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Importance of social inequalities to contact
patterns, vaccine uptake, and epidemic
dynamics

Adriana Manna 1, Júlia Koltai 2,3 & Márton Karsai 1,4

Individuals’ socio-demographic and economic characteristics crucially shape
the spread of an epidemic by largely determining the exposure level to the
virus and the severity of the disease for those who got infected. While the
complex interplay between individual characteristics and epidemic dynamics
is widely recognised, traditional mathematical models often overlook these
factors. In this study, we examine two important aspects of human behaviour
relevant to epidemics: contact patterns and vaccination uptake. Using data
collected during the COVID-19 pandemic in Hungary, we first identify the
dimensions along which individuals exhibit the greatest variation in their
contact patterns and vaccination uptake. We find that generally higher socio-
economic groups of the population have a higher number of contacts and a
higher vaccination uptake with respect to disadvantaged groups. Subse-
quently, we propose a data-driven epidemiological model that incorporates
these behavioural differences. Finally, we apply our model to analyse the
fourth wave of COVID-19 in Hungary, providing valuable insights into real-
world scenarios. By bridging the gap between individual characteristics and
epidemic spread, our research contributes to a more comprehensive under-
standing of disease dynamics and informs effective public health strategies.

Individuals’ socio-demographic and economic characteristics are
among the most significant factors that shape the dynamics of epi-
demic spreading processes. They not only influence the epidemic
outcome in the hosting population but largely determine the course
and severity of the disease for those who got infected1. There is a
widespread agreement that pandemics disproportionately affect cer-
tain population groups rather than others2–7. Health-related inequal-
ities in the burden of an epidemic partly arise from differences in the
level of exposure to viruses and bacteria. These are associated with
differences in social interactions, mobility patterns and work-related
conditions, which are aggravated by disparities in the ability to be
compliant with non-pharmaceutical interventions (NPIs), such as self-
isolation, home-office and avoiding crowded places8–13. At the same

time, inequalities in the severity and fatality of a disease can be
accounted for by the heterogeneity in preexisting individual health
conditions, protection attitudes and access to medical care, which are
themselves related to socio-demographic and economic factors14,15.

Although it is widely recognised that socio-economic inequalities
play a crucial role in the transmission dynamics of diseases, traditional
mathematical approaches have often overlooked these factors.
Indeed, the state-of-the-art framework of modelling infectious dis-
eases incorporates stratification of the population according to age
groups16 while discarding other potential relevant heterogeneities
between groups of individuals belonging to different socio-economic
strata. They commonly ignore the mechanisms through which these
heterogeneities come into play, both directly and indirectly, in the
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different phases of an epidemic process. In traditional epidemiological
models, contact patterns are usually represented in the aggregate
form of an age contact matrix (Cij), which encodes information on the
average number of contacts that individuals of different age groups
havewith eachother17–22.Moreover, not only the descriptionof contact
patterns is limited to an age structure, but also other epidemiological-
relevant factors, such as vaccination uptake, infection fatality rates23 or
susceptibility24, are usually described only by considering differences
between age groups. While age is unarguably one of the most impor-
tant determinants of these characters, the current literature falls short
of understanding the role of other social, demographic, and economic
factors in shaping humanbehaviour that are relevant to the epidemic’s
spreading. In recent years, researchers have advocated including social
aspects in infectious disease modelling, arguing that the epidemic
modelling community lacks a deep understanding of the mechanisms
through which the socio-economic divide translates into hetero-
geneities in the spread of infectious diseases25–28.

With this in mind, we aim to shed light on these mechanisms to
address the following interrogatives: which are the most important
individual characters and corresponding subgroups of the population
that differentiate themost their epidemic-relevant behaviours, and how
do these differences translate into epidemiological outcomes? We
address these questions by analysing a large survey dataset coming
from the MASZK study carried out in Hungary during the COVID-19
pandemic29,30. This data collects information on individuals’ face-to-face
interaction patterns in different contexts and other epidemiological-
related behavioural patterns and opinions such as travel habits, vacci-
nation uptake, ormask-wearing. TheMASZK study consists of 26 cross-
sectional representative surveys conducted monthly between 2020/04
and 2022/06 (for more details on the data, see Section 1 of SI andMM).

By considering the course of the pandemic in the country, we aggregate
the data in six periods covering four epidemic waves (Ws) and two
interim periods (IPs), as demonstrated in Fig. 1a.

Throughout this study, we are mainly interested in the dynamics
and most influential determinants of social contacts that were recor-
ded in the data as reported proxy interactions between pairs of indi-
viduals who spent at least 15min within 2m of each other on a given
day. Outside of home, we distinguish between two contexts where
social interactionsmay evolve.Wedifferentiate betweenwork contacts
that emerge at the workplace (or at school) of respondents (or their
minors) and community contacts that they evolved elsewhere than
home or work. Meanwhile, we do not take into account household
contacts in our study as we assume they do not change significantly
during the different phases of the pandemic. Through the analysis of
contact patterns, our aim is to show existing significant differences
among subgroups of different socio-demographic characters, when
accounting for the effect of age. Particularly, we demonstrate that
dimensions such as employment situation and education level play a
crucial role in determining contact numbers and vaccination uptake
during a pandemic. Additionally, by proposing a new data-driven
mathematical framework which explicitly considers further social
dimensions other than age, we analyse the impact of such differences
in terms of epidemic outcomes. Finally, by focusing on the Hungarian
COVID-19 pandemic scenario, we reveal the unequal impact of the
pandemic in terms of individuals belonging to different socio-
economic statuses, where we differentiate individuals by their
employment situation and income level. Note that although all the
models have been completed on each pandemic period, for the
demonstration of our findings, we exclusively show results about
the 4thwave in themain text.We chose this period to demonstrate our

Fig. 1 | COVID-19 trends in Hungary: cases, contacts, and key contact deter-
minants. a Left axis: numberof newdaily COVID-19 cases inHungary from2020/04
to 2022/07. Right axis: average number of daily contacts from 2020/04 to 2022/06,
excluding household contacts. The values are shown as the median and inter-
quartile range (IQR) of 1000 bootstrapped samples. The white and grey areas
delimit the periods that have been aggregated in the analysis: two interim periods
(IPs) (white areas) and four epidemic waves (W) (grey dashed areas). b Box-plot
(outliers, minimum, lower quartile, median, upper quartile and maximum) of the
maximum confidence level at which the effect of the different categories of the

variable on the total number of contacts becomes significantly different. The dis-
persion of the box plot refers to the variation of this value over different age
groups. Results are shown for education level, employment situation, income level
(which is present from the 2ndW, since this informationwasmissing in the first few
data collections), gender, settlement, chronic disease, acute disease, and smoking
behaviour. The higher this value is, the more the variable influences people’s
number of contacts given their age. The horizontal dotted line is placed at 95% and
it represents the confidence level at which the AME is considered to be statistically
significant. Sample sizes are indicated in Section 1.2. of SI.

Article https://doi.org/10.1038/s41467-024-48332-y

Nature Communications |         (2024) 15:4137 2



results because NPIs were not significantly changing, while the vacci-
nation rate hadsaturated alreadyduring the4thwave; thisway, neither
of these effects could bias the observed behaviours. We report our
findings concerning other periods in the SI.

Results
The main determinants of human contact patterns
Human contact patterns represent the routes of infectious disease
spreading by shaping the underlying transmission chain among sus-
ceptible individuals. During the COVID-19 pandemic, many aspects of
human behaviour have experienced drastic interruptions in most
countries worldwide. This was largely due to the implementation of
non-pharmaceutical interventions (NPIs) that were installed to miti-
gate the spreading and other effects of the pandemic. They aimed at
controlling the number of contacts, as well as influencing individual
attitudes, to change the ways humans meet and interact with each
other24,31,32. Their effects are evident in Fig. 1a, where the average
number of daily contacts in Hungary is shown. This value increases
during interim periods (IPs) when the numbers of daily infection cases
are low and decreases during the epidemic waves (Ws) when infection
risk is high, this way sensitively reflecting the adaptive behaviour of
people throughout the pandemic.

Although at the aggregate level, these patterns are clear, there are
non-trivial disparities at the level of individuals that may result in
diverse contact patterns for given subgroups of the population. To
explore these effects, in our statistical analysis, we focus on several

socio-economic dimensions that, interacting with age, may sig-
nificantly affect the number of contacts that individuals have. We
consider various socio-demographic variables such as individuals’
education, employment, income, gender, settlement type, actual
chronic or acute disease or smoking habits (for more details and
definitions, see MM and Section 1.1 of SI). As a first observation, in
Fig. 1b, we show the distribution of the maximum confidence level of
the effects of these variables on the number of contacts in interaction
with age during each period (for definition see MM). In these dis-
tributions, a higher value indicates higher certainty that a given vari-
able has an effect, i.e., its effect is significantly different from zero at a
smaller type I error probability33, given the age of individuals. Based on
these results, employment, education and income level were found to
be the threemost important dimensions in determining the number of
contacts. This observation stands if we consider the overall number of
contacts including both work and community relationships, and it is
true as well if we only consider community contacts (with results
shown in Section 2.1. of the SI along with all the robustness checks).

To further investigate the ways individuals of different characters
adapt their number of contacts to the actual epidemiological situation,
in Fig. 2 we show the average number of contacts over time decoupled
by education level (Fig. 2a, c) and employment situation (Fig. 2b, d) for
adult individuals older than 15 years old (for the corresponding plots
related to income and settlement see Section 4.1 of SI, while for the plot
decoupled by age groups see Section 4.2 of the SI). Results in panel (a)
suggest that high andmid-high-educated individuals have consistently

Fig. 2 | Contact dynamics by population subgroups. a and b Average number of
contacts in the community layer a by different education levels and b employment
situation. c and d Average number of contacts at workplace c by different educa-
tion levels and d for employed people. All curves have been smoothed over the
observation periods for better visualisation. e–h Decoupled age contact matrices

by education level for the 4th epidemic wave. i and j Decoupled age contact
matrices by employment situation for the 4th wave. These figures depict contact
numbers only for the adult population [15+), whilematrices containing children are
shown in Section 4.3.2 of the SI. All the values are shown as the median and IQR of
1000 bootstrapped samples.
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higher number of contacts in the community layer throughout the
observed period. In addition, the pattern of the average number of
contacts of these groups suggests that they were probably able to
better adapt to the epidemiological situation and NPIs by decreasing
their contacts number during epidemic waves and increasing again
during interim periods. Conversely, individuals with mid-low and low
education levels exhibit a lower and relatively stable number of con-
tacts over time. Workplace contact dynamics suggest that only highly
educated individuals (high and mid-high) were able to adapt to the
epidemiological situation, while seemingly, thosewith lower education
levels had less flexibility to adjust during different pandemic periods.
Interestingly, mid-low educated individuals reported a higher number
of workplace contacts, particularly during the second wave (2nd W)
and the second interim period (2nd IP), attributable to their pre-
dominant vocational degree status and involvement in on-site inter-
active work. These patterns are confirmedwhen examining the relative
number of contacts over time, as elaborated in Section 4.1.1 of the SI.

When we group people by their employment situation, it makes
sense to compare groups in the community layer. From Fig. 2b it is
clear that employed people maintain more contacts even outside of
their workplace as compared to not-employed individuals, which is a
clear sign of behavioural differences between these two groups.
Meanwhile, employed individuals follow somewhat similar contact
dynamics as highly educated people (see Fig. 2d), signalling some
correlation between these two groups.

From an epidemic modelling perspective, the most convenient
way to code interaction patterns between different groups is via con-
tact matrices that quantify the average number of interactions
between population strata. Contact matrices allow models to depart
from thehomogeneousmixing assumption, i.e. taking all individuals to
meet with the sameprobability. Instead, they allow the introduction of
non-homogeneous mixing patterns between different groups, while
keeping the model computationally more feasible as compared to
contact network-based simulations. Conventionally, epidemic models
incorporate Ci,j age contact matrices that code the average number of
contacts between people from different age groups (for formal defi-
nition, see MM). Nevertheless, age contact matrices could be further
stratified by other socio-demographic characters that influence the
contact numbers of individuals. In Fig. 2e–j, we show the age contact
matrices decoupled by education level and employment situation
(Cdi,j) for the 4th epidemic wave for the adult population (see MM for
more details and Section 4.3.2 of SI for the corresponding matrices
including children). These matrices have been computed by con-
sidering community, work and household contacts together. The
emerging large differences between these matrices demonstrate
clearly that beyond age, the identified variables, i.e. education and
employment status, induce significant differences in the contact pat-
terns of individuals. Although these variables may not be independent
of the age of people, the observed distinct patterns suggest more
complex mechanisms controlling contact patterns among subgroups
that cannot be explained by age alone.

Beyond age stratification. We demonstrate that social inequalities
significantly influence human contact patterns, thereby shaping the
network of proxy social interactions. This is critically important for the
propagation of diseases as it determines the transmission chain of an
infection spreading among a susceptible population. Consequently,
incorporating the contact pattern differences among individuals of
different socio-economic backgrounds into epidemiological models is
crucial. This could help to understand the unequal spread and uneven
burden that an epidemic could impose on the different socio-
demographic groups of a society. To this end, we propose a simple
mathematical framework based on the extension of a conventional
age-structured SEIR compartmental model34,35, which we call the
extended SEIRmodel. The conventional SEIR model assumes that each

individual in a population is in one of the mutually exclusive states of
Susceptible (S), Exposed (E), Infected (I) or Recovered (R). Transitions
of an individual between these states are controlled by rates (S�!λE,
E�!εI, I�!μR) with the λ rate influenced by the frequencies of inter-
actions between age groups coded in a Ci,j age-contact matrix. The
proposed extended model incorporates C�d,i,j age contact matrices
instead, that are decoupled along important socio-demographic
dimensions �d to model epidemic spreading in different subgroups of
the population (see MM and Section 6 of the SI for further details).

Particularly, we analyse the impact of decoupled age-contact
matrices along four dimensions: employment situation, education level,
settlement, and income level (for exact definitions andpossible variable
values, see MM). Taking the decoupled contact matrices as input, we
simulate the spread of infectious disease among an entirely susceptible
population using both the conventional SEIR and the extended SEIR
models. Having fixed the epidemiological parameters such as the
transmission rates and seeding strategy, other input parameters like the
population distributions and contact matrices have been estimated
from data, as we explain in Section 7 of the SI in more detail.

The proposed model allows us to investigate how differences in
contact patterns along diverse social groups translate into an unequal
burden of the epidemic. To quantify these differences in the epidemic
outcome, we measure the attack rate defined as the population-wise
normalised fraction of individuals who contracted the infection from a
given group. To follow the distribution of the people along the inves-
tigated dimensions, we show the survey population fractions in the
different age groups in Fig. 3a–d.Meanwhile, in Fig. 3e–h, we depict the
attack rates calculated using the extended SEIRmodels for different age
and socio-demographic groups (and as reference only for age—see grey
solid lines). Results are shown for the cases whenwe decouple each age
group along the four dimensions analysed. As anticipated by the sta-
tistical analysis, employment and education produce the largest dif-
ferences between groups in terms of attack rate by age. Interestingly,
the group of employed people happened to be themost infected group
in all age groups, while mid and high-educated individuals are more
infected among those who are 45–60 years old. When decoupling age
contact matrices by settlement and income, although differences
appear smaller between groups, high-income individuals and the ones
living in the capital aremore infected, particularly elderly ones with age
60+. Thesemodelling results suggest the interesting overall conclusion
that employed and wealthier group of the population, as well as those
living in the capital report ahigher attack rate, thus they are typically the
most infected group relative to their population size.

These results also demonstrate that the extended SEIR model is
able to capture differences introduced by the considered socio-
demographic variable and, in this way, to model the epidemic impact
on the different groups of the population. These differences are also
visible at the population level. In Fig. 3i, we show the differences
between the attack rates predicted by the conventional and the
extended SEIRmodels for each age group and overall, too. It is evident
from these results that models using contacts only stratified by age
may overestimate (negative difference) the size of the epidemic in
different age groups or in the whole population. For example, our
simulations based on data from the 4th wave demonstrate that the
conventional SEIRmodel could predict higher attack rates for each age
groupwith respect to the extended SEIR, which considers differences in
contact numbers along the employment situation or the education
level. (See Section 7.1 of SI for the corresponding figures for the other
periods and the relatively sensitive analysis). It is important to high-
light that the uneven age distribution within the different subgroups
sometimes reduces or annul the effect of the difference in the contact
patterns when we are computing aggregate quantities at the popula-
tion level. This explains why, even if there is a significant difference in
contact patterns, the difference in the overall attack rates only spans a
small range between the two models.
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Vaccination uptake and contact number differences
Beyond the crucial role played by the network of face-to-face interac-
tions, individual vaccination uptake may also substantially affect epi-
demiological outcomes by decreasing morbidity and mortality. By
applying the same pipeline of statistical analysis as we explained above,
we identify the dimensions along which individuals made different
decisions in terms of vaccination, given their age. In this case, the
interaction with age is particularly important given that the COVID-19
immunisation strategy implemented in Hungary followed an age-
stratified outreach by prioritising elderly individuals36,37. Despite the
prioritisation of specific groups, such asmedical personnel, in the initial
months of the vaccination campaign, we regard the associated impact
as negligible for the purposes of this study. Interestingly, the statistical
analysis in this case indicates income as the most important dimension
along which individuals made different vaccination decisions (see Sec-
tion 2.2 of SI for the results of the statistical analysis). Figure 4a–d shows
the percentage of vaccinated individuals by age and the investigated
dimensions during the 4th wave of the pandemic. Although by the 4th
epidemic wave the vaccination saturated in Hungary, the effects of the
age-dependent vaccination policy are clearly visible.More strikingly, we
find that higher socio-economic groups of the population were more
likely to get vaccinated against the COVID-19 virus. This observation is
valid for all age groups and periods considered in the analysis (see
Section 5 of SI for the corresponding figures for the other periods).

To consider these observations, wemodel the vaccination uptake
in the extendend SEIR framework. More precisely, we define the
probability of getting vaccinated (i.e. immune or recovered from the
point of the infection) to be dependent, in this case, on both the age
and the subgroup of the population considered. Using this extended
SEIRmodel, we are able to compare the effects of vaccination uptake,
while keeping fixed the structure of contacts. Figure 4e–h shows the
averted attack rate due to vaccination with respect to the non-
vaccination scenario. We consider the probability of getting vacci-
nated along the four different investigated dimensions separately. In
all of these scenarios, the gain in averted infection is strongly depen-
dent on the subgroup membership. As expected, the groups with
higher vaccination uptake are the ones, which reduce their attack rate

the most in the vaccination scenario. However, this pattern is not lin-
ear. For example, among individuals aged 60+, although the not-
employed people report a higher vaccination uptake, they are the ones
that gain less in terms of averted infections. This is because these
individuals, having a low number of contacts, are already protected
from exposure to the virus; thus, they gain less from vaccination (see
Section 7.2 of SI for the corresponding figures for the other periods
and the relative sensitive analysis).

Stratified modelling of the Hungarian scenario
To provide an example of how the proposedmathematical framework
canbe applied to a real case scenario, wemodel the 4thCOVID-19wave
in Hungary between 09/2021 and 01/2022. As the statistical analysis
showed that employment and income are the most important
dimensions along which, respectively, contact patterns and vaccina-
tion uptake change the most, here we divide the population into
subgroups by considering simultaneously these two additional
dimensions other than age. In addition, we introduce a new compart-
ment D to our SEIR model, which represents a dead state that infected
individuals may enter with a transmission rate I�!μIFRD.

To simulate the SEIRD for the 4th COVID-19 wave in Hungary, we
calibrate our model using the Approximate Bayesian Computation
(ABC)method38,39 on the total number of daily deaths from09/2021 to
01/202240. Details about the fitting method and calibrated results are
summarised in Section 8 of the SI.

The results of the simulated model are presented in Fig. 5, which
shows the daily fraction of newly infected (panels (a)−(c)) and new
dead (panels (d)−(f)) cases for different employment, income, and age
groups. As expected, these curves suggest that the group of employed
people experienced the infection at a higher rate as compared to those
not employed. At the same time, in termsof socio-economic status and
age, more affluent and younger people got infected more during the
simulated epidemic wave. On the other hand, strikingly the contrary
trend is suggested in termsofmortality rates. Fromthe simulations, we
find that although not-employed, low-income and older individuals
appearedwith the lowest infection rates, they evolvedwith the highest
mortality rate as compared to other groups.

Fig. 3 | Differences in attack rates in extended SEIR models. a–d Survey popu-
lation distribution by age and employment situation (a), education level (b),
settlement (c) and income (d). e–h Attack rate by age and employment situation
(e), education level (f), settlement (g) and income (h) as predicted by the
extended SEIR (i.e. calculatedwith both age and the given socio-economic variable
stratification). The grey lines represent the attack rate by age calculated only with
age stratification as predicted by classical SEIR with Ci,j (solid lines) and extended

SEIR with Cdi,j (dotted lines). i Difference in the attack rate by age as predicted by
the classical (Mw/Ci,j) and the extended (Mw/Cdi,j) model when different, the
dimensions are considered. Results are shown for the 4th wave. Epidemiological
parameters: μ = 0.4, ϵ = 0.25, and R0 = 2.5. Simulations start with I0 = 5 initial
infectious seeds. Results are sown as the median and IQR computed over
1000 simulations.
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Considering that the COVID-19 fatality rate of infected individuals
(IFR) depends on their age, this observation can be largely attributed
to the fact that not-employed and low-income individuals are also the
oldest ones in the population. To explicitly separate the effect of age
when it comes to analysing the burden of the epidemic, we examine
the attack rates andmortality rates by age groups separately in each of
the subgroups of the population stratified by income level and
employment status (Fig. 5g, h).

As we have shown in the analysis above, these results confirm an
overall decreasing infection rate by age and that not-employed indi-
viduals experience the lowest attack rate in each age group. The fur-
ther stratification of not-employed individuals by income level reveals
a clear pattern, with high-income people exhibiting a higher infection
rate compared tomid-income and low-income individuals. In contrast,
the infection pattern among income levels of employed individuals is
age-dependent. For young employed individuals in the age group

Fig. 5 | Modelled epidemic dynamics in Hungary during the 4th COVID-19
epidemicwave.Results from the simulatedmodel for the 4thwave inHungary. The
figure shows themedian and the IQRover 1000 runs. a–c Fractionof newly infected
by a employment situation, b income level, and c age group. d–f Fraction of new

deaths by d employment situation, f income level, and g age groups. g Attack rate
by age, employment situation and income level. h Mortality rate by age, employ-
ment situation and education level. For more details about the parameters of the
numerical simulations, see SI.

Fig. 4 | Disparities in COVID-19 vaccination and averted attack rates. a–d
Fraction of individuals vaccinated with at least one dose against COVID-19 during
the 4th wave, decoupled by age and a employment situation, b education level,
c settlement, and d income. Panels e–h show the averted attack rates (difference
between the attack rate in the non-vaccination scenario with respect to the vacci-
nationone) by e age and employment situation, f education level,g settlement, and

h income as predicted by extended SEIR. The model takes into account different
rates of vaccination uptake by subgroups of the given variable compared to the
non-vaccination scenario. Epidemiological parameters: μ =0.4, ϵ =0.25, and
R0 = 2.5. Simulations start with I0 = 5 initial infectious seeds. Results are sown as the
median and IQR computed over 1000 simulations.
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15–30, high and mid-income individuals register a higher share of
infections, while among those older than 30, low-income individuals
exhibit a higher infection rate compared to mid and high-income
individuals. An exception is represented by the age group 60–70, for
which the most infected group is still the high income.

In terms of mortality, as expected, we find an increasing trend by
age; otherwise, we can conclude a similar pattern as for the attack rate.
Particularly, the mortality rate by age group shows that employed
people die at a higher rate. While in terms of income, other than the
group aged 15–30 and 60–70, the lower-income people sufferedmore
deaths, according to our simulations. The extreme decrease in mor-
tality rate for the employed high-income group is due to data sparsity
in the survey data, recording only a few data points in this category
(see Section 1.2. of SI).

Discussion
Several factors may determine how an infection would turn out for a
given person. Some of them are coded genetically or determined by
physiological conditions, but many of them are environmental and
correlate with one’s socio-demographic characteristics. In any society,
people show uneven patterns along numerous social, demographic,
and economic characteristics, like age, income or employment status.
These characteristics not only induce medical disparities between
people (as in immunity, overall health conditions, or chronic diseases)
but naturally translate to differences in adaption capacities and other
behavioural patterns, allowing certain groups to be more exposed to
infection. The simultaneous actions of all these factors lead to obser-
vable inequalities in terms of epidemic burden between different
groups at the population level.

This study highlights the significant impact that social determi-
nants have on human behaviours that are relevant to epidemic trans-
mission. Specifically, exploiting the data of the MASZK study29,30, we
show that contact patterns and vaccination uptake are influenced by
socio-economic factors. Our findings suggest that contact patterns are
shaped by social factors not only in their absolute values but also in the
extent to which they vary in response to extraordinary events, such as
lockdown or curfew interventions. Specifically, our statistical analysis
shows that socio-economic factors such as employment situation and
education level played a significant role in determining contact num-
bers and vaccination uptake during the COVID-19 pandemic in Hun-
gary. Additionally, in contrast to studies reporting a negative
correlation betweenpoverty and the number of contacts41, wefind that
people with higher socio-economic status tend to have a higher
number of contacts and are the ones that change the most their
number of interactions with respect to the epidemiological situation.
Contrarily, people with lower socio-economic status maintain a lower
number of contacts over time with smaller oscillations. Although we
cannot establish a causal connection as a possible and plausible
explanation these results suggest that people from higher socio-
economic groups, such as those with higher education, income, and
employment status, were able to better adapt to the epidemiological
situation and NPIs and were more likely to get vaccinated.

We propose a mathematical framework that extends the well-
known age-stratified approach tomodel infectious diseases by explicitly
accounting for differences in contact patterns and vaccination uptake
for specific subgroups of the population. This method allows us to
better understand the mechanisms underlying the emergence of
inequalities in epidemiological outcomes. Results demonstrate that
traditional epidemiological models, that only consider age, could over-
look crucial heterogeneities along other social and demographic aspects
that may impact the spreading of an epidemic. Through simulated
epidemic processes, we show that significant differences in terms of
attack rates arise from differences in contact patterns. By neglecting
differences in vaccination uptake and the effects of vaccination

campaigns among subgroups in modelling, we would miss important
determinants which significantly influence the outcome of an epidemic.

By simulating a pandemic period in Hungary, we reveal the
unequal health-related impact of the COVID-19 pandemic among
individuals belonging to different socio-economic groups. Although
the higher number of contacts translates into higher attack rates for
wealthier and employed individuals, the age structure and the vacci-
nation decision of such groups translate into lower mortality rates for
these individuals, while disadvantaged groups are the ones suffering
highermortality. These results are in line with the empirical findings of
refs. 42,43 for the 2nd and 3rd COVID-19 waves in Hungary. In those
studies, the authors find that individuals living in more deprecated
areas are associated with a lower risk of being ascertained as a con-
firmed COVID-19 case and a higher risk of death. Additionally, during
the 3rd wave, those were associated as well with lower vaccination
uptake. However, we recognise as a limitation of our work that, owing
to data gaps, the initialisation of population distributions within
compartments and socio-demographic groups for the calibrated
model is done only proportionally the populationdistribution. Indeed,
the assumption of a homogeneous initial condition is improbable
precisely because of the different contact patterns, exposure risks, and
vaccination uptake among different age and socio-economic groups
(see Section 8 of SI for further detail).

Due to the limitation of the survey collection methodology,
contact patterns of individuals can be differentiated only by the
characteristics of participants. Indeed, the only information we
know about the contacted peers is their age, while their other
characteristics remain unknown. Thus, our extended SEIR model
can only account for age-contact matrices that are decoupled
along other social dimensions of the participants (ego). In other
words, although our model incorporates additional social
dimensions, given the subgroup the ego belongs to, it still only
considers the average number of contacts stratified by the age
group of the contacted (alter). In order to introduce a generalised
contact matrix44 stratified along multiple socio-demographic
dimensions of the contactee, we would need information about
such dimensions. Such information can be collected via detailed
contact diaries30, which are based on the reports of the respon-
dents about peers and commonly suffer from recall bias and
other limitations45,46. Moreover, we acknowledge the interplay
between vaccination and contacts in mutually shaping each other,
yet we have opted not to delve deeper into these mechanisms in
the current work as they may fall beyond the scope of our study.

By shedding light on the complex interplay between social,
demographic and economic factors and disease transmission dynam-
ics, our findings underline the need for a newmathematical framework
for epidemic modelling that accounts for multidimensional inequal-
ities. This would help us to better understand the socially stratified
consequences of an epidemic and highlight non-negligible inequalities
between different socio-demographic groups. Additionally, incorpor-
ating social factors into epidemiologicalmodels will provide a valuable
tool to design and evaluate targeted NPIs to copemore efficiently with
the spread of an infectious disease.

Methods
Data description
The data used in this study comes from the MASZK survey29,30, a
large data collection effort on social mixing patterns made during
the COVID-19 pandemic. It was carried out in Hungary from April
2020 to July 2022 on a monthly basis. The data was collected via
cross-sectional anonymous representative phone surveys using the
Computer Assisted Telephone Interviewing (CATI) methodology
and involved a 1000 large nationally representative sample each
month. During the data collection, participants were not asked for
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information that could be used for their re-identification. The
phone survey data collection was carried out after informed con-
sent from the respondent at the beginning of each interview. Any
information about children was obtained by asking questions from
their parents or legal guardians after consent. Survey data was not
collected from any under-age subject. The data collection fully
complied with the actual European and Hungarian privacy data
regulations and was approved by the Hungarian National Authority
for Data Protection and Freedom of Information47 and also by the
Health Science Council Scientific and Research Ethics Committee
(resolution number IV/3073-1/2021/EKU).

The primary goal of the data collection effort was to follow how
people changed their social contact patterns during the different
intervention periods of the pandemic. Relevant to this study, the ques-
tionnaires recorded information about the proxy social contacts, defined
as interactions where the respondent and a peer stayed within 2m for
more than 15min48, at least one of them not wearing a mask. Approx-
imate contact numbers were recorded between the respondents and
their peers from different age groups of 0–4, 5–14, 15–29, 30–44, 45–59,
60–69, 70–79, and 80+. Of which we aggregate the last two groups in
70+. Contacts number data about underage children were collected by
asking legal guardians to estimate daily contact patterns.

Beyond information on contacts before and during the pandemic,
theMASZKdataset provideduswith an extensive set of information on
socio-demographic characteristics (gender, education level, etc.),
health conditions (chronic and acute illness, etc.), financial and work-
ing situation (income, employment status, home office, etc.), and
attitude towards COVID-19 related measures and recommendations
(attitude towards vaccination, mask-wearing, etc.) of the participants.
In order to study different stages of the pandemic, we consider six
epidemiological periods, including three epidemic waves (Ws) and
three interim periods (IPs) (see Fig. 1a).

On the collected data, a multi-step, proportionally stratified,
probabilistic sampling procedure was elaborated and implemented
by the survey research company using a database that contained
both landline and mobile phone numbers. The survey response rate
was 49%, which is notably higher than the average response rate
(between 15% and 20%) of telephone surveys in Hungary. The sam-
ple is representative of the Hungarian population aged 18 or older
by gender, age, education and domicile. To correct sampling biases,
we used individual weighting to decrease the difference between
population and sample distribution of social-demographic vari-
ables. The weights were calculated by the survey research company
responsible for the data collection. For the calculation of the
weights, raking was used49, which relies on iterative proportional
fitting50. More details about the weighting procedure can be found
in Section 1.3 of SI. After data collection, only the anonymised and
hashed data were shared with people involved in the project after
signing non-disclosure agreements.

Sociodemographic dimensions
The sociodemographic dimensions that we analyse are the following:
(i) education level, which can have four possible levels: low, mid-low,
mid-high and high; (ii) employment situation, which can be either
employed or not-employed, including students and retirees indivi-
duals; (iii) perceived income (called simply income through the manu-
script) can have three possible levels: low, mid and high; (iv) gender
refers to the biological gender and can be either female or male; (v)
settlement, which refers to the area where individuals live and can be
either capital, rural or urban; (vi) chronic disease is a Boolean dimen-
sion indicating if an individual is affected by any chronic disease; (vii)
acute disease is a Boolean dimension indicating if an individual is
affected by any acute disease, and (viii) smoking is a Boolean dimen-
sion indicating if an individual is a smoker or not. A detailed explana-
tion of these variables is provided in Section 1.1 of the SI.

Data prepossessing
All the analyses on the number of contacts have been performed after
having deleted the outliers at the 98% percentile with respect to the
period of interest. All the results presented in this work have been
computed by accounting for each participant according to its repre-
sentativeweight, as detailed in Section 1.3 of SI. In addition, to assess the
uncertainty of the estimation of contacts and contact matrices, we
employ the bootstrapping sampling technique, as described in
Section 3 of SI.

Statistical analysis
In order to build an epidemiological model that explicitly takes into
account social inequalities, we need to identify which are the main
dimensions that interactwith age and affect contact patterns themost.
To identify these dimensions, we model the expected number of
contacts of respondent i using a negative binomial regression18,51 as
defined in Eq. (1):

μi =α +β1age groupi +β2Xi +β3age groupi � Xi + ϵi, ð1Þ

where age_groupi is the age class of i; Xi is the variable of interest (e.g.,
education, income, etc.), age_groupi � Xi is the interaction term of the
age group and the variable of interest, and ϵi is the error term. Given μi,
we define λi = expðμiÞ to be the expected number of contacts for
respondent i. Then we model the reported number of contacts for
respondent i, yi, as

yi ∼ Neg-Bin ðλi,ϕÞ, ð2Þ

where ϕ∈ [1,∞) is a shape parameter that is inversely related to over-
dispersion: the higher ϕ is estimated to be, the closest yi’s distribution
is to a Poisson distribution with rate parameter λi.

We build model (1) for each variable of interest (X). Particularly,
the interaction term between age_groupi and the variable of interest
allowsus to examinewhether there are differences in the effect ofXion
the number of contacts in the different age groups. To be able to
provide a meaningful description of the interactions, we analyse the
average marginal effect (AME)52–54 of Xi on the number of contacts for
different age groups, defined as

AMEXi
=
1
n

Xn

i= 1

∂μi

∂age groupi

∂μi

∂age groupi
=β1 +β3Xi:

ð3Þ

Working with categorical variables (e.g., education level or
employment situation), we can calculate different AMEs for all cate-
gories of the categorical variables in each age_group. Itmeans, that, for
example, for the interaction of the settlement type (with three cate-
gories, out of which one is a reference category) and age (with five
categories) on the number of contacts, we have 2 × 5 = 10 different
AME values: one for each settlement category by each age category.
However, as we would like to know the overall effect of the interaction
with the given variable, settlement, we have to aggregate these values
into onemeasure. Therefore, we developed the following strategy. For
each age group, we examined all the AMEs related to the category of
the variable analysed (e.g., all AMEs related to the categories of the
settlement type). In each case, we calculated the confidence level55 at
which the confidence interval belonging to theAMEof a given category
reaches zero. The higher this calculated confidence level is, the more
certain we can be that the given variable category has an effect on the
number of contacts in the given age group. Equivalently, the estimated
effect is significantly different from zero at a smaller type I error
probability. Out of these confidence levels, we consider the maximum
confidence level for each age group as that denotes the highest
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confidence level at which the AME of the given variable (e.g., settle-
ment type) reaches zero, i.e. the smallest type I error probability33 at
which the estimated effect is significant. Finally, to summarise the
results across age groups, we look at its distribution. By following this
procedure for each of the variables of interest in the different waves of
the pandemic, we are able to rank the variables according to their
importance in driving differences in contact patterns additionally to
age, in different periods of the COVID-19 pandemic. The pipeline of
these analyses is illustrated in Fig. 6.

Following the same methodology, we investigate the dimensions
that, in interaction with age, affect the most the probability of getting
vaccinated against COVID-19. In this case, we model this probability
using a logistic regression model instead of a negative binomial, as the
dependent variable was binary and not a count one (see Section 2.2 of SI
for further details). Although the data were aggregated to obtain NPIs-
homogeneous periods, minor variations in restrictions persist within
certain intervals (see SI Fig. 3). Thus, acknowledging the importance of
NPIs in shaping human contact during the COVID-19 pandemic, we
tested the validity of our results when considering this effect. Addi-
tionally, we account for the interplay of vaccination behaviour and
contacts, which can be significant in dynamic situations when vaccina-
tion strategies are implemented during an epidemic crisis56. Specifically,
we have included two additional control variables in the statistical
model (1): (i) the Oxford Stringency Index, a composite measure quan-
tifying the government’s response strictness to the pandemic, and (ii) a
dummy variable indicating individual vaccination status (vaxi). The
results of these robustness analyses are presented in Section 2.1.2 of the
SI, along with further robustness analysis where we control for all
the other available individual features. Additionally, we investigate the
effects of NPIs on vaccination uptake, with results presented in Sec-
tion 2.2.1 of the SI. All the results of the robustness analysis align with
those discussed earlier and lead to the same qualitative conclusions.

Decoupled contact matrices
Conventionally, to compute age-contact matrices Cij we divide a
population into subgroups according to their age and calculate the
average number of contacts that individuals in age class i have with
individuals in age class j30. Here, instead, we further stratify individuals
from each age class i according to various dimensions, like employ-
ment status, settlement or education level.

In detail, we decouple the conventional age contactmatrixCij intoD
number of matrices, one for each of the subgroups of the dimension
that we want to take into account. More precisely, let �d be the subgroup
of the dimension considered and let �d 2 1, . . . ,D. We can write

C�di, j =CT �di, j=N�di, ð4Þ

where CT �di,j is the total number of contacts that individuals of age
class i and belonging to subgroup �d have with individuals in age class j,
regardless of the subgroup to which the contacted individuals belong;
andN�di is the total number of individuals in age class i and subgroup �d.

For example, to differentiate between employed and not-employed
individuals, we compute two age contactmatrices:Cemployed,i,j andCnot-

employed,i,j. All these matrices have been corrected for symmetrization
as explained in Section 4.3.1 of SI. This framework can be extended to
any number of dimensions considered simultaneously, in this case, the
length of the �d vector will correspond to the number of combinations
of the levels of the dimensions considered. Note that the available data
lack information on the subgroup membership of contacts, recording
only thedemographic details of survey respondents. Consequently,we
opted to decouple the age contactmatrices solely along the dimension
of the respondent.

The epidemiological model
In order to investigate the effect of the decoupled contact matrices on
the dynamic of infectious disease transmission, we propose a simple
mathematical framework as an extension of the conventional age-
structured SEIRD compartmental model34,35.

The conventional SEIRD model is defined as a population where
individuals are assigned to five compartments based on their actual
state: susceptible (S), exposed (E), infected (I), recovered (R) and dead
(D). The model further defines the transition rates of individuals from
one compartment to another by incorporating for each age class a
given force of infection, which includes the average number of con-
tacts with all the other age classes. The model proposed here extends
this definition by taking into account not only the age structure of the
contacts in the population but also their differences along a set of
other dimensions �d, such as education level, income level and
employment situation.

The model can be described by a set of ordinary coupled differ-
ential equations as presented in Eq. (5):

_S�d,i = � λ�d,iS�d,i

_E�d,i = λ�d,iS�d,i � ϵE�d,i

_I �d,i = ϵE �d,i � μI �d,i
_R�d,i = μð1� IFRiÞI �d,i
_D�d,i = μIFRiI �d,i:

ð5Þ

Here i indicates the age groupof the ego, j indicates the age group
of the peer, �d represents a vector of dimensions to which the ego
belongs, β is the probability of transmission given a contact, ϵ is the
rate at which individuals become infectious, μ is the recovery rate, IFR
is the infection fatality rate, and C�d is the age contact matrix corre-
sponding to dimensions �d.

Fig. 6 | Maximum confidence level computation pipeline. Pipeline of the statistical analysis to compute the distribution of themax confidence level over age groups for
each of the variables analysed. The figure is made considering as an illustrative example of the variable employment.
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In this system of equations system, we rely on the concept of the
force of infection, which is defined as

λ�d,iðtÞ=β
X

j

Ci�d, j

Nj
Ij, ð6Þ

Further, we rely on the definition of the infection fatality rate (IFRi),
which is defined as the fraction of infected individuals that died. In
order to account for the variability of contacts in our data, for each
simulation that we run we use a static decoupled contact matrix that
we compute from a bootstrapped sample of our data. See Section 7 of
SI for the details on the implementation of the numerical simulations.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MASZK survey data cannot be shared openly due to privacy reg-
ulations, but theymay be available upon request to the corresponding
author (karsaim@ceu.edu) after the signature of non-disclosure
agreements with the data owner. A sample of data, including contact
matrices stratified by age, has been published at https://github.com/
adrianamanna/epi_social_inequalities. Data on the Oxford Stringency
Index are available at: https://ourworldindata.org/metrics-explained-
covid19-stringency-index. Data on the number of vaccinated indivi-
duals are available at: https://www.statista.com/statistics/1196109/
hungary-number-of-people-vaccinated-against-covid-19/. Data on the
total number of deaths inHungary during the 4thwave are available at:
https://kimittud.hu/request/koronavirus_elhunytakra_es_gyogy?
nocache=incoming-28514&fbclid=IwAR14PP0DyWIEzIix6mGwNkjHH
Jmyi8PZLl141vfXeRUzmghjjOqcCBuHx_M#incoming-28514.

Code availability
We made available a simplified code to (i) derive the decoupled age
contact matrix, and (ii) to simulate a SEIR model with these matrices
together with their visualisation. The code and a sample data set are
available at https://github.com/adrianamanna/epi_social_inequalitiesand
https://zenodo.org/doi/10.5281/zenodo.1098013457.
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