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Distributed representations of prediction
error signals across the cortical hierarchy are
synergistic

Frank Gelens1,2,11, Juho Äijälä2,11, Louis Roberts2,3, Misako Komatsu 4,
Cem Uran5,6, Michael A. Jensen 7, Kai J. Miller7, Robin A. A. Ince 8,
Max Garagnani 3,9, Martin Vinck5,6 & Andres Canales-Johnson 2,10

A relevant question concerning inter-areal communication in the cortex is
whether these interactions are synergistic. Synergy refers to the com-
plementary effect of multiple brain signals conveying more information than
the sum of each isolated signal. Redundancy, on the other hand, refers to the
common information shared between brain signals. Here, we dissociated
cortical interactions encoding complementary information (synergy) from
those sharing common information (redundancy) during prediction error (PE)
processing. We analyzed auditory and frontal electrocorticography (ECoG)
signals in five common awake marmosets performing two distinct auditory
oddball tasks and investigated to what extent event-related potentials (ERP)
and broadband (BB) dynamics encoded synergistic and redundant informa-
tion about PE processing. The information conveyed by ERPs and BB signals
was synergistic even at lower stages of the hierarchy in the auditory cortex and
between auditory and frontal regions. Using a brain-constrained neural net-
work, we simulated the synergy and redundancy observed in the experimental
results and demonstrated that the emergence of synergy between auditory
and frontal regions requires the presence of strong, long-distance, feedback,
and feedforward connections. These results indicate that distributed repre-
sentations of PE signals across the cortical hierarchy can be highly synergistic.

The traditional modular view of brain function is increasingly chal-
lenged by the finding that information about external stimuli and
internal variables is distributed across brain areas1–5.When information
in a complex system is carried bymultiple nodes, this could imply that
there is a large degree of redundancy in the information carried by the

different nodes. That is, the whole is actually less than the sum of the
parts. An alternative possibility, however, is that information is carried
in a synergistic manner, i.e. the different nodes might carry extra
information about task variables when they are combined. This can
occur when the relationship between the nodes encodes the stimulus
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in a way that is not apparent when observing each node’s activity alone
—in other words, the whole is greater than the sum of the parts6.

Both recent large-scale spiking and electrocorticographic (ECoG)
recordings support the notion that information about task variables is
widely distributed rather than highly localized2,7–10. For example, in the
visual domain, widespread neuronal patterns across nearly every
brain region are non-selectively activated before movement onset
during a visual choice task7. Similarly, distributed and reciprocally
interconnected areas of the cortex maintain high-dimensional repre-
sentations of working memory10. In the case of multisensory integra-
tion, sound-evoked activity and its associated motor correlate can be
dissociated from spiking activity in the primary visual cortex (V1)11,12. A
last example, and the one used in the current study, is the case of
communication of prediction error (PE) signals. Hierarchical predictive
coding theory has been proposed as a general mechanism of proces-
sing in the brain13. The communication of prediction error (PE) signals
using spikes and local field potentials (LFPs) recorded from subcortical
and cortical regions reveal a large-scale hierarchy of PE potentials8.

Amajor question is whether such distributed signals exhibit a high
degree of redundancy (i.e. shared information) or a high degree of
synergy (i.e. extra information) about their corresponding task vari-
ables. Electrophysiological studies have shown that synergy and
redundancy have functional relevance6,14–19. For instance, laminar
recordings in V1 suggest that synergistic interactions can efficiently
decode visual stimuli better than redundant interactions, even in the
presence of noise and overlapping receptive fields14. In contrast, the
information processing of olfactory stimuli exhibits higher levels of
redundant information across olfactory regions20. Here we investigate
this question by using co-Information (co-I), an information theoretical
metric capable of decomposing neural signals into what is informa-
tionally redundant and what is informationally synergistic about a sti-
muli variable15,21. Redundant information quantifies the shared
information between signals, suggesting a common processing of the
stimuli. Synergistic informationquantifies somethingdifferent:whether
there is extra information only available when signals are combined,
indicating that the information about the variable is in the actual rela-
tionship between the signals. Using ECoG recordings, we investigated
synergistic and redundant interactions in five common marmosets
performing two types of auditory tasks. This allowed us to determine
the processing of communication of prediction error information
across the brain during a range of auditory deviancy effects. Finally,
to investigate how structural connectivity might facilitate the emer-
gence of synergy, we applied the same oddball stimulation task used
in the experiments to a brain-constrained neurocomputational model
of the relevant cortical areas22,23.We computed synergy and redundancy
in the simulated responses while manipulating the network’s con-
nectivity structure to unravel a potential/candidate mechanism
responsible for generating the synergistic interactions observed
in vivo (Fig. 1).

Results
Mutual information reveals prediction error effects within
cortical areas
To characterize the distribution of PE acrossmultiple cortical areas,we
quantified PE in each electrode of the five marmosets by contrasting
deviant and standard tones (Fig. 2). For each electrode, we computed
Mutual Information (MI) to quantify the relationship between tone
category (standard vs deviant) with their corresponding ECoG signal
across trials. Within the framework of information theory, MI is a sta-
tistical quantity that measures the strength of the dependence (linear
or non-linear) between two random variables. It can be also seen as the
effect size, quantified in bits, for a statistical test of independence15.
Thus, for each electrode and time point, we considered ECoG signals
corresponding to standard and deviant trials and utilized MI to
quantify the effect size of their difference.

We have recently proposed that a suitable candidate for broad-
casting unpredicted information across the cortex is the transient,
aperiodic activity reflected at the level of the event-related potentials
(ERP) and broadband power (BB)24. A well-studied ERP marker of
auditory PE is the mismatch negativity (MMN), an ERP that peaks
around 150–250 ms after the onset of an infrequent acoustic
stimulus8,25–27. A second neural marker of auditory PE is the BB
response, an increase in spectral power spanning a wide range of fre-
quencies usually above 100Hz27,28. Whereas ERPs reflect a mixture of
local potentials and volumeconductedpotentials fromdistant sites, BB
is an electrophysiological marker of underlying averaged spiking
activity generated by the thousands of neurons that are in the
immediate vicinity of the recording electrodes29,30. MI was computed
separately for the two neural markers of prediction error (i.e. ERP and
BB signals). Electrodes showing significant differences in MI over time
(see Methods) are depicted in Fig. 2. In the Roving Oddball Task, ERP
signals showed PE effects across multiple cortical regions not neces-
sarily restricted to canonical auditory areas (Fig. 2b). In the case of the
BB signal, MI analyses revealed PE effects located predominantly in
the auditory cortex of the three marmosets, as well as in a few elec-
trodes located in the frontal cortex of marmoset Kr and Go (Fig. 2a).
These results agree with previous studies in different sensory
modalities29 showing that broadband responses are spatially localized.
In the case of the Local/Global Task, although the dataset formarmoset
Nr and Ji contained ECoG recording only from the temporal and
frontal cortices, the overall PE effects in the ERP signals were observed
in a higher number of electrodes than in the BB signal (Fig. 2
and Fig. S9).

Co-Information reveals redundant and synergistic cortical
interactions
To investigate how auditory PE signals are integrated within and
between the cortical hierarchy, we quantified redundant and syner-
gistic cortical interactions using an information-theoretic measure
known as co-Information (co-I)15. Co-I quantifies the type of informa-
tion that interacting signals encode about a stimuli variable: positive
co-I indicates redundant interactions between signals; andnegative co-
I accounts for synergistic interactions (Fig. 1d). Redundancy implies
that the signals convey the same information about PE, indicating a
shared encoding of PE information across time or space from trial to
trial. On the other hand, synergy implies that signals from different
time points or areas convey extra information about PE only when
considered together, indicating that the relationship itself contains
information about PE that is not available from either of the signals
alone (Fig. 1d).

To quantify the dynamics of redundancy and synergy temporally
and spatially, we computed the co-I within and between cortical areas
(see Methods). We analyzed ERP and BB markers of PE separately,
focusing our contrasts on the electrodes that showed significant MI
effects in the analyses described in Fig. 2c.

Experiment 1: Roving oddball task
Temporal synergy and redundancy. The finding that multiple
recording sites encode information about PE raises the question of
whether these signals convey the same or complementary PE
information over time within a cortical region. Thus, we first
characterized synergistic and redundant temporal interactions
within ERP and BB signals. In the Roving Oddball Task, co-I analyses
revealed widespread temporal clusters of synergistic information
(in blue) and redundant information (in red) across the three
monkeys in the auditory cortex (Fig. 3a, b), and frontal cortex
(Fig. 3c, d). The ERP signal in the auditory (Fig. 3a) and frontal
(Fig. 3c) electrodes showed characteristic off-diagonal synergistic
patterns, resulting from the interaction between early and late time
points within the same ERP signal (e.g. Fig. 3a, c; grey clusters
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Fig. 1 | Experimental design, information-theory analyses, and modelling.
a Using a Roving oddball Task, 20 different single tones were presented in the
trains of 3, 5, or 11 identical stimuli. Any two subsequent trains consisted of dif-
ferent tones. This way, while the adjacent standard (depicted in black) and deviant
(depicted in green) tones deviated in frequency due to the transition between the
trains, the two expectancy conditions were physically matched, as the first and the
last tones of the same train were treated as deviant and standard tones in the
analysis of the adjacent stimuli pairs. This task was performed by 3marmosets (Fr,
Kr, and Go). b Local/Global Task. On each trial, five tones of 50-ms-duration each
were presented with a fixed stimulus onset asynchrony of 150ms between sounds.
The first 4 tones were identical, either low-pitched (tone A) or high-pitched (tone
B), but thefifth tone could be either the same (AAAAAorBBBBB, jointly denotedby
xx) or different (AAAAB or BBBBA, jointly denoted by xY). Each block started with
20 frequent series of sounds to establish global regularity before delivering the
first infrequent global deviant stimulus. This task was performed by 2 different
marmosets (Ji and Nr). c Neural markers of auditory prediction error. Deviant
(green) and standard (black) epochs are used to compute the broadband and ERP
responses. Broadband is computed by extracting by reconstructing the time series
of standard and deviants with the first spectral principal component (SPCA) of the
ECoG signal; ERPs are computed by averaging the raw voltage values for standard

and deviant trials (see “Methods”). d Schematic representation of redundancy and
synergy analyses computed using co-Information. Each inner oval (A1 and A2)
represents the mutual information between the corresponding ECoG signals and
the stimuli category (standard or deviant). The overlap between A1 and A2 repre-
sents the redundant information about the stimuli (red; left panel). Theouter circle
around A1 and A2 represents the synergistic information about the stimuli (blue;
right panel). e Brain areas modelled, network architecture, and its connectivity.
Top left: Cortical areasmodelled. Three cortices in the left temporal lobe (primary
auditory: A1, auditory belt: AB, and parabelt: PB) are involved in auditory proces-
sing, and three in the frontal lobe (prefrontal: PF; premotor: PM; primary motor:
M1) directly linked to them. f Network architecture. All the (sparse and random)
connections are based onmarmoset neuroanatomy (seeMethods).g Schematic of
links to/from a single excitatory cell 'e'. Each model area consists of two layers of
excitatory (upper) and inhibitory (lower) graded-response leaky integrator cells
with neuronal fatigue. Dense links between these layers (grey arrows) implement
mutual inhibition between (e) and its neighbors. Panels (a and b) are adapted from
ref. 26, under a CC-BY license: https://creativecommons.org/licenses/by/4.0/.
Panels (f and g) are adapted from ref. 22, Copyright Elsevier (2013) under a CC-BY
3.0 license: https://creativecommons.org/licenses/by/3.0/. Panel (e) is adapted
from ref. 28, under a CC-BY license: https://creativecommons.org/licenses/by/4.0/.
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between ~140–300ms after tone presentation), and revealed by the
single electrode contrast depicted in Fig. S1. We observed sig-
nificant temporal redundancy in the auditory (Fig. 3b) and frontal
(Fig. 3d) BB signals. For auditory BB signals, the dynamics of the

redundant patterns were observed along the diagonal of the co-I
chart, they were sustained over time and observed between time
points around the early MI peaks (i.e., during the transient period
when the effect sizes are larger between tones) (Fig. 3b; grey

Fig. 2 | Broadband and ERP markers of PE across the monkey brain. Electrode
locations for marmoset Kr (64 electrodes), Go (64 electrodes), and Fr (32 elec-
trodes) in Experiment 1; and Nr (96 electrodes in ECoG-array, 39 used for analyses)
and Ji (96 electrodes in ECoG-array, 27 used for analyses) in Experiment 2. Elec-
trodes showing significant PE effect after computing MI between standard and
deviant trials for the (a, f) Broadband (darkgreen circles) and (b,g) ERP (light green
circles) markers of auditory prediction error. Electrodes showing significantMI for
both markers are depicted in cyan. c, h Histogram of electrodes showing sig-
nificant MI between tones for BB (left), ERP (middle), and both markers (right) for
each animal. d, i Electrodes with the highest MI in the temporal and frontal cortex
showing the BB signal for deviant and standard tones. Deviant tone (green) and

standard tone (black), and the corresponding MI values in bits (effect size of the
difference) for the temporal (pink trace) and frontal (orange trace) electrodes.
Significant time points after a permutation test are shown as grey bars over the MI
plots. e, j Electrodeswith the highestMI in the temporal and frontal cortex showing
the ERP signal for deviant and standard tones. Error bars indicate standard error of
the mean (SEM) across trials. For MI curves, we applied one-sided non-parametric
permutation tests, correcting for multiple comparisons with the method of max-
imumstatistics (seeMethods). Grey bars show significant timewindowswith FWER
p <0.05. Panels (a and b) are adapted from ref. 26, under a CC-BY license: https://
creativecommons.org/licenses/by/4.0/. Panels (f and g) are adapted from ref. 28,
under a CC-BY license: https://creativecommons.org/licenses/by/4.0/.
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clusters ~120–280ms after tone presentation). In the frontal elec-
trodes, we observed significant clusters of sustained redundant
interactions around later time points (Fig. 3d; grey cluster around
300ms after tone presentation).

Spatio-temporal synergy and redundancy. The finding that multiple
recording sites encode information about PE raises the question of
whether these regions are dynamically interacting and whether these
inter-areal interactions are redundant or synergistic. To test this

Fig. 3 | Temporal synergy and redundancy within ERP and BB signals in the
auditory and frontal electrodes with the highest MI for the Roving Oddball
Task (experiment 1).Co-information revealed synergistic and redundant temporal
patterns within ERP (Panel a) and BB (Panel b) signals in the auditory cortex, and
within ERP (c) and BB (d) signals in the frontal cortex. MI (solid traces) between
standard and deviant trials for auditory (pink color) and frontal (orange color)
electrodes averaged across the three monkeys. Error bars indicate SEM across

electrodes. Temporal co-I was computedwithin the corresponding signal (ERP, BB)
across time points between −100 and 350ms after tone presentation. The average
of the corresponding electrodes across monkeys is shown for the complete co-I
chart (red and blue plots); for positive co-I values (redundancyonly; red panel); and
negative co-I values (synergy only; blue plot). The grey-scale plots show the pro-
portion of monkeys showing significant co-I differences in the single electrodes
analysis depicted in Fig. S1. Source data are provided as a Source Data file.
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possibility, we characterized the redundancy and synergy between
auditory and frontal electrodes. Spatio-temporal co-I was computed
between the auditory and frontal electrodes over time (Fig. 4) and
averagedacrossmonkeys separately in theRovingOddball Task (i.e. ERP
andBB signals). Thedynamicsof spatio-temporal synergy in theERPand
BB signals showed complex and heterogeneous patterns between early
timepoints of the auditory electrodes and later timepoints in the frontal
electrodes (Fig. 4). For example, while the ERP signals encoded both
diagonal (Fig. 4a; grey clusters ~100–350ms after tone presentation)
and off-diagonal synergistic patterns (Fig. 4a; grey clusters ~150–350ms
after tone presentation), the BB signals mainly showed off-diagonal
synergy between temporal and frontal electrodes (Fig. 4b; grey clusters
~220–350ms after tone presentation). In Fig. 4a, the diagonal stripes
suggest thepossibility of oscillatorydynamics,where the representation
in frontal regions between 50 and 300ms is enhanced by knowledge of
the activity of temporal regions ~50ms earlier (the upper diagonal line).
Note that 50ms peak-to-peak timescale corresponds to a frequency of
~10Hz, i.e. thealpha range. InFig. 4b theoff-diagonal block suggests that
the frontal representation of the stimulus between 20–120ms initiates a
state change: later temporal activity (200ms+) enhances the readout of
the stimulus class, even though there is no representationof PE in theBB
signal of the temporal area at that time.

Experiment 2: Local/global task
Temporal synergy and redundancy. Although PE processing has
been widely studied using the Roving Oddball Task27, the

contribution of stimulus-specific adaptation (SSA) to the amplitude
of the ERP response is usually considered a confounding factor in the
isolation of PE8. For this reason, we also investigated synergy and
redundancy in a separate task capable of attenuating the effects of
SSA (i.e. the Local/Global Task). In the Local contrast, although we
observed temporal synergy in both ERP and BB signals, the off-
diagonal synergy was primarily observed between early and late time
points of the BB signals in the temporal cortex (Fig. 5; grey clusters
~150–350ms after tone presentation). The ERP signals, on the other
hand, showed diagonal synergy in both the temporal (Fig. 5; grey
clusters ~40–150ms after tone presentation) and frontal cortex
(Fig. 5; grey clusters ~150–350ms after tone presentation).

Another advantage of the Local/Global Task is the possibility of
exploring a higher-order PE observed as a violation of the overall
sequence of tones (Global contrast; see Fig. 1b, and Methods). This
context-dependent deviancy effect has been shown to elicit neural
activation in frontal regions28,31. In the case of the Global contrast, we
observed temporal synergy across early and late time points butmostly
in the BB signals both within the auditory (Fig. 5f; grey clusters
~0–350ms after tone presentation) and frontal electrodes (Fig. 5H; grey
clusters ~230–330ms after tone presentation). Taken together, these
results suggest that the Local/Global Task elicits distributed patterns of
PE information across time that are primarily encoded by firing rates.

Spatio-temporal synergy and redundancy. We investigated whether
local and higher-order PE are encoded by synergistic information

Fig. 4 | Spatio-temporal synergy and redundancy between auditory and frontal
electrodes in the Roving Oddball Task (experiment 1). Co-information revealed
synergistic and redundant spatio-temporal patterns between auditory and frontal
electrodes in the ERP (Panel a) andBB (Panelb) signals for the RovingOddball Task.
MI (solid traces) between standard and deviant trials for temporal (pink color) and
frontal (orange color) electrodes. Error bars indicate SEM across electrodes. Co-I
was computed between each pair of electrodes and across time points between

−100 and 350ms after tone presentation. The average of the temporo-frontal pairs
across the threemonkeys is shown for the complete co-I chart (red and blue plots);
for the positive co-I values (redundancy only; red plot); and the negative co-I values
(synergy only; blue plot). The proportion of electrodepairs showing significant co-I
differences is shown in the corresponding grey-scale plots. The average co-I charts
for the individualmonkeys are shown in Fig. S3 for the ERP signals and in Fig. S6 for
the BB signals. Source data are provided as a Source Data file.
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between cortical regions. Thus, we characterized the synergy (and
redundancy) between auditory and frontal electrodes for the local and
global contrast (Fig. 6). Spatio-temporal co-I was computed between
the auditory and frontal electrodes over time and averaged across two
monkeys separately for each signal (i.e. ERP andBB signals). Consistent
with the effects observed in the Roving Oddball Task, we observed
multiple patterns of synergistic and redundant information between
temporal and frontal regions.We alsonoticed an interesting difference
between the two tasks. While the Roving Oddball Task elicitedmost of
the synergistic interactions between ERP signals (Fig. 4a), the Local/
Global Task elicited most of the synergy between BB signals
(Fig. 6b, d).

Multivariate co-information (MVCo-I): synergy and redundancy.
Although the per-electrode and electrode-pair analyses of synergy
and redundancy exploit the optimal spatial resolution of the
recording modality across temporal and frontal regions, they could
also miss information encoded in the spatial pattern both within
and between temporal and frontal areas. They could therefore
potentially miss synergy or redundancy that is only apparent when
consideringmultiple electrodes together, either due to a low signal-
to-noise ratio within each channel or because of a genuinely dis-
tributed informative spatial pattern. This might be particularly

relevant for the ERP signals that showed extensive temporal and
frontal PE effects (Fig. 1a, b). Thus, to account for potential infor-
mative spatial patterns of redundancy and synergy in ERP signals,
and to reduce any concern about high-order interactions between
channels within each region in the pairwise channel analysis, we
complemented our analyses by computing co-I based on the
response across multiple electrodes (MVCo-I: Multivariate Co-
information) (Figs. S11, S12). In brief, we have applied a cross-
validated multivariate analysis approach that uses machine learning
to capture the best linear representation of the prediction error
signal across a whole region, and we have repeated our co-
information analyses within and between the two brain regions of
interest using the classifiers’ outputs (frontal and temporal) (see
Methods).

The MVCo-I analyses within-region (Figs. S13, S15) and between-
regions (Figs. S14, S16) showed comparable co-I in terms of synergistic
and redundant dynamics observed in the per-electrode (Figs. 3, 5) and
in the between-electrodes (Figs. 4, 6) analyses, but with increased
statistical power (i.e., increased MI).

To sum up, we observed widespread patterns of synergy within
and between ERP and BB signals across the auditory cortical hierarchy.
Thedistributednatureof the temporal and spatio-temporal synergistic
interactions across the hierarchy raises the question of whether the
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Fig. 5 | Temporal synergy and redundancy within ERP and BB signals in the
auditory and frontal electrodes with the highest MI for the Local/Global Task
(experiment 2). In the Local and Global contrasts, co-information revealed
synergistic and redundant temporal patterns within ERP (Panels a, e) and BB
(Panels b, f) signals in the auditory cortex, and within ERP (Panels c, g) and BB
(Panels d, h) signals in the frontal cortex. MI (solid traces) between standard and
deviant trials for auditory (pink color) and frontal (orange color) electrodes aver-
aged across the three monkeys. Error bars indicate SEM across electrodes.

Temporal co-I was computed within the corresponding signal (ERP, BB) across
time points between −100 and 350ms after tone presentation. The average of the
corresponding electrodes across monkeys is shown for the complete co-I chart
(red and blue plots); for positive co-I values (redundancy only; red panel); and
negative co-I values (synergy only; blue plot). The grey-scale plots show the pro-
portion of monkeys showing significant co-I differences in the single electrodes
analysis depicted in Fig. S2. Source data are provided as a Source Data file.
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Fig. 6 | Spatio-temporal synergy and redundancy between auditory and frontal
electrodes in the Local/Global Task (experiment 2). Co-information revealed
synergistic and redundant spatio-temporal patterns between auditory and frontal
electrodes in the ERP (Panels a, c) and BB (Panels b, d) signals. MI (solid traces)
between standard and deviant trials for temporal (pink color) and frontal (orange
color) electrodes. Error bars SEM across electrodes. Co-I was computed between
each pair of electrodes and across time points between −100 and 350ms after tone

presentation. The average of the temporo-frontal pairs across the threemonkeys is
shown for the complete co-I chart (red and blue panel); for the positive co-I values
(redundancy only; red panel); and the negative co-I values (synergy only; blue
panel). The proportion of electrode pairs showing significant co-I differences is
shown in the corresponding grey-scale panels. The average co-I charts for the
individualmonkeys are shown in Figs. S4 and S5 For ERP signal, and Figs. S7 and S8
for the BB. Source data are provided as a Source Data file.
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emergence of synergy is a consequence of the recurrent and feedback
connections in the auditory network.

Explaining the presence of synergy using a brain-constrained
neurocomputational model. To test the validity of our working
hypothesis that synergistic information may be driven mainly by
recurrent and feedback connections, we applied an existing neural
network model22,23 closely reproducing structural and functional
properties of relevant areas in the superior-temporal and inferior-
frontal lobes of the primate brain (Fig. 7a) to simulate auditory PE
processing (see Methods). Our approach was to employ a fully brain-
constrained neurocomputational model that accurately replicates
critical neurobiological and neuroanatomical features of the mam-
malian cortex and to stimulate this model using the same Roving
Oddball Task adopted in Experiment 1. The network simulated neu-
ronalfiring rates, which are themaincontributorsof the BB signals; we,
therefore, honed our modelling efforts on reproducing the BB signals
observed in Experiment 1 (Figs. 3b, d and 4b). The model we used (see
Fig. 1f) has been previously applied to successfully simulate and
explain automatic auditory change detection and the MMN response
to familiar and unfamiliar sounds in the human brain32 and several
other phenomena in the domains of language acquisition and pro-
cessing, attention, memory, and decision making22,23,33–36—see37 for a
recent review. Here, we recorded the network’s responses (measured
in each area as the sum of all cells’ firing rates) to predefined random
patterns simulating standard and deviant tones; following the same
procedure used to process the experimental data (see Methods), we
then analysed the resulting PE signals. We observed that, before any
adjustment of its parameter values, the network already encoded both
redundant and synergistic information, specifically, in the signal from
its superior-temporal region (including areas A1, AB, PB). We then
further constrained the model’s dynamics by fine-tuning three of its
parameters (i.e., the strength of the neuronal adaptation, the local
inhibition, and the between-area links) so that the temporal and spatial
features of synergistic information encoded in the simulated PE
responses would closely resemble those we observed experimentally.
This process of parameter tuning did not qualitatively change the
network’s responses but simply improved the fit of the responses with
the observed data.

To quantify the similarity of the co-I values between the real and
the simulated data, we computed the Structural Similarity Index
(SSIM). The SSIM assesses the structural similarity between two ima-
ges, with values ranging from0 (dissimilar) to 1 (highly similar). Hence,
we converted the co-I plots of the real and simulated data to images
and computed SSIMbetween them.While the SSIMbetween simulated
and experimental co-I was 0.74 (Fig. 7b versus Fig. 3b, the frontal
cortex comparison showed an SSIM of 0.83 between simulated and
experimental co-I (Fig. 7c versus Fig. 3d). Both values were statistically
significant above the chance level (p < 0.05) after comparing them to a
distribution of surrogate SSIM values. The surrogate distribution was
obtained by computing the SSIMbetween the experimental co-I image
and a shuffled version of the simulated co-I image and repeating this
procedure 1000 times.

Having attained a good match between experimental and simu-
lateddata (e.g, compareFig. 7 panelsb and c,with Fig. 3 panels b andd,
respectively), we then moved on to address the main question, i.e.,
whether the presenceof feedbackand recurrent links in theunderlying
neural network has a direct impact on the emergence of synergy. To
investigate this, we directly manipulated the model’s structural con-
nectivity and analysed the effects of such manipulation on its
responses to the same stimuli. Specifically, we used two types of
architectures: first, a fully-connected model (FC), having connectivity
as shown in Fig. 7a, i.e., including both feedforward and feedback
between-area and recurrentwithin-area, connections. It is important to
stress that such connectivity reflects the neuroanatomical links known

to exist between (and within) corresponding superior-temporal and
inferior-frontal cortices in the macaque brain, as well as between the
human’s homologue cortical areas (see Methods for details). Second,
we ran a set of feed-forward-only (FF) model simulations, in which we
artificially cut all the feedback and recurrent links of the FC archi-
tecture, while maintaining all the feedforward ones intact. By feedback
links here we refer to all the links in the model going from right to left
in Fig. 7a (i.e., from area PB to A1, from area PF to AB, from PM to PB,
from M1 to PF, and from each area to its left-hand side next-neigh-
bour). For each of these two model types, we ran three distinct simu-
lations. In each simulation, the projections linking any two areas (and
any area to itself) were sparse and established at random, with the
probability of any two cells being connected by a synapse decreasing
with their (modelled) cortical distance. The weights of all the synapses
were also set to a small random value comprised between 0 and 0.1
(see Methods for details).

Given this, we treated each simulation run as the model correlate
of a single marmoset in Experiment 1 (Fr, Kr, and Go), as it was pro-
duced using a slightly different (random) variation of the same pro-
totype network architecture (FC or FF). During each simulation, we
generated and recorded 100 trials (50 deviants and 50 standards) and
analysed the co-I within and between the resulting network responses
in exactly the same way as in the experimental data. The results
showed that the FC model showed highly synergistic interactions
between temporal and frontal regions (Fig. 8a, b). Crucially for our
hypothesis, we observed that the removal of all the between-area
feedback projections and recurrent within-area links of the network
entirely prevented the emergence of synergistic interactions between
frontal and temporal model regions (see Fig. 8d). Additional simula-
tions obtained with a version of the architecture containing just
nearest-neighbour between-area feedback (and feedforward) links,
along with recurrent ones (see Fig. S10) again failed to reproduce such
synergistic interactions, indicating that it is not simply the presence of
feedback projections, but specifically of higher-order, or so-called
“jumping”35, cortico-cortical links connecting non-adjacent areas of the
processing hierarchy that is needed for synergy to emerge in
the model.

Discussion
In this study, we focused on computing temporally-resolvedmetrics of
redundancy and synergy, aiming at investigating the dynamics of the
information interactions within and between cortical signals encoding
PE. Due to the interplay between temporal and spatial neural dynam-
ics, our approach revealed a rich repertoire of redundant and syner-
gistic patterns, showing transient and sustained information dynamics
distributed across the auditory hierarchy.

There are a wide variety of ways of using information-theoretic,
and other measures to study representational interactions in neural
coding38. Schneidman et al.39 discuss three types of response inde-
pendence in the context of spiking neuron population coding: activity
independence, conditional independence, and information indepen-
dence. Here we focus only on information independence, as we are
interested in relating the information representation between areas.
Deviations from information independence arebestmeasuredwith co-
information. To date, co-information has been less frequently applied
to aggregate signals as we do here15,17,40.

There has recently been increasing interest in using information-
theoreticmeasures quantifying redundancy and synergy to investigate
functional connectivity between brain regions in resting-state data6.
We highlight that a major difference here is we consider redundancy
and synergy about an experimentally controlled external stimulus
manipulation. Our approach therefore admits a more direct, groun-
ded, interpretation, as synergy and redundancy are properties of dis-
tributed neural representations of a specific aspect of the animal’s
perception of the world (here the PE). Recent work in human MEG
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takes a similar approach and finds similar synergistic representations
of PE41.

Interpreting synergistic interactions
Synergistic information was observed mainly off-diagonally, i.e.
between early and late times points after tone presentation for both
within (Figs. 3–5) andbetween cortical areas (Fig. 6). This indicates that

late temporal responses carry information that, in combination with
the early one, provides extra information about the identity of the tone
(standardor deviant) thanwhen considered in isolation. This raises the
question about what is the functional relevance of synergistic infor-
mation for representing prediction errors. The off-diagonal synergy
between early and late time points could be a signature of a neural
state shift. It is interesting to note that the synergy remains strong over
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Fig. 7 |Model architectures and simulation results.Abrain-constrainedmodel of
temporal and frontal areas of the marmoset brain (see Fig. 1f) was stimulated with
simulated tones as in the Roving Oddball Task used in Experiment 1. a, d Different
network architectures used for the simulations (see Methods). Feedforward and
feedback between-area connections are depicted as black and green arrows;
recurrent within-area links (panel a only) are shown in gold. Input stimuli were
repeatedly presented to area A1 of the network (model correlate of primary audi-
tory cortex) and firing rate responses of each excitatory cell within the six areas
were recorded. b, c Results obtained with networks having a Fully Connected (FC)
architecture (shown in panel a), which included both feedforward/feedback links
and recurrent connections. e, f Results obtained using networks having a
Feedforward-only (FF) architecture (panel d), in which the feedback and recurrent
connections were absent. MI (solid traces) between standard and deviant trials
averaged across three simulation runs (each run modelling a single monkey

dataset) are plotted for the three temporal (A1, AB, PB: pink curves) and three
frontal (PF, PM,M1: orange curves) areas' simulated responses. Error bars represent
SEM. Co-I analyses were performed on the model temporal and frontal areas' sig-
nals. Temporal co-I was computed within the simulated firing rates across time
points between −100 and 350ms after stimulus onset. The average of the corre-
sponding electrodes across simulated monkey datasets is shown for the complete
co-I chart (red and blue panel), for positive co-I values (redundancy only; red panel)
and negative co-I values (synergy only; blue panel). The grey-scale panels show the
proportion of simulated monkey datasets with the highest MI within the temporal
(A1, AB, PB) and frontal (PF, PM, M1) regions. Note the similarity (in terms of
temporal patterns of synergy and redundancy) between the results obtained from
the FC model responses (panels b and c) and those from the corresponding
experimental data (the BB signal shown in Fig. 3, panels b and d, respectively).

Fig. 8 | Spatio-temporal synergy and redundancy of simulated signals. The
firing rate responses of the networks used to produce the results of Fig. 7 were
subjected to co-I analyses between the simulated temporal and frontal areas' sig-
nals. b Results obtained using Fully Connected (FC) networks (panel a), which
included both feedforward and feedback (black and green arrows) links and
recurrent (golden arrows) connections. d Results obtained using Feedforward-only
(FF) networks (panel c), in which the feedback and recurrent connections were
absent (see Methods). MI (solid traces) between standard and deviant trials aver-
aged across three simulation runs (each runmodelling a singlemonkeydataset) are
plotted for the three temporal (A1, AB, PB: pink curves) and three frontal (PF, PM,
M1: orange curves) areas' simulated responses. Error bars indicate SEM. Co-I ana-
lyses were performed between the model temporal and frontal areas' signals.
Temporal co-I was computed from the simulated firing rates across time points
between −100 and 350ms after stimulus onset. The average of the corresponding

electrodes across simulated monkey datasets is shown for the complete co-I chart
(red and blue panel), for positive co-I values (redundancy only; red panel), and
negative co-I values (synergy only; blue panel). The grey-scale panels show the
proportion of significant co-I pairs between superior-temporal (A1, AB, PB) and
frontal (PF, PM, M1) areas using areas that showed significant MI between standard
and deviant trials. Note the similarity (in terms of spatio-temporal patterns of
synergy and redundancy) between the results obtained from the model responses
and those from the corresponding BB signals in the experimental data of Fig. 4: co-I
measures of network responses show significant synergy between temporal and
frontal regions (see panelb), as observed in realmarmoset data (Fig. 4b). Also, note
that such synergistic effects disappear after the removal of the network’s feedback
and recurrent links (compare the bottom-right plot of panel b, FC architecture,
against that of panel d, FF architecture).
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periods after the PE response is no longer represented (i.e. no MI at
those time points). However, the initial representation of the PE may
have shifted the local network dynamics into a different state. Then
knowing this ongoing state improves the readout of the encoded
information at the earlier time point. Thus, the off-diagonal synergy
might be an echo of the initial PE representation that is not directly
observable in later time points.

Synergy can also arise from a common source of neural noise that
is non-stimulus specific. For example, the spatio-temporal synergy
between regions could reflect a global change in attention or arousal.
In this situation, the readout of one area provides information about
the global neural state even when it does not convey information
about the PE directly, and this can be used to improve the resolution
with which the PE can be decoded from the other area. Although this
might be a possibility, the tight timing of the synergy bands observed
in both experiments (i.e., diagonal and off-diagonal synergistic pat-
terns) speak more of a transient dynamics rather than global ongoing
fluctuations underlying the spatio-temporal synergy.

How does synergistic information emerge from local and dis-
tributed neural dynamics? We reason that a plausible neurobiolo-
gical mechanism for the generation of synergy is through recurrent
and feedback neural interactions within and between areas,
respectively. This hypothesis is corroborated by the novel neuro-
computational results presented here. Specifically, we adapted a 6-
layer-deep, brain-constrained neural network model reproducing
the neuroanatomy and neurophysiology of language areas in the
temporal and frontal cortex of the human brain23,32,35 to simulate and
explain the corticalmechanisms underlying the generation of the PE
responses that we observed experimentally in the marmoset brain.
In response to oddball stimulation with simulated auditory tones,
the model was found to produce responses containing both
synergistic and redundant information (here we looked at the net-
work’s per-area sum of all cells’ firing rates; this measure can be
related directly to the experimentally recorded BB signal). By tuning
the model parameters, we were able to get the network’s spatio-
temporal patterns of synergy and redundancy encoding the PE
response to closely replicate those found experimentally across the
auditory cortical hierarchy; furthermore, manipulation of the
model’s connectivity revealed that synergistic interactions emerged
in it only when strong, higher-order (“jumping”) forward and
backward links (green arrows in Fig. 1f) connecting frontal and
temporal regions were present.

Based on this computational result, we conjecture that the cor-
tical homologues of such jumping links (known to exist between cor-
responding regions of the marmoset brain; see Methods) may play a
similarly crucial role in the emergence of the temporo-frontal syner-
gistic interactions observed in the ECoG data. This prediction awaits
further validation through experimental testing.

Interpreting redundant interactions
Adifferent type of dynamicswasobserved in the caseof the redundant
information across the cortex. Redundant patterns of information
were observed mainly at time points close to the diagonal of the co-I
chart, both within signals (Figs. 3–5) and between signals (Fig. 6). The
advantage of computing redundancy is that it reveals to which extent
local and inter-areal signals represent the same information about the
stimuli category on a trial-by-trial basis. Redundant interactions about
tone category (i.e., deviant or standard) were observed in the ERP and
BB signals and represented the outcome of the shared information
across time points (temporal redundancy) and between areas (spatio-
temporal redundancy). These observed redundancy patterns raise the
question of what is the functional relevance of redundant information
for processing PE across the cortex.

A neurobiological interpretation of redundancy is that the neural
populations encoding this type of information share a common

mechanism15. From the perspective of cortical dynamics, redundancy
then could provide cortical interactions with robustness6,20, as redun-
dant interdependencies convey information that is not exclusive to
any single cortical region. Robustness, understood as the ability to
tolerate perturbations that might affect network functionality6, is a
desirable characteristic of cortical networks processing predictions to
preserve stimuli separability in the presence of highly variable stimuli
features, environmental noise, or endogenous sources of noise such as
background neural activity. Thus, our results suggest that redundancy
quantifies the robustness of the information processing in the cortex,
enabling multiple areas to process common information about pre-
diction errors. One way this could arise is from multiple regions
receiving the same input evidence for processing in different parallel
pathways.

Differences in redundancy and synergy between tasks
The employed tasks all showed distinct patterns of synergistic and
redundant dynamics. The Roving Oddball Task elicited synergistic
information mostly within the ERP signal, while the local deviant in
the Local/Global Task displayed temporally distributed synergy
within both ERP and BB signals. A possible explanation for this is
that theMMN-response for the Roving Oddball Task could primarily
reflect stimulus-specific adaptation at the level of the auditory
cortex42, while the Local/Global Task shows smaller effects relating
to SSA due to the 20-sequence adaptation period at the start of each
testing run28,31.

While the local deviant in the Local/Global Task showed highly
distributed synergistic information across brain areas and for both
marmosets, the patterns observed for the global deviant were more
marmoset-dependent. Strong effects were observed within signals
(ERP and BB) and between brain areas (temporo-frontal) formonkey
Ji, but monkey Nr exhibited minimal effects within and between
all cortical regions (see Fig. S2). A speculative explanation for the
lack of a global effect is that higher-order deviants can be driven
by top-down attention43,44. In this case, the lack of effects in Nr
could be simply explained by a lack of interest in the experimental
stimuli.

Distributed processing across cortical areas: implications for
predictive coding
Our findings might have ramifications for predictive coding the-
ories. For example, the information encoding PEs was not merely
redundant but also highly synergistic across areas. In principle, the
lack of redundancy between PEs is inconsistent with hierarchical
predictive coding (HPC) theory because HPC entails that prediction
errors are independently generated in different levels of the
hierarchy13,45. However, synergy corresponds to the extra informa-
tion obtained when signals are considered together, suggesting that
there is a more holistic representation of PE rather than just
“independently” generated PEs, with the correlational structure of
the signals conveying additional information. Possibly, this synergy
results from the recurrent (including long-distance feedback)
interactions across many nodes, as suggested by the results of the
simulations obtained with a brain-constrained neurocomputational
model. Thus, these findings suggest that PEs might be encoded by
distributed processing rather than local and independent
processing.

Overall, our results support the idea that PE information is
broadcasted by transient, aperiodic neural activity across the cortex
(i.e. ERPs and BB signals)24. By dissociating the type of information
encoded by these inter-real interactions, we have shown that PEs not
merely encode common information but also complementary infor-
mation between brain signals. Our results demonstrate that dis-
tributed representations of prediction error signals across the cortical
hierarchy are highly synergistic.
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Methods
Data acquisition
This study used ECoG recordings from five adult male common mar-
mosets (Callithrix jacchus). The details of the datasets for three of the
monkeys (Kr, Go and Fr) have been described previously in26,27, and28

for two of the monkeys (Ji and Nr).
For marmosets Kr, Go and Fr, (i.e., animals that performed the

Roving Oddball Task) the ECoG recordings were acquired in a passive
listening condition while the monkeys were awake. During the
recording sessions, the monkeys Go and Kr sat on a primate chair in a
dimly lit room, while monkey Fr was held in a drawstring pouch, which
was stabilized in a dark room. Every session lasted for about 15min of
which the first 3min of datawere used for various standard stimuli and
the remaining 12min of data acquisition were dedicated to the Roving
oddball sequences. For the data analysis, we acquired a total of three
sessions for monkey Fr, which resulted in 720 (240 × 3) standard and
deviant trials, and six sessions formonkeysGo andKr, resulting in 1440
(240× 6) standard and deviant trials. For the recordings, a multi-
electrode data acquisition system was used (Cerebus Blackrock
Microsystems, Salt Lake City, UT, USA) with a band-pass filter of
0.3–500Hz and then digitized at 1 kHz. In the signal pre-processing,
those signals were re-referenced using an average reference montage,
and high-pass filtered above 0.5Hz, using a 6th-order Butter-
worth filter.

The recording was done with chronically implanted, customized
multielectrode ECoG electrode arrays (Cir-Tech Inc., Japan). Before
implantation with the ECoG electrode arrays, the monkeys were
anesthetized and further suffering was minimized. All electrodes were
implanted in epidural space; 28 in the left hemisphere and an addi-
tional 4 in the frontal cortex of the right hemisphere of monkey Fr, 64
in the right hemisphere of monkey Go, and 64 in the right hemisphere
of monkey Kr. In the 32-electrode array, each electrode contact was
1mm in diameter and had an inter-electrode distance of 2.5–5.0mm26.
In the 64-electrode array, each electrode contact was 0.6mm in dia-
meter and had an inter-electrode distance of 1.4mm in a bipolar pair46.
The electrode arrays covered the temporal, parietal, frontal, and
occipital lobes.

For marmosets Ji and Nr, (i.e., the animals that performed the
Local/GlobalTask) the ECoG recordingswere also acquired in a passive
listening condition while the monkeys were fully awake. The monkeys
were seated in sphinx position with their head fixed in a sound-
attenuated and electrically shielded room. The recording was done
with chronically implanted, multielectrode (96) ECoG electrode arrays
(Cir-Tech Inc., Japan). For data analysis, electrodes in the temporal and
frontal cortices of themarmosets were used. This was done due to the
public availability of the data from these electrodes28. Monkey Ji had a
total of 27 electrodes (16 temporal, 11 frontal), and monkey Nr had a
total of 39 electrodes (25 temporal, 14 frontal). The data was recorded
with a Grapevine NIP system (Ripple Neuro, Salt Lake City, UT) with a
sampling rate of 1 khz.

All surgical and experimental procedures were performed fol-
lowing theNational Institutes ofHealthGuidelines for theCare andUse
of Laboratory Animals and approved by the RIKEN Ethical Committee
(No. H26-2-202, for monkeys Kr, Go, and Fr and No. W2020-2-008(2)
for monkeys Ji and Nr). The locations of the implanted electrodes of
eachmonkey are found in Fig. 2. Data was collected inMATLAB 2016b
(MathWorks Inc., Natick, MA, USA) using the Psychophysics Toolbox
extensions.

Experimental tasks
For the RovingOddball Task,monkeys Kr, Go and Fr were subjected to
a Roving Oddball Task27. Trains of 3, 5, or 11 repetitive single tones of
twenty different frequencies (250–6727Hzwith intervals of 1/4 octave)
were presented in a pseudo-random order. Within each tone train the
presented tones had the same frequency, but between tone trains the

frequency was different. As the tone trains followed each other con-
tinuously, the first tone of a train was considered an unexpected
deviant tone, because the preceding tones were of a different fre-
quency, while the expected standard tonewas defined as the final tone
in a train because the preceding tones were of the same frequency
(Fig. 1a). Thepresented toneswerepure sinusoidal tones that lasted for
64ms (7ms rise/fall) and the time between stimulus onsets was
503ms. Stimulus presentationwas controlled byMATLAB (MathWorks
Inc., Natick, MA, USA) using the Psychophysics Toolbox extensions
(Brainard and Vision, 1997). Two audio speakers (Fostex, Japan) were
used to present the tones with an average intensity of 60dB SPL
around the animal’s ear.

For the Local/Global Task, monkeys Ji and Nr were subjected to a
standard Local/Global auditory oddball task28. The monkeys heard
tone trains with either a local regularity (five identical tones played in a
sequence; xxxxx) or global regularity (five tones, the first four of which
were identical, andwhere thefifthwasof a different frequency; xxxxY).
To create a local deviant, the last tone of the local tone train (xxxxx)
was sometimes played at a different frequency as the earlier tones in
the train (local deviant; xxxxY). To create a global deviant, the last tone
of the global tone train (xxxxY) was sometimes played with the same
frequency as the earlier tones in the train (global deviant; xxxxx). The
frequencies for the tones x or Y were either 707 or 4000Hz. The
presented tones were pure sinusoidal tones that lasted for 50ms with
an intertone interval of 150ms, and they were presented to the mon-
keys bilaterally with two speakers (Fostex, Japan) from the distance of
approximately 20 cm from the head with the average intensity
of 70DB.

Each testing period started with a 14-second resting phase, which
was followed by a habitation period during which the specified stan-
dard (local or global) was presented 20 times to ensure that the
monkey learns the regularity of the tone trains. For a testing run, three
blocks of 25-tone trains were played, with a 14 s resting phase in
between. Out of the 25 trials, 20 (80 percent) were of the specified
standard (local or global) and five (20 percent) were deviants. For the
global deviants, more than one local standard was always played after
to ensure global consistency. Each run lasted for 6min and 46 s, and
each session consisted of 3–4 local standard and 3–4 global standard
runs, depending on the marmoset’s performance during the day. The
order of the tasks was randomised, and the frequencies for tones x and
Ywere balanced. For the analysis, the number of trials for standard and
deviant trials had to be equal. This resulted in 330 (local deviant) and
243 (global deviant) trials for Monkey Ji, 251 (local deviant), and 212
(global deviant) for Monkey Nr.

ERP and BB analyses
For further analysis, the raw ECoG voltage responses have been
transformed into ERP and BB as described in27. In brief, common
average referencing was used to re-reference the ECoG recordings
across all electrodes, and the data was downsampled to 500Hz. For
obtaining ERPs, a low-pass filter of 1–40Hz was applied for the ERP
analysis. Standard and deviant tones were categorized as described
before. Epochs of −100ms to 350ms around the onset of the tones
were taken, and a baseline correction was applied by subtracting the
meanvoltage during the 100msperiod before the stimulus onset from
the total epoch.

To obtain the BB, spectral decoupling of the raw ECoGwas carried
out27,29. In brief, epochs of −100ms to 350ms around the onset of the
tones were used to calculate discrete samples of power spectral den-
sity (PSD). Then, trials from both conditions were grouped and indi-
vidual PSDs were normalized with an element-wise division by the
average power at each frequency, and the obtained values were log-
transformed. To identify components of stimulus-related changes in
the PSD, a principal component method is applied. This consists of
calculating the covariance matrix between the frequencies. The
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eigenvectors of this decomposition are called Principal Spectral
Components (PSCs), and reveal distinct components of neural pro-
cessing, hence enabling us to identify stimulus-related changes in the
PSD. Afterward, the time series were z-scored per trial to get intuitive
units, then exponentiated and subtracted by 1. Finally, a baseline cor-
rection was performed by subtracting the mean value of the pre-
stimulus period of −100 to 0ms.

Both for the ERP and BB signals some electrodes were excluded
from further analysis. This was done because the signal was absent or
clearly erroneous. Electrode 18 in Fr was excluded from the ERP ana-
lysis, while electrodes 18 in Fr, 30, 44, 45 in Go, and 30 in Kr were
excluded from the BB analysis.

Mutual information analyses
To quantify the MI between the stimulus class and the ECoG signal
(both ERP and BB), the GCMI toolbox (Gaussian Copula Mutual
Information)15 was used. This toolbox calculates the MI based on the
Gaussian copula the raw ERP or BB data transforms to. The approach
combined a permutation test with 1000 permutations with a method
of maximum statistics to correct for multiple comparisons. Using all
available trials, the signal at every time pointwas permuted 1000 times
for each electrode, randomly assigning the stimulus class labels each
time. The maximum value at each time point was taken, and the 95th
percentile of this value was used as the threshold for significance. This
method corrects formultiple comparisons and provides a Family-Wise
Error Rate (FWER) of 0.05. Electrodes with significant mutual infor-
mation between standard and deviant trials were selected as electro-
des of interest, and the co-I between them was estimated for the ERP
and broadband signals separately.

Co-Information analyses
We quantified co-I within signals (single electrodes) and between sig-
nals (between pairs of electrodes) using the GCMI toolbox15. The co-I
was calculated by comparing signals on a trial-by-trial basis. This
resulted in a quantification of the information content, redundant or
synergistic, between the two signals. The co-I was calculated in the
following way:

coIðX ;Y ; SÞ= IðX ; SÞ+ IðY ; SÞ � IðX ,Y ; SÞ ð1Þ

For each time point, I(X; S) corresponds to themutual information
(MI) between the signal at recording site X and stimuli class S. I(Y; S)
corresponds to the MI between the signal at recording site Y and sti-
muli class S. Finally, I(X, Y; S) corresponds to the MI between stimuli
class S combining signals from recording sites X and Y.

For each neural marker of auditory PE (i.e., ERP and BB), co-I was
computed for each pair of tones (standard and deviants) within
recording sites in A1 and frontal regions (Figs. 3, 5 and Figs. S1–S2), and
betweenA1 and frontal regions (Figs. 4, 6 and Figs. S3–S8). Positive co-I
shows that signals between recording sites contain redundant, or
overlapping, information about the stimuli. Negative co-I corresponds
to the synergy between the two variables: the information when con-
sidering the two variables jointly is larger than when considering the
variables separately.

Figure 1c shows a schematic representation of co-I between two
signals. It shows the independent information that response 1 and
response 2 (both in white) contain. If there is an overlap in the infor-
mation that is being represented by the two signals, there is a redun-
dancy (red color) in the information that the two responses contain. If
the two signals considered together contain more information than
could be expected based on the information present in the individual
signals, there is synergy (blue color). Statistical analyses of co-I charts
were performed by using a permutation test with 1000 permutations
and using the same maximum statistics method described for the MI
analyses, resulting in an FWER of 0.05.

Note thatMI and co-I values are reported in units of bits. A valueof
1 bit corresponds to a halving of the uncertainty of the trial state when
observing the neural response. It is important to keep in mind though
that these information values are the average per sample. Here we use
a sampling rate of 500Hz, so a value of 0.01 bits/sample corresponds
to an approximate information rate of 5 bits/second.

Neurocomputational experiments
Model architecture and function. To investigate the neural mechan-
isms underlying the generation of the PE responses observed experi-
mentally in the marmoset brain during oddball presentation of
auditory tones we took an existing six-layer-deep, neural network
architecture22,23,35 closely mimicking neuroanatomy and neurophy-
siology of six perisylvian areas in the left hemisphere of the human
brain involved in spoken language and auditory processing, and
adapted it for the present study’s needs.

This choicewasmotivated by the observation that, like other non-
human primates, marmosets are known to be highly vocal and exhibit
active vocal communication among conspecifics47–49; furthermore, the
existing architecture has been previously used to simulate and explain
well-documented neurophysiological patterns of event-related
potentials observed during language processing and oddball stimula-
tion with familiar and unfamiliar sounds23,32. Themodel closely reflects
the functional and structural features of the mammalian cortex, and
incorporates the following neurobiological and neurophysiological
constraints:
1. Six cortical areas aremodelled, three in the superior temporal and

three in the inferior frontal lobes, constituting the marmoset
homologues of BrodmannAreas (BAs) 41 (labelled A1 in Fig. 1f), 42
(labelled AB), and 22 (PB) in the superior temporal gyrus, and of
BAs 44 and 45 (labelled PF), 6V (PM), and 4 (M1) in the inferior
frontal gyrus in humans;

2. Between-area links in the model (green, purple, and black arrows
in Fig. 1f) reflect known neuroanatomical links between corre-
sponding brain areas in the marmoset (see next section below);
recurrent (within-area) connections (golden arrows) are also
modelled, in line with known properties of the mammalian
cortex50,51;

3. Between- and within-area links do not implement all-to-all
connectivity between cells, but sparse, patchy, and topographic
projections, with synaptic links established probabilistically (the
probability of two cells being connected decreasing with the
distance; see51–53 and initialised to weak and random efficacy
values;

4. Local lateral inhibition54,55 and area-specific global regulation
mechanisms (referred to as local and global inhibition,
respectively)51,55,56;

5. Single cells’ neurophysiological dynamics, including sigmoid
transformation of membrane potentials into neuronal outputs, as
well as adaptation and temporal summation of inputs57;

6. Constant presence of uniform uncorrelated white noise (simu-
lating spontaneous baseline neuronal firing) in all model
neurons58.

A first difference from the human language cortex is that the
location of the marmoset homologue of BA 44—one of the major
components of Broca’s area59—still has not been definitively agreed
upon47. However, area 6Vb in the marmoset—which, like in man and
macaque, is just caudal to 45—exhibits cytoarchitectonic features (a
scattered, agranular layer 4) that make it a potential candidate for the
BA 44 homologue47. In addition, area 6Vb shows a pattern of neuroa-
natomical connectivity different from that of its dorsal (and more
caudal) counterpart 6Va, a premotor area60. In previous “human” ver-
sions of the architecture, area PF (modelling prefrontal cortex) was
defined as including mainly BA45 (and 46v), whereas BA 44 was
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subsumed bymodel area PM. Given the above, and the fact that BA 44
is generally considered a prefrontal cortex area, here we decided to
treat Marmoset’s area 6Vb as the homologue of the insofarmissing BA
44, and to label both45 and6Vb asmodel area PF (hence limiting PM to
include just area 6Va, homologue of BA 6V).

Structurally, eachmodel area consists of two neuronal layers, one
of excitatory and one of inhibitory cells, each containing 625 (25 × 25)
cells (see Fig. 1g). Functionally, model cells are graded-response units,
each representing a cluster of excitatory pyramidal cells or inhibitory
interneurons. The specifics of the computational implementation
(including thewithin-area structure and single-cell functional features)
are analogous to those implemented in previously published versions
of the architecture (for details, see22,32 and can be found in the Sup-
plementary Methods for completeness.

A second crucial aspect that distinguishes human, macaque, and
marmoset brains is the structural connectivity between the relevant
homologue areas. Our present approach, which builds upon and is in
line with several previous studies carried out with this neurocompu-
tational architecture22,23,32,33,35–37,61, is to implement a fully brain con-
strained model. More precisely, we impose that, for any two model
areas, synaptic projections between them are realised only if experi-
mental evidence indicates the presence of neuroanatomical links
between the two corresponding cortical areas in the marmoset brain.
In the following section, we provide such evidence and the rationale
based onwhich the present network architecture (shown in Fig. 1f) was
adopted.

Connectivity of the simulated brain areas. The implemented model
areas can be thought of as grouped into two sub-systems (frontal and
temporal), each simulating a hierarchy of three cortical areas consist-
ing of a primary cortex (motor and auditory, respectively), the adja-
cent higher secondary, and associative multimodal regions.
Neuroanatomical studies in the mammalian brain indicate that adja-
cent cortical areas tend to be reciprocally connected62,63. We imple-
mented such next-neighbor connections (black arrows in the network
architecture shown in Fig. 1f) in each of the two subsystems based on
known evidence from nonhuman primates (including marmosets):
within the frontal/motor (PF-PM-M1)60,62 and within the temporal/
auditory (A1-AB-PB)64–69. The links connecting the parabelt (area PB)
with prefrontal cortex (PF), shown in purple in Fig. 1f, are also realised
in line with evidence on known long-distance cortico-cortical white
matter fibres in the monkey (arcuate fascicle and extreme capsule)
connecting posterior-lateral parts of the temporal cortex (area PB) and
inferior prefrontal cortex (area PF)60,70–74. Finally, although less strong
and richly developed than in humans75,76, the presence of higher-order
“jumping” connections between non-adjacent areas in the model
(green arrows in Fig. 1f) has been documented also in monkeys
(including in marmosets). Specifically, neuroanatomical studies indi-
cate that A1 is directly connected to PB62,67–69,77, that AB is connected to
PF64,78–81, that PB and PM are linked73,82 and that PF—here including
areas 45 and 6Vb—is also directly connected to M183,84.

A previous modelling study using a neurocomputational archi-
tecture analogous to the present one looked at the effects of qualita-
tive and quantitative differences between monkey’s and human’s
perisylvian areas connectivity on verbal working memory35. In that
study, the architecture used to simulate the monkey brain did not
implement any of the jumping links that we included in the present
model of the marmoset’s cortex. The authors, however, did acknowl-
edge that the extant evidence does not imply a “complete absence of
jumping links in nonhuman primates”. In addition, none of the neu-
roanatomical studies used to constrain that modelling work included
data from marmoset monkeys (the evidence about non-human pri-
mate connectivity used relied on macaques or chimpanzees). Finally,
as Schomers and colleagues clarified, their work focused onmodelling
the major structural connectivity differences between monkeys and

humans rather than on modelling the full complexity of the neuroa-
natomical connections of either species35. Hence, given that - albeit
weaker and less developed than in humans - jumping links in non-
human primates (including in the marmoset) do appear to exist, their
study and the present one should not be considered as in conflict, but
simply as using the same network architecture to address different
computational questions.

Procedures. To simulate the RovingOddball Task of Experiment 1, the
network was repeatedly presented with stimulus patterns to its audi-
tory cortex (area A1). A stimulus pattern (simulating an auditory tone)
consisted of a pre-determined set of 31 cells chosen at random
amongst the 25-by-25 cells of area A1 (about 5% of cells). We used 12
different randomly generated stimulus patterns; presenting a stimulus
involved activating the 31 cells of the chosen pattern in A1. A single trial
consisted of a baseline (ten simulation time-steps long) with no input,
followed by 20 time-steps of stimulus presentation, and 20 time-steps
of inter-trial interval (no input); stimulus onset asynchronicity was
therefore 50 simulation time-steps. A roving paradigm was used, in
which 89% of standard (STD) trials were intermixedwith 11% of deviant
(DEV) trials. A new DEV trial was always preceded by 6-to-10 identical
STD stimuli; the new DEV stimulus was chosen at random. The net-
work’s output (firing rates of all cells of the six areas) was recorded
from the start of the last STD trial to the end of the critical (DEV) trial
following it. For each simulation run (a model correlate of a monkey
recording) we collected a total of 50 STD and 50DEV trials.MI and co-I
analyses on the simulated data, as well as the statistical contrasts
between STD and DEV tones, were performed exactly as described for
the in-vivo data.

Multivariate co-information method (MVCo-I). Mutual information
quantifies statistical dependence on the meaningful effect size of bits.
Crucially, these values are additive when combining independent
representations. This allows us to quantify representational interac-
tions between electrodes as synergistic or redundant using co-I as
described in the manuscript. However, estimating mutual information
on high-dimensional responses is challenging. Multi-Variate Pattern
Analysis (MVPA) is an approach that has been widely adopted in neu-
roimaging and neuroscience to deal with high-dimensional signals85.
MVPA uses techniques from the field of machine learning: namely,
supervised learning algorithms and cross-validation, to learn infor-
mative patterns in high-dimensional data, and evaluate their general-
isation performance (i.e. how well the model could predict in new
data). Here we use linear-discriminant analysis to learn the most
informative linear combination of channel activity in each region to
predict the binary class of the stimulus (i.e. deviant vs standard). There
are various metrics for evaluating the cross-validated predictive per-
formanceof classification algorithms, for example, overall accuracy, or
measures like Area under the ROC curve86. These metrics can be used
to rankmodels basedondifferent features (i.e. compare the amount of
information in temporal vs frontal regions).

Here, we combine MVPA with information-theoretic co-I to
quantify the representational interactions in predictions made from
cross-validatedmultivariatemodels. To do this, we first applyMVPA in
the typical way (here using MVPALight toolbox;87) using 10-fold cross-
validation (CV). In a 10-fold CV, the overall dataset is randomly sepa-
rated into 10 disjoint subsets. Then, amodel is fit on 9 of those subsets
and tested on the 10th, and this is repeated for each of the 10 subsets.
Here, we take the decision value of the learned classifier (the value of
the linear combination of the weights and the data, which would then
be thresholded to make the classification) for each test set trial. This
quantifies how strongly the informative pattern the classifier had
learned was present in the data on that trial. We combine the test-set
decision values from all 10 different CV repetitions and calculate the
mutual information between these out-of-sample decision values and
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the true stimulus value on each trial88,89. We have usedMVPA to reduce
the activity of the multi-channel region into a single scalar value: the
decision value (d-val).

We can repeat the MVPA analysis for each time point of the
stimulus-locked epochs. Often, temporal cross-decoding85 is
employed with MVPA to compare the consistency of the informative
patterns over time. For this method, a classifier is trained at time t, and
then tested (in the hold-out test folds) at other times. If it candecode, it
shows the samepattern thatwas learned at time t, which is information
at other times. However, this can only compare between data sets or
conditions that are in the samephysical space: i.e. we can cross-decode
across time within one brain region, but we cannot compare between
two different brain regions, because there is no way to apply the linear
weights learned in the frontal region to the completely different
temporal electrodes. Combining MVPA with co-Information (MVCo-I)
overcomes this limitation. We compute co-I between the cross-
validated decision values of different classifiers. This admits the
same interpretation as for the channel-wise analysis. Redundancy
shows that there is common information accessed by the two decod-
ing models. Synergy means that there is a super-additive boost in the
information available when considering the pattern activation from
both models together. When estimating the joint information for the
co-information calculation we take the maximum of the individual
regionMI (because thedata processing inequality tells us this is a lower
bound on the information that can be extracted from the joint
response), the MI from the combined d-vals (2D signal; this has the
advantage of being a low dimensional response forMI calculation, and
being the optimal informative signal from each region) and the MI
from a joint MVPAmodel fit to the combination of channels fromboth
regions (1D d-vals, but which has the possibility to include synergistic
information between the regions which we want to capture with this
measure) (Fig. S11).

We apply this methodology here in two ways. First, we look at
within-areaMVCo-I. For this, we train CV classifiermodels separately at
each time point. We then calculate the co-information between two
time points using the cross-validated decision values of the two
models. Note, that a crucial difference between this and the temporal
cross-decodingmethod is that we always use themodel that is learned
to optimally decode information at that time point. Cross-decoding
can tell if the same pattern is informative, but we can see redundant
information even when the informative pattern changes. We can then
compute MVCo-I between regions in the same way.

Data was analyzed using MATLAB 2019b (MathWorks Inc., Natick,
MA, USA); and the open-source Gaussian Copula Mutual Information
(GCMI) Toolbox15.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The original raw data of marmosets Fr, Kr, and Go used in this study is
publicly available at: http://www.www.neurotycho.org/auditory-
oddball-task. The original raw data of marmosets Ji and Nr used in
this study is publicly available at: https://datadryad.org/stash/dataset/
doi:10.5061/dryad.j3tx95xfp Source data are provided with this paper.

Code availability
The MATLAB/Python toolbox GCMI (Gaussian Copula Mutual Infor-
mation) used in this study is publicly available at: https://github.com/
robince/gcmi.
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