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Multiscale modelling of chromatin 4D
organization in SARS-CoV-2 infected cells

Andrea M. Chiariello1,4 , Alex Abraham 1,4, Simona Bianco 1,
Andrea Esposito 1, Andrea Fontana 1, Francesca Vercellone 2,
Mattia Conte1 & Mario Nicodemi1,3

SARS-CoV-2 can re-structure chromatin organization and alter the epigenomic
landscapeof the host genome, but themechanisms that produce such changes
remain unclear. Here, we use polymer physics to investigate how the chro-
matin of the host genome is re-organized upon infection with SARS-CoV-2. We
show that re-structuring of A/B compartments can be explained by a re-
modulation of intra-compartment homo-typic affinities, which leads to the
weakening of A-A interactions and the enhancement of A-Bmixing. At the TAD
level, re-arrangements are physically described by a reduction in the loop
extrusion activity coupled with an alteration of chromatin phase-separation
properties, resulting in more intermingling between different TADs and a
spread in space of the TADs themselves. In addition, the architecture of loci
relevant to the antiviral interferon response, such as DDX58 or IFIT, becomes
more variable within the 3D single-molecule population of the infectedmodel,
suggesting that viral infection leads to a loss of chromatin structural specifi-
city. Analysing the time trajectories of pairwise gene-enhancer and higher-
order contacts reveals that this variability derives from increased fluctuations
in the chromatin dynamics of infected cells. This suggests that SARS-CoV-2
alters gene regulationby impacting the stability of the contact network in time.

The SARS-CoV-2 outbreak had an important impact on society and sci-
ence. Several efforts have been made to understand the effects of the
virus on host cells from different points of view, ranging from studying
the immunological response to the virus1 to investigating the effects of
infection onepigenetic regulation2 or researching therapeuticmolecular
targets3. SARS-CoV-2 is able to impact the chromatin architecture4,5 of
the host cell, which in general is an important control layer for gene
regulation6,7. Indeed, virus infection has been shown, for instance, to
alter genome organization of olfactory receptors in humans and ham-
sters, providing a potential mechanism to explain anosmia5, one of the
typical symptoms of Covid-19. More recently, it has been shown that

SARS-CoV-2 deeply impacts genome organization at multiple length
scales, ranging from some kilobases up to A/B compartment level, and
influences the activity of gene categories4 fundamental to the immu-
nological response1, such as genes involved in the interferon (IFN)
response andpro-inflammatorygenes.Although those studies shed light
on the effects of SARS-CoV-2 on genome organization, the physical
mechanisms regulating how the virus changes the host cell 3D chro-
matin structure are not clearly understood.

Here, we employ models from polymer physics8,9 and Molecular
Dynamics (MD) simulations to quantitatively study multiscale chro-
matin re-arrangements resulting from SARS-CoV-2 infection of the

Received: 27 July 2023

Accepted: 29 April 2024

Check for updates

1Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy.
2Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione - DIETI, Università degli Studi di Napoli Federico II, and INFN Napoli, Via Claudio 21,
80125 Naples, Italy. 3Berlin Institute for Medical Systems Biology at the Max Delbruck Center for Molecular Medicine in the Helmholtz Association,
Berlin, Germany. 4These authors contributed equally: Andrea M. Chiariello, Alex Abraham. e-mail: andreamaria.chiariello@na.infn.it;
mario.nicodemi@na.infn.it

Nature Communications |         (2024) 15:4014 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-3533-6543
http://orcid.org/0000-0003-3533-6543
http://orcid.org/0000-0003-3533-6543
http://orcid.org/0000-0003-3533-6543
http://orcid.org/0000-0003-3533-6543
http://orcid.org/0000-0001-5819-060X
http://orcid.org/0000-0001-5819-060X
http://orcid.org/0000-0001-5819-060X
http://orcid.org/0000-0001-5819-060X
http://orcid.org/0000-0001-5819-060X
http://orcid.org/0000-0002-5903-8439
http://orcid.org/0000-0002-5903-8439
http://orcid.org/0000-0002-5903-8439
http://orcid.org/0000-0002-5903-8439
http://orcid.org/0000-0002-5903-8439
http://orcid.org/0009-0004-1996-4800
http://orcid.org/0009-0004-1996-4800
http://orcid.org/0009-0004-1996-4800
http://orcid.org/0009-0004-1996-4800
http://orcid.org/0009-0004-1996-4800
http://orcid.org/0000-0003-3933-8458
http://orcid.org/0000-0003-3933-8458
http://orcid.org/0000-0003-3933-8458
http://orcid.org/0000-0003-3933-8458
http://orcid.org/0000-0003-3933-8458
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-48370-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-48370-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-48370-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-48370-6&domain=pdf
mailto:andreamaria.chiariello@na.infn.it
mailto:mario.nicodemi@na.infn.it


host cell. In general, polymer models have shown to be a valuable tool
to investigate genome organization in the cell nucleus, as they are able
to describe the physical mechanisms shaping chromosome folding9

and to explain several features of genome architecture, e.g., the het-
erogeneity of chromatin structure in single cells10 or the structural re-
arrangements caused by genomic mutations and their impact on gene
expression11. At very large genomic length scales (several Mbs), we
show that a simple polymer made of consecutive compartments (i.e.,
block-copolymer model12,13), in which homo- and hetero-typic inter-
actions are defined within and between compartments, is able to
explain the weakening of A compartment and enhancement of A-B
mixing4 experimentally observed in SARS-CoV-2 infected genome, by
basically reducing the intra-compartment homo-typic A-A affinity. At
TAD level (from hundreds Kbs to some Mbs), we show that a model
combining loop-extrusion14,15 and phase-separation13,16 effectively
describes the experimentally observed intra-TAD weakening in SARS-
CoV-2 infected cells4, which results from a reduction of extruders
density coupled with an alteration of phase-separation properties of
chromatin filament. Importantly, we find that this alteration is not
observed in a polymer model describing chromatin organization in
human coronavirusHCoV-OC43 infected cells (causing common cold),
suggesting that alteration of phase-separation is a peculiar feature of
SARS-CoV-2 infection. Furthermore, using the same model informed
with HiC data10,11, we investigate the architecture of genomic loci
containingDDX58 and IFIT genes, which are of relevant immunological
interest since linked to the antiviral interferon (IFN) response17 of the
host cell. Specifically, analysis of polymer structures reveals that in
SARS-CoV-2 model the population of single-molecule 3D configura-
tions results more variable and less coherent with respect to non-
infected condition, suggesting that the alteration of activity observed
for IFN genes1,4 can be due to a general loss of structural specificity
caused by alteration of physical mechanisms driving 3D chromatin

organization. By leveraging on our Molecular Dynamics simulations,
we show that the model of SARS-CoV-2 exhibits a more scattered time
dynamics, leading to a reduction of contact stability between pairs or
hubs of multiple regulatory elements.

Overall, our polymer-physics based study provides insights into
how viral infection affects chromatin organization and suggests that
this occurs through the combined alteration of the loop-extrusion and
phase-separation properties of chromatin, indicating a potential
mechanistic link between the observed genome re-structuring and
mis-regulation of, e.g., key genes involved in the immunological
response within the host cell.

Results
We study chromatin re-organization of host cell genome infected by
SARS-CoV-2. To this aim, we consider recently published HiC data4 in
control condition, i.e., not infected human A549 cells expressing ACE2
(referred to asMock) and in human A549 cells expressing ACE2 at 24-h
post SARS-CoV-2 infection, in which HiC data highlighted re-
arrangements at multiple length scales, involving A/B compartment,
TADs and regulatory contacts within specific loci4.

Modeling of chromatin re-structuring in A/B compartments
One of themain structural re-arrangements on chromatin architecture
resulting from SARS-CoV-2 infection of the host genome occurs at A/B
compartment level. Specifically, it has been observed that viral infec-
tion results in a general weakening of A-compartment concomitantly
with an enhanced A/B compartment mixing4, as schematically depic-
ted in Fig. 1a. To quantitatively investigate such effect, we first focused
on a simple model of chromatin at A/B compartment level. We
employed the Strings and Binders Switch polymer model13,18, where
chromatin folding is driven by a phase-separation mechanism (Meth-
ods), similar to other models proposed for chromatin

Fig. 1 | Modeling of chromatin re-structuring in A/B compartments. a A/B
compartment mixing in SARS-CoV-2 infected genome detected from HiC data4.
b Polymer model of A/B compartment envisages homo-typic (A-A and B-B) and
hetero-typic (A-B) interactions. c Variation of homo-typic binding affinity results in
weakening of A-compartment and enhancement of A/B compartment mixing.
Heatmaps are computed from a populations of 3D structures obtained from MD
simulations. d Saddle-plot of best fit polymer model for Mock and SARS-CoV-2

conditions. Above, the sorted 1st eigenvector E1 is shown. Below, best fit coeffi-
cients obtained to fit experimental saddle-plots. Dark and light green bars indicate
B-B affinity used in the fit, normalized with respect the background hetero-typic
interaction (Methods). e Log2 Fold Change of the saddle-plots from the model
(bottom left) and HiC data4 (top right). Pearson correlation between matrices is
r =0.77. f 3D rendering of best polymer models for Mock (left) and SARS-CoV-2
(right). Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-48370-6

Nature Communications |         (2024) 15:4014 2



compartmentalization12,19–21. Briefly, we consider a simple block copo-
lymerwhereA andB compartments aremodeled as twodifferent types
of binding sites (represented as different colors) which can homo-
typically interact with cognate molecules (named binders) with an
affinity EA-A and EB-B, driving A-A or B-B interactions within the same
compartment (Fig. 1b). On the other hand, binders can also mediate
A-B or B-A hetero-typic interactions, with a general affinity EA-B
(Methods). To ensure micro-phase separation of A and B blocks, we
always consider EA-A > EA-B and EB-B > EA-B19. We first consideredmodels
with balanced interactions EA-A = EB-B and varied the homo-typic affi-
nity (here, hetero-typic affinity EA-B is kept constant, Methods). In
general, low homo-typic interactions result in a reduced compart-
mentalization and increased A/B mixing, as shown by the model con-
tact maps (Fig. 1c and Supplementary Fig. 1a), the first eigenvector E1
from Principal Component Analysis (PCA) and the saddle-plots of the
sorted eigenvector components22,23 (Supplementary Fig. 1b, Methods).
Analogous effects are observed by increasing hetero-typic affinity EA-B,
keeping constant homo-typic EA-A = EB-B (Supplementary Fig. 2, Meth-
ods). In addition, models with unbalanced interactions with EB-B > EA-A
result in both A/B mixing and, importantly, in weakening of
A-compartment shown in the contact maps (Fig. 1c, Supplementary
Fig. 3a) and in asymmetric saddle plots (Supplementary Fig. 3b).
Therefore, we reasoned that a combination of models with balanced
and unbalanced interactions can fit A/B compartment alteration in
SARS-CoV-2 infected genomes.We then fitted the best combination of
interactions to reproduce the average compartment profile (using
saddle-plot maps) obtained from HiC data in Mock and SARS-CoV-2-
infected cells (Methods). Interestingly, Mock HiC data are mainly
described (almost 90%) by a model with balanced homo-typic inter-
actions (i.e., EA-A = EB-B Fig. 1d, bottom left panel), indicating a similarity
in the A and B average compartmentalization level and consistent with
existing models of A/B compartmentalization20. Conversely, data in
SARS-CoV-2 infected cells are best described by a combination of
unbalanced homo-typic interactions where EB-B > EA-A ( > 60%) con-
sistently with the general weakening of A-compartment and above-
mentioned enhanced A/B mixing, with balanced interactions only
marginally involved (about 20%, Fig. 1d, bottom right). Importantly,
albeit very simple, this model exhibits a high level of agreement with
experimental data, as shown by the comparison between Log2 FC
(SARS-CoV-2/Mock) of saddle-plot matrices (Pearson r =0.77, Fig. 1e).
Analogous results are found by fitting a combination of different
hetero-typic affinities, keeping fixed balanced interactions EA-A = EB-B.
Indeed, we find that SARS-CoV-2 data are better described by a com-
bination with higher hetero-typic affinities with respect to the Mock
case (Supplementary Fig. 4a), although the saddle-plot changes are
captured with less accuracy (Pearson r =0.6, Supplementary Fig. 4b),
indicating an important role for the model with unbalanced affinities.

To test the robustness of our results on a real genomic region, we
repeated the above discussed analysis using as case of study chro-
mosome 11, with A and B blocks defined using the 1st eigenvector from
PCA (Supplementary Fig. 5a, Methods). MD simulations of this model
return contact maps accurately describing A/B compartment profile
contained in the HiC data (Supplementary Fig. 5b, c, Methods). Spe-
cifically, we find that Mock data are best described by a combination
with ∼70% balanced interactions (Supplementary Fig. 5d), in line with
the previously discussed result but also highlighting a not negligible
role for unbalanced interactions even in the not-infected case, likely
due to the distinct machineries behind A and B compartments
formation24. Conversely, SARS-CoV-2 data are best described by a
combination with higher level of unbalanced affinities (∼80%, Sup-
plementary Fig. 5d, e) in agreement with the weakening of
A-compartment. Overall, these results show that chromatin re-
arrangements observed in infected host genome can be explained by
a re-modulation of affinities which in turn affects the tendency of
compartments to microphase separate, as also shown by the 3D

rendering of polymer structures representing A and B compartments
inMock (Fig. 1f, Supplementary Figs. 4d, 5f, left panel) and SARS-CoV-2
(Fig. 1f, Supplementary Figs. 4d, 5f, right panel) infected conditions.

Viral infection impacts loop-extrusion and phase-separation
features at TAD level
Next, we investigated how SARS-CoV-2 infection impacts genome
organization at TAD level, i.e., genomic scales ranging from tens of kbs
to someMbs. Indeed, it has been shown that viral infection produces a
general weakening of intra-TAD contacts along with a slightly increase
of inter-TADs interactions4 (Fig. 2a) and concomitantly with a general
reduction of Cohesin level4, suggesting a reduction of loop-extrusion
activity. To test this hypothesis and give a mechanistic insight to this
result, we used a polymer physics model combining both loop-
extrusion14,15 (LE) and phase-separation13,18 (PS) mechanisms (Fig. 2b,
Methods), which recently has been shown to successfully describe
chromatin organization at single cell level10. In this scenario, LE and PS
simultaneously act and the pattern of chromatin contacts observed in
HiC data results from an interplay between both processes (Fig. 2c). By
varying the main system parameters, i.e., interaction affinity and
average distance between extruders (or equivalently their number,
Methods) (Supplementary Fig. 6a), we generated several different
polymer populations with their simulated contact maps (Supplemen-
tary Fig. 6b) and contact probability profiles (Supplementary Fig. 6c).
In this way, we were able to identify the polymermodel best fitting the
contact probability obtained fromHiC data (Methods), in the genomic
distance ranging from the sub-TAD level (approx. 10 kb) to inter-TADs
contacts (some Mbs, Methods). The model is able to explain with
accuracy experimental data, as shown by the fit of the average contact
probability (as shown by χ2 values in Supplementary Fig. 6d) in Mock
(Fig. 2d, left bottom panel) and in SARS-CoV-2 infected (Fig. 2d, right
bottom panel) conditions. Importantly, the best model describing
Mock data revealed an average distance between extruders of
approximately 100−150 kb (Supplementary Fig. 6d, left panel), con-
sistent with previous estimates obtained from other HiC datasets15.
Conversely, the best model fitting the SARS-CoV-2 infected HiC data
was best described by a consistently decreased number of extruders
(approximately halved, Supplementary Fig. 6d, right panel), in full
agreement with experimental observations where viral infection pro-
duces a genome-wide decrease of Cohesin levels4. Interestingly, this
analysis revealed that, in order to fit HiC data in infected cells, the
reduction of extruders is coupled with a reduction of interaction affi-
nity (around 15−20%) between binders and chromatin (Supplementary
Fig. 6d), whichaffects chromatin spatial localization and contributes to
the general weakening of intra-TADs contacts (Fig. 2d, upper panels)
observed in infected genomes. This is quantitatively shown in the Log2
FC (SARS-CoV-2/Mock) of contact maps (Fig. 2e, upper panel) and
contact probabilities (Fig. 2e, bottom panel), which exhibits a very
good agreement with experimental data (Pearson r =0.82, Methods).
To check whether such changes in chromatin architecture are peculiar
of SARS-CoV-2 or if they are observed in other coronaviruses, we
repeated the above-described analysis using HiC data in cells infected
by the human coronavirus (HCoV) OC434, which causes common cold.
Again, we were able to fit the average contact probability with high
accuracy (chi-square test p-val=1). Intriguingly, we find that the best
model describingHCoV-OC43 infection is analogous to theMock case,
with same affinity and a light increase of average distance between
extruders (i.e., as observed in SARS-CoV-2, but to a lesser extent), as
shown by the best fitting parameters (Supplementary Fig. 6e) and in
full agreementwith the experimental reports4. Therefore, this suggests
that the above discussed re-arrangements, caused by alteration of
phase-separation properties, are specifically induced by SARS-CoV-2
and are not observed in other viruses. Taking advantage of MD simu-
lations, we produced an example of 3D structure representing the
average TAD in Mock (Fig. 2f, left panel and Supplementary Movie 1)
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and SARS-CoV-2 infected (Fig. 2f, right panel and Supplementary
Movie 2) conditions, providing an effective and realistic summary of
the architectural re-arrangements occurring within and between TADs
after the infection. Microscopy experiments could be a possible
strategy to observe this structural effect.

Next, to investigate the impact of combined extruders and affinity
variation on chromatin compartmentalization, we generalized the
above discussed model of TADs by including also A and B compart-
ments (Supplementary Fig. 7a, Methods). When the number of extru-
ders is lowered (we considered ∼4-fold reduction), compartment
affinities kept fixed, TADs are weakened (p = 10−46, one-sided Mann-
Whitney U test) and compartmentalization is strengthened (Supple-
mentary Fig. 7b−d Methods), consistent with experimental observa-
tion in which depletion of Cohesin increases compartment
strength25,26. Interestingly, if the same decrease of extruders is coupled
with a decrease of the homo-typic affinities, either intra-TAD contacts
(p = 10−97, one-sided Mann−Whitney U test) and compartmentalization
strength are reduced (Supplementary Fig. 7b−d), in agreement with
HiC data from SARS-CoV-2 infected cells. Overall, those simulations
suggest that SARS-CoV-2 viral infection specifically affects genome
organization by altering fundamental physical mechanisms, including
loop-extrusion and phase-separation, that shape chromatin structure.

Structural re-arrangements of interferon response genes
(IFN) loci
Next, to understand how the above discussed structural re-
arrangement within TADs may affect gene regulation, we modeled
real genomic regions relevant in case a viral infection occurs. Specifi-
cally, we considered genomic loci containing interferon (IFN) response
genes, i.e., genes typically upregulated upon interferon stimulus and
that are commonly expressed as response to a viral infection17.

Importantly, it has been shown that in severe Covid syndromes such
genes are not properly expressed1,27 with consequent alteration in the
immunological response of host cell. We considered as first case of
study the genomic region spanning 400 kb around the DDX58 gene
(chr9: 32300000-32700000bp, hg19 assembly, Fig. 3). The DDX58
locus exhibits the typical re-arrangements caused by SARS-CoV-2
infection, as in Mock case the DDX58 gene is contained in a well-
defined domain limited by convergent CTCF sites (Fig. 3a), whereas in
the infected case a general weakening of intra-TAD interactions is
observed, although CTCF peaks are mainly unchanged (Fig. 3b). Ana-
logous observations hold for another IFN locus, containing the cluster
of IFIT genes (chr10: 90900000-91290000bp) (Supplementary
Fig. 8a, b). To quantitatively investigate such re-arrangements, we
employed the above-described polymer model combining loop-
extrusion and chromatin-protein interactions16, using experimental
CTCF ChIP-seq data4 to set the probabilities and the positions of the
anchor points for extruders15 and HiC data to optimize the types and
the positions of the binding sites11 (Supplementary Fig. 8a). To this aim,
we employed the PRISMR algorithm11, which infers from the input HiC
contact map the number of types of binding sites and their best
arrangement along the polymer to fit the input data (Methods). In the
DDX58 locus, the algorithm returned 4 types of binding sites (Fig. 3c,
d), while in the IFIT locus 5 types have been found (Supplementary
Fig. 8c, d). Taking advantage of the results obtained for the polymer
model calibrated to simulate the average chromatin behavior at TAD
level, we were able to generate, by MD simulations, ensembles of 3D
structures accurately capturing the differences in the DDX58 locus
betweenMock and SARS-CoV-2 conditions, as shown by the simulated
contact maps (Fig. 3c, d) highly correlated with experimental data
(Pearson r >0.9, distance corrected r’=0.67, Methods). In addition, the
model correctly captures the different contact probability decay

Fig. 2 | Viral infection impacts loop-extrusion and phase-separation features at
TAD level. a Intra-TAD weakening in SARS-CoV-2 infected genome detected from
HiC data4. b Polymer model of genome organization at TAD scale envisages chro-
matin loop-extrusion and interactions between chromatin and proteins (binders).
c TAD boundaries are limited by converging (forward-reverse) anchor points,
occurring with a probability (Methods). d Average contact maps of TADs from the
best model for Mock (left) and SARS-CoV-2 conditions, obtained fitting experi-
mental contact probabilities (Methods). Below, best fit and experimental contact

probabilities. e Log2 Fold Change of average contact maps. Below, Log2 Fold
Change of contact probabilities in HiC4 (blue curve) and model (orange curve).
Correlation between the curves is r =0.82. f Contact maps of best fit models for
Mock and SARS-CoV-2 conditions. Below, 3D rendering of polymer structures
obtained from MD simulations of Mock and SARS-CoV-2 models. For visualization
purposes, only the three central TADs are shown. Source data are provided as a
Source Data file.
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(Supplementary Fig. 9b), as shown by the Log2 FC curve (Supple-
mentaryFig. 9c, Pearson r =0.81).Analogous resultswere found for the
polymer model of the IFIT locus, which returns highly correlated
contact maps (Supplementary Fig. 8c, d) and similar contact prob-
ability decays (Supplementary Fig. 9d, e). Finally, examples of 3D
structures taken fromMD simulations (Supplementary Data 1) visually
highlight the above-discussed architectural differences, with the
DDX58 and IFIT loci organized in distinct, well-defined regions inMock
(Fig. 3e and Supplementary Fig. 8e) while they tend to be less localized
and more intermingled in SARS-CoV-2 (Fig. 3f and Supplemen-
tary Fig. 8f).

Single cell 3D structures result highly variable in SARS-CoV-2
infected condition
The different 3D structures observed in Mock and SARS-CoV-2
prompted us to investigate in more detail the above-discussed archi-
tectural differences at the single cell level. To this aim, polymermodels
offer a powerful tool as they allow to build ensembles of independent
3D structures that mimic single-cell variability16, experimentally
observed e.g., by MERFISH microscopy method28. Therefore, lever-
aging on such feature, we analyzed the population of 3D structures in
Mock (Fig. 4a, upper panel) and SARS-CoV-2 (Fig. 4a, bottom panel)

models. First, we focused on the DDX58 promoter and its validated
enhancer4 (Fig. 4a). By visual inspection of these 3D structures in both
conditions, it emerges that DDX58 promoter and the enhancer tend to
be closer in space in Mock with respect to the infected condition, in
agreement with HiC data. The distributions of 3D distances between
the DDX58 promoter and its enhancer (Fig. 4b) confirmed this obser-
vation, as inMock it exhibits a lowermean than the infected case (one-
sided t test p = 10−259). Interestingly, the distribution results also more
variable in infected cells (st. dev. in SARS-CoV-2 ∼30% higher than in
Mock), suggesting that the mis-regulation of this gene upon infection
is also due to a loss of contact specificity and supporting the scenario
by which the viral action changes the binding pattern through altera-
tion of Cohesin and other factors, which in turn causes a general loss of
structural coherence in the population of 3D structures. Next, we
focused on the architecture of the entire locus and considered the
polymer size and shape descriptors29 (Methods). Again, we find that
the estimated volume distribution (Methods) ismore variable in SARS-
CoV-2 (Fig. 4c upper panel, st. dev. ∼30% higher). Conversely, the
average anisotropy distribution (Fig. 4c, bottom panel), which mea-
sures how asymmetrically the polymer is distributed in space, results
lower in SARS-CoV-2 population. Analogous results are found for a-
sphericity, another shape descriptor (Methods) measuring the

Fig. 3 | Structural re-arrangements of IFN DDX58 locus. a Mock HiC data of the
genomic region (chr9:32300000-32700000, hg19) centered around the interferon
responseDDX58gene. Below, CTCF signal is shown (data taken from ref. 4).bAs (a),
SARS-CoV-2HiC andCTCF data. c Simulated contactmap forMockpolymermodel.
Below, binding sites profile, probability of the anchor points and their orientation

(Methods) is shown. d As panel c, SARS-CoV-2 model. e Example of 3D structure of
DDX58 locus taken from anMD simulation of theMockmodel. Different regions are
differently colored according to the pattern of the contact maps. Pink and cyan
spheres highlight the position of DDX58 and its enhancer respectively. f As (e),
SARS-CoV-2 model. Source data are provided as a Source Data file.
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deviation from a spherical geometry. Those results are consistent with
the results of the previous section, wherewe observed increased inter-
TADs contacts and less localization observed whichmake the polymer
more homogeneous and spherical in SARS-CoV-2 model.

Next, we investigated whether the infected model may exhibit
differences on higher-order contacts. To this aim, we focused on the
cluster of IFIT genes, wherewe considered the probability of three-way
contacts30,31 using as point of view IFIT3 gene, located in the center of
the IFIT TAD (Fig. 4d, Methods). We find that in SARS-CoV-2 model
three-way contacts result consistently reduced (Fig. 4d) although
weak, long-range events appear. By fixing the enhancer 1 (E1) as other
point of view we generated a virtual three-way profile involving E1 and
IFIT3 (Fig. 4e), which clearly highlights specific three-way contacts, as
the triplet involving E1-IFIT3-E3 (arrow in Fig. 4e) whose frequency in
Mock case results statistically higher than in control triplets (p = 3*10-9,
one-sided Mann−Whitney U test, Methods). In addition, the frequency
of this triplet is reduced in SARS-CoV-2 model (p = 7*10-5, one-sided
Mann-Whitney U test, Methods). This suggests that the mis-regulation
may also be due to an alteration of contact network within the reg-
ulatory hub, consistent with other recent observations whereby the
olfactory hubs are disrupted/perturbed after SARS-CoV-2 infection5.
Finally, examples of 3D structures of the IFIT locus inMock (Fig. 4f, left
panel) and SARS-CoV-2 (Fig. 4f, right panel) conditions provide a visual
summary of the discussed results.

Time dynamics of 3D contacts is highly variable in SARS-CoV-2
infected condition
Next, we investigated the mechanism leading to the different struc-
tural variability observed inMock and SARS-CoV-2models. To this aim,
we considered the population of independent time trajectories
(Methods) of the polymer and analyzed the dynamics in both

conditions (Fig. 5a) at equilibrium (Methods). We focused again on the
DDX58-enhancer distance (Fig. 5b) and the above-discussed polymer
shape descriptors, i.e., anisotropy (Supplementary Fig. 10a, left panel)
and a-sphericity (Supplementary Fig. 10a, right panel). As expected,
the distance trajectories in theMockmodel appear fluctuating around
average values lower than the SARS-CoV-2model, as also confirmed by
the distributions of the average distance over different time trajec-
tories (Fig. 5c, upper panel, t test p = 10-15, Methods). Same analysis for
anisotropy (Supplementary Fig. 10b, left panel) and a-sphericity
(Supplementary Fig. 10b, right panel) reveals instead a specular
behavior, in agreement with the observations of the previous section.
Interestingly, it emerges also that the time trajectories in SARS-CoV-2
model are more fluctuating, as shown by the distribution of the stan-
dard deviations of the distance in time (Fig. 5c, lower panel). For the
shape descriptors Mock and SARS-CoV-2 models exhibit similar
deviations from the average value during time (Supplementary
Fig. 10c). Analogously, multiple co-localization events (named co-
occurrences, Methods) in IFIT locus, involving IFIT3 and two enhan-
cers, tend to be less frequent in time in SARS-CoV-2 model dynamics
(Supplementary Fig. 10d). These results suggest that SARS-CoV-2
could affect the stability of contacts between regulatory elements. To
support this conclusion, we analyzed in more detail the DDX58-
enhancer distance timedynamics by considering shorter time scales at
higher time resolution (Fig. 5d, Methods). We generated time trajec-
tories to follow a smooth evolution of gene-enhancer distance, in
Mock (Supplementary Movie 3) and SARS-CoV-2 (Supplementary
Movie 4)models. In thisway, wewere able to estimate a contact time τ,
i.e., how long the gene and the enhancer spend in contact (Fig. 5e,
Methods). Importantly, we find that the distribution of contact times
tends to be significantly lower in SARS-CoV-2 model (Fig. 5f, t test
p = 2*10-4), with an approximately 1.5-fold reduction of the average

Fig. 4 | Single cell 3D structures result more variable in SARS-CoV-2 infected
condition. a Examples of 3D structures from the ensemble of single molecule
configurations forDDX58 locus inMock (toppanel) andSARS-CoV-2 (bottompanel)
models. DDX58 promoter and its enhancer are highlighted in pink and cyan
respectively. b Distributions of 3D distances between DDX58 promoter and its
enhancer. Length scales are estimated by mapping the model in physical units
(Methods). Distributions are statistically different (one-sided t test, p = 10-259).
n = 6000 for each model. c Size and shape descriptors computed from the entire
polymer representing the DDX58 locus. Mock and SARS-CoV-2 models exhibit

different volume (top panel, one-sided t test p = 10-240) and anisotropy (bottom
panel, one-sided t test p = 10-240) distributions. n = 6000 for each model.
d Simulated matrices of triple contacts using IFIT3 as point of view in Mock (top
panel) and SARS-CoV-2 (bottompanel)models. eVirtual triple contact profile fixing
enhancer 1 and IFIT3 as point of views. Arrow indicates probability of E1-IFIT3-E3
triple. f Examples of 3D structures from the ensemble of single molecule config-
urations for IFIT locus in Mock (left) and SARS-CoV-2 (right) models. Positions of
IFIT3 and enhancers E1 and E3 are highlighted in pink and cyan respectively. Source
data are provided as a Source Data file.
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contact time. Analogously, we considered the distribution of time
intervals between contacts (Supplementary Fig. 10e) and found that its
average exhibits an approximately 1.6-fold increase in SARS-CoV-2
condition (one-sided t test p = 3*10-4), suggesting that alteration of
either contact times and frequencies similarly contribute to the
changes in the HiC map observed in infected condition.

Taken together, those results point toward a scenario where the
mis-regulationof IFNgenesobserved inSARS-CoV-2couldbe imputed to
a decreased contact stability between genes and their regulatory ele-
ments. It isworth to stress that, although in-silicogenerated, thedistance
dynamics obtained by these polymer models represent a good proxy of
real trajectories, as shown in recent studies32 and are therefore suitable
quantities for experimental testing through e.g., live cell imaging33.

Chromatin re-arrangements in SARS-CoV-2 infection correlate
with a combination of changes of CTCF and histone marks
Next, to understand the link between the architectural re-
arrangements encoded in HiC data and molecular factors, we investi-
gated the relationship between binding sites and epigenetics marks,
such as CTCF and histonemodifications. In this way, we could assign a
biological identity to the binding sites found from HiC data11,34 and
mechanistically interpret the changes in such associations occurring
upon viral infection. To this aim, we made a cross-correlation analysis
(Methods) between the binding site profiles of themodel and different
available epigenetic marks at DDX58 (Fig. 6) and IFIT (Supplementary
Fig. 11) loci, in Mock and SARS-CoV-2 conditions. In Mock, we find
(Fig. 6a, right panel) a clear, strong correlation between CTCF and
RAD21 with binding site type #1, likely highlighting an important role
for LEmechanism in shaping the central domain containing theDDX58
gene, but we also observe a significative correlation with RNAPolII

(RPB1) and H3K4me3, in agreement with the view of a combinatorial
action of different factors in shaping chromatin organization34. In
addition, it emerges a clear association between the flanking binding
sites (#3 and #4) to H3K27me3 andH3K9me3 respectively (Fig. 6b, left
panel). In SARS-CoV-2 model the distribution of binding sites exhibits,
in general, a similar profile (Fig. 6a, left panel) but a richer pattern of
(less strong) correlations is found (Fig. 6b, right panel). In particular,
we could identify the most significant changes in such correlations by
using a control set of randomly permuted polymers (Methods) and
found that they involve CTCF (p =0.047) and RAD21 (p = 0.065, gen-
erally reduced), which become associated with multiple types (#1 and
#3) as well as H3K27ac (p =0.033), which exhibits a general reduction
too4. Analogous considerations hold for IFIT locus where changes in
correlations involve CTCF, RPB1 and H3K4me3 (Supplementary
Fig. 11), although they result much less significant (p > 0.1). In general,
those results support the proposedmechanism4 bywhich an alteration
of LE activity upon infection coupled with changes in the epigenetic
signatures of activity produces an altered expression of IFN genes with
a consequent poor response to the infection.

Discussion
In this work, we investigated how SARS-CoV-2 infection alters the 3D
organization of chromatin in the host cell at multiple length scales,
ranging from few kilobases to several Mbs and involving different
structural entities, as A/B compartments, TADs and gene-enhancer
loops. To this aim,weemployedmodels frompolymer physics andMD
simulations widely used to study chromatin organization13,18,35. We
showed that a simple block copolymer including just homo-typic and
hetero-typic interactions is overall able todescribe theA-compartment
weakening and A-B mixing detected from HiC data in SARS-CoV-2

Fig. 5 | Time dynamics of 3D contacts is more variable in SARS-CoV-2.
a Evolution of 3D structure during time. b 3D distance trajectories between DDX58
promoter and its enhancer in Mock (blue curves) and SARS-CoV-2 (red) models.
c Distributions of average distance (top) and standard deviation (bottom) com-
puted over independent time trajectories shown in panel b. In both cases, Mock is
statistically different from SARS-CoV-2 model (p = 10-15 and 10-18 respectively, one-
sided t test). n = 30 independent trajectories for each model. d Examples of 3D
distance trajectories at higher time resolution in Mock and SARS-CoV-2 models.
Darker lines are smoothed curves (Methods). e Given the 3D distance trajectory

(top) we define the contact time τ (bottom) as the time period spent below the
contact threshold, here set to 150 nm (Methods). f Boxplots showing the dis-
tribution of contact time τ in Mock (blue) and SARS-CoV-2 (red) models. Dis-
tributions have statistically different averages (p = 2*10-4, one-sided t test). n = 272
for Mock and n = 316 for SARS-CoV-2 infected model. The centre lines represent
medians; triangles represent averages; box limits indicate the 25th and 75th per-
centiles; and whiskers extend 1.5 times the IQR from the 25th and 75th percentiles.
Source data are provided as a Source Data file.
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infected cells, by remodulating A-A affinities in an unbalanced A/B
compartment model. Of course, more complicated descriptions of
compartmentalization are possible and could include other mechan-
isms known to play a role for chromatin structure, such as interaction
with nuclear envelope19,36. At TAD level, we find that a combined
reduction of loop extrusion activity (modeled as a reduction of
extruders) together with an alteration of phase-separation properties
(modeled as a reduction of chromatin-protein affinities) potentially
explain the weakening of intra-TAD interactions observed inHiC data4.
Interestingly, a model calibrated from HiC data in host cells infected
with virus4 HCoV-OC43, another human coronavirus causing common
cold, has a slightly reduced loop-extrusion activity with respect the
Mock case but keeps unchanged protein affinities with chromatin,
suggesting that the capacity of altering this phase-separation proper-
ties is a peculiar feature of SARS-CoV-2model and it is not triggered by
defense mechanisms of the host cell. In addition, a model including
TADs and A/B compartments confirmed this scenario, as simultaneous
alteration of loop-extrusion and phase-separation can lead to intra-
TAD weakening and a general decrease of compartmentalization
strength, as observed in SARS-CoV-2 infected condition. We then
investigated the link between chromatin re-arrangement and the reg-
ulation of genes involved in the antiviral response (IFN genes) which
are mis-regulated upon SARS-CoV-2 infection1. Polymer models of
genomic loci containing DDX58 and IFIT genes highlighted a higher

degree of variability in the ensemble of single-molecule conformations
of SARS-CoV-2models. This variability is in turn related to a noisier and
less stable time of contact dynamics, suggesting that SARS-CoV-2
infection reduces specificity and structural stability of regulatory
contacts. Analysis of epigenetic association with the polymer models
reveals changes with factors not only limited to Cohesin and CTCF,
consistent with the above depicted scenario where SARS-CoV-2
infection alters multiple physical mechanisms shaping chromatin
organization of the host cell.

In order to understand themolecular causes leading to the above-
discussed re-arrangements, by means of direct or undirect mechan-
isms, it would be interesting to integrate in the polymer model the
existence of specific molecular factors encoded by the virus known to
perturb the host cell, as highlighted by recent experiments showing
that viral proteins can alter the cell epigenome2 (ORF8) or interact with
other proteins of the infected cell37. In this regard, it is worth to
mention that other viruses are capable of re-structuring genome
organization through the transcription of their proteins, such as NS1
from influenza A virus (IAV)38. The above outlined strategy, based on
polymer models combined with experimental data, could be relevant
to test the effects of specific proteins on the physical mechanisms
shaping chromatin architecture (e.g., phase-separation) and therefore
be helpful in the identification of molecular targets for therapeutics
purposes.

Fig. 6 | Chromatin re-arrangements correlates with a combination of changes
of CTCF and histonemarks at DDX58 locus. a Top panel: distribution of binding
sites obtained from HiC data in Mock (left) and SARS-CoV-2 (right) conditions.
Bottompanel: different epigeneticmarks (data from ref. 4). In SARS-CoV-2 relevant
reductions of RAD21 and H3K27ac are observed. b Cross-correlation analysis

between binding site profiles and epigenetic marks. Significative correlations
(Methods) atDDX58 locus inMock (left) and SARS-CoV-2 (right) models are shown.
Asterisks indicate strong changes of the correlation betweenMock and SARS-CoV-2
infected conditions (Methods). Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-48370-6

Nature Communications |         (2024) 15:4014 8



In general, exploring the link between viral infection and chro-
matin architecture can be extremely insightful to understand virus
action on host cell at the level of gene regulation. To this aim, polymer
models turn out to be valuable tool as they offer an unbiased, pre-
dictive approach to connect different aspects relevant for genome
organization and function39, including single-cell variability, dynamics
between regulatory elements and research of therapeutic targets.

Methods
We use polymer physicsmodels to study chromatin re-organization of
host cell genome infected by SARS-CoV-2. We consider recently pub-
lished HiC data4 in control condition, i.e., not infected human A549
cells expressing ACE2 (referred to as Mock) and in human A549 cells
expressing ACE2 at 24-hour post SARS-CoV-2 infection.

Polymer model of A/B compartment
To simulate A and B compartment we employed the Strings and Bin-
ders Switch18 (SBS)model, inwhich a chromatinfilament ismodeledby
a string made of N beads that can interact with different, specific
binding factors populating the surrounding environment. We used a
polymer made of N = 1000 beads, divided in equally sized blocks of 75
beads, schematically colored in green and red (Fig. 1) and representing,
without loss of generality, A and B compartment respectively.
Assuming, e.g., a genomic content of 100 kb per bead, the polymer
represents a regionof 100Mbdivided in 12 compartments large 7.5Mb
each, in line with average size of A/B compartments40. Homo-typic
affinities EA-A and EB-B between binding sites and cognate binders,
which mediate intra-compartment interactions (i.e., between A-A and
B-B), are taken in the range 3.2−3.4KBT . In Fig. 1 and Supplementary
Figs. 1 and 3 we show affinities normalized with respect the back-
ground hetero-typic interaction (A-B and B-A), which is taken
EA-B = 3.1KBT and kept constant in all the simulations for sake of sim-
plicity. To test the generality of our results, we considered alsomodels
with constant homo-typic affinities (EA-A = EB-B, for sake of simplicity)
and variable hetero-typic affinity EA-B taken in the range 3.0−3.2KBT . As
before, in Supplementary Figs. 2 and 4 we show affinities normalized
with respect EA-B. Finally, binder concentration is taken above coil-
globule transition threshold13, so to ensure phase-separation of
compartments.

Polymer model of real chromosomes
To simulate chromosome 11 (Supplementary Fig. 5), we used the 1st
eigenvector from the Principal Component Analysis (PCA) applied to
HiC data in Mock condition at 100 kb resolution, using the function
eigs_cis from cooltoolspackage23. GC contentwas used to identify A and
B compartments. We used a polymer made of N = 1353 beads, having
100 kb of genomic content. Beads of type A or type B were assigned
based on the compartment profile, as shown in Supplementary Fig. 5a.
When the eigenvector was not defined, A/B beads were assigned by
simple interpolation around those sites (Supplementary Fig. 5a). As
before, homo-typic affinities EA-A and EB-B are taken in the range 3.2-
3.4KBT with hetero-typic EA-B = 3.1KBT kept fixed.

Polymer model of TADs
To simulate polymer models of TADs we considered again the above
mentioned SBSmodel combinedwith loop extrusion14,15 (LE), following
a previously described implementation10. Specifically, we use a simple
homopolymer made of N = 1000 beads with one type of binder, as
shown in Fig. 2b. Bead-binder interaction affinity is taken in the range
3.1−3.8KBT , binder concentration is accordingly taken high enough to
ensure coil-globule phase-transition and, as before, it is kept constant
for sake of simplicity. Anchor points for the loop extruding factors
(LEfs) are all bi-directional (i.e., forward and reverse) and are regularly
placed along thepolymer every 120beads, occurringwith aprobability
equal to0.5, as shown in Fig. 2c.We assumea 5 kbgenomic content per

bead, so to obtain an average TAD size ∼600 kb, i.e., similar to the
average TAD size measured in Mock HiC data4. Average distances
among extruders (we refer to as LEf separation in Supplementary
Fig. 6d, e), proportional to the inverse of their total number, is taken in
the range 60−500 kb, consistent with previous reports15. Extruders
lifetime, which is in turn related to the processivity (i.e., the average
lengthof anextruded loop, seeMolecularDynamics simulationdetails),
is taken high enough to allow the formation of TADs and loops
(500 kb) in the contact maps and kept constant for sake of simplicity.
Results were not significantly affected by changes of this parameter.
Analogously, polymer model including TADs and A/B compartments
(Supplementary Fig. 7) is made of N = 1000 beads with four equally
sized compartments in the sequence A-B-A-B (250 beads each), with 5
TADs in each compartment (50 beads each). By assuming 10 kb of
genomic content for each bead, we simulate approximately 10Mb.
Again, homo-typic affinities EA-A and EB-B are taken in the range
3.2−3.4KBT , hetero-typic affinity EA-B = 3.1KBT kept fixed. In this case,
we considered only balanced affinities (EA-A = EB-B) for sake of simpli-
city. Loop extrusion parameters are similar to the above described
model of TADs, with average distance among extruders taken in the
range 100−1000 kb (Supplementary Fig. 7a) and similar processivity.

Polymer model of interferon response genes DDX58 and IFIT
To simulate DDX58 (chr9:32300000-32700000, hg19) and IFIT
(chr10:90900000-91290000, hg19) loci, we used the previously
described hybrid model (SBS + LE), informed with experimental data
to find the binding sites along the polymer, as schematically shown in
Supplementary Fig. 9a. Binding sites have been obtained with the
PRISMR algorithm11, using as input HiC data in Mock and SARS-CoV-2
conditions at 5 kb resolution. In general, starting from a contact map
of a generic genomic locus, this algorithm returns the minimum
number of different types of binding sites (represented by different
colors) and their position along the chain in order to best explain the
input data. This occurs through an iterative Simulated Annealing
Monte Carlo optimization procedure that minimizes a cost function
made of two terms: the first one takes into account the difference
between HiC andmodel predicted contactmatrices, while the second
is proportional to the total number of model binding sites so to
penalize the presence of too many of them11. In this way, the model
optimizes the similarity with the input HiC data, while avoiding
overfitting. Here, 4 types of binding sites forDDX58 (Fig. 3) and 5 types
for IFIT (Supplementary Fig. 8) locus have been found, in line with
similar polymer models of real loci10, and an inert type not shown in
the diagrams for sake of simplicity. As the single bead contains
500 bp, we used polymers of N = 900 beads for DDX58 locus and N =
880 beads for IFIT locus (we added inert tails of 50 beads on both
sides to control boundary effects). Homo-typic bead-binder attractive
interactions were taken in the range 2.3−2.9KBT , SARS-CoV-2 model
simulated with lower affinity with respect the Mock model, con-
sistently with the results obtained in the previously discussed model
of TADs. In addition, a general, constant hetero-typic interaction is
also used16. Anchor points have been defined using CTCF peaks from
ChIP-seq data4 binned at 500 bp resolution (i.e., the size of a single
polymer bead). The presence of an anchor point occurs with a prob-
ability proportional to the height of the signal. Orientations of anchor
points (Fig. 3 and Supplementary Fig. 8) have been assigned using the
FIMO tool in the MEME suite (https://meme-suite.org/meme/) fed
with CTCF binding motif (JASPAR database)10,11. If multiple matches
occurredwithin the 500 bpwindow, themost likelywas taken (i.e., the
FIMO hit with lowest p value). Processivity was taken in the range
150−400 kb to ensure the formation of the loops in the maps (Fig. 3
and Supplementary Fig. 8). Separation among extruders is taken in the
range 50−100 kb, with SARS-CoV-2 case simulatedwith halved density
with respect to the Mock case, again consistently with the results
found from the previously described model of TADs.
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Molecular dynamics simulations details
All previously described polymer models have been explored using
classical Molecular Dynamics simulations41. In general, chromatin
fiber is a standard bead on a string chain and binders are simple
spherical particles, both with same diameter σ = 1 and mass m= 1,
expressed in dimensionless units. Excluded volume effects of beads
and binders are taken into account using a truncated, purely repul-
sive Lennard-Jones (LJ) potential41, with energy unit KBT , T tem-
perature and KB Boltzmann constant. Consecutive beads are linked
by FENE bonds41, withmaximum length R0 = 1.6σ and spring constant
KFENE = 30KBT=σ

2. Bead-binder attractive interactions are modeled
using a short-range, truncated LJ potential: VLJðrÞ=4ε½ðσrÞ12 � ðσrÞ6 �
ð σ
rint
Þ12 + ð σ

rint
Þ6� for r < rint and 0 otherwise, where r is the distance

between particle centers and ε, sampled in the range (8−12)KBT ,
regulates the interaction intensity. Specific parameters are: rint = 1.3σ
for compartment and TAD models (Figs. 1 and 2), rint = 2.5σ for spe-
cific interaction in DDX58 and IFIT loci models (Fig. 3 and Supple-
mentary Fig. 8). Unless differently stated, we always show binding
affinities corresponding to the minimum of VLJ . Length scales are
mapped in physical units (Figs. 4 and 5) through the relation18

σ = g
G

� �1=3D where D is nuclear diameter (7 μm), G is the nuclear
genomic content (6.6 Gbp) and g is genomic content of a single bead
(500bp), which returns σ ∼ 30 nm for the models of DDX58 and IFIT
loci, in line with previous estimates from analogous polymer
models30.

The system evolves according the Langevin equation42 with
standard parameters41, i.e., friction coefficient ζ =0.5 and temperature
T = 1, in dimensionless units. We used an integration timestep
dt =0.01. Integration has been performed with a Velocity
Verlet algorithm using the publicly available HOOMD software43.
Simulations are performed in a cubic box (linear size L= 50σ in real loci
models) with boundary periodic conditions to take into account finite
size effects. For each parameter setting we performed up to 30 inde-
pendent simulations. Polymer configurations are initialized as stan-
dard Self-Avoiding-Walk (SAW) states, binders are randomly located in
the simulation box and then equilibrated up to 5*107 timesteps. Con-
figurations have been sampled up to the equilibrium sampling fre-
quency every 5*104 timesteps, except for the simulations shown in
Fig. 5d, e, f, where frameswere sampled every 103 timesteps.Quantities
obtained from the entire population of single-molecule 3D config-
urations (Fig. 4b, c) are shown as histograms. Analogously, histograms
of averages and standard deviations of time trajectories, shown in
Fig. 5c and Supplementary Fig. 10b−d, are computed over 30 inde-
pendent trajectories. Timescales shown in Fig. 5 are estimated by using
the relation13 τ = η(6πσ3/ε), where ε = 1KBT is the energy scale and η the
viscosity; assuming T =300K and η =0.2 cP, we obtain an estimated
timescale τ ∼0.5ms, again in line with previous studies30.

Loop extrusion process is implemented largely following pre-
vious descriptions15 and is integrated in the above-described MD
simulations, in a model combining both phase-separation and loop
extrusion mechanisms. Basically, loop extruding factors are modeled
as harmonic springs with elastic constant Kspring = 10KBT=σ

2 and
equilibrium distance req = 1.1σ. Extruding factors slide along the
polymer every 500MD timesteps bymoving the spring from the bead
pair (i, j) to (i − 1, j + 1). Extruders can stochastically detach from the
polymer with a rate kof f , which is related to the processivity through
the relation44 proc=2g=kof f , g the above defined genomic content
per bead. When an extruder detaches, a new one is replaced along the
polymer in a random position, so to keep a constant number of
extruders. An extruder halts its motion when it meets oppositely
directed anchor points or when it meets another extruder during the
sliding15, since they cannot pass through each other.

The codes of the above-described models, i.e., performing MD
simulations of A/B compartments, TADs and real genomic loci, where
SBS and LE are combined, have been adapted from the software10 at

GitHub link (https://github.com/ehsanirani/PhaseSeparation-
LoopExtrusion-MD) and are available as Supplementary Software 1.

Analysis of contact maps, saddle-plots and contact probability
Contact maps were computed from the ensemble of 3D polymer
structures by setting a distance thresholdA anddefining a contact ifdi,j
< Aσ, where di,j is the Euclidean distance between beads i and j and A
taken is taken the range 2−3.5. For each polymer conformation, we
calculate the associated contact map and then aggregate all the maps
of the ensemble of structures for a fixed choice of parameters. All the
simulated maps correspond to the entire polymer, except Fig. 1c,
Supplementary Figs. 1a, 2 and 3a, where an average among three
consecutive sub-matrices is shown for presentation purposes. Analo-
gously, triplet matrices (Fig. 4d) are computed from a simple gen-
eralization of the pairwise calculation30. We first fix a specific point of
view (i.e., the gene IFIT3, Fig. 4d) and identify it on the polymer (e.g.,
bead i). Then, from each polymer conformationwe call a triple contact
of bead i with other beads (e.g., j and k) if their mutual Euclidean
distance is lower than the threshold or, more formally, if di,j& dj,k & dk,I
< 5σ. Then,we iterate over all possible j and k indexes to obtain a triplet
matrix of single polymer conformation. Those matrices are then
aggregated to generate a triplet frequency matrix. Statistical sig-
nificance of the triplet frequency involving E1-IFIT3-E3 (Fig. 4e) is
estimated by comparing the distribution of triple contacts from the
population of single conformations with the distribution of control
triplets located 100 kb downstream the IFIT3 promoter and preserving
the relative genomic distance. Saddle-plots (Fig. 1e, Supplementary
Figs. 1b, 3b, 4a, 5e) have been computed using the cooltools package23

of the cooler tool to analyze HiC data22. Briefly, we first converted the
simulatedmaps in cool format using the create_cooler function, thenwe
called A/B compartments and then used the saddle function with
default number of bins (i.e., 50). Analogously, we performed the same
analysis on HiC data4 (80 kb resolution) in Mock and SARS-CoV-2
infected conditions to generate the Log2-FC matrix in Fig. 1e. Best
polymer model for A/B compartments in Fig. 1d was found by con-
sidering linear combinations of simulated saddle-plots andminimizing
the sum of the entry-by-entry square difference between the model
and experimental saddle-plots. Aswe considered combinations of four
matrices, 2 with unbalanced (i.e., EA-A < EB-B) and 2 with balanced (i.e.,
EA-A = EB-B) homo-typic affinities, the procedure finds the best four
coefficients (Fig. 2d, bottom panels), their sum constrained to 1. We
verified that by minimizing other quantities (e.g., the χ2) analogous
results were found. Similarly, bestmodel in Supplementary Fig. 4a was
found by considering combinations of two matrices with different
hetero-typic affinities EA-B and balanced homo-typic affinities
EA-A = EB-B (specifically, we combined models with EA-A/EA-B = 1.06 and
1.08). On the same line, best model for chromosome 11 (Supplemen-
tary Fig. 5b, c, d, e) is a combination of two matrices with different
homo-typic affinities (one balanced EA-A = EB-B and one unbalanced
EA-A < EB-B, hetero-typic EA-B kept fixed). In this case, we could fit
simulated and experimental 1st eigenvector profile (Supplementary
Fig. 5b, c), which returns the same best coefficient (Supplementary
Fig. 5d, e) obtained by performing the above-described fit using
saddle-plots. Compartment strength (Supplementary Fig. 7c) has been
computed using the saddle_strength function from the cooltools
package23. Contact probabilities shown in Fig. 2d and Supplementary
Fig. 6c were computed from the previously defined contact maps by
taking the average value of each diagonal. Curves are then multiplied
by a coefficient (equal in Mock and SARS-CoV-2 models) to map the
simulated values into the experimental range. Bestmodel for TADswas
found by considering the best linear combination of contact prob-
abilities for different model parameters (i.e., average LEf separation
and interaction affinity) and thenminimizing the χ2 with experimental
curve in the range 15 kbp−2.5Mb (Mock or SARS-CoV-2 conditions), so
to take into account the wide range of variability of the contact
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probability. To test the best description in terms of affinities, we
consider combinations of four curves, two with affinities 3.1 and
3.8KBT (LEf separation fixed) and two with same affinities but with no
LEfs (Supplementary Fig. 6d and 6e). Therefore, the fit returns four
coefficients, their sum constrained to 1, representing the amount of
each curve in the best model.

Gene-enhancer distance, shape descriptors and structural
variability
3D distances between DDX58 gene and its enhancer E has been simply
obtained by calculating the Euclidean 3D distance from a 3D structure.
Smoothing of 3D distance trajectories shown in Fig. 5d and e has been
done with a standard 1st order polynomial computed by use of sig-
nal.savgol_filter function from the Python package scipy. Shape
descriptors were computed using standard formula used in polymer
physics field. We first computed the gyration tensorG29, whose entries
are Gα,β =

1
N ð

PN
i ðxα,i � xα,CM Þðxβ,i � xβ,CMÞÞ, where α,β 2 f0,1,2g are

component indexes, xi is the vector position of bead i, xCM is the
vector position of the polymer center of mass and N number of
polymer beads. Then, by diagonalizing this tensor, we obtained the
three eigenvalues λ1, λ2 and λ3, sorted in ascending order. Anisotropy
(Fig. 4c and Supplementary Fig. 10a−c) is defined as29 1�
3ðλ1λ2 + λ2λ3 + λ3λ1Þ=ðλ1 + λ2 + λ3Þ2 and reflects the symmetry of a
polymer conformation. Analogously, asphericity (Supplementary
Fig. 10a−c) is defined as29 ðλ1 � ðλ2 + λ3Þ=2Þ andmeasures the deviation
from a spherical symmetry. Volume of a polymer conformation is
estimated by first numerically computing a convex hull from the 3D
coordinates of the polymer by use of the spatial.ConvexHull function
from the Python package scipy and then converting this value in phy-
sical volume units through the previously estimated length scale.

Epigenetics signature of binding sites
To investigate the biological nature of the model binding sites, we
compared their genomic locations with available epigeneticmarks. To
this aim, cross correlation analysis (Fig. 6 and Supplementary Fig. 11)
has been performed as previously described11,30. Epigenetics data
(Fig. 6a and Supplementary Fig. 11a, left and right bottom panels) are
taken from ref. 4 and have been first binned at 5 kb resolution in order
tomatch theHiC resolutionused to infer thebinding site profiles. Then
we computed the Pearson correlation between each specific binding
site and epigenetic profiles, i.e., between the number of binding sites
of a specific type (represented by a color in the left and right upper
panels of Fig. 6a and Supplementary Fig. 11a) and the epigenetic signal
in the corresponding 5 kb bins. Significance of these correlations has
been estimated with a random control model generated by boot-
strapping 10,000 times the original binding sites position along the
locus and re-calculating the correlations. We symmetrically set the
bottom 15th percentile and top 85th percentile as significance
thresholds, although different thresholds led to similar results. The
results are collected in a matrix (Fig. 6b and Supplementary Fig. 11b)
where each element is the significant correlation between a specific
type and epigenetic mark pair, or zero if the correlation is not sig-
nificant. Typically, each type correlates with a combination of epige-
netic marks, rather than with a specific one. Analogously, p-values of
the changes in correlation with epigenetic tracks between Mock and
SARS-CoV-2 has been estimated by comparing the differences with a
control distribution of changes obtained by randomly bootstrapping
the original binding sites (one-sided computation on a population of
1000 permutations). The top 4 most significant changes (i.e., the
lowest p-values) were highlighted in Fig. 6.

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rando-
mized. For all boxplots, the centre lines represent medians; box limits

indicate the 25th and 75th percentiles; and whiskers extend 1.5 times
the interquartile range (IQR) from the 25th and 75th percentiles. Mann
−Whitney U test and t-test were commonly used to compare dis-
tributions; p <0.05 was considered significant (*p < 0.05;
**p <0.01; ***p <0.001).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Published HiC data4 and ChIP-seq data4 used in this work are available
at the Gene Expression Omnibus (GEO) database with accession
number GSE179184 CTCF binding motif is available from the JASPAR
database (matrix profile MA0139.1). Polymer configurations of DDX58
locus are provided as Supplementary Data 1. The polymer structures
generated for the IFIT locus and Chr11 will be available from the
authors upon request. Please contact Andrea M. Chiariello at andrea-
maria.chiariello@infn.it. Requests of these data will be answered
within approximately two weeks. Source data are provided with
this paper.

Code availability
Codes used to perform simulations presented in this paper are avail-
able in the Supplementary Software 1 folder. The software used for
Molecular Dynamics simulations is HOOMD, version 2.9.6. Full infor-
mation and additional documentation are available at the github link:
https://github.com/ehsanirani/PhaseSeparation-LoopExtrusion-MD10.
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