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Crykey: Rapid identification of SARS-CoV-2
cryptic mutations in wastewater

Yunxi Liu 1, Nicolae Sapoval1, Pilar Gallego-García 2,3, Laura Tomás 2,3,
David Posada 2,3,4, Todd J. Treangen 1 & Lauren B. Stadler 5

Wastewater surveillance for SARS-CoV-2 provides early warnings of emerging
variants of concerns and can be used to screen for novel cryptic linked-read
mutations,which are co-occurring single nucleotidemutations that are rare, or
entirelymissing, in existing SARS-CoV-2 databases.While previous approaches
have focusedon specific regions of the SARS-CoV-2 genome, there is a need for
computational tools capable of efficiently tracking cryptic mutations across
the entire genome and investigating their potential origin. We present Crykey,
a tool for rapidly identifying rare linked-read mutations across the genome of
SARS-CoV-2. We evaluated the utility of Crykey on over 3,000 wastewater and
over 22,000 clinical samples; our findings are three-fold: i) we identify hun-
dreds of cryptic mutations that cover the entire SARS-CoV-2 genome, ii) we
track the presence of these cryptic mutations across multiple wastewater
treatment plants and over three years of sampling inHouston, and iii) we find a
handful of crypticmutations in wastewatermirror crypticmutations in clinical
samples and investigate their potential to represent real cryptic lineages. In
summary, Crykey enables large-scale detection of cryptic mutations in was-
tewater that represent potential circulating cryptic lineages, serving as a new
computational tool for wastewater surveillance of SARS-CoV-2.

Wastewater monitoring is a vital tool complementing clinical testing
for COVID-19 surveillance1–9 and can fill in the surveillance gap when
clinical testing is unavailable or halted. Multiple studies have demon-
strated that SARS-CoV-2 variants of concern (VOCs) can be detected in
wastewater samples10–14, preceding clinical testing by up to 2 weeks8.
Furthermore,wastewater samples contain informationon thegenomic
diversity of the circulating variants in the entire community, avoiding
the sampling bias inherent to the clinical surveillance, which focuses
on symptomatic patients15–17. Importantly, wastewater monitoring can
also detect novel and rare SARS-CoV-2 lineages not represented in
GISAID’s EpiCoV database18, termed cryptic lineages19. A few methods
have been proposed for the detection of cryptic lineages from was-
tewater samples. Still, they often require a combination of ultra-deep
sequencing of specific genomic regions as well as a mixture of short-
read, long-read, and proximity ligation sequencing technologies and

thus are not compatible with most wastewater sequencing protocols
used for routine monitoring due to time and cost limitations15,20.
Moreover, non-uniform sequencing coverage caused by amplicon
efficiency heterogeneity andenvironmental RNAdegradationcreates a
challenge for detecting cryptic lineages fromwastewater samples4,21,22.
Furthermore, the origin of these cryptic lineages in wastewater is still
an open question23. It has been proposed that they could be rare intra-
host lineages not represented in the consensus genomes available in
public databases, rare lineages with low prevalence in the population,
lineages from non-human hosts (like rats), or technical artifacts19,20,24.

The objective of this study was to (1) develop a tool that enables
the detection in wastewater samples of cryptic lineages that have not,
or rarely been reported in GISAID’s EpiCoV database, (2) investigate
the possible origins of these cryptic lineages by contextualizing was-
tewater and clinical surveillance data. In this manuscript, we introduce
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Crykey, a novel computational method for detecting rare linked-read
mutations from wastewater samples that exploit the co-occurrence of
point mutations on the same sequencing read or read-pair (from now
on, linked-read or LR mutations). The rationale is that LR mutations
found in wastewater samples but nonexistent or at a very low pre-
valence (e.g., <0.0001) in public databases represent potential cryptic
lineages (fromnowon, potential cryptic lineagewill be denoted asCR);
i.e., rare linked-readmutations supported by 5 ormore readswhich we
claim are indicative of one of the following: real cryptic lineages, SARS-
CoV-2 transcription variation due to subgenomic mRNAs25, or sys-
tematic artifacts. We used Crykey to analyze 3175 wastewater samples
collected in Houston, Texas, USA, from February 2021 to November
2022. Our results are threefold: (i) We discover numerous cryptic
mutations spanning the whole SARS-CoV-2 genome, (ii) we monitor
the occurrence of these cryptic mutations across numerous waste-
water treatment plants (WWTPs), observing them over a period of 3
years in Houston, and (iii) we identify cryptic mutations in wastewater
samples that reflect those in clinical samples, and explore the possi-
bility of these representing actually hidden lineages.

Results
To evaluate the utility and efficiency of Crykey, we applied it to SARS-
CoV-2 amplicon sequencing data from 3175 wastewater samples col-
lected from 39 wastewater treatment plants (WWTPs) in Houston
between February 2021 and November 2022, as well as in 5060 short-
read clinical samples collected within the Greater Houston between
December 2021 and January 2022 (Supplementary Fig. 1), and nearly
9000 short-read clinical samples collected outside of Texas over the
same 8-week time period (between 2021-12-06 and 2022-01-31; Sup-
plementary Fig. 2). In addition, we examined over 7000 long-read
clinical samples on a specific CR. We will now delve into the specific
results from these data.

Overview of Crykey and computational performance
Crykey is a computational tool designed to search for cryptic muta-
tions from samples by performing fast variant queries to determine
how rare a set of LR mutations is among millions of publicly available
genomes. Genomes of the same lineage during a short period of time
have more mutations in common. Therefore, we indexed the Crykey
database by partitioning the genomes into bins by sample collection
date and lineage (Fig. 1a). By pre-computing the prevalence rate of
eachmutation in each bin, Crykey is able to quickly reduce the search
space from the entire database to a fewhundreds of genomes for exact
matching (Fig. 1b, c, d). We identified a total of 6,744 CR candidates in
wastewater samples from Houston. More than 67.8% of the candidate
CRs were found in 50 or fewer sequences in the GISAID EpiCoV data-
base. Fully novel CRs (zero prevalence, meaning it has not been pre-
viously observed) constitute more than 32.8% of the data (Fig. 2a). We
benchmarked the processing time of exact searches on a Linux
machine with Intel Xeon Gold 6138 2.00GHz CPU. The process time
increases as the rarity of the CR candidates decreases, as the result of
the expansion of the search space (Fig. 2b).

Genomic distribution of CRs in wastewater samples
After quality control, we identified 705 CRs in the wastewater samples.
Figure 3a shows the location of the CRs along the reference SARS-CoV-
2 genome, theirmeanallele frequency (AF) acrosswastewater samples,
the prevalence in GISAID, and the number of weeks (not necessarily
consecutive) detected in wastewater. 74.8% of the CRs had a mean AF
less than0.2,while 7.8%of theCRsweredetected at consensus-level AF
(mean AF >=0.5) (Fig. 3a). The occurrence of the CRs varied sig-
nificantly, ranging from 1 to 33weeks (size of the dot in Fig. 3a). Almost
half were located in the S (20.1%) and N (28.4%) genes. Most of the
genome regions are dominated by CRs that contain only non-
synonymous mutations, except for gene N (Fig. 3b).

Emergence of CRs co-occurs with the spread of new variants
The emergence of the CRs coincided with the spread of new VOCs. For
example, the number of CRs and viral load in wastewater increased
significantly around July 2021 (Fig. 4a), corresponding to the Delta
wave in Houston (Fig. 4b). Similar patterns were observed during the
emergence of B.1.1.529 (Omicron) in December 2021, BA.2 (Omicron)
in May 2022, and BA.5 (Omicron) in July 2022. Most CRs could be
associated with one (77%) or more (17%) known PANGO lineages cir-
culating at the time (Supplementary section 126,27). We observed fewer
CRs betweenApril andAugust 2022, when the sequencing breadth and
depth of coverage dropped due to primer dropouts in lower-quality
sequencing runs (thinner bars in Fig. 4a). It is hard to untangle whether
this effect was due to specific genomic features of the BA.2 and BA.5
variants or whether it was a consequence of the lower quality of the
sequencing data during this period.

Houston CRs display distinct patterns
More than 400 CRs found in Houston wastewater were completely
novel, or can only be found in less than 50 genomes in GISAID (Fig. 5).
The vast majority of the CRs did not persist for long, with over 85%
found in less than 4 consecutiveweeks. Short-durationCRs (less than 4
weeks) were generally found in only a few WWTPs and at low AFs
(Fig. 5). Interestingly, some CRs were detected in multiple WWTPs
across the city and persisted for 4 months or longer. The most per-
sistent CR observed, which we named CR12, was detected in the was-
tewater for 33 weeks. CR12 contains mutations A29039T and
G29049A, which cause K256* (stop codon) and R259Q amino acid
changes, respectively, on the N gene. The mean AF of CR12 across
WWTPs was generally low (<0.1), with a few exceptions. CR12’s pre-
sence ramped up slowly in 1–7 WWTPs, peaked in late November 2021
when observed in 16 WWTPs (Fig. 6), and phased out in late February
2022 and remained undetected for 2 months (but notice that the
sequencing coverage also dropped during this period), re-appearing
for a short time around May 2022.

Many CRs exhibited perplexing patterns of allele frequency,
duration, and clinical sample prevalence. The first occurrence of CR12
in Houston wastewater can be traced back to Aug 2, 2021, when Delta
was dominant in the community. As Omicron emerged in December
2021, CR12 continued to be present in the wastewater and clinical
samples (Figs. 4 and 6). To evaluate the possibility of CR12 being a
technical artifact, we first exploredwhether this could be due to a read
mapping error by using a different readmapper, Bowtie228. The results
were consistent with those obtained previously with BWA MEM29. To
investigate whether the mutations comprising CR12 were due to sys-
tematic sequencing errors, for example primer dependent errors, we
further examined 7,113 clinical samples sequencedwith the PacBioHiFi
system (Sequel II), including 2,458 samples collected from Texas, and
4,655 samples collected from other US regions between Nov 06, 2021
and Mar 21, 2022. Forty-five of those samples included reads that
supported the presence of CR12, and 28 were from Texas (Supple-
mentary Table 1). While observing the rare LR mutations comprising
CR12 in PacBio data does not fully rule out the possibility of technical
artifacts, it provides a basis for ruling out platform-specific errors.

Investigating CRs in clinical samples
As Omicron became dominant in the community, several CRs specific
to the VOC emerged and becamemore prevalent among hosts (Fig. 7).
We explored the occurrence of 20 CRs with short-term or long-lasting
patterns in 5060 clinical samples collectedwithin the Greater Houston
(between 2021-12-06 and 2022-01-31; Supplementary Fig. 2). 12 out of
20 CRs detected in the wastewater were seen in the clinical samples
(Fig. 7), including CR3, CR5, CR8, and CR12 (Fig. 8 and Supplementary
Figs. 3–5). Remarkably, for these CRs, the mean AF within the clinical
samples was very low (<0.05), except for CR5 (Supplementary Fig. 4).
CR2 was associated with Delta, while the remaining eleven were

Article https://doi.org/10.1038/s41467-024-48334-w

Nature Communications |         (2024) 15:4545 2



associated with Omicron. Likewise, the consensus genomes for most
of the Houston clinical samples carrying CRs (all but CR2) were iden-
tified as Omicron, mainly BA.1.1 and BA.1.15 (Fig. 7). The clinical pre-
valenceof theOmicronCRs increased as theOmicron variant spread in
the city, as reflected by both the viral load in the wastewater (Fig. 4a)
and the number of sequences from Texas in GISAID (Fig. 4b). In con-
trast, CR2 was detected in the wastewater only during the first 2 weeks
of the sampling period, while also detectedwith very lowprevalence in
the clinical samples during weeks 1–6 (Fig. 7). We also queried the
number of sequences with each amino acid change associated with
CR1-CR12 all over the world using outbreak.info30,31. As expected, the
consensus-level mutations are often found in millions of SARS-CoV-2

sequences, and the mutations with low AF are found in a much lower
number of sequences, ranging from a handful to thousands (Supple-
mentaryTable 2). The compendiumof evidence forCR1-CR12 provides
a mixed picture of factors driving the rare LR mutations comprising
these CRs. Low allele frequency, high prevalence, and geographic
discordance cast doubt on these CRs representing legitimate cryptic
lineages.

However, CR8 exhibited a different pattern.We first detected CR8
in clinical samples in the 1st week at a low prevalence rate. As the
prevalence rate in clinical samples increased, we could detect CR8 in
wastewater on the 3rd week (Fig. 8), from samples sequenced using
distinct protocols. CR8 consisted of two mutations, C10449A and
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Fig. 1 | Workflow and algorithms of Crykey. a Crykey constructs a genome-to-
mutation database and a set ofmutation lookup tables usingGISAID sequences and
metadata. b Crykey searches for two or more mutations located on the same read
or read-pair and uses the mutation lookup tables to identify whether the linked-
read mutations represent a candidate CR. Then, each candidate CR is queried
against the genome-to-mutation database to calculate its prevalence rate; if they

meet the indicated thresholds they are then considered a CR. The count of was-
tewater samples, candidateCRs, andCRs afterfiltering used in this study are shown
in parentheses. cAlgorithm to search candidate CRs, with an example of a read-pair
containing mutations A and B. d Algorithm for the fast exact search for prevalence
calculation, with an example of a candidate CR containing mutations A and B.
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T10459C. C10449A was a consensus-level mutation for Omicron
strains, and it had an individual mean AF close to 1 in both wastewater
and clinical samples (Fig. 8a, e). The prevalence rate of C10449A alone
gradually increased in the first 3 weeks of detections starting from the
week of 2021-12-06, until the prevalence rate reached 1, and the pattern
was consistent in both wastewater and clinical samples; on the other
hand,mutation T10459Cwas present as a low-frequencymutationwith
individualmeanAFclose to0.02. Theprevalence rate of T10459Calone
in clinical samples increased in the first half of the sampling period,
reached a peak at week 4, and then decreased in the second half of the
sampling period (Fig. 8a, e). Since CR8 contained both a consensus-
level mutation C10449A and a low-frequency mutation T10459C, both
mean AF and prevalence rate of the co-occurring mutations followed
the pattern of the T10459C (Fig. 8b, f) and as the prevalence rate of
CR8 in clinical samples increased, we started to detect it in wastewater
on week 3 as well. The average number of reads that span CR8 regions
are shown in Fig. 8c, g as coverage and Crykey is sensitive enough to
detect CR8 in wastewater, given that the coverage of wastewater
samples was much lower than in clinical samples (Fig. 8d).

To assess whether geographic patterns at a national level were
associated with these CRs, we processed nearly 9000 clinical samples
collected outside of Texas over the same 8-week period (between
2021-12-06 and 2022-01-31; Supplementary Fig. 2). CR5 was detected
across clinical samples from Maryland (very high prevalence) and
Massachusetts (low prevalence) (Supplementary Fig. 6a). CR8 was
detected in Maryland again at a very high prevalence (Supplementary
Fig. 6b). In addition, we identified five additional CRs shared across

clinical samples from Houston and Maryland (CR3, CR4, CR7, CR9,
CR11). Note that the distribution of the PANGO assignments for sam-
ples containing CR5 and CR8 differed between states. Although both
CRs are associated with Omicron, Houston was dominated by BA.1.15,
while Maryland and Massachusetts had a much higher proportion of
BA.1.1 and BA.1.17, and Maryland had a much higher proportion of
BA.1.18 and BA.1.20 as well.

Discussion
Wastewater monitoring for SARS-CoV-2 has been widely used to
complement clinical genomic surveillance during the COVID-19
pandemic13,32. A recent study claims to have identified cryptic SARS-
CoV-2 lineages in the wastewater that went undetected in the clinic,
leaving an open question about the origin of these CRs19. Furthermore,
most cryptic lineage detectionmethods requireultra-deep sequencing
or combining data from both long and short reads and can not be
applied with commonly used wastewater surveillance protocols. Our
contribution centers on a novel detection tool, Crykey, designed to
identify rare linked-read mutations in wastewater using sequencing
data. Specifically, Crykey leverages an optimized database lookup for
the co-occurrence of mutations that are present on the same reads or
read pairs and to detect the presence of CRs. Our method is fully
compatible with standard mutation calling pipelines for SARS-CoV-2
and considers CRs defined by mutations that may occur across the
entire SARS-CoV-2 genome. To demonstrate the efficacy of our new
computational tool, we applied CryKey to >3000 wastewater samples
from Houston.

Fig. 2 | Occurrence distribution and query time of candidate CRs found in
Houston wastewater samples. The candidate CRs identified in the samples are
partitioned into bins based on their prevalence in the GISAID database. a y-axis
shows the number of candidate CRs in each bin (n = 2215, 1119, 331, 458, 452, 453,
614, 400, 702). Cumulative percentages are plotted with a solid line on the second
y-axis. b shows the process time of each bin in the box plot. For each bin, n = 50

independent measurements were randomly selected. The box plot includes both
median lines (solid) and the box bounds the interquartile range (IQR). The Tukey-
stylewhiskers extend from the box by atmost 1.5× IQR. The outliers are shown. The
average process time of each bin is shown as a solid blue line. Source data are
available for this figure and are provided in the Source Data file.
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Fig. 3 | Distribution of CRs found in Houston wastewater. In both a and b, the
locations of CRs on the SARS-CoV-2 reference genome found in Houston waste-
water samples are shown on the x-axis, with SARS-CoV-2 ORFs shown above the
figure panels. In panel a, each CR is represented by a colored dot, the y-axis indi-
cates its mean AF in the wastewater sample, and the color indicates its rarity,
defined as–log10((n+1)/N), wheren is the number of genomes supporting theCR in
the GISAID EpiCoV database, and N is the total number of sequences in GISAID; the
larger the number the rarer the mutation in GISAID. The darker color suggests that

the CR is rare or unreported. The size of the dot shows the number of weeks the CR
was detected. Larger dots indicate the CR persisted longer in the community. Panel
b is a histogram showing the count of CRs found in different 400bp regions of the
reference genome. CRs containing exclusively non-synonymous mutations are
marked in orange, and the CRs containing at least one synonymous mutation are
marked in gray. Higher bars indicate that more CRs were found in the associated
region. Source data are available for this figure and are provided in the Source
Data file.

Fig. 4 | CRs and viral load in Houston wastewater. In both panels a and b, the x-
axis shows the dates fromMay 2021 to November 2022. Panel a shows the number
of CRs (left y-axis) newly detected in Houston wastewater per week as bars. The
proportion of CRs containing only non-synonymous mutations is indicated in
orange, while the remainder is in gray. The width of the bar indicates the average
breadth of genome coverage across all WWTP, ranging from 0.02 to 0.74. The
normalized viral load in wastewater (right y-axis) (based on the viral load from

samples collected on July 6, 2020 in Houston) is shown as a dotted line. Panel
b shows the number of SARS-CoV-2 sequences in the GISAID EpiCoV database from
Texas, USA per sampling week. Color corresponds to their PANGO lineage
assignments. Omicron lineages other than BA.2, BA.5, and their descendants are
combined and denoted as “Omicron”. Source data are available for this figure and
are provided in the Source Data file.
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By examining 3 years of wastewater sequencing data and 8 weeks
of local clinical surveillance data, our goal was to demonstrate the
potential of Crykey to provide a finer-grain view of the emergence of
potential cryptic lineages within Houston. Our results suggest that the
number of detected CRs in wastewater relates to the shift of dominant
VOCs in the region. We also showed that twelve CRs were found in
wastewater and clinical samples from the same time period. Future
work is required to validateCRs as they emerge and todiscernbetween
potential systematic biases and legitimate CRs. In particular, cases
where the CR is highly prevalent in clinical samples but at a low fre-
quency within each individual and cases when all the mutations com-
prising a CR exhibit similar allele frequencies (which could represent
readmapping or alignment error caused by indels, or strong evidence
for a novel cryptic lineage given the very low likelihood of multiple
errors being introduced on a single read from a high-fidelity sequen-
cing platform), and combinations of consensus level established
mutations observedwith single low-frequencymutations (which could
represent the emergence of a novel SARS-CoV-2 lineage or also
represent an error co-located with a characteristic mutation from a
PANGO lineage) warrant further investigation.

Interrogating outlier CRs with Crykey
The emergenceof theCRs coincidedwith the spread of new variants of
concern. We observed an increased number of CRs being detected in
Houston wastewater during the emergence of Delta (July 2021) and
Omicron (December 2021). While 85% of the CRs lasted for less than
4 weeks, we also observed some CRs that persisted for more than

10 weeks (Fig. 5). Notably, CR12 was detected across multiple WWTPs
in Houston for 33 weeks (Fig. 6). CR12 contains two LR mutations,
A29039T and G29049A, which cause K256* and R259Q amino acid
changes on the N gene. The combination of these mutations is rare;
only three entries inGISAID contain bothmutations, and none of these
originated from the United States. Previous work has shown that
N:K256 is one of the eight lysine residues in the proteinN of SARS-CoV-
2 that is likely to be directly involved in RNA binding33. A29039T
generates a stop codon that may affect the linker region, suppressing
the immunogenic domain of the nucleocapsid protein, which might
help the vaccine escape33,34. N:R259 belongs to one of the identified
guanosine triphosphate binding pockets, and is well-conserved in
multiple human coronaviruses, including NL63, 229E, HKU1, OC43, as
well as MERS, and SARS-CoV-135, the N:R259Q mutation has been
reported multiple times at low prevalence rates in several SARS-CoV-2
lineages, likely representing a hotspot mutation mostly belonging to
the Delta variant31. A previous study suggested that the nucleocapsid
protein of SARS-CoV-2 isflexible and dynamic, andCR12 happens to be
located on one of the predicted disordered regions of the N gene36.

Potential origins of cryptic mutations: cryptic lineages, poorly
understood biological signal, or systematic noise?
The precise origin of the cryptic mutations we found in Houston
wastewater remains an open question. One could think of five possible
scenarios: (1) they represent rare circulating SARS-CoV-2 lineages that
went un-sampled or under-sampled in the clinical samples, (2) they
exist as intra-host mutations from the population that have high

Fig. 5 | Persistence and Occurrence of CRs found in Houston wastewater. Each
CR is represented by a dot, with the size of the dot indicating themean count of the
wastewater treatment plants theCRwasdetected at eachweek, and the color of the
dot indicating mean allele frequency. The histogram on the bottom shows the

number of weeks that the unique CRs have been detected and their associated
counts. The histogram on the right shows the rarity of unique CRs in terms of
occurrence in GISAID and their associated counts. Source data are available for this
figure and are provided in the Source Data file.
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enough prevalence to be detected in wastewater, (3) they represent
signal from SARS-CoV-2 transcription such as subgenomicmRNAs, (4)
they are spillover from an unidentified animal reservoir, or (5) they are
technical artifacts from environmental degradation, sample prepara-
tion, or sequencing.

A possible explanation behind CRs in the wastewater not being
captured by clinical surveillance is low community prevalence
rates19,20,24. As only a small portion of the SARS-CoV-2 infections are
sequenced, transient cryptic lineages are likely to bemissed by clinical
surveillance. Clinical data also suffers from sampling bias, where
people with severe symptoms and access to healthcare resources are
more likely to be represented in the databases. Figure 5 shows that
most of the cryptic mutations detected in Houston wastewater were
only found over 1 to 3 weeks, and these short-duration cryptic muta-
tions may represent those not captured by clinical testing. In support
of this hypothesis, we found a subset of the cryptic mutations sup-
ported by reads from clinical sequencing.

However, we observed several cryptic mutations with a high
prevalence and low intra-host AF in the clinical samples. Indeed, it is
common toonly report consensus-levelmutations (i.e.,mutationswith
allele frequencies greater or equal to 0.5), or consensus genomes/
assemblies to the public databases such as GISAID. As a result,
although CRsmight be sampled, they will remain unreported. A recent
study has shown that molnupiravir treatment can induce de novo
mutations in multiple individuals37. Still, it is not clear whether the
cryptic mutations found in clinical samples are tied to therapy-related
lineages. We also observed cases where a CR persisted for multiple
weeks in wastewater samples but had little to no trace in clinical
samples. Why these CRs were not captured by clinical surveillance

remains unknown. As a possible explanation for this second scenario,
previous studies have suggested that cryptic lineages may be carried
by non-human hosts19, especially for those that persist for very long
periods38. Given thatwe lack representative genomes fromnon-human
hosts during the time frame of our results, we cannot investigate the
plausibility of this scenario.

Temporally linked CRs (especially those appearing and dis-
appearing within a few weeks) provide reliable evidence for legitimate
novel cryptic lineages. Additionally, CRs that contain multiple low-
frequency mutations in a single read (and all supported by 5 or more
reads) contrast themselves with CRs that contain a mutation shared
with a circulating PANGO lineage and a companion low-frequency
mutation (or mutations). On the surface, low mean allele frequencies
combined with high prevalence rates in clinical samples raise some
concern regarding their validity, especially given the lack of plausible
explanation for the transmission/community spread of low-frequency
intra-host mutations (Supplementary Fig. 5).

To investigate the potential origin of CRs, we evaluated a
dataset of 5060 clinical samples collected within Greater Houston
from 2021-12-06 to 2022-01-31. Our results suggest that CRs
detected in wastewater could be related to intra-host low-frequency
co-occurring mutations in clinical samples (Figs. 7 and 8). The
unusually long life span of CR12 and its high prevalence at low intra-
host AF in clinical samples suggest that it could be a previously
unreported artifact. However, examining over 7000 clinical sam-
ples sequenced with the PacBio HiFi system, and testing multiple
read aligners, we can likely rule out that CR12 is primarily related to
primer artifacts, sequencing technology-dependent artifacts, and
sequence alignment errors.

Fig. 6 | Persistence of CR12 (A29039T-G29049A) in Houston wastewater. For
both panels, the x-axis shows time. In panel a, rows correspond to wastewater
treatment plants (WWTPs) sampled, with the cell color indicating the mean allele
frequency (MAF) of the mutation set (cells with MAFs below 0.01 are colored as
blue and labeled as “NotDetected”. Sampleswith coveragebelow 10x aremarked in

gray and denoted as “No Coverage”. Missing samples are marked in white. In panel
b the bars indicate the number of WWTPs in which CR12 was detected, per week
(left y-axis). The dotted blue line indicates the mean coverage of the wastewater
samples with coverage above 10x, per week (right y-axis). Source data are available
for this figure and are provided in the Source Data file.
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Finally, cryptic mutations could represent some type of sys-
tematic bias. Even though we have taken extreme care to filter out
known sources of artifacts and have observed them across different
sample types, amplicon panels, read mappers, and sequencers, we
cannot rule out unknown systematic artifacts or biases leading to CR
detection. Given there is no single mutational pattern observed (they
can be comprised by multiple low allele frequency mutations that are
short duration or very long duration, as well as containmutations that
pair an established consensus-level mutation from a VOC with a tran-
sient low-frequencymutation), explanations for each of these patterns
and their variability over time requires further investigation. Indeed,
the goal in developing Crykey was to provide an efficient and sensitive
tool for interrogating cryptic mutation patterns over time and geo-
graphy, hoping to shed light on their origin and facilitate the identifi-
cation of artifacts.

Open challenges in tracking potential cryptic lineagemutations
in wastewater
One of the key challenges in reliably detecting CRs inwastewater is the
quality of the samples39,40. As shown in Fig. 4, the number of newly
emerging CRs follows the same pattern as the viral load until June
2022, where the samples collected afterward had worse quality
regarding breadth of coverage. The performance of Crykey is limited
because the samples did not have enough sequencing depth across
most of the regions of the SARS-CoV-2 genome during those weeks.
Due to the inherent limitations of short-read sequencing platforms
that generate 100–200 bp reads, protocols used for sequencing, and
the fragmented state of the viral RNA in wastewater, there is a natural
limit on the genomic spanof the crypticmutations we can use. Indeed,
the degradation of genetic material in wastewater impacts the
sequencing quality of the sample while introducing noise for rare

Fig. 7 | CRs detected in clinical samples from Greater Houston. The mutation
combinations for eachwastewaterCR are shownat the top of each panel. Cyan bars
indicate the prevalence (left y-axis). The dotted blue lines (right y-axis) indicate the
mean AF (right y-axis) of the CR in the clinical samples. The number of biologically
independent clinical samples that theCR is prevalent aren = 5; 9; 163; 1115; 3830; 14;
20; 929; 1079; 7; 581; 845 for CR1 to CR12. The exact n for each CR per week is
reported in the Source Data file. The error bars are defined as the range of the
observed AF (right y-axis), with the top of the error bars showing maximum

observed AF, and the bottomof the error bars showingminimumobservedAF. The
areas shaded in gray indicate the periods during which the CR was detected in the
wastewater. The stacked bars to the right of the panels show the distribution of the
PANGO lineages of the consensus genomes of clinical samples with CRs with each
category shown in different colors. All Delta genomes are combined. All Omicron
genomes other than BA.1.1, BA.1.15, BA.1.17, BA.1.18, and BA.1.20 are combined and
denoted as Omicron. Source data are available for this figure and are provided in
the Source Data file.
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mutation detection41,42. Furthermore, genomic regions corresponding
to sequencing primers or adapters create coverage gaps (regions
without read support) along the genome and pose a challenge for
identifying CRs that span longer regions. However, these limitations
could be addressed using long-read sequencing if sample manipula-
tion and extraction procedures allow intact longer RNA fragments to
be recoverable from wastewater samples.

Crykey represents an efficient and easy-to-use tool designed to
rapidly and comprehensively find cryptic mutations across thousands
of wastewater samples. We applied Crykey to detect numerous CRs in
Houston, some persisting for months. The concept of searching for
rare LRmutations inside of a viral genome thathas never or rarely been
reported is generalizable, and Crykey is not limited to SARS-CoV-2.
Crykey can be expanded and applied to multiple pathogens, such as
influenza viruses, as long as the pathogen has an established database
of genomic sequences43,44. We hope our findings will help promote

community-wide discussion on best practices for cryptic lineage
tracking in wastewater.

Methods
Crykey is a computational method for identifying cryptic mutations
representing potential cryptic lineages (CRs) inwastewater samples on
a full-genome scale. We identify cryptic mutations as sets of two or
more co-occurringmutations in the same sequencing read that appear
in 5 or more reads, with a minimumAF of 0.01 in two ormore samples
and observed together in less than 0.01% of the GISAID EpiCoV gen-
omes (upuntil 10/21/2022). Theworkflowof theCrykeypipeline canbe
divided into 3 steps, including database construction, sample pro-
cessing to find CR candidates, and rarity calculations for each candi-
date found in the previous step. Crykey first builds mutation look-up
tables and a genome-to-mutation database using the full GISAID’s
EpiCoV database (Fig. 1a) and then searches for CRs (Fig. 1b).

Fig. 8 | CR8detected inwastewater and clinical samples fromGreater Houston.
Figure a–d are information on CR in wastewater each week, with sample collection
date shown in x-axis. a shows the prevalence rate as bars (left y-axis, same forb, e, f)
of each individual mutation within CR in wastewater samples, and the mean AF
(right y-axis, same for b, e, f) of each individualmutation presented as a dotted line
of n = 222 biologically independent samples for C10449A (shown in orange) and
n = 39 for T10459C (shown ingreen). The errorbars (right y-axis, same forb, e, f) are
defined as the range of AF, with the top of the error bars showing maximum
observed AF, and the bottom of the error bars showing minimum observed AF.
b shows the prevalence rate of the CR in wastewater samples, and the mean AF of
CR (n = 19). c shows the mean coverage at CR8 locations. d shows the sample
qualities and Crykey detections, with samples of insufficient coverage colored in
gray, samples of CR absent colored in blue, and samples of CR detected colored in
orange. Figuree–h are informationonCR inclinical samples ofHouston for8weeks

of the sampling period. For figure e–f, the sample collection date is shown in x-axis.
e shows the prevalence rate as bars of each individualmutationwithin CR in clinical
samples, and the mean AF of each individualmutation is presented as a dotted line
with n = 4937 for C10449A (shown in orange) and n = 981 for T10459C (shown in
green). f shows the prevalence rate of CR in clinical samples, and themeanAFof CR
(n = 929). The exact n for each individual mutation and CR per week is reported in
the Source Data file. g shows the mean coverage at CR locations. h shows the
distribution of the PANGO lineages of the consensus genomes of the clinical
samples with CR. Delta genomes are not found in any of the samples. All Omicron
genomes other than BA.1.1, BA.1.15, BA.1.17, BA.1.18, and BA.1.20 are combined and
denoted as Omicron. For figure a–c, and e–h, wastewater and clinical samples with
insufficient coverage (<10x at CR location) are excluded from the analysis. Source
data are available for this figure and are provided in the Source Data file.
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Specifically, Crykey first extracts LRmutations from the alignment and
searches for CR candidates by querying the mutation look-up table
(Fig. 1c). Then, each CR candidate is queried against a pre-built data-
base to check if it is novel or rare in terms of prevalence to create
candidate CRs (Fig. 1d). Candidate CRs are then passed through rig-
orous filters to nominate a subset as detected CRs. Due to the opti-
mized database structure that partitions the mutation prevalence
information according to the associated PANGO lineage/lineages for a
given time period, Crykey is highly efficient and can easily scale to
thousands of samples. We will now provide specific details regarding
the filtering steps and analysis methods used in this manuscript.

Candidate CR lineage determination
The database used in Crykey is built based on the multiple sequence
alignment (MSA) generated by the GISAID EpiCoV database. We
extracted the mutations for each SARS-CoV-2 genome in the MSA
using vdb with the command vdbCreate -N input.msa45. We then
trimmed the list of mutations associated with each genome sequence
with the vdb trim command. Combining the lineage assignment of
each genome sequence in the metadata, we calculate the prevalence
rate of each mutation in each of the known lineages of SARS-CoV-2, as
well as build amutation database containingmutation information for
each individual SARS-CoV-2 genome. The results shown in this manu-
script are based on the 13,875,227 individual genome sequences and
their associated metadata available on GISAID up to 2023-01-05, via
gisaid.org/EPI_SET_240326gr (Supplementary Table 3).

To identify candidate cryptic lineages, Crykey first builds a default
mutation lookup table where each mutation in GISAID is associated
with a set of lineages and specific weeks (based on sample collection
date) of occurrence in GISAID, regardless of prevalence rate. A second
mutation lookup table is built at the same time where only mutations
with a prevalence rate greater than 0.5 are stored, which allows us to
perform a fast query on whether a set of SNPs belongs to any of the
SARS-CoV-2 genomes in a given time period.

Then, for a given sample, Crykey takes its associated alignment file
(BAM) and mutation calling output (VCF) file as input. It first extracts
and filters themutations from the VCF file with a user-definedminimum
depth of coverage (default: 10) and a user-defined minimum allele fre-
quency (default: 0.02). Then, it annotates eachmutationwith snpEff and
removes mutations not in the coding region. For each sample, Crykey
searches through the BAM file and extracts read pairs that contain a
combinationof twoormoremutations.Using themutation lookup table
of prevalence rate greater than 0.5, Crykey can quickly identify whether
the mutation combination from the readmay belong to a single lineage
of a certain week by using set intersection. By the pigeonhole principle,
if the intersection is non-empty, it is guaranteed that the mutation
combination has been reported to the public database. If the intersec-
tion is an empty set, we consider the combination as a candidate CR.

Classifying candidate CRs from Houston wastewater
For each candidate CR,we evaluate the occurrence, temporal patterns,
and the set of mutations comprising a CR. First, an exact search is
performedby querying themutations in the lineage against the default
mutation lookup table and the mutation database. Using the default
mutation lookup table, the lineage and specific week of the co-
occurrence of all mutations in the set can be quickly determined and
allows Crykey to minimize the search space while querying the muta-
tion database, searching for exact assemblies containing candidateCR.
Crykey outputs a complementary report on whether or not the CR
candidates found in the sample are truly novel, which means no
sequences in the database support the combination, or if the CR
candidates are rarely seen in the database. If the CR candidate can be
found in the database, Crykey reports the number of sequences found
containing the CR candidate in each lineage and the total number of
sequences in those lineages.

In our experiment, we applied both within-sample and cross-
sample filtering on the candidate CRs before nominating them as CRs.
To do this, we filtered each candidate cryptic lineage by only keeping
the sets with supporting reads for each mutation in a CR above a
minimum threshold (default: 5), and allele frequency above a mini-
mum threshold (default: 0.01). The cross-samplefilteringwasbasedon
the minimum number of WW samples supporting the candidate CR
(default: 2). CR candidates with a prevalence rate above 0.0001 in the
GISAID database were also removed. In the end, we excluded the CR
candidates that containmutations located between reference genome
positions 1 to 55 and 29,804 to 29,903, andmaskedCR candidates that
containmutations located on 25 sites between 56 and 29,804 based on
suggestions from previous studies, as those locations are highly
homoplasic and mutations are likely to be recurrent artifacts46,47.
Candidate CRs that pass the above filters are nominated as CRs and
used as the foundation for potential cryptic lineage search in clinical
samples. The use ofmultiplefilters on the candidate CRs promotes the
CR identification process to be conservative. The selection of thresh-
olds and filters was informed by prior studies46,48–53.

Cross-referencing CRs in clinical samples
The samples from Houston were downloaded from the NCBI SRA
database under the BioProject PRJNA76418154. The sequencing details
of the dataset can be found in our previous study8. We collected all
5060 SRA sampleswith collection dates between 2021-12-06 and 2022-
01-31 without additional filtering. In addition, 8,969 out-of-state SRA
samples were selected from the NCBI database (PRJNA686984). We
first performed a standard read mapping process, including quality
control. The sequencing reads from the clinical samples were first fil-
tered using fastp v0.23.2 with parameters “--cut_front --cut_tail --cut_-
window_size 4 --cut_mean_quality 25 --qualified_quality_phred 25
--unqualified_percent_limit 40 --n_base_limit 5 --length_required 15
--low_complexity_filter --complexity_threshold 30” to remove low-
quality bases and low-quality reads55. Then the filtered reads were
aligned to the reference genome of SARS-CoV-2 (NCBI Reference
Sequence: NC_045512.2) with bwa mem v0.7.17-r1188 with default
parameters29,55. The alignment files were sorted and indexed with
samtools v1.1456. Mutation calling was done using lofreq v2.1.5 with
command “lofreq call --no-default-filter --call-indels”, and then filtered
with the command “lofreq filter --cov-min 20 --af-min 0.02 -b fdr -c
0.001”57. Consensus genomes were generated, and PANGO calling was
done using pangolin v4.2 with default parameters58.

After read mapping, the BAM files and the VCF files are collected
for searching for CRs detected in wastewater samples. 20 wastewater
CRs detected during the 8-week sampling period were selected for
testing. 10 of the 20 wastewater CRs occurred in 2 of the 8 weeks,
representing CRs with a short burst pattern; when cross-referencing
with the clinical sample data, we selected short-lived CRs detected in
most wastewater treatment plants. The rest of the 10 wastewater CRs
we selected for the query had the longest clinical sampling period,
ranging from4 to 8weeks of occurrence, representingCRswith a long-
lasting detection pattern in both wastewater and clinical samples.

By using the alignments in the clinical samples, we counted the
total number of reads spanning the regions that the CRs contained and
counted the number of reads supporting all mutations from the CRs at
the same time. 5 bases towards both ends of the reads were ignored to
avoid noise caused by sequencing errors. The allele frequency of a
potential cryptic lineage was calculated as the number of CR sup-
porting reads over the number of total reads covering those positions.

During the analysis, we further filtered the results, and samples
with CRs with less than 5 supported reads or with AF less than 0.02, or
any of themutations within the CRmissing from the variant calling are
considered as CR absent. We counted forward and reverse read frag-
ments that do and do not fully support all cryptic mutations, and
calculated both the p-value of the two-sided Fisher’s exact test and
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strand bias scores described in the previous studies59,60. Samples with
reads containing strain bias score greater or equal to 1 and a p-value of
Fisher’s exact test less than 0.05 are also considered as CR absent.

All wastewater samples and clinical samples with insufficient
coverage for a CR (the number of reads that cover all mutation posi-
tions of a CR is less than 10) are excluded from the calculation of AF,
prevalence rate, and coverage in Fig. 7 and Supplementary Figs. 3–5.
The AFs of individual mutations from the CR are extracted from the
variant calling results. The AF of CR is calculated as the number of
reads that contain all mutations of a CR over the number of reads that
cover all mutation positions of a CR. The prevalence rate is calculated
as the count of CR/mutation detected samples over the count of
samples with sufficient coverage.

Validating CR12 (A29039T-G29049A) CR with PacBio clinical
samples
The samples were downloaded from the NCBI SRA database under the
BioProject PRJNA716984. We subsampled 7,113 SRA runs with sample
collection dates between 2021-11-06 and 2022-03-21, including
2,458 samples collected in Texas and 4,655 samples from 50 other
regions (49US states and Puerto Rico). Sampleswithmissingmetadata
(location or sample collection date) were excluded. The reads were
aligned to the reference genome of SARS-CoV-2 (NCBI Reference
Sequence: NC_045512.2) with minimap2 using map-pb preset61. The
alignment files were sorted and indexed with samtools v1.14. The
number of supporting reads and the depth of coverage are calculated
using the same method described in the previous section.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data is provided with this paper and has been deposited with
DOI: 10.5281/zenodo.10934124. All sequencing data supporting the
findings of this study is publicly available. Houston wastewater data-
sets are available for download via NCBI BioProject PRJNA796340.
Houston short-read clinical datasets are available for download via
NCBI BioProject PRJNA764181. Non-Texas short-read clinical datasets
are available for download via NCBI BioProject PRJNA686984. The
PacBio SARS-CoV-2 clinical datasets are available for download via
NCBI BioProject PRJNA718231. Source data are provided in this paper.

Code availability
The source code for Crykey is publicly available at https://github.com/
treangenlab/crykey, and we used version 1.0.0 of Crykey for the result
and analysis presented in this manuscript62. The code used for analysis
and figure generation used in this study can be found at https://github.
com/treangenlab/crykey_analysis_scripts63.
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