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1q amplification and PHF19 expressing high-
risk cells are associated with relapsed/
refractory multiple myeloma

Travis S. Johnson 1,2,3,4, Parvathi Sudha 5, Enze Liu5, Nathan Becker5,
Sylvia Robertson2, Patrick Blaney 6, Gareth Morgan 6, Vivek S. Chopra7,
Cedric Dos Santos7, Michael Nixon8, Kun Huang 1,3,4,
Attaya Suvannasankha 5,9, Mohammad Abu Zaid 5, Rafat Abonour5 &
Brian A. Walker 4,5

Multiple Myeloma is an incurable plasma cell malignancy with a poor survival
rate that is usually treated with immunomodulatory drugs (iMiDs) and pro-
teosome inhibitors (PIs). The malignant plasma cells quickly become resistant
to these agents causing relapse and uncontrolled growth of resistant clones.
From whole genome sequencing (WGS) and RNA sequencing (RNA-seq) stu-
dies, different high-risk translocation, copy number, mutational, and tran-
scriptional markers can be identified. One of these markers, PHF19,
epigenetically regulates cell cycle and other processes and is already studied
usingRNA-seq. In this study, wegenerate a large (325,025 cells and49patients)
single cell multi-omic dataset and jointly quantify ATAC- and RNA-seq for each
cell andmatched genomic profiles for each patient. We identify an association
between one plasma cell subtype with myeloma progression that we call
relapsed/refractory plasma cells (RRPCs). These cells are associated with
chromosome 1q alterations, TP53 mutations, and higher expression of PHF19.
We also identify downstream regulation of cell cycle inhibitors in these cells,
possible regulation by the transcription factor (TF) PBX1 on chromosome 1q,
and determine that PHF19may be acting primarily through this subset of cells.

Myeloma is a plasma cell malignancy with a poor survival rate that in
current years has seen improved prognosis due to advances in
treatment1. Disease progression and more generally disease risk, are
defined by molecular subtypes of myeloma2. Currently there are
multiple genomic markers that impact patient survival and likelihood
to relapse3,4 such as t(4;14)5, Del17p3,6, or Gain/Amp1q7,8 which have
been long associated with worse prognosis. Additional copies of

chromosome 1 (Gain/Amp1q) are the most common chromosomal
abnormalities in MM. Recently, Gain/Amp1q and especially Amp1q
have emerged as a poor risk factor including risk of relapse with the
current frontline therapies for myeloma9. Despite this attention, the
mechanism through which Gain/Amp1q affects prognosis and
response to therapy is still not known. Some hypotheses for the Gain/
Amp1q mechanism include increased expression of CKS1B affecting
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SKP2 and KIP2710 or more recently the transcription factor (TF), PBX1,
affecting FOXM111. For these reasons there is still a need to understand
the mechanisms through which Gain/Amp1q leads to poor prognosis.

Besides translocations and copy number variations that affect
myelomadiseaseprogression, there aremanyepigenetic regulators that
affect chromatin accessibility and result in altered protein expression
and eventually progression12. PHD finger protein 19 (PHF19) is an epi-
genetic regulator that has recently seen much interest in the myeloma
field due to its relationship with poor patient outcomes13. It has been
shown that PHF19 can affect cell cycle by interacting with the polycomb
repressive complex 2 (PRC2) to induce trimethylation of histone H3
lysine 27 (H3K27me3)14. Over-expression of PHF19 has been shown to
increase H3K27me3 at cell cycle inhibitor and JAK-STAT loci in the
genome14. Though these regulatory relationships have been evaluated
using cell line experiments and using patient-level omics datasets there
has yet to be an evaluation of these mechanisms at the single-cell level.

Recently, single cell RNA sequencing datasets have been gener-
ated from cohorts of myeloma patients. Initially, these datasets
showed that there were key differences between asymptomatic mul-
tiple myeloma patients and symptomatic multiplemyeloma patients15.
Both in patients with asymptomatic multiple myeloma and patients
post treatment with minimum residual disease there were detectable
levels of rare tumor cells with characteristics of active myeloma15.
Subsequently, relapsed and refractory patients after bortezomib
treatment acquired new resistance mechanisms including hypoxia

tolerance, protein folding, and mitochondria respiration16. Aside from
noticeable changes in the tumor cell fraction that improve resistance
to treatment and more aggressive proliferation, the immune micro-
environment is compromised in earlier precursors to multiple
myeloma17. All of these studies show that the complex interplay
between the tumor and immune microenvironments are largely dys-
regulated even in early stages of disease. These changes can some-
times be attributed to epigenetic regulatory mechanisms12.

In this study, we use a large single-cell multiomic dataset to show
how cytogenetic changes affect the progression of myeloma. Using
chromatin accessibility paired with gene expression we are able to
recapitulate epigenetic regulation of the cell cycle in human samples at
the single-cell level. We are able to link these epigenetic relationships
back to cytogenetic events uncovering new mechanisms through
which genomic events lead to increased cell proliferation.

Results
Integrated clustering identifies cells associated with relapse and
high-risk markers
CD138+ single cells were assayed by multiome sequencing (10X
genomics) from 49 patients with SMM (n = 10), NDMM (n = 22), and
RRMM(n = 17) (Fig. 1, Table 1). Samples initially had an average of 9484
cells. Removal of low-quality cells and non-plasma cells resulted in
6819 cells per sample for downstream analyses (Supplementary Fig. 1,
Supplementary Tables 1 and 2). Based on our analysis pipeline to

Fig. 1 | Overview of the samples collection, processing, and our analysis pipe-
lines for WGS and single cell multiomics (created by BioRender). Samples were
collected from SMM, NDMM, and RRMM patients and sorted into the CD138+

fraction. This fraction was then split and sent for bulk WGS and single cell mul-
tiomic (RNA+ATAC) sequencing. These cells and patient WGS profiles then
underwent our computational pipeline.
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integrate all patient samples, 325,025 high quality myeloma cells were
retained for further study. These cells were used to impute translo-
cations: t(4;14), t(6;14), t(11;14), t(14;16), and t(14;20) (Supplementary
Fig. 2), copy number variants (CNVs): 1p, 1q, 13q, and 17p (Supple-
mentary Fig. 3), and hyperdiploidy (HRD)(Supplementary Fig. 4) in the
five patient samples missing WGS (Supplementary Table 3). Of the
patients, 19 hada translocation that could be stratified into theprimary
translocation groups based on marker gene expression (Fig. 2A).

Cells were integrated and formed 25 distinct clusters (Fig. 2B) of
myeloma cells with unique transcriptome profiles that frequently
associated with stage of progression (Fig. 2C, Supplementary Fig. 5)
and genomic events (Fig. 2D, Supplementary Data 1). Using the pre-
viously defined clusters (Fig. 2B), we determined if samples in any
disease stage, cytogenetic subgroup, or genetic subgroup (Supple-
mentary Table 4) are enriched for cells in any particular cluster
(Fig. 2D). We determined that clusters 11, 20, 22, and 23 were asso-
ciated with later stages of myeloma progression (Fig. 2B–E) such that
all of these clusters had significantly greater proportions in RRMM
compared to SMM (P <0.001 and Benjamini-Hochberg false discovery
rate (FDR) = 0.003, P <0.001 and FDR =0.003, P =0.031 and FDR =
0.24, and P =0.032 and FDR =0.25, respectively, Supplementary
Data 1). The largest of these clusters, cluster 11, increased in proportion
from SMM to NDMM (1% to 3%, P =0.008 and FDR =0.13, Fig. 2F,
Supplementary Data 1), and NDMM to RRMM (3–8%, P <0.001 and
FDR =0.03, Fig. 2F, Supplementary Data 1). Due to their greater
enrichment in RRMM patients in comparison to earlier stages of
myeloma we denote clusters 11, 20, 22, and 23 as relapse/refractory
plasma cells (RRPCs) or RRPC11, RRPC20, RRPC22, and RRPC23 for
individual RRPC clusters (Table 2).

Aside from a clear association of RRPCs with myeloma progres-
sion, there were also associations between samples with high-risk

genomic events and their proportion of RRPCs (Fig. 2D, Supplemen-
tary Data 1). The proportion of all RRPCs was associated with 1q copy
number such that samples with a normal copy number of 1q had a
significantly lower proportion of RRPCs compared to Gain/Amp1q
samples (4% vs. 8%, P = 0.019). Patients with Gain/Amp1q (defined by
WGS) had significantly more cells in cluster RRPC11 than those with a
normal copy number of 1q (0.05 vs. 0.03, P = 0.030 and FDR =0.24;
Fig. 2G, Supplementary Data 1) and those with Amp1q had significantly
more RRPC11 than those with Gain1q (4% vs. 9%, P =0.014; Fig. 2G). In
addition, samples with a Mut(TP53) had a significantly greater pro-
portion of RRPC11 than samples without Mut(TP53) (0.08 vs. 0.03,
P =0.025 and FDR =0.22; Fig. 2H, Supplementary Data 1). When the
RRPC11 fraction of cells was screened for Mut(TP53) in the scATAC-seq
reads (i.e., variants originally identified by WGS), we were able to
identify those variants in 3/5 of the samples with read coverage of the
WGS variant loci (Supplementary Fig. 6) and those RRPC11 cells had an
average Mut(TP53) variant allele frequency (VAF) of 55% compared to
32% in all other cells (Supplementary Table 5). There was also an
additive effect between Mut(TP53) status and Gain/Amp1q such that
the number of these alterationswas correlatedwith RRPC11 proportion
(Pearson Correlation Coefficient (PCC) = 0.47, P = 0.001, Fig. 2I) and
the RRPC11 proportion in patients with both Gain/Amp1q and
Mut(TP53) was equal to the RRPC11 proportion in patients with Gain/
Amp1q added to the RRPC11 proportion in patients with Mut(TP53)
accounting for the baseline RRPC11 proportion in patients without
either Gain/Amp1q or Mut(TP53) (Fig. 2I). Additionally,
Del12p(CDKN1B) (P = 0.027, FDR =0.227), NRAS mutations (P =0.039,
FDR =0.276), andHUWE1mutations (P =0.048, FDR =0.289)were also
associated with RRPC11. Although clusters RRPC11, RRPC20, RRPC22,
and RRPC23 were all significantly associated with Gain/Amp1q (Fig. 2D,
Table 3), onlyRRPC11, RRPC20, andRRPC22wereassociatedwithAmp1q
(Fig. 2D) and adjacently clustered to each other (Fig. 2B, C). RRPC
clusters were not enriched for other high-risk markers such as
Del(CDKN2C), t(4;14), or t(14;16). RRPC11 was also themost prevalent of
the RRPC clusters. All of these factors make RRPCs and more specifi-
cally RRPC11 an important group of cells for further study.

RRPCs have increased expression of the epigenetic modifier
PHF19 and proliferative genes
To better understand the function of RRPCs, marker genes were
identified using differential gene expression analysis comparing each
RRPC cluster to all other clusters. For RRPC11, this identified 8232 up-
regulated and 1590 down-regulated differentially expressed gene
(DEGs) (Supplementary Data 2) and many were also differentially
expressed in both RRPC20 and RRPC22 (1247 up-regulated and 191
down-regulated common genes, Supplementary Data 3, 4).
RRPC11,20,22 all had similar expression profiles (Fig. 3A). Notably,
RRPC11,20,22 had greater expression of PHF19 than other clusters
(RRPC11: Log2FC = 2.43, P <0.001 and FDR <0.001; RRPC20:
Log2FC = 3.08, P < 0.001 and FDR <0.001; RRPC22: Log2FC = 2.77,
P <0.001 and FDR <0.001, Fig. 3A, B), an epigenetic modifier whose
expression is highly predictive of poor prognosis in myeloma
patients13. One of the main markers for proliferation, MKI67 is also
highly expressed in RRPC11,20,22 (RRPC11: Log2FC = 3.78, P <0.001 and
FDR <0.001; RRPC20: Log2FC = 4.37, P <0.001 and FDR <0.001;
RRPC22: Log2FC= 3.80, P <0.001 and FDR <0.001, Fig. 3A, B) and co-
expressed with PHF19 (PCC=0.37, P < 0.001, Fig. 3C). This correlation
betweenMKI67 and PHF19 expression can also be identified in NDMM
patients from the MMRF CoMMpass study (Supplementary Fig. 7,
Supplementary Tables 6 and 7). In the CoMMpass NDMM cohort,
MKI67 and PHF19 expression (Log2TPM) were highly correlated
(PCC=0.70,P <0.001 andFDR <0.001, SupplementaryTable 6). In the
CoMMpass NDMM cohort Amp1q, Gain1q, and Normal 1q subpopula-
tion, their PCC values were also high (PCC=0.83, PCC=0.65, PCC =
0.70, P < 0.001 and FDR <0.001, P <0.001 and FDR <0.001, P <0.001

Table 1 | Patient demographics

Diagnosis SMM NDMM RRMM All

N = 10 22 17 49

Age> 65 (%) 5 (50%) 14 (64%) 11 (65%) 30 (61%)

Sex (% male) 4 (40%) 11 (50%) 13 (76%) 21 (43%)

Translocations

t(4;14) (n/%) 2 (20%) 1 (5%) 2 (12%) 5 (10%)

t(6;14) 0 (0%) 1 (5%) 0 (0%) 1 (2%)

t(11;14) 1 (10%) 5 (23%) 4 (24%) 10 (20%)

t(14;16) 0 (0%) 0 (0%) 1 (6%) 1 (2%)

t(14;20) 0 (0%) 1 (5%) 1 (6%) 2 (4%)

Hyperdiploidy 7 (70%) 15 (68%) 8 (47%) 30 (61%)

CNV

Del(CDKN2C)/1p 0 (0%) 6 (27%) 3 (18%) 9 (18%)

Gain(CKS1B)/1q 6 (60%) 8 (36%) 6 (35%) 29 (59%)

Gmp(CKS1B)/1q 0 (0%) 4 (18%) 5 (29%) 9 (18%)

Del(RB1)/13q 6 (60%) 10 (45%) 11 (65%) 27 (55%)

Del(TP53)/17p 0 (0%) 2 (9%) 5 (29%) 7 (14%)

Mutationsa

TENT5C 0 (0%) 1 (5%) 1 (7%) 2 (5%)

TP53 0 (0%) 2 (10%) 6 (40%) 8 (18%)

BRAF 0 (0%) 1 (5%) 2 (13%) 3 (7%)

NRAS 1 (11%) 4 (20%) 3 (20%) 8 (18%)

KRAS 2 (22%) 5 (25%) 2 (13%) 9 (20%)

The following abbreviations were used in the table: smolderingmultiplemyeloma (SMM), newly
diagnosed multiple myeloma (NDMM), relapsed or refractory multiple myeloma (RRMM), copy
number variation (CNV), loss of heterozygosity (LOH), mutation (Mut), and hyperdiploidy (HRD).
aNote that undetermined samples were excluded from the percentage calculation resulting in
SMM (N = 9), NDMM (N = 20), and RRMM (N = 15).
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and FDR <0.001, respectively, Supplementary Table 6). Both MKI67
andPHF19 showed significantly overexpression inAmp1q vs. normal 1q
(Log2FC = 0.49, Log2FC=0.52, P <0.001 and FDR <0.001, P =0.002
and FDR =0.003, respectively, Supplementary Table 7). Furthermore,

we see enrichment for cell-cycle related processes in RRPC11 (Fig. 3D,
Supplementary Fig. 8A), RRPC20 (Fig. 3E, Supplementary Fig. 8A), and
RRPC22 (Fig. 3F, Supplementary Fig. 8A). All RRPC clusters DEGs and
differentially accessible chromatin (DACs) (|LogFC|>0.4,P < 0.05)were
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values: WTv1q P = 8.11E−2, WTv[1q or Mut(TP53)] P = 3.50E−2, WTv[1q and
Mut(TP53)] P = 4.85E−2, 1qv[1q and Mut(TP53)] P = 9.19E−2). Significance levels are:
P <0.1: (�), P <0.05: *, P <0.01 (**), P <0.001 (***).
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also enriched (Gene Set Enrichment Analysis (GSEA) FDR <0.25) for
cancer Hallmarks like E2F targets, G2M checkpoint, and immune sig-
naling pathways (Supplementary Tables 8–10). PHF19 has been shown
to negatively affect the expression of cell cycle inhibitors, therefore
promoting proliferation14. Taking into consideration the association of
RRPC clusters with Gain/Amp1q, TP53 mutations, and increased

expression of PHF19 (Supplementary Fig. 8B–D), RRPC clusters and
especially RRPC11,20,22 should be considered a high-risk subset of cells.

RRPCs have reduced expression of cell-cycle inhibitors asso-
ciated with loss of chromatin accessibility
Given that PHF19 is known to regulate negative regulators of cell
cycle14 we analyzed both the scRNA-seq and scATAC-seq data for
changes in cell cycle and proliferation genes18. Compared to other
clusters, proliferative index genes had increased chromatin accessi-
bility (Fig. 4A) and increased expression (Fig. 4B) in the RRPC11 cluster.
In RRPC11, PHF19 was significantly up-regulated (Log2FC = 2.43,
P <0.001, Fig. 4B), CDKN1C had reduced chromatin accessibility
(Log2FC = −0.54, P <0.001, Fig. 4A) and reduced expression
(Log2FC = −1.08, P <0.001, Fig. 4B), and CDK4 had increased expres-
sion (Log2FC = 1.02, P <0.001, Fig. 4B) compared to all other clusters.
Since, previous studies have already established epigenetic regulatory
mechanisms of CDKN1C by PHF1914 and CDKN1C is contained within a
repressed polycomb regulatory region (Supplementary Fig. 9A)19,
these results demonstrate that a subset of proliferative cells with high
PHF19 expression, found primarily in relapsed or refractory patients,
also likely epigenetically downregulate CDKN1C (Fig. 4A, B).

To further verify these patterns, data from cell lines where PHF19
was knocked-down and subsequently rescued was analyzed14. A sig-
nificant overlap between genes that were up-regulated from the PHF19
knockdown experiments and genes downregulated in both the ATAC-
seq andRNA-seq fromRRPC11 was found (OR = 2.24, P =0.010, Fig. 4C).
Similarly, the genes that were down-regulated by PHF19 knockdown
had significant overlap with genes found to be upregulated in both
ATAC-seq and RNA-seq from RRPC11 (OR= 3.30, P < 0.001, Fig. 4D). In

Table 2 | Simplified table categorizing plasma cell clusters
stratifiedbynormalplasmacells (NPCs), hyperdiploidplasma
cells (HDPCs), relapsed/refractory plasma cells (RRPCs),
translocation plasma cells (TPCs), copy number alteration
plasma cells (CNPCs), mutation plasma cells (MPCs), and
undefined plasma cells

Normal plasma cells (NPCs) 18

Hyperdiploid plasma cells (HDPCs) 1, 13, 24

Relapsed/refractory plasma cells (RRPCs) 11, 20, 22, 23

t(4;14) plasma cells (TPCs) 2, 9, 19

t(11;14) plasma cells (TPCs) 4, 7

t(14;20) plasma cells (TPCs) 10

Del(CDKN2A) plasma cells (CNPCs) 6

Del(PRKN) plasma cells (CNPCs) 14

Gain/Amp(ZNF227) plasma cells (CNPCs) 21, 25

Abnormal(MYC) plasma cells (MPCs) 3, 16

Mut(KMT2C) plasma cells (MPCs) 5

Mut(TGDS) plasma cells (MPCs) 15

Undefined 8, 12, 17

Table 3 | Table with the defining genetic characteristics of plasma cell clusters (one-sided t test P<0.05 and FDR<0.25)

Cluster 18 (NPCs) None

Cluster 1 (HDPC1) HRD, Gain/Amp(CRBN), Gain/Amp(TNFAIP8), Gain/Amp(CDKN2A), Gain/Amp(WDR72), Gain/Amp(BLM), Gain/
Amp(ZNF227), Mut(TENT5C), Mut(TRAF3)

Cluster 13 (HDPC13) HRD,Gain/Amp(RAPGEF5), Gain/Amp(KLF14), Gain/Amp(ATM), Gain/Amp(WDR72), Gain/Amp(BLM), Gain/Amp(ZNF426)

Cluster 24 (HDPC24) HRD, Gain/Amp(ADCY2), Gain/Amp(TNFAIP8), Gain/Amp(CDKN2A), Amp(CDKN2A), Gain/Amp(RNF20), Gain/Amp(-
TRAF2), Amp(TRAF2), Gain/Amp(WDR72), Gain/Amp(BLM), Gain/Amp(ZNF227)

Cluster 11 (RRPC11) Gain/Amp(CKS1B), Amp(CKS1B), Del(CDKN1B), Mut(TP53)

Cluster 20 (RRPC20) Gain/Amp(CKS1B), Amp(CKS1B), Del(CDKN1B)

Cluster 22 (RRPC22) Gain/Amp(CKS1B), Gain/Amp(RAPGEF5), Gain/Amp(KLF14)

Cluster 23 (RRPC23) Gain/Amp(CKS1B)

Cluster 2 (TPC2) t(4;14), Del(CDKN2A), Mut(DIS3), Mut(FGFR3)

Cluster 9 (TPC9) t(4;14), Del(ABCD4), Del(TRAF3), Mut(TRAF3), Mut(FGFR3), Mut(NF1)

Cluster 19 (TPC19) t(4;14), Del(BIRC3), Del(ATM), Mut(USP7), Mut(ZNF292)

Cluster 4 (TPC4) t(11;14), t(14;20), Del(PRKN), Del(ABCD4), Del(TRAF3), Mut(FUBP1), Mut(DNMT3A)

Cluster 7 (TPC7) t(11;14), Mut(NRAS), Mut(TP53), Mut(HUWE1)

Cluster 10 (TPC10) t(14;20), Gain/Amp(CKS1B), Mut(KMT2C)

Cluster 6 (CNPC6) Del(CDKN2A), Del(BIRC3), Mut(USP7)

Cluster 14 (CNPC14) Del(PRKN), Mut(DNMT3A)

Cluster 21 (CNPC21) Gain/Amp(ZNF227), Mut(TGDS), Mut(EGR1)

Cluster 25 (CNPC25) Gain/Amp(RNF20), Gain/Amp(TRAF2), Gain/Amp(ZNF227)

Cluster 3 (MPC3) Abnormal(MYC), Gain/Amp(TNFAIP8)

Cluster 16 (MPC16) Abnormal(MYC), Gain/Amp(DNMT3A), Amp(DNMT3A), Gain/Amp(CRBN), Amp(CRBN), Gain/Amp(FGFR3), Amp(FGFR3),
Amp(ADCY2), Amp(TNFAIP8), Amp(TNXB), Amp(RAPGEF5), Gain/Amp(KLF14), Amp(KLF14), Amp(CDKN2A),
Amp(RNF20), Amp(TRAF2), Gain/Amp(RRAS2), Amp(RRAS2), Gain/Amp(CCND1), Amp(CCND1), Amp(ATM), Gain/
Amp(CDKN1B), Amp(CDKN1B), Gain/Amp(ABCD4), Gain/Amp(TRAF3), Gain/Amp(WDR72), Amp(WDR72), Gain/
Amp(BLM), Amp(BLM), Del(WWOX), Gain/Amp(AKAP1), Amp(AKAP1), Gain/Amp(ZNF426), Amp(ZNF426), Amp(ZNF227),
Gain/Amp(SON), Amp(SON)

Cluster 5 (MPC5) Mut(KMT2C)

Cluster 15 (MPC15) Mut(TGDS)

The undefined plasma cells are excluded from the table
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contrast neither of the opposite comparisons were significant. Genes
that were up-regulated from the PHF19 knockdown experiments and
genes upregulated in both theATAC-seq andRNA-seq fromRRPC11 had
little overlap (OR =0.76, P =0.33). Genes that were down-regulated by
PHF19 knockdown had insignificant overlap with genes found to be
downregulated inbothATAC-seq andRNA-seq fromRRPC11 (OR =0.18,

P =0.067). Upon further examination of the genes which were up-
regulated in both ATAC-seq and RNA-seq, three were also in a known
myeloma proliferation signature18, namely: NEK2, AURKB, and CCNB2
(Fig. 4E). These genes also represent potential therapeutic targets for
relapsed/refractory patients who have had multiple failed treatments
that would target the high risk RRPC11 cluster.
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Fig. 3 | Differential expression for the top intersecting RRPC11, RRPC20, and
RRPC22 markers. A Heatmap of the top 90 up-regulated DEGs common between
RRPC11, RRPC20, and RRPC22. The DEGs were sorted by their rank sum across
RRPC11, RRPC20, and RRPC22. B RRPC clusters coexpress PHF19 andMKI67. C PHF19
and MKI67 expression are correlated in their expression (PCC P ≈0.00). Note that
expression values were smoothed using 20 nearest neighbors for visualization
purposes in B and C. D–F Top 15 significant (one-sided Fisher’s exact test and BH-
corrected) GO Biological Process for RRPC11 DEGs (FDRs top to bottom: 2.38E−44,

2.38E−44, 3.66E−36, 6.61E−37, 2.13E−41, 1.25E−51, 2.32E−34, 3.41E−36, 3.07E−37,
4.38E−36, 1.04E−38, 4.02E−37, 5.41E−35, 1.03E−45, 2.71E−34) (D), RRPC20 DEGs
(FDRs top to bottom: 3.38E−37, 9.82E−37, 6.19E−28, 2.39E−29, 8.27E−35, 8.23E−33,
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−31, 1.33E−32, 3.38E−43, 1.21E−28, 1.77E−27, 5.25E−35, 3.55E−35, 1.44E−38, 5.54E−43,
2.89E−30, 7.93E−35, 5.94E−38, 4.44–36) (F).
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PBX1 on 1q regulates expression of PHF19 in RRPCs
To further evaluate the connections between copy number variations
and regulation of PHF19 expression, transcription factors (TFs) were
identified that were located on regions of the genome that were
amplified (>3 copies) in patients with higher proportions of RRPCs.
The only significant gain or amplification affecting all RRPC cluster
proportions was Gain/Amp1q (Fig. 2D, Table 3). The TF2DNA20 and
hTFtarget21 databases contain pairs of TFs and their potential targets.
In total, 35 TFswere identified fromTF2DNA and 57 TFswere identified
from hTFtarget that target PHF19. Of these TFs, seven (ATF3, KDM5B,
PBX1, RBBP5, RFX5, USF1, ZNF648) were located on 1q, of which PBX1
(Log2FC = 0.78, P < 0.001 and FDR <0.001), RFX5 (Log2FC = 0.81,
P <0.001 and FDR <0.001), and RBBP5 (Log2FC = 0.93, P <0.001 and
FDR <0.001) were significantly up-regulated in RRPC11 compared to all
other clusters (Fig. 5A). PBX1 silencing experiments that resulted in
reduced live cell percentage and lower tumorweight alsohadChIP-seq
and RNA-seq data available11. This dataset was used to investigate PBX1
binding in myeloma cell lines. From the myeloma cell lines MM1S and
U266, both of which have Gain/Amp1q, ChIP-seq peaks were identified
in the promoter of PHF19 that were in the top 4% of MM1S ChIP-seq
peaks and the top 8% of U266 ChIP-seq peaks (Fig. 5B–D). These peaks
were also located in super-enhancer region within the PHF19 genomic
loci (Fig. 5B, Supplementary Fig. 9B)19. From RNA-seq data of MM1S
(Fig. 5E) and U266 (Fig. 5F), silencing PBX1 via shRNA significantly
decreased PHF19 expression (P = 0.002, MM1S +U266min-max scaled
per cell line Scrbl vs P11). Similar patterns were also found in pre-B cell

acute lymphoblastic leukemia (ALL) cell line (697)22. In the pre-B ALL
697 cells, PBX1 ChIP-seq peaks existed upstream of PHF19 (Supple-
mentary Fig. 10A–C) and cells treated with shRNA silencing PBX1 had
significantly decreased PHF19 expression (Supplementary Fig. 10D). In
our scRNA-seq, both PHF19 (Log2FC = 2.43 P < 0.001 and FDR <0.001)
and PBX1 (Log2FC = 0.78, P <0.001 and FDR <0.001) are upregulated
in RRPC11 (Fig. 5G).

When myeloma cell lines overexpressed PBX1, we saw the oppo-
site effect of the knockdown of PBX1 on PHF19 expression (Fig. 5H–K).
When PBX1 was overexpressed in PCM6 (Fig. 5H), PHF19 expression is
significantly increased (Fig. 5I) and when PBX1 was overexpressed in
MM1S (Fig. 5J), PHF19 expression was also increased (Fig. 5K). Overall,
across both cell lines the PBX1 expression and PHF19 expression
increased significantly (PBX1P <0.001, PHF19P <0.001,MM1S + PCM6
min-max scaled per cell line eVec vs oePBX1). The effect size from PBX1
overexpressionwasmuch larger in the PCM6cells (Log2FC =0.75) than
the MM1S cells (Log2FC =0.06) corresponding inversely to their 1q
CNV statuses. We also see notable upregulation of cell cycle genes like
TOP2A (Supplementary Fig. 11A, B, Supplementary Tables 11, 12, Sup-
plementary Data 5, 6) and MKI67 (Supplementary Fig. 11B, Supple-
mentary Table 12) and down-regulation of immune related genes like
CXCL10 (Supplementary Fig. 11A, Supplementary Table 11). At the
individual cell level, cells with Gain/Amp1q(PBX1) and Amp1q(PBX1)
had increased expressionofPHF19 (Log2FC(CPM) =0.94,P <0.001 and
Log2FC(CPM) = 1.51, P <0.001, respectively). PHF19 expression is
detectable in 47% of RRPC11 cells compared to only 9% of cells in other
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clusters and PBX1 expression is detectable in 22% of RRPC11 compared
to only 10% of cells in other clusters, further strengthening their bio-
logical link. When we compared the correlation between PBX1 and
PHF19 expression in the cohort of NDMM patients from the MMRF
CoMMpass study, we again identified a significant correlation (PCC =
0.21, P <0.001, >83.30% PBX1 PCCs).

Analysis of patient subclones indicates that those with Amp1q
have increased expression of PHF19
To determine if we could identify the same co-expression in patient
samples, we identified patients with subclones of Amp1q to determine
if that subclone also had increased expression of PHF19. In the first
patient (Fig. 6A–G), five clusters were identified from RNA (Fig. 6A),
ATAC (Fig. 6B), andWNN integration of RNAandATAC (Fig. 6C). Based
on WGS, this patient had Amp1q and HRD (Fig. 6D), and major sub-
clones could be distinguished based on inferred copy number of the

scRNA-seq data (Fig. 6E) with 3/5 subclones representing the majority
of the cells. Clones 3 and 4 both had Amp1q in contrast to clones 1, 2,
and 5 (Fig. 6E). RBBP5, PBX1, and PHF19were all significantly increased
in expression (Fig. 6F) and had increased number of cells in G2M and S
phases of cell cycle (Fig. 6G) in the clones with Gain/Amp1q. This may
indicate that subclonal differences of Amp1q could affect PHF19
expression through increased expression of the key TFs.

A second patient also contained subclonal heterogeneity repre-
sented by four clones that could be distinguished by clustering of RNA
(Fig. 6H), ATAC (Fig. 6I), andWNN integrationofRNAandATAC (Fig. 6J).
Based on WGS, this patient had Amp1q, and was hyperdiploid (Fig. 6K).
Clone 4 had Amp1q (Fig. 6L), had significantly increased expression of
RBBP5,PBX1, andPHF19compared toclones 1, 2, and3 (Fig. 6M), andhad
more cells in G2M and S phase of cell cycle (Fig. 6N). These examples
demonstrate that even at the subclonal level there is likely regulation of
PHF19 by TFs on chromosome 1q, leading to high-risk disease.
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Fig. 6 | Subclonal differences in Gain/Amp1q. Patient sample 0661-533 clustering
basedonRNA (A), ATAC (B),WNN integratedRNAandATAC (C).DWGSbasedCNV
profile for0661-533.ECNVs inferred fromscRNA-seqdata for 0661-533.F Increased
expression of PBX1, RBBP5, and PHF19 in Amp1q clones from0661-533 (One-sided t-
test: RBBP5 P = 1.54E−2, PBX1 P = 1.27E−2, PHF19 P = 3.55E−3).G Increase in G2M and
S phases of cell cycle for cells in Amp1q clones from 0661-533 (Fisher’s exact
P = 8.47E−26). Patient sample 0661-1043 clustering based on RNA (H), ATAC (I),

WNN integrated RNAandATAC (J).KWGSbasedCNVprofile.LCNVs inferred from
scRNA-seq data. M Increased expression of PBX1, RBBP5, and PHF19 in Amp1q
clones (One-sided t-test: RBBP5 P = 2.44E−11, PBX1 P = 9.38E−170, PHF19 P = 2.24E
−6). N Increase in G2M and S phases of cell cycle for cells in Amp1q clones from
0661-1043 (Fisher’s exact P = 3.69E−12). Fisher’s exact test significance levels are:
P <0.1: (�), P <0.05: *, P <0.01 (**), P <0.001 (***).
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Discussion
We report on a large single-cell multiomic study from patients across
different stages of disease progression. Based on these data we have
identified multiple proliferative clusters that are associated with spe-
cific genomic events and stages ofmyelomaprogression. Notably, four
such clusters denoted (RRPCs) significantly increase in proportion
from SMM to RRMM and a subset of three (RRPC11,20,22) are associated
with Amp1q and express higher levels of PHF19. The largest subset of
RRPCs, RRPC11, are enriched predominantly in RRMM patients. RRPC11

have increased expression of PHF19, a prognosticmarker formyeloma,
resulting in reduce chromatin accessibility and gene expression of
CDKN1C. Not surprisingly these same cells exhibit a proliferation sig-
nature suggesting a regulatory role of PHF19 in RRMM patients that
results in a more proliferative state. It is intriguing that these high-risk
RRPCs only make up <17% of a RRMM patient’s myeloma cells. How-
ever, this is not to say that they do not have an outsized effect on
patient survival or interact with other non-RRPCs to promote disease.
In other cancers, intra-tumor heterogeneity leads to interactions
between subclones, through cell signaling, leading to diffuse infiltra-
tion and complicating disease management23. Positive interactions
from one subclone can lead to the population as a whole benefiting,
resulting in commensalism24. Examples of such benefits could be
secreted factors, weakening of the immune system, or stimulation of
the bone marrow to provide a protective niche23–26. Determining the
function and interactions of small high-risk clones with both other
myeloma cells and the microenvironment will increase our under-
standing of resistance and relapsed disease.

Besides the clear association of RRPCswithmyelomaprogression,
an additive associationwithTP53mutations and 1qCNVswas identified
in these RRPCs. It is worth noting that we could not call mutations at
the single cell level accurately using this type of single cell data. For
these reasons we use the patient level mutational data from paired
WGS to make inferences about the clusters. Once better methods
become available, we will call mutations at the single cell level using
either RNA or ATAC reads. Unlikemutations, CNVs can be called at the
single cell level and we found a clear association of between 1q and
PHF19 using both patient level 1q alterations fromWGS and single cell
level 1q alterations from scRNA-seq. Because PHF19 is not located on
1q, we evaluated TFs that may regulate PHF19 located on 1q. The TFs
PBX1, RFX5, and RBBP5 were identified on 1q and may regulate PHF19
based on KD experiments. RRPCs have consistent upregulation of
these TFs and PHF19 can also be identified in subclones containing 1q
alterations. Taking all of this into consideration this data may indicate
an association between PHF19 and 1q via TF regulation creating unique
molecular subtypes of myeloma cells.

Molecular subtypes of myeloma have been identified using ana-
lysis of gene expression data including a proliferation (PR) group with
worse overall survival and progression free survival than other
groups2. At the single cell level, proliferative subpopulations of
abnormal plasma cells have been identified in myeloma patients
showing that the proliferation signature is not uniformly distributed
across plasma cells from a myeloma patient27 and that they are more
prevalent in relapsed patients28. Furthermore, proliferation was found
to be the central prognostic factor for myeloma patients and Gain/
Amp1q is highly correlated with higher proliferation index11.

Given the high correlation between Gain/Amp1q and the pro-
liferation signature, it is not surprising that Gain/Amp1q is a high-risk
cytogenetic event in myeloma. Gain/Amp1q is the most important
single event that confers higher risk of relapse29. Our results again
highlight that the highest risk subclones with a proliferation signature
were highly enriched for Gain/Amp1q. Further study on 1q is needed
due to 1q alterations being clearly associated with worse progression,
having an incompletely understoodmechanism, and the risk of relapse
greatly increases in patients with both a 1q alternation and TP53
mutations30. It is of the utmost importance to study mechanistically

how 1q is conferring risk and also why there is synergy between 1q
alterations, TP53mutations, andproliferative cellular phenotypes.One
suchmechanism that has been proposed is the upregulation of the TF
PBX1 on 1q23 which causes upregulation of FOXM111. Interestingly, we
find there is also evidence that PHF19 is simultaneously targeted by
PBX1 in Gain/Amp1q patients. Considering recent studies have also
determined that PHF19 expression is one of the most important single
prognostic factors in myeloma13, regulation of PHF19 by 1q alterations
would add some context to Gain/Amp1q mechanistically.

Further complicating the relationships between high-risk cyto-
gentic events and progression, is clonal heterogeneity. Based on
combined B-cell receptor V(D)J and RNA sequencing, multiple sub-
clones were been identified form NDMM and RRMM patient samples
with some convergent proliferative phenotypes associated with
progression31. Frequently subcloneswithGain/Amp1q tended tohave a
survival advantage during treatment and leading to an expansion of
Gain/Amp1q subclones32. These survival advantages of specific sub-
clones during treatment and relapse, also have an epigenetic reg-
ulatory component conferring resistance to therapy33. These recent
results further support our findings linking high-risk copy number
changes to epigenetic regulation of proliferation pathways.

In summary we have generated one of the largest single cell
multiomic datasets for myeloma. From these data we have identified
distinct proliferation states that are associated with high-risk cytoge-
netic events, identified three new TFs to study as they relate to 1q
regulation of cell cycle, and discovered a strong link between Amp1q,
PHF19 expression, and proliferation. Specifically, PHF19 likely epigen-
etically regulates cell cycle in a subset of cells foundprimarily in RRMM
patients. Gain and especially amplification of PBX1 on 1q may con-
tribute to this high PHF19 expression phenotype found in these cells.

Methods
Sample collection and sequencing
Bone marrow aspirates from 10 smoldering multiple myeloma (SMM),
22 newly diagnosed multiple myeloma (NDMM), and 17 relapsed or
refractorymultiple myeloma (RRMM) patients were collected through
the Indiana Myeloma Registry with informed consent and institutional
approval. All sample collection in this study was reviewed by the
Indiana University Human Research Protection Program Institutional
Review Board and all participants consented in writing to be in this
study. Samples were collected under approval 1804208190 (Indiana
Myeloma Registry) and this specific study with deidentified samples
was deemed exempt by the IUSCCC scientific review committee as the
study was retrospective. These samples underwent CD138+ magnetic-
activated cell sorting resulting in a CD138+ fractionwith average purity
84.0 ± 9.6% and were viably frozen.

Single-cell multiomic sequencing
Single-cell multiome analysis was conducted using a 10X Chromium
system (10X Genomics, Inc). Cryopreserved cells were thawed and
washed as previously described34. The cell suspensions were processed
into RNAandATAC libraries using themanufacturers standardprotocol.
The final single cell suspension was washed three times with PBS plus
0.04% BSA. If cell viability was less than 70%, a dead cell depletion
procedurewas appliedusing theMACSDeadCell RemovalKit (Miltenyi).
Each clean single cell suspension was counted for cell number and cell
viability. Cells were lysed using digitonin lysis buffer, and single nuclei
prepared based on the protocol of Nuclei Isolation from Mouse Brain
Tissue for Single Cell ATAC Sequencing, CG000212 Rev B (10X Geno-
mics, Inc). Afinal nuclei concentrationof 3000/µLor higherwas used for
targeted cell recovery of 10,000 nuclei. Following the Chro-
mium_NextGEM_Multiome_ATAC_GEX_User_Guide, CG000338_RevB
(10XGenomics, Inc), tagmentationof nuclei preparationwasperformed.
Thereafter, briefly, along with the single cell multiome gel beads and
partition oil, the single nuclei master mixture containing tagmented

Article https://doi.org/10.1038/s41467-024-48327-9

Nature Communications |         (2024) 15:4144 10



single nuclei suspension was transferred onto a Next GEM Chip J in
separate wells, one sample per well, and the chip loaded to the Chro-
mium Controller for GEM generation and barcoding, followed by pre-
amplification PCR, ATAC library preparation, cDNA synthesis and cDNA
library preparation. At each step, the quality of cDNA, ATAC library and
cDNA library were examined by Bioanalyzer and Qubit. The resulting
ATAC and cDNA libraries were sequenced separately, cDNA library for
28bp and 91bp paired-end and ATAC library for 50bp paired-end
sequencing on a NovaSeq 6000 (Illumina).

Bulk DNA sequencing
CD138+ cells for 44 samples also underwent bulk whole genome
sequencing (WGS) and targeted panel sequencing35 to identify copy
number alterations, translocations, and single nucleotide variations.
For WGS, genomic DNA from tumor and non-tumor (saliva or per-
ipheral blood sample from the same patient) samples were prepared
using the DNA PCR-free Library Prep Tagmentation Kit (Illumina).
Libraries were pooled and sequenced in 150bppaired-end read format
on a NovaSeq 6000 (Illumina) to a mean depth of 73× for tumor
samples and 27× for matched control samples.

WGS samples were pre-processed using the Myeloma Genome
Project 1000 (MGP1000) pipeline (https://github.com/pblaney/
mgp1000). Coverage metrics and GC bias metrics were calculated
for each BAM file. For each matched normal/tumor pair, genetic con-
cordance and contaminations were estimated using Conpair (v0.2)36

prior to variant analysis. Strelka (v2.9.2)37 was used for variant calling
and single nucleotide polymorphisms (SNPs) were filtered using fpfil-
ter (https://github.com/ckandoth/variant-filter) to a 5% VAF cut-off38.
Indels were filtered using a 10% VAF cut-off. Variants were annotated
using Variant Effect Predictor (v101)39. Structural variants were calcu-
lated using Manta (v1.6.0)40. Copy number variations were analyzed
using ASCAT-NGS41 and were defined as follows: 0 copies (deep dele-
tion), 1 copy (deletion), 2 (normal), 3 (gain), and 4+ (amplification).

Cleaning and Preprocessing of CD138+ scRNA-seq
The single-cell multiomics reads for the CD138+ fraction were aligned
and quantified using the cellranger-arc (v1.0.1). These aligned and
quantified reads were used as input to a custom-built Seurat (v4.3.0)
pipeline for single-cell multiomics that performed quality control
(QC), multi-dataset integration, and non-plasma cell removal. For the
integration experiment, high quality cells were identified through the
following QC process. For each sample, the number of unique features
andpercentage ofmitochondrial RNAswereplotted as violinplots. For
each of the 49 samples these plots were evaluated to identify cutoffs
based on the distribution of the data. A max number of unique RNAs,
min number of unique RNAs, and a max percentage of mitochondrial
RNAs were all set according to these initial violin plots. In a similar
fashion, cells were removed from the multiomic integration experi-
ments using the ATAC data as well. Violin plots of the number of
unique ATAC features, nucleosome signal, and transcription start site
(TSS) enrichment were plotted. Based on the distribution of each of
these features a max and min cutoff value was set to remove outliers
and low quality cells. A max number of unique ATAC features, min
number of unique ATAC features, max nucleosome signal, min
nucleosome signal, max TSS enrichment, and min TSS enrichment
were all set according to these initial violin plots. For each dataset, QC
was performed including removal of: low expression cells, cells with
low number of features, cells with high number of features, and cells
with high percentage mitochondrial RNA as outlined in Seurat doc-
umentation and online resources42,43.

Integration of scRNA-seq across samples and non-plasma cell
removal
An iterative process was used to remove non-plasma cells from the
dataset. In the first iteration, all 49 samples were integrated together

based on their RNA profiles using Seurat (v4.3.0). The expression of
SDC1 (CD138) was summarized for each cluster using percentiles such
that the 10th, 25th, 50th, 75th, and 90th percentile cells were used to
summarize the expression in a given cluster. Clusters with SDC1
expression with 0 counts in the 90th percentile cell were removed as
contaminant cells. After contaminant cell removal, a second iteration
of integration was performed on the remaining cells. In this iteration,
clusters were removed if SDC1 expression was 0 counts in the 75th
percentile cell of that cluster. The remaining clusterswere used for the
remainder of the analysis to study changes in myeloma cells across
stages of progression. Samples were annotated based on theWGSdata
for common CNVs and translocations, which were confirmed by
expression of translocation markers (NSD2, FGFR3, CCND1, CCND3,
MAF, MAFB, ITGB7, CCND2, MYC) in the single-cell data.

Identification of high-risk myeloma cells from scRNA-seq
For eachof the identified plasma cell clusters derived from the CD138+
samples, the proportion of that cluster was calculated for each patient
such that each patient had a total proportion of 1.0 split between each
individual cluster. For example, if a patient had 1000 cells where 500
cells were in cluster 1, 200 cells were in cluster 2, and 300 cells were in
cluster 3, the cluster proportions for that patientwouldbe0.5 cluster 1,
0.2 cluster 2, and0.3 cluster 3. Thiswas repeated for eachpatient using
the clusters from the integrated Seurat object. The cluster proportions
across all of the patients were compared to high-risk copy number
alterations, disease status, and mutation events to identify clusters
associated with these variables.

We performed comprehensive hypothesis testing to evaluate
whether clusters were enriched in specific genomic, cytogenetic, and
clinical patient groups. Each pairwise comparison was evaluated for
the proportion of clusters 1-25 and patient covariates: RRMM vs SMM,
NDMM vs SMM, RRMM vs NDMM, age ≥65 vs age <65, t(4;14) vs not
t(4;14), t(11;14) vs not t(11;14), t(6;14) vs not t(6;14), t(14;16) vs not
t(14;16), t(14;20) vs not t(14;20), HRD vs notHRD, t(MYC) vs not t(MYC),
MYC abnormality vs no MYC abnormality, Del(CDKN2C) vs
Norm(CDKN2C), Del(RPL5) vs Norm(RPL5), Del(TENT5C) vs Norm(-
TENT5C), Del(PRKN) vs Norm(PRKN), Del(DOCK5) vs Norm(DOCK5),
Del(CDKN2A) vsNorm(CDKN2A), Del(BIRC3) vsNorm(BIRC3), Del(ATM)
vs Norm(ATM), Del(CDKN1B) vs Norm(CDKN1B), Del(BRCA2) vs
Norm(BRCA2), Del(RB1) vs Norm(RB1), Del(DIS3) vs Norm(DIS3),
Del(ABCD4) vs Norm(ABCD4), Del(TRAF3) vs Norm(TRAF3), Del(CYLD)
vs Norm(CYLD), Del(WWOX) vs Norm(WWOX), Del(MAF) vs Norm(-
MAF), Del(TP53) vs Norm(TP53), Gain/Amp(CKS1B) vs Norm(CKS1B),
Amp(CKS1B) vs Norm(CKS1B), Gain/Amp(TNFAIP8) vs Norm(TNFAIP8),
Amp(TNFAIP8) vs Norm(TNFAIP8), Gain/Amp(TNXB) vs Norm(TNXB),
Amp(TNXB) vs Norm(TNXB), Gain/Amp(ADCY2) vs Norm(ADCY2),
Amp(ADCY2) vs Norm(ADCY2), Gain/Amp(RAPGEF5) vs Norm(RAP-
GEF5), Amp(RAPGEF5) vs Norm(RAPGEF5), Gain/Amp(KLF14) vs
Norm(KLF14), Amp(KLF14) vs Norm(KLF14), Gain/Amp(MYC) vs
Norm(MYC), Amp(MYC) vs Norm(MYC), Gain/Amp(CDKN2A) vs
Norm(CDKN2A), Amp(CDKN2A) vs Norm(CDKN2A), Gain/Amp(RNF20)
vs Norm(RNF20), Amp(RNF20) vs Norm(RNF20), Gain/Amp(TRAF2) vs
Norm(TRAF2), Amp(TRAF2) vs Norm(TRAF2), Gain/Amp(RRAS2) vs
Norm(RRAS2), Amp(RRAS2) vs Norm(RRAS2), Gain/Amp(CCND1) vs
Norm(CCND1), Amp(CCND1) vs Norm(CCND1), Gain/Amp(BIRC) vs
Norm(BIRC), Amp(BIRC) vs Norm(BIRC), Gain/Amp(ATM) vs Nor-
m(ATM), Amp(ATM) vs Norm(ATM), Gain/Amp(CDKN1B) vs
Norm(CDKN1B), Amp(CDKN1B) vs Norm(CDKN1B), Gain/
Amp(DNMT3A) vs Norm(DNMT3A), Amp(DNMT3A) vs Norm(DNMT3A),
Gain/Amp(CRBN) vs Norm(CRBN), Amp(CRBN) vs Norm(CRBN), Gain/
Amp(FGFR3) vs Norm(FGFR3), Amp(FGFR3) vs Norm(FGFR3), Gain/
Amp(ABCD4) vs Norm(ABCD4), Amp(ABCD4) vs Norm(ABCD4), Gain/
Amp(TRAF3) vs Norm(TRAF3), Amp(TRAF3) vs Norm(TRAF3), Gain/
Amp(WDR72) vs Norm(WDR72), Amp(WDR72) vs Norm(WDR72), Gain/
Amp(BLM) vs Norm(BLM), Amp(BLM) vs Norm(BLM), Gain/
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Amp(AKAP1) vs Norm(AKAP1), Amp(AKAP1) vs Norm(AKAP1), Gain/
Amp(ZNF426) vs Norm(ZNF426), Amp(ZNF426) vs Norm(ZNF426),
Gain/Amp(ZNF227) vs Norm(ZNF227), Amp(ZNF227) vs Norm(ZNF227),
Gain/Amp(SON) vs Norm(SON), Amp(SON) vs Norm(SON), Mut(KRAS)
vs not Mut(KRAS), Mut(NRAS) vs not Mut(NRAS), Mut(TENT5C) vs not
Mut(TENT5C), Mut(DIS3) vs not Mut(DIS3), Mut(BRAF) vs not Mut(-
BRAF), Mut(TRAF3) vs not Mut(TRAF3), Mut(TP53) vs not Mut(TP53),
Mut(CYLD) vs not Mut(CYLD), Mut(MAX) vs not Mut(MAX), Mut(UBR5)
vs not Mut(UBR5), Mut(USP7) vs not Mut(USP7), Mut(IRF4) vs not
Mut(IRF4), Mut(SP140) vs not Mut(SP140), Mut(PTPN11) vs not
Mut(PTPN11), Mut(RB1) vs not Mut(RB1), Mut(NFKBIA) vs not
Mut(NFKBIA), Mut(RASA2) vs not Mut(RASA2), Mut(TGDS) vs not
Mut(TGDS), Mut(CDKN1B) vs not Mut(CDKN1B), Mut(DUSP2) vs not
Mut(DUSP2), Mut(KLHL6) vs not Mut(KLHL6), Mut(EGR1) vs not
Mut(EGR1), Mut(FGFR3) vs not Mut(FGFR3), Mut(ACTG1) vs not
Mut(ACTG1), Mut(ZNF292) vs not Mut(ZNF292), Mut(HUWE1) vs not
Mut(HUWE1), Mut(CCND1) vs not Mut(CCND1), Mut(SAMHD1) vs not
Mut(SAMHD1), Mut(ABCF1) vs not Mut(ABCF1), Mut(CDKN2C) vs not
Mut(CDKN2C), Mut(FUBP1) vs not Mut(FUBP1), Mut(PRDM1) vs not
Mut(PRDM1), Mut(KMT2B) vs not Mut(KMT2B), Mut(ATM) vs not
Mut(ATM), Mut(KMT2C) vs not Mut(KMT2C), Mut(CREBBP) vs not
Mut(CREBBP), Mut(ARID1A) vs not Mut(ARID1A), Mut(ATRX) vs not
Mut(ATRX), Mut(NF1) vs not Mut(NF1), Mut(TET2) vs not Mut(TET2),
Mut(KDM5C) vs not Mut(KDM5C), Mut(ARID2) vs not Mut(ARID2),
Mut(DNMT3A) vs notMut(DNMT3A),Mut(KDM6A) vs notMut(KDM6A),
and Mut(MAFB) vs not Mut(MAFB).

For each comparison (i) listed above, the mean proportion (Prop)
of cluster j in across each patient was compared between the groups
(Group) using a one-sided t-test. For each combination of comparison
(i) and cluster (j) a T, P, -Log10P, and Log2FC, were calculated based on
pairwise t-tests.

Tij ,Pij = ttestðPropj ,GroupiÞ ð1Þ

To visualize these results, the Log2FC (first group over second
group in each comparison e.g. Log2(RRMM/SMM) for the RRMM vs
SMM comparison) was used to color the dots in the dot plot. The
-Log10P was used to scale the size of each dot so that more significant
cluster proportion-covariate comparison had larger dots. Only cov-
ariates with at least one significant Pwere retained in the dot plot. The
FDR was also calculated for all of these comparisons. We considered a
comparison significant if it’s P ≤0.05 and FDR ≤0.25.

For high-risk clusters,DEGanalysiswas conductedon theRNA-seq
and DAC analysis on the ATAC-seq. Firstly, the ATAC-seq data was
aggregated to thegene level using the gene activity estimates provided
by the Signac (v1.4.0) package. The DEG and DAC analyses were con-
ducted by calculating the Log2FC and Wilcoxon test p-values for each
gene. The Benjamini-Hochberg correction was used for multiple test-
ing correction of the p-values. For the DEG analysis, an absolute
Log2FC > 1.5 and FDR <0.05were used as cutoffs. For theDAC analysis,
an absolute Log2FC> 1.25 and FDR <0.05 were used as cutoffs.

Besides the DEGs and DACs identified from our own data, DEGs
were also used from previous PHF19 knock down (KD) experiments14

from the differential expression table for the PHF19 KD and PHF19
rescue experiments including the Log2FC, p-values, and adjusted p-
values with a fold change cutoff (FC = 2) and a p-value cutoff of 0.05.
Besides the PHF19 KD signature, previously published proliferation
signatures2,18 were also included for comparison purposes. The inter-
sections of DEGs, DACs, PHF19 KO DEGs, and other known myeloma
signatures were used to filter the genes into high-risk subsets for
further study.

To better understand the biology underlying different subsets of
cells from the clustering results, we performed functional enrichment
analysis for the RRPC clusters. The DEG markers for each of the RRPC
clusters were used as input to the clusterProfiler (4.0.5) program to

identify enriched Gene Ontology (GO) terms. The enrichGO function
uses a hypergeometic test to identify GO gene sets that overlap sig-
nificantly with a set of DEGs. These terms were then displayed as a dot
plot to show the number of genes and the significance level of each
term. The GeneRatio denotes the percentage of the DEGs that are also
contained in a specific GO term. The count variable denotes the
number of genes in the numerator of the GeneRatio, i.e. the number of
DEGs also contained in the GO term. Aside from studying the func-
tional enrichment of our DEGs with GO terms, it was also important to
study the overlap of DEGs with other gene sets from previous studies.
For thesepurposes,we utilized Fisher’s exact test to calculate the P and
used the Odds Ratio (OR) to study the effect size.

Individual multiomic integration and inference of CNVs at the
single-cell level
Aside from the genomic alterations that were measured from WGS, it
was also important to evaluate the subclonal structure within each
sample and to impute samples that were missing WGS information.
Translocations were imputed in the five samples missing WGS infor-
mation, 0661-1097, 0661-1146, 0661-1184, 0661-1274, and 0661-6 using
the canonical marker expression for each translocation These trans-
location and canonical markers included: t(4;14) (NSD2), t(6;14)
(CCND3), t(11;14) (CCND1), t(14;16) (MAF), t(14;20 (MAFB), and t(MYC)
(MYC). However, the t(MYC) results were inconclusive so t(MYC) was
not imputed from MYC expression. Therefore, samples missing WGS
were not included in analyses including t(MYC). First the CPM of each
canonical marker (xtranswhere trans 2 ftransPos,tansNegg) was cal-
culated for each patient with known translocation status. The mean
expression of the canonical marker was calculated for the transloca-
tion positive samples (�xtransPos) and translocation negative samples
(�xtransNeg). A cutoff was defined as follows:

cutof f =
ð2�xtransNeg + �xtransPosÞ

3
ð2Þ

Any sample CPM falling above this cutoff was considered to have
the translocation.

Imputation of CNVs was a slightly more complex process that
required using two types of data, canonicalmarkers and inferred CNVs
from inferCNV (v1.8.1). CNVs were imputed in the five samples missing
WGS information, 0661-1097, 0661-1146, 0661-1184, 0661-1274, and
0661-6. First the CPM of each canonical marker
(xcnvwhere cnv 2 f0,1,2,3, ≥4g) was calculated for each patient with
known CNV status. The mean expression of the canonical marker was
calculated for the each CNV status (�xcnv). The samples requiring
imputation were preliminarily assigned the status of the CNV with
closest �xcnv to the canonical marker CPM of that sample. Next the
inferred CNV results across all the cells in that sample were reviewed
using the inferCNV (v1.8.1) results. If there was strong evidence for a
CNV (i.e., an indisputable blue band for deletions or indisputable red
band for gain/amplification from the inferred CNV result), the pre-
liminary assignment was changed according to the inferred CNV
results. HRD was also evaluated for each of these five samples. If
multiple full chromosomes was visibly duplicated in the inferred CNV
results, then that sample was considered HRD.

The subclonal structure may be reflected in both the RNA-seq,
ATAC-seq, and integrated clusters. For these reasons, multiomic inte-
gration was performed for each sample using Seurat (v4.3.0) and
Signac (v1.4.0). Specifically, for each sample, the ATAC-seq count
matrices and RNA-seq count matrices were converted into Seurat
objects where the same non-plasma cell remove process was per-
formed as in the original 49-sample integration for each sample indi-
vidually. The ATAC-seq andRNA-seq data for these plasma cell clusters
were integrated using theweighted nearest neighbor (WNN) algorithm
from the Seurat (v4.3.0) package. These WNN-clusters were used as
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our clustering variable for single cell CNV inference. For this analysis,
the package inferCNV (v1.8.1)44 was used to identify CNVs at the single
cell level. Based on the previous analysis of plasma cell clusters, the
normal plasmacell cluster thatwas identifiedwas used as the reference
for inferCNV (v1.8.1). Single cell CNVs were also calculated using a
reference free software package, CopyKAT (v1.0.8)45, to get location
specific CNVs instead of gene specific. From these analyses the CNVs
that correspond to clustering in the RNA-seq and ATAC-seq data were
evaluated.

Identification of PHF19 promoter binding transcription factors
(TF) and TF ChIP-seq peaks
Basedon the preliminary analyses, the relationshipbetween PHF19 and
high-risk copy number alterations that may contain TFs were eval-
uated. The TF databases, hTFtarget21 and TF2DNA20 were used to
identify TFs that regulate PHF19. The identified PHF19-regulating TFs
were cross-referenced against high-risk CNVs inmyeloma. PairedChIP-
seq and RNA-seq in myeloma11 were used to evaluate whether there
wereChIP peaks upstreamof PHF19. Both the existence of peakswithin
5000bp of the 5’ UTR as well as their relative strength in comparison
to the other peaks across the genome were used to evaluate whether
they likely indicate TF regulation of PHF19. Specifically, all of the
identified peaks in the ChIP-seq experiments were ranked and the
percentile of the peaks upstream of PHF19 was used to discern how
likely the TF was regulating PHF19 opposed to the other peaks.

Functional evaluation of PBX1 TF activity on PHF19 using
RNA-seq
Previous studies already conducted knockdown experiments of PBX1
using two shRNAs in the cell lines MM1S and U266 where global
expression was measured using RNA-seq. Processed data were down-
loaded from GSE165060. For complete methods please see corre-
sponding publication. We used a one-sided t-test in each cell line to test
whether PHF19 expression was reduced in each PBX1 shRNA group.
Preprocessed ChIP-seq and RNA-seq data was also downloaded from
GSE138031. Specifically, MACS peak call BED and visualized peaks TDF
files were downloaded for both PBX1 ChIP-seq and E2A/PBX1 ChIP-seq.
TheRNA-seqRPKMvalueswere alsodownloaded for Scramble, E2A, and
PBX1 shRNA (N =2 per group). Based on these data, the relative rank of
peaks upstream of PHF19 were evaluated and the expression of PHF19
was compared between shRNA treated groups using a one-sided t-tests.

To further strengthen these relationships, we also performed a
PBX1 overexpression experiment in two myeloma cell lines, one with
gain/amplification 1q (MM1S, Walker lab) and one without gain/
amplification 1q (PCM6, Riken Catalogue #: RCB1460). HEK293T was
obtained from American Type Culture Collection (ATCC).
HEK293T cells were cultured in DMEM containing 10% FBS and 1%
Penicillin-Streptomycin. MM1.S cells were cultured in RPMI containing
10% FBS and 1% Penicillin-Streptomycin. PCM6 cells were cultured in
McCoy’s 5A modified medium containing 20% FBS, 1% Penicillin-
Streptomycin, and 3 ng/mL rIL-6. All cells were maintained at a tem-
perature of 37 °C and CO2 concentration of 5%. Plasmids used in this
study were pLenti-C-Myc-DDK-P2A-puro (Origene PS100092), PBX1
(NM_002585)HumanTagged Lenti ORFClone pLenti-C-Myc-DDK-P2A-
puro (Origene RC210944L3), VSV-G, and PSPAX2.

To produce lentivirus, 1 × 106 HEK 293 T cells each were plated in
two 10 cm2 cell culture dishes with antibiotic free media. After over-
night incubation at 37 °C and CO2 concentration of 5%, 293T cells were
transfected using Lipofectamine 3000. For one plate pLenti-C-Myc-
DDK-P2A-puro (Origene PS100092) 1.7 µg, PSPAX2 2.5 µg, and VSV-G
764 ng were combined with 5 µL P3000 reagent and 5 µL L3000
reagent in 250 µL Opti-MEM. The mixture was incubated at room
temperature for 15minutes and added to the cells. For the other 10 cm2

plate, Human Tagged Lenti ORF Clone pLenti-C-Myc-DDK-P2A-puro
(Origene RC210944L3) 1.87 µg, 2.4 µg PSPAX2, and 730 ng VSV-G

plasmid were combined with 5 µL P3000 reagent and 5 µL L3000
reagent in 250 µL Opti-MEM. The mixture was incubated at room
temperature for 15min and added to the cells. After 48 h, lentiviral
supernatant was collected and filtered with 0.45 µm syringe filter to
remove cells and debris. The lentiviral supernatant was aliquoted and
stored at −80 °C.

For lentiviral transduction, MM1.S and PCM6 cells were seeded
(1 × 106 per well in 12-well plates) in the appropriate media supple-
mented with 2 µg/mL polybrene. Lentivirus supernatant aliquots were
thawed on ice for transduction. The amount of lentiviral supernatant
was titrated for each cell line. Cells were spinfected at 400 × g at room
temperature for 1 h. Cells were then incubated at 37 °C and 5% CO2 for
24 h. After the 24 h incubation, the transduced cells were selectedwith
puromycin. MM1.S cells and PCM6 cells were transduced with either
pLenti-C-Myc-DDK-P2A-puro (Origene PS100092) as an empty vector
control or, PBX1 (NM_002585) Human Tagged Lenti ORF Clone pLenti-
C-Myc-DDK-P2A-puro (Origene RC210944L3). Transduced MM1.S and
PCM6 cells were selected in the recommended media supplemented
with 0.5 µg/mL puromycin. Wild type MM1.S and PCM6 cells that were
not transduced were treated with puromycin as a kill control. The
lowest amount of virus that produced puromycin resistant cells was
selected for transductions.

Resistant cells from both PBX1 and empty vector transduced cells
were grown and subsequently RNA was extracted in duplicate using
the RNeasyMini kit (Qiagen). 100 nanogramsof total RNAwasused for
library preparation utilizing the Illumina Stranded mRNA Prep kit.
150 bp paired-end reads were generated on an Illumina NovaSeq
6000 sequencer with a target depth of 50M reads. Reads were aligned
to the GRCh38 primary assembly with GENCODE comprehensive gene
annotation for reference chromosomes (release 45) using STAR
(v2.7.11a). The aligned reads were then quantified to their respective
genes using featureCounts (v2.0.6).

For both myeloma cell lines (MM1S and PCM6) quality control was
performed to ensure high quality cells for our analysis. Targeted
sequencing was performed and mutations and copy number changes
were verified against data held elsewhere (https://www.keatslab.org/
myeloma-cell-lines/hmcl-characteristics). PCR basedmycoplasma testing
was performed with the Promokine PCR Mycoplasma test kit (catalog
number PK-CA91-1024) and neither cell line tested positive against the
includedpositive control.After thesecell linesweregrownandprocessed
with either PBX1 overexpression (oePBX1) or empty vector (eVec) con-
trol, the expression of PHF19was compared using a one-sided t-test. The
global gene expression changes were also analyzed with EdgeR (3.34.1)46

where a gene was considered a DEG if |Log2FC|>1 and FDR of <1E−5.

Statistics and reproducibility
We determined that sample sizes of 10 in each diagnosis group (SMM,
NDMM, RRMM), should achieve significancebased on a power analysis
(One-sided unpaired t-test, Cohen’s D > 1.35, Power = 0.80). Sample
sizes beyond 10 per group were dependent on sample availability in
the Indiana Myeloma Registry. No data were excluded from the ana-
lyses unless it did not pass specified QC. The experiments in this study
did not require randomization because there were no experimental
treatment arms in this study. The researchers were not blinded to the
patient and cellular metadata in this study.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The single cellmultiomic data,WGSdata, and accompanyingmetadata
have been deposited in the dbGAP database under accession code
phs003220 (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.
cgi?study_id=phs003220.v2.p1). The single cell multiomic data and

Article https://doi.org/10.1038/s41467-024-48327-9

Nature Communications |         (2024) 15:4144 13

https://www.keatslab.org/myeloma-cell-lines/hmcl-characteristics
https://www.keatslab.org/myeloma-cell-lines/hmcl-characteristics
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs003220.v2.p1
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs003220.v2.p1


WGS data is available under controlled access and can be obtained by
submitting a project request through dbGaP. Projects will be approved
for data access if they are for research purposes and if the investigator
is sponsored at an appropriate research institution. A response should
be received after the request within two weeks and the data will be
available for 12 months with optional renewal after approval. The
processed single cell multiomic data has been deposited in the
Synapse database under accession code syn52295155 (www.synapse.
org/#!Synapse:syn52295155). The newly generated RNA-seq data have
been deposited in theGEOdatabase under accession codeGSE254307.
The single cell multiomic, WGS, and RNA-seq datasets that were gen-
erated in this study were processed with GRCh38. The single cell
multiomic data used the refdata-cellranger-arc-GRCh38-2020-A ver-
sion while the RNA-seq data used the GRCh38 primary assembly with
GENCODE comprehensive gene annotation for reference chromo-
somes (release 45). Publicly available RNA-seq and ChiP-seq datasets
were retrieved from GEO (GSE16506011 and GSE13803122). The mye-
loma RNA-seq data used in the study was from the MMRF CoMMpass
study IA18 (http://research.themmrf.org). The TF databases were
downloaded from the following sources htTFtarget21 (http://bioinfo.
life.hust.edu.cn/hTFtarget#!/download) and TF2DNA20 (https://www.
fiserlab.org/tf2dna_db/downloads.html). The remaining data are
availablewithin theArticle, Supplementary InformationorSourceData
files (https://doi.org/10.6084/m9.figshare.25563525).

Code availability
Scripts used for the analysis in this manuscript can be found at the
following GitHub site: https://github.com/tsteelejohnson91/MM_
CD138pos_scripts.
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