowing the use/sequencing of postmortemneurons/dural
fibroblast tissue, through the Office of the Chief Medical Examiner of
the State of Maryland, under the following two protocols: Maryland
Department of Health IRB protocol #12–24 and the WCG protocol
#20111080. We examined human neurons dissected from the dorso-
lateral prefrontal cortex (DLPFC) of a neurotypical individual (post-
mortem, 49-year-old male individual, LIBD: Br5154) used as the
common reference brain in a previous study37.

Neuronal nuclei (NeuN+) were purified from frozen tissue using a
sucrose cushion and FANS (AF555conjugated anti-NeuN antibody,
Millipore as in41. We then applied 10X Genomics Chromium Single Cell
sequencing that ligated barcodes on the DNA in single cells within a
Cell Bead Gel and the barcoded fragments are then pooled for library
production, which can profile thousands of cells. We sequenced 2,125
neurons in two batches with a mean coverage of 0.114X (Fig. 1A). We
further applied 10X Genomics Chromium Linked-Read sequencing to
dural fibroblast tissue with very high sequencing coverage (52.7X)
from the same individual to identify and phase germline SNPs by iso-
lating and fragmenting long DNA segments into barcoded short reads
that could be used to reconstruct underlying haplotypes using Long
Ranger v2.2 (https://github.com/10XGenomics/longranger).

Optimization of Ginkgo for single-cell CNV identification
ThefinalCNVcall setwasgenerated using a combinationof read-depth
and phased loss-of-heterozygosity (LOH)-based validation. First, we
processed read alignments from 2125 single cells using an adapted
version of Ginkgo45 to arrive at our unvalidated call set. The call set was
then filtered via empirical P value selection using information per-
taining to the loss of a particular haplotype, obtained by aligning
sample reads to the (diploid) phased genome for this individual. The
resultant calls were then filtered using a Bayesian classification model
to arrive at the final CNV call set, which was further classified by CNV
type (heterozygous deletions, homozygous deletions, and duplica-
tions) because the strength of support is different for these different
CNVs, and the ensuing permutation testing (using heterozygous
deletions alone) became more regularized. Only CNV calls in auto-
somes were included in the final CNV call set. We will now describe the
generation pipeline, similar to ref. 41, in some detail.

Setting CNV calling cutoffs in Ginkgo via the Gaussian
Mixture Model. Ginkgo was optimized by resetting default copy-
number cutoffs that determine whether a segment detected by cir-
cular binary segmentation (CBS) will be called a CNV. To this end, we
processed single-cell BAM files from 585 cells obtained from the five

control individuals studied in41 using the CBS implementation DNA-
Copy (https://bioconductor.org/packages/release/bioc/html/
DNAcopy.html). Aligned reads from each single cell were separately
processed into 5067 autosomal bins across the hg19 human reference
genome delineated by Ginkgo, which were then normalized to obtain
an average copy number of two for the cell. We limited our analysis to
autosomalbins tominimize falsepositives onmonosomic allosomes in
males. These individual bins were then grouped contiguously into
segments based on similarity of their read coverage using DNACopy.
We then fit a GaussianMixtureModel (GMM) to the distribution of the
median copy number of all segments from all cells using an “undoSD”
of three, whereby two putative segments had to be more than three
times the standard deviation in “intra-segment” copy number to be
actually written as separate segments, and alpha =0.01. From this fit,
the two-tailedprobability for theGaussiancurve centered at CN = 1 and
the one at CN = 2 was calculated to be 1.63 (Supplementary Fig. 1B).
This became the new copy-number cutoff for Ginkgo to call deletions.
As seen in Supplementary Fig. 1B, there were not many candidate
duplications to yield a proper fit, but the duplication cutoff was
set at 2.43.

Filtering to remove outlier bins via Tukey’s rule. Next, the rawbinCN
data were filtered for the presence of uniform outlier bins across all
cells (e.g., due to data-specific genomic regions uniformly subject to
overamplification or underamplification, regions of poor mappability
in the genome, etc.). The median of copy numbers of 2125 cells for
each of the 5067 autosomal bins was first plotted. Tukey’s rule was
then applied to tag all bins whose median copy number exceeded
Q3 + 1.5* IQR, or was below Q1-1.5*IQR, where the interquartile range
IQR � Q3-Q1 and Q1 and Q3 are the first and third quartiles, respec-
tively, of all the median copy numbers. Three hundred and eight out-
lier bins were identified in addition to Ginkgo’s original list containing
29 (Supplementary Fig. 1C). These bins were simply removed from the
genome by Ginkgo prior to segment processing, while other bins
(retaining their genomic coordinates) weremerged. For reference, the
genomic bin size used for benchmarking Ginkgo was 500Kb. Thus, in
this work, as in41, we used Ginkgo settings pertaining to an approx-
imate variable bin size of 500Kb (“variable_500 kb_101_bowtie”) and
only considered large (>1Mb) CNVs. Gingko reported a final mean bin
size of 569Kb, with bins ranging in size from 501 to 2812 Kb.

Filtering of irregular cells. For all cells, the mean absolute deviation
(MAD) of bin copy numbers was calculated and fit to a Gaussian dis-
tribution. The mean (mu) and standard deviation (sigma) were 0.253
and 0.111, respectively. CNV calls from 19 cells (MAD > mu + 3* sigma)
were removed before processing the data further (Supplementary
Fig. 1A). The total number of reads for all remaining cells ranged uni-
formly from 580,809 to 8,983,573. However, one cell contained an
inordinate proportion of reads (>80%) aligned to just one of the
chromosomes and was removed. Further, eight cells that were not
filtered by the abovemethods weremanually curated from the dataset
based on unlikely copy-number patterns, leaving a total of 2097 good
neurons (see Supplementary Fig. 1D).

Assessing the coverage-based single-cell CNV call set
To differentiate between bona fide CNVs and potential false positives
due to coverage fluctuations, we leveraged the long-range haplotype
information obtained from the 10X linked-read sequences generated
from bulk analysis of matched dural fibroblast tissue. We made use of
identified heterozygous SNPs (het-SNPs) and initially segmented the
genome using phase blocks of heterozygous SNPs as identified by the
linked-read data so that each segment would contain SNPs with con-
sistent haplotype labeling.We thenbinned these segments further into
windows of 20–100 SNPs based on empirical observations of SNP and
read coverages. For each window in each cell, we then identified reads
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that overlapped het-SNPs (herein termed “informative reads”) and
noted the allele present on the read. Notably, the coverage in each
single cell resulted in a sparse number of informative reads per SNP
window, typically resulting in 5–15 reads with specific allele informa-
tion. Using the inferred haplotype of each overlapped het-SNP, we
counted the number of reads present on each of the two haplotypes
and calculated the absolute log2 ratio between the read counts if the
total number of reads on each haplotype was larger than three.
We used this log2 ratio to filter the CNV call set from the previous
stage. First, we calculated the median log2 ratio of the windows within
the CNV regions in the cells with those CNVs and themedian log2 ratio
of the windows within the CNV regions but in the cells without those
CNVs as a background null model. From these data, we derived an
empirical p value for the observed log2 ratio in the sample with the
CNV. We then collated the p values for each individual CNV to derive
a p value distribution and selected a set of candidate CNVs with a
p value < 0.05.

Next, we randomly permuted 100 sets of “non-CNVs” size-
matched to these candidate calls to build a GMM from the under-
lying median log2 ratios of each CNV/non-CNV region, with the
assumption that the two distributions followed two distinct Gaussian
distributions. Using the median absolute log2 ratios of the two data-
sets as the training data, we estimated the parameters of the Gaussians
and predicted the posterior probability that the CNV belonged to the
CNV distribution using a naive Bayesian classifier. Calls with posterior
probability >0.99 were selected to process further.

As allele imbalance cannot support the homozygous deletions,we
implemented a read-depth ratio measurement to add additional sup-
port to the calls. We calculated the read-depth ratio for each bin in
every cell based on the bulk sequencing from the same tissue28. The
read-depth ratio RDRb,i of bin b and cell i can be calculated as

RDRb,i =
Cb,i

Bb

RB

Ri
, ð1Þ

Where Cb,i is the number of reads in bin b of cell i, Bb is the number of
the reads in bin b of bulk sequencing, RB is the total number of reads of
bulk sequencing, and Ri is the total number of reads of cell i. To dis-
tinguish between homozygous and heterozygous deletions, we
applied a GMM on read-depth ratio to calculate the posterior
probability for the homozygous deletions, and set the cutoff as
>0.99 for posterior probability. The final call set for heterozygous
deletionswas obtainedby adjudicating the above calls by requiring the
CNV region to have an empirical median log2 ratio p value (as
described above) to be less than 0.01 (thus ensuring that only calls in
regions showing the highest relative allelic preference were selected).

Germline CNV assessment
To determine whether any potential germline CNVs were included in
our analysis, we analyzed the 10X linked-read sequences using both
Manta and Long Ranger (https://github.com/10XGenomics/
longranger) using default settings and compared the detected CNVs
with our somatic CNVs using a 50% reciprocal overlap criteria. We
further examined the minor allele frequencies of heterozygous SNPs
across all cells within the boundaries of detected somatic CNVs with
the expectation that germline deletions would have a consistent
deviation from 0.50 frequency if present.

Benchmarking CNV detection
We applied CHISEL47 to our single-cell sequencing data with its default
parameters (max balanced ploidy = 4); however, it reported unrealistic
results.Only8.16%of all 5MBwindowswere reported asnormal diploid
regionswith haplotype copynumber “1|1”, withmostwindows (77.83%)
indicating themax balanced ploidy with haplotype copy number “2|2”.
We adjusted the max balanced ploidy setting to 2, resulting in 98.15%

of thewindows now indicated asnormal diploid regions.We combined
neighboringCNVwindowswithin the same cell to calculate the overlap
percentage with our final call set.

Clonal cells and recurrent CNVs
To detect the clonal structure of neurons based onCNVs, we designed
a very conservative method to identify clonal events.We first found all
the CNVs that shared the same start and end breakpoints, then we
marked these loci as CNVR. With the haplotype information, we could
identify whether these loci were clonal events or the recurrent events
that existed on the different haplotypes. For each bin covered by the
CNVR, we took themaximum log2 ratio andminimum log2 ratio of the
cells with the CNVR and calculated the delta log2 ratio usingmaximum
minus minimum. Next, we calculated the median delta log2 ratio
across the bins for each CNVR and observed two distinct distributions,
one representingpotential clonal events (lowdelta log2 ratio; CNVs are
on the same haplotype) and the other indicating likely independent
events (high delta log2 ratio; CNVs are on the different haplotypes).

Characterizing CNV neurons
Neuronal distribution of CNVs. The raw distribution of the number of
CNVs per neuron is shown as a histogram (Fig. 2A) on a log scale, along
with a null model based on a uniform random distribution of all CNVs
in the final call set across all good neurons. Thus, a Poisson curve with
mean= (# final CNVs)/(# good cells), scaled up by the total number of
good neurons, was superimposed on the first plot to assess whether
the final call set contained more CNV-rich neurons than expected by a
uniform distribution.

Hierarchical clustering and complex karyotypes. The 2097 good
neuronswereorderedbasedon thenumber of total base pairs affected
by heterozygous deletions in descending order. A heat map of all cells
was generated showing the percentage of base pairs affected by het-
erozygous deletions in each autosome (see Fig. 2C), Neurons were
sorted and numbered in reverse order of % base pairs affected. Those
cells affected by more than 5% were termed complex neurons and
numbered 1–65 in our call set. All good neurons were clustered using
hierarchical clustering using each autosome as an independent
dimension and the percentage of base pairs affected as the distance
measure. Thus, cells with chromosomes thatwere similarly affected by
heterozygous deletions clustered together (Fig. 2D). Some cells with
possibly multiple recurrent events were identified (Fig. 2E), and some
seemingly clonal cells were analyzed to be technical replicates.

Identifying CNV hotspots and cold spots via permutation testing.
The final heterozygous deletion call set was “shuffled” using bedtools89

to arrive at 10,000 unique synthetic permutations (Fig. 3A). In each
permutation, CNVs in each cell were permuted uniformly at random in
the autosomes while prohibiting collision (“noOverlapping” option)
and then assembled together. The process was repeated 10,000 times
without genomic constraints, as unmappable regions were a priori
removed (refer to subsection Optimization of Ginkgo for single-cell
CNV identification), and calls “straddling” such regions commonly
occurred in the final call set (Supplementary Data 2).

Each autosome was divided into contiguous 5Mb regions (the
remaining smaller tails of chromosomes were not considered). The
number of unique hits (defined as simple overlap) of each region with
synthetic CNVs from all 10,000 permutations was recorded, resulting
in a CNV distribution profile for the synthetic data. For each 5Mb
region, a P value was assessed for the number of CNV hits in real data
among the 10,000 hit values in the region’s synthetic CNV profile. For
our purposes, we define P value to be the fraction of simulated
instances that were at least as high as the real number of CNV hits to
the 5Mb region. Given that CNV hits are discrete-valued, and we are
using the same definition of P value for cold spots and hotspots, we
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impose a more stringent cutoff for cold spots to account for the
inherent liberal treatment of data values on the lower extreme (which
may lead to an overabundance of cold spots). Regions with a P value
<0.05 (i.e., wherehitswere among the top 5%of synthetic hit-values for
that region)were termed “hotspots” and thosewith P value >0.99were
termed “cold spots.” Regional significance (defined as 1 - P value) was
plotted against the autosomal genome on the x-axis (Supplementary
Fig. 9). The distribution of the raw number of CNV hits in 5Mb regions
is shown in Fig. 3B. Cold spots were screened for aberrant genomic
blocks thatmight hamper CNV calling or regions a priori neglected. To
this end, cold spot regions were coordinate-merged (via “bedtools
merge”) and compared to all a priori removed bad bins as well as
blacklisted regions90 by means of a relative permutation analysis. A
merged cold spot that overlapped more with blacklisted regions and
bad bins as appropriately compared to 1000 randomly selected non-
cold spot intervals was removed from the list of final cold spots (the
cutoff chosen was p >0.05) (Supplementary Fig. 10A). Each merged
cold spot was mapped to 1000 randomly selected regions other than
existing cold spots, and its overlap with bases contained in bad bins
and blacklisted regions, respectively, were calculated in each instance
in order to assign it a p value. For additional relevant detail, some
genomic heat maps of the copy number of CNV neurons are shown in
Supplementary Fig. 10C, D alongwithmerged cold spots and bad bins.
For rigor, cold spots were analyzed for the presence of deduplicated
germline structural variants from 1000 individuals from FusorSV91, the
cold spots had a larger SV coverage (11.4) than the unremarkable
regions (7.25), further supporting that CNVs are callable in these
regions.

Hotspots and cold spots are shown throughout the genome in a
Circos92 plot along with 33 regions of the genome where germline
CNVs are associated with neurodevelopmental phenotypes57 to assess
any possible correlation between the two (Fig. 3C). The distribution of
the number of genes in 5Mb regions was also plotted for hotspots,
cold spots and unremarkable regions as control (Fig. 3D). Similar dis-
tributions were plotted (with assigned p values) for long genes and
different expression levels (Supplementary Fig. 11).

In a complementary assessment, the above permutation analysis
was repeated for genes instead of 5Mb genomic regions. To profile
gene expression, histograms of p values for genes were shown for
different gene expressioncategories (Supplementary Fig. 12) to assess/
confirm the general prevalence of hotspots and cold spots in each
expression category.

Recurrent CNVbreakpoint analysis. To assess the impact of different
Ginkgo bin sizes on the CNV breakpoint distribution, we used the
previously described 10K permuted CNV sets to determine the rela-
tionship between the number of breakpoints and Ginkgo bin size. We
calculated the mean of the number of breakpoints from all permuted
CNVsand compared this to the size of theGinkgobin inwhich they fell.
We then normalized the number of breakpoints by the Ginkgo bin size
and compared this normalizednumberofobservedbreakpointswithin
CNVB regions with those in permuted regions using a one-sided t-test
with the alternative hypothesis that observed > permuted. We then
calculated the normalized number of long genes (>100K) overlapped
with CNVB bins and compared against the permuted regions using
the same strategy. The gene expression analysis was conducted
by calculating the transcript per million (TPM) values for the longest
gene observed in each of the CNVB and permuted regions and
assessing whether they were significantly different using a one-tailed
t-test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The single cell and linked-read sequencing data and call sets generated
in this study have been deposited in the National Institutes of Mental
Health (NIMH) Data Archive under Study ID 1680 (https://doi.org/10.
15154/1527774). These can be accessed as part of the NIMH Data
Archive permission groups (https://nda.nih.gov/user/dashboard/data_
permissions.html). Data obtained from ref. 41 is available through
Synapse (https://www.synapse.org/#!Synapse:syn16803262) and
through the NIMH data archive (https://nda.nih.gov/edit_collection.
html?id=2963 and https://nda.nih.gov/edit_collection.html?id=2458).
To promote the responsible use of shared data, all institutions and
investigators seeking accessmust commit to complywithNDApolicies
and procedures by signing a Data Use Certification. Initial single-cell
Ginkgo calls, subsequent SCOVAL assessments, and CHISEL outputs
are included in Supplementary Data Files 1–3, respectively.

Code availability
Theworkflow to generate the final call set is available at https://github.
com/mills-lab/Scoval.
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