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Fragment ion intensity prediction improves
the identification rate of non-tryptic
peptides in timsTOF

Charlotte Adams 1, Wassim Gabriel 2, Kris Laukens 1, Mario Picciani 2,
Mathias Wilhelm 2,3, Wout Bittremieux 1 & Kurt Boonen 4,5

Immunopeptidomics is crucial for immunotherapy and vaccine development.
Because the generation of immunopeptides from their parent proteins does
not adhere to clear-cut rules, rather than being able to use known digestion
patterns, every possible protein subsequence within human leukocyte antigen
(HLA) class-specific length restrictions needs to be considered during
sequence database searching. This leads to an inflation of the search space and
results in lower spectrum annotation rates. Peptide-spectrum match (PSM)
rescoring is a powerful enhancement of standard searching that boosts the
spectrum annotation performance. We analyze 302,105 unique synthesized
non-tryptic peptides from the ProteomeTools project on a timsTOF-Pro to
generate a ground-truth dataset containing 93,227 MS/MS spectra of 74,847
unique peptides, that is used to fine-tune the deep learning-based fragment
ion intensity prediction model Prosit. We demonstrate up to 3-fold improve-
ment in the identificationof immunopeptides, aswell as increaseddetectionof
immunopeptides from low input samples.

The adaptive immune system can eradicate pathogen-infected and
cancerous cells by recognizing peptides bound to major histo-
compatibility complex (MHC) molecules present on the cell surfaces.
Even in the absence of infectious agents or cancerous transformation,
the continuous yet dynamic process of peptide presentation informs
the adaptive immune system about the health state of cells1. In
immunopeptidomics, MHC-bound peptides—commonly termed
immunopeptides—are isolated and characterized using mass spectro-
metry (MS). MS-based immunopeptidomics has been used to discover
T cell targets against tumors, autoimmune diseases, and pathogens2–5.
The identification of these targets is important for the development of
immunotherapies, including the development of personalized vac-
cines and adoptive T cell transfers6. As even a single immunopeptide
could elicit an immune response7, potential targets can be based on a

single peptide-spectrum match (PSM). This underscores the impor-
tance of the specificity of PSM annotations.

Unfortunately, it remains challenging to identify immunopeptides
from MS data. Because the generation of immunopeptides from their
parent proteins lacks clear-cut rules, rather than being able to use
known digestion patterns, every possible protein subsequence within
human leukocyte antigen (HLA) class-specific length restrictions needs
to be considered. As a result, there is a substantial inflation of the
search space, leading to an increased false positive rate and a low
peptide identification sensitivity8. In immunopeptidomics the search
space is often expanded further by incorporating somatic mutations,
pathogen genomes, and novel unannotated open reading frames
(nuORFs) to be able to detect immunopeptides originating from these
sources aswell. A recent study highlights the significance of nuORFs as
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an underexplored source ofMHC-I-presented, tumor-specific peptides
that hold potential as targets for immunotherapy9.

To minimize false positives and improve identification rates, PSM
rescoring can be used. This involves post-processing results from an
unfiltered database search using tools such as Percolator10, to use
multiple PSM features to distinguish between correct and incorrect
PSMs. Recently, driven by powerful prediction tools, there has been
significant interest in using additional features for PSM rescoring. One
example is using MS/MS spectrum prediction tools to generate spec-
tral features based on the similarity between experimental and pre-
dicted fragment ion intensities. This approach is especially relevant for
immunopeptidomics, where the use of specialized fragment ion
intensity prediction tools has yielded promising results11–13. For
example, the use of Prosit led to a more than two-fold increase in the
identification of HLA ligands12.

A timsTOF mass spectrometer (Bruker) combines two stages of
trapped ion mobility spectrometry (TIMS) with a quadrupole and a
high-resolution time-of-flight (TOF) mass analyzer. This configuration
introduces an additional dimension, the collisional cross section, that
can separate isobaric peptides. During a single TIMS scan, multiple
precursors can be selected as a function of ion mobility, while the first
TIMSaccumulates ions for thenext TIMS scan. This scanmode, termed
parallel accumulation-serial fragmentation (PASEF), increases MS/MS
rates more than ten-fold without any loss in sensitivity14.

In the context of immunopeptidomics, it is critical to use highly
sensitive instrumentation due to the relatively low abundance of
immunopeptides. A timsTOF-based approach has been shown to
significantly increase HLA peptide identifications compared to
immunopeptidomics using an Orbitrap mass spectrometer15. Fur-
thermore, it has been demonstrated that optimization of the tim-
sTOF acquisition method improves HLA peptide identification
rates16. Moreover, a recent study has revealed that MS/MS spectra
from timsTOF instruments exhibit more reproducibility at low
abundances compared to MS/MS spectra from Orbitrap
instruments17. Notably, when analyzing a hybrid proteome mixture
using different instruments, substantial differences in fragment ion
intensities were observed between timsTOF Pro and Orbitrap QE HF-
X mass spectrometers18. While PSM rescoring has been proven to be
highly effective for immunopeptides measured on an Orbitrap12, the
considerable dissimilarity in MS/MS spectra produced by timsTOF
and Orbitrap instruments necessitates the development of fragment
ion intensity prediction models that are optimized for predicting
timsTOF data.

In this study, we measure 302,105 unique synthesized non-tryptic
peptides from the ProteomeTools project19 on a timsTOF-Pro to fine-
tune the existing Prosit model12. The integration of fragment ion
intensity predictions into PSM rescoring of search results significantly
improves the identification rate of HLA peptides measured on a tim-
sTOF. In addition, we rescore timsTOF data from low-input samples
and successfully identify immunopeptides derived from nuORFs.

Results
Measuring non-tryptic peptides on a timsTOF
The ProteomeTools project is a large-scale effort in which peptides
were synthesized and analyzed. Initially it contained measurements of
330,000 synthetic tryptic peptides covering essentially all canonical
humanproteins19. Subsequently, the project expanded to includepost-
translational modifications20 and non-tryptic peptides12. This valuable
dataset was used to train the deep neural network, Prosit, for the
prediction of retention time (RT) and fragment ion intensity21. How-
ever, all measurements conducted to train previous Prosit models
were performed on Orbitrap and ion trap instruments.

The considerable dissimilarity in MS/MS spectra generated by
timsTOF and Orbitrap instruments for the same peptide (Fig. 1, Sup-
plementary Fig. 1) underscores the need to develop fragment ion
intensity prediction models optimized for timsTOF data. To address
this, we measured 302,105 unique synthesized non-tryptic peptides
from the ProteomeTools project12. Our measurements encompassed a
range of collision energies from 20.81 eV to 69.77 eV. Consequently,
we compiled a dataset consisting of 93,227 non-trypticMS/MS spectra
from 74,847 unique peptides, complemented by 184,552 previously
published trypticMS/MS spectra from 138,201 unique synthetic tryptic
peptides22. This extensive dataset, comprising a total of 277,779 MS/
MS spectra and 213,048 unique peptides, serves as a unique training
dataset for the development of machine learning tools tailored to
timsTOF instruments (Supplementary Fig. 2).

Optimized Prositmodel improves prediction accuracy of tryptic
and non-tryptic peptide timsTOF MS/MS spectra
To optimize the Prosit fragment ion intensity prediction model
towards timsTOF instruments, we fine-tuned the HCD Prosit 2020
model using the 277,779 MS/MS spectra compiled in this study, split
into training, validation, and test sets (Fig. 2a). The HCD Prosit 2020
model was selected because higher-energy collisional dissociation
(HCD) is a non-resonant activation technique like the collision
induced dissociation conducted in a TOF instrument23. The HCD

Fig. 1 | Mirror plot illustrating the spectral variability between timsTOF
and Orbitrap instruments. Mirror plot of the singly charged non-tryptic
synthetic ProteomeTools19 peptide VEDPVTVEY measured on a timsTOF (top;
mzspec:PXD043844:HLAI_p2_97_178_p2-D1_S1-D1_1_6866.mgf:index:2341:VEDPVT-
VEY/1) and on an Orbitrap (bottom; mzspec:PXD021013:02446d_GD1-TUM_HLA_
133_01_01-3xHCD-1h-R4:scan: 32024:VEDPVTVEY/1) instrument. The spectral simi-
larity measured by the normalized spectral contrast angle based on annotated

fragments between the two spectra is 0.68. This illustrates how different
timsTOF MS/MS spectra can look compared to Orbitrap data. This randomly
chosen peptide was measured several times on the Orbitrap, after which the
spectrum with the highest similarity to all other Orbitrap spectra for this peptide
was selected (the medoid spectrum). In the timsTOF data the displayed MS/MS
spectrum was the only measurement of this peptide. SA normalized spectral
contrast angle.
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Prosit 2020 model was originally trained on approximately 30 mil-
lion MS/MS spectra, consisting of 9 million MS/MS spectra of non-
tryptic peptides12 and 21 million previously published tryptic MS/MS
spectra19,21). The comparison between the HCD Prosit 2020 model
and the timsTOF Prosit 2023 model (Fig. 2b–d) reveals a substantial
improvement in normalized spectral contrast angle (SA) between
predicted and experimental timsTOF MS/MS spectra for non-tryptic
peptides (SA ≥0.9 for 26.3% of spectra, compared to 2.4% with HCD
Prosit 2020) and for tryptic peptides (SA ≥0.9 for 42.1% of spectra,
compared to 0.2% with HCD Prosit 2020). The timsTOF Prosit 2023
model demonstrates consistent performance across different pre-
cursor charges, with only a minor decrease of the performance for
peptides with charge state 3 compared to charge state 1 and 2 (one-
way ANOVA followed by Tukey’s post hoc test; Supplementary
Fig. 3a). This indicates that it is more challenging to predict accur-
ate fragment ion intensities for more complex spectra with higher
precursor charges. We also observed a moderate influence of

the peptide length on the predicted fragment ion intensities, indi-
cating that accurate fragment ion intensity prediction is more chal-
lenging for longer peptides (Pearson correlation coefficient of
−0.38; Supplementary Fig. 3b). The timsTOF Prosit 2023 model
demonstrates consistent performance across different collision
energies, with only a minor influence on the predicted fragment ion
intensities (Pearson correlation coefficient of 0.22 for the collision
energy; Supplementary Fig. 3c). We observed a small bias in function
of C- and N-terminal amino acids, specifically, the performance is
higher for peptides with an arginine or a lysine at the C-terminus
(one-way ANOVA followed by Dunnett’s post hoc test, Supplemen-
tary Fig. 4a, b). This is likely a result of the large proportion of tryptic
peptides in the training data (Supplementary Fig. 2a).

It is important to note that the applied collision energy has a
profound impact on the information content of the obtainedMS/MS
spectra24 (Supplementary Fig. 1). To optimize the transfer learning,
the collision energies of the training, validation, and test set were

Fig. 2 | Deep learning framework Prosit for tryptic and non-tryptic peptide
fragment ion intensity prediction. a The 277,779 MS/MS spectra from tryptic
and non-tryptic peptides measured on timsTOF instruments were split into
training, validation, and test sets and used to fine-tune Prosit. b Violin plots
comparing the prediction accuracy of the timsTOF Prosit 2023 model against
the previously published HCD Prosit 2020 model12 for non-tryptic
(MHC-I, MHC-II, LysN, and AspN) and tryptic peptides. c Mirror plot of the
randomly chosen singly charged non-tryptic synthetic peptide VEDPVTVEY
measured on a timsTOF (top; mzspec:PXD043844:HLAI_p2_97_178_p2-D1_S1-

D1_1_6866.mgf:index:2341:VEDPVTVEY/1) and the predicted spectrum for this peptide
at the aligned collision energy with the HCD Prosit 2020 model (bottom). d Mirror
plot of the same measurement (top; mzspec:PXD043844:HLAI_p2_97_178_p2-D1_S1-
D1_1_6866.mgf:index:2341:VEDPVTVEY/1) and the predicted spectrum for this peptide
at the aligned collision energy with the timsTOF Prosit 2023 model (bottom). Frag-
ment ions are labeled in blue and red for b and y ions, respectively. The mirror plot
was generated using spectrum_utils version 0.4.153. SA normalized spectral contrast
angle. Source data are provided as a source data file.
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calibrated according to the collision energies the HCD Prosit 2020
model would expect. To achieve this, robust linear models were
trained on the training set, stratified by precursor charge state and
tryptic status, and then applied on the training, validation, and test
sets (see Methods).

PSM rescoring boosts immunopeptide identification on
timsTOF
We hypothesized that integrating fragment ion intensity predictions
into PSM rescoring of search results would improve the identification
rate of HLA peptides measured on a timsTOF, similar to what was
previously observed for tryptic and non-tryptic peptides measured on
other instruments12. To investigate this, we reanalyzed data from a
recently published benchmarking study on timsTOF-based immuno-
peptidomics for tumor antigen discovery15. The study compared
timsTOF-based immunopeptidomics to immunopeptidomics using
Orbitrap technology and demonstrated a significant increase in the
identification of immunopeptides from various benign and malignant
primary samples of solid tissue and hematological origin.

In this analysis, the dataset was reprocessed with MaxQuant and
all proposed PSMswere PSM rescored by integrating Prosit’s fragment
ion intensity predictions and retention time predictions, using
Oktoberfest25. We compared results from MaxQuant + Prosit +
Percolator vsMaxQuant + Percolator, respectively, the feature sets can
be found in Supplementary Tables 1 and 2. This allowed us to evaluate
PSM rescoring of timsTOF data using the timsTOF 2023 model and
PSM rescoring of Orbitrap data using the CID 2020 model for HLA-I
and HCD 2020 model for HLA-II (Fig. 3a–d). PSM rescoring of the
Orbitrap data resulted in on average 2.2-fold more unique HLA-I pep-
tides and 1.4-fold more unique HLA-II peptides. PSM rescoring tim-
sTOF data resulted in comparable results, with on average 2.7-fold
more unique HLA-I peptides and 1.8-foldmore unique HLA-II peptides.
Because the current Prosit models were not trained on peptides con-
taining free cysteine side chains or other amino acidmodifications that
may be identified on immunopeptides, 8% of potential target PSMs (of
which 99% would not survive the posterior error probability <0.01
filter) were lost because they could not be rescored.

To evaluate the effect of the fragment ion intensity prediction
model, PSM rescoring was performed on the timsTOF data with all
three models. To isolate the benefit of fragment ion intensity infor-
mation during rescoring, RT prediction-based features were excluded
during this analysis (Supplementary Table 12). As expected, PSM
rescoringwith the timsTOFProsit 2023model consistently resulted in a
higher gain of identifications compared to PSM rescoring with the HCD
Prosit 2020 and the CID Prosit 2020 model (Fig. 3e, f, Supplementary
Fig. 5e, f). A possible explanation as towhy PSM rescoringwith theHCD
Prosit 2020model consistently resulted in a higher increase compared
to PSM rescoring with the CID Prosit 2020model, is that both HCD and
timsTOF have a beam-type fragmentation and are thus more similar
compared to CID23. The evaluation of the effect of the different frag-
ment ion intensity predictionmodels on PSM rescoring of the Orbitrap
data achieved similar results, with the CID Prosit 2020 model con-
sistently resulting in a higher gain of identifications in the HLA-I dataset
and the HCD Prosit 2020 model consistently resulting in a higher gain
of identifications in the HLA-II dataset (Supplementary Fig. 6).

PSM rescoring boosts the identification rate of relevant immu-
nopeptides in low-input samples
To enable the detection of rare and clinically relevant antigens from a
limited cell input, Phulphagar et al.26 developed a high-throughput
single-shot MS-based immunopeptidomics workflow using the tim-
sTOF single-cell proteomics system (SCP). This workflow was applied
to sample inputs ranging from 1 million to 40 million A-375 cell
equivalents, a melanoma cell line which expresses the following HLA-I
genes: A*01:01, A*02:02, B*57:01, B*44:03, C*16:02, and C*06:02.

This experiment was reprocessed to evaluate how PSM rescoring
with the timsTOF Prosit 2023model would perform on data from low-
input samples. Individual spectrum peak files were searched against a
compiled database consisting of the human reference proteome,
common laboratory contaminants, curated small open reading frames
(ORFs), and novel unannotated ORFs (nuORFs) supported by riboso-
mal profiling9. All proposed PSMs by MaxQuant were subsequently
rescored using Oktoberfest. The results showed an average increase
in identified HLA-I ligands across different input sizes, ranging from
1.3-fold at 1 million cell equivalents to 1.9-fold at 40 million cell
equivalents (Fig. 4a, Supplementary Fig. 7a). Interestingly, weobserved
a consistent median spectral angle around 0.85 across all cell equiva-
lents, supporting the finding that MS/MS spectra from timsTOF
instruments are reproducible at low abundances17 (Supplemen-
tary Fig. 7b).

To validate the peptide identifications obtained through PSM
rescoring, we employed Gibbs clustering27 on the gained, shared, and
lost peptides separately.We then compared the clustermotifs with the
known binding motifs of the HLA alleles expressed by the cells. The
selection of motifs shown in Fig. 4b was based on the cluster with the
highest Kullback–Leibler distance. The Kullback–Leibler distance
provides a measure of similarity between clusters, thus identifying the
cluster that differs themost from the other clusters found. Notably, we
observed that the clusters with the highest Kullback–Leibler distances
to the other clusters among the shared and gained peptides exhibited
a striking resemblance to the motif of A*01:01. Conversely, the motifs
of the clusters of the lost peptides did not correspond to any of the
motifs of the HLA types present in the cell line (Fig. 4b, Supplementary
Fig. 8). Themotifs of the other clusters based on the gained and shared
peptides were consistent with other HLA alleles present in the cell,
namely A*02:02, B*44:03, and B*57:01 (Supplementary Fig. 8).

To further validate the peptide identifications obtained through
PSM rescoring, we assessed the predicted binding affinity of the
gained, shared, and lost peptides. Using thresholds provided by
NetMHCpan28 for weak binders and strong binders, we found that 88%
of peptides gained after PSM rescoring were weak binders of at least
oneof theHLA types present in the cell, with 80%being a strongbinder
(Fig. 4c). For the shared peptides thiswas 89% and 85%, and for the lost
peptides this was 44% and 24%, respectively. This implies that 56% of
the peptides lost after PSM rescoringwerepredicted to not bind any of
the HLA molecules present in the cell.

Among the identified immunopeptides, a subset of 2509 peptides
(3%) originated from nuORF source proteins (Fig. 4d). Recent studies
have provided evidence that peptides derived from noncanonical
proteins can be displayed on HLA-I molecules29,30. These nuORFs may
arise from transcripts that are currently annotated as non-protein
coding, including the 5′ and 3′ untranslated regions, overlapping yet
out-of-frame alternativeORFs in annotated protein-coding genes, long
noncoding RNAs, or pseudogenes9. HLA peptides derived from non-
canonical proteins can expand the repertoire of potential immu-
notherapy targets in cancer. Notably, we did not observe significant
changes in the ratio of nuORFs after PSM rescoring, indicating a robust
FDR control in proteogenomics. In addition, more than twice as many
nuORF source proteins were identified after PSM rescoring the 40
million cell equivalent samples, which are of great interest. Further-
more, we examined the binding affinity of peptides originating from
nuORFs and found that 90% of peptides can be considered a weak
binder to at least one of the HLA types present in the cell, with 81%
being a strong binder. This suggests that these peptides are actually
presented by the cell.

PSM rescoring improves the identification rate of samples
cleaved with different proteases
To further evaluate how PSM rescoring performs when different pro-
teases are used, we performed a reanalysis of samples cleaved with
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either trypsin, AspN, or GluC31. These three proteases have distinct
cleavage sites, with trypsin cleaving at the C-terminal side of lysine and
arginine residues32, AspN mainly cleaving at the N-terminal side of
aspartic acid residues33, and GluC mainly cleaving at the C-terminal
side of glutamic acid residues33.

PSM rescoring of the samples cleaved with AspN, GluC, and
trypsin resulted in 1.5-fold, 1.7-fold, and 1.4-fold increases in unique
identified peptides, respectively (Fig. 5a). The performance of the
timsTOF Prosit 2023 model was stable across all proteases, with a
median spectral angle of 0.77, 0.78, and 0.80 for samples cleaved with
AspN, GluC, and trypsin, respectively (Fig. 5b).

Discussion
The identification of immunopeptides is critical for the advancement
of vaccine and immunotherapy development. Previous studies have
shown that using fragment ion intensity predictions in rescoring can
greatly increase the identification rate of HLA ligands11–13. In this study,
we established an extensive dataset consisting of 277,779 MS/MS
spectra from synthetic non-tryptic and tryptic peptidesmeasured on a
timsTOF instrument. While not all synthesized peptides that are the-
oretically present could be identified, which could be due to both
factors related to the acquisition method and the bioinformatics ana-
lyses, a valuable ground truth dataset was constructed that served as

Fig. 3 | Gained, shared, and lost peptide identifications for different sample
types to compare PSM rescoring on Orbitrap data with PSM rescoring on
timsTOF data. In general PSM rescoring was able to boost the confidence in
peptide identifications, retaining true PSMs, gaining PSMs, and losing only a small
number of previously incorrect PSMs. a On average PSM rescoring of HLA-I Orbi-
trap data with the CID Prosit 2020 model resulted in a 2.2-fold increase. b On
average PSM rescoring of HLA-I timsTOF data with the timsTOF Prosit 2023model
resulted in a 2.7-fold increase. cOn average PSM rescoring of HLA-II Orbitrap data
with the HCD Prosit 2020 model resulted in a 1.4-fold increase. d On average PSM
rescoring of HLA-II timsTOF data with the timsTOF Prosit 2023model resulted in a
1.8-fold increase. e To evaluate the effect of the fragment ion intensity prediction
model on PSM rescoring, the RT prediction-based features were excluded. On
average PSM rescoring of HLA-I timsTOF data with the timsTOF Prosit 2023model

resulted in a 2.8-fold increase. On average PSM rescoring of HLA-I timsTOF data
with the HCD Prosit 2020 model resulted in a 2.5-fold increase. On average PSM
rescoring of HLA-I timsTOF data with the CID Prosit 2020 model resulted in a 2.2-
fold increase. f To evaluate the effect of the fragment ion intensity prediction
model on PSM rescoring, the RT prediction-based features were excluded. On
average PSM rescoring of HLA-II timsTOF data with the timsTOF Prosit 2023
model resulted in a 1.5-fold increase. On average PSM rescoring of HLA-II
timsTOF data with the HCD Prosit 2020 model resulted in a 1.5-fold increase.
On average PSM rescoring of HLA-II timsTOF data with the CID Prosit 2020
model resulted in a 1.5-fold increase. RCC renal cell carcinoma, HNSCC
head and neck squamous-cell carcinoma, PBMC peripheral blood mononuclear
cell, CLL chronic lymphocytic leukemia. Source data are provided as a source
data file.
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the foundation for training the timsTOF Prosit 2023 model. By
employing this model for PSM rescoring of MaxQuant results from
immunopeptides measured on a timsTOF, we achieved a nearly 3-fold
increase in the identification of HLA-I peptides. In addition, we
demonstrated the effectiveness of ourmodel for PSM rescoring of low
sample inputs measured using a timsTOF SCP instrument, resulting in
improved identification rates. Importantly, the immunopeptides
identified after rescoring are likely to be HLA binders, as supported by
the motif analysis and binding affinity assessment, providing an
orthogonal validation of our method. Moreover, PSM rescoring led to
an almost 2-fold increase in the identification of unique nuORF source

proteins, which hold the potential to serve as valuable targets for
immunotherapy29,30.

In addition to the analysis of immunopeptidomics data, ourmodel
holds promise for numerous other biological and biomedical appli-
cations. One such area is deep proteome sequencing, where multiple
proteases are used to enhance proteomic coverage34, particularly in
regions with suboptimal trypsin cleavage sites, such as membrane-
spanning domains and splice junctions. Our model can effectively
enhance the confidence of peptide identifications in such studies,
enabling valuable insights into alternative splicing and facilitating a
comprehensive exploration of its impact on the proteome.

Fig. 4 | PSM rescoring timsTOF SCP immunopeptidomics data. a Bar chart
illustrating the mean identification rates of 1 million to 40 million 375 cell
equivalents. The height of each bar corresponds to the mean identification rate,
while the whiskers indicate the standard deviation. Each sample was measured in
technical triplicate (four technical replicates for the 40 million sample). Above
each bar the fold change is shown between MaxQuant + Percolator and Max-
Quant + Prosit + Percolator. b Peptide motif plots of 1406 unique peptides con-
fidently identified to be present in the cell line expressing allele A*01:0152, and
peptide motif plots of 16,641 unique gained peptides, 13,208 unique shared pep-
tides, and 447 unique lost peptides resulting fromPSM rescoring of the 1million to

40 million A-375 cell equivalents. Amino acids are colored according to their
physicochemical properties (red acidic, blue basic, black hydrophobic, purple
neutral, and green polar amino acids). c Cumulative distribution function (CDF)
plot illustrating the distribution of the shared, gained, and lost peptides across the
log10 percentile rank (%Rank) calculated with NetMHCpan version 4.128. The cut-
off values for strong binders (SB) and weak binders (WB) are indicated in red.
d Mean unique nuORF source proteins contributing to the HLA-I immunopepti-
dome of 1million to 40million A-375 cell equivalents9. Source data are provided as
a source data file.
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To ensure the timsTOF Prosit 2023 model’s strong predictive
capabilities towards immunopeptides, we generated MS/MS spectra
from synthesized non-tryptic peptides to compile the training data.
This enabled the model to generalize over different peptide types,
whereas machine learning models that are solely trained on tryptic
data often fail to do so, for example, by exhibiting strong biases
based on the presence of C-terminal arginine or lysine residues.
Although our model still exhibits a slight performance improvement
for tryptic peptides, likely due to a larger number of such training
samples, this did not preclude us from achieving strong perfor-
mance for non-tryptic peptides. A potential limitation could be that
while our current model only predicts fragment ion intensities for
canonical b and y ions, non-tryptic peptides exhibit distinct MS/MS
characteristics compared to tryptic peptides, often displaying
strong internal ion series and neutral losses. However, as PSM
rescoring using Prosit has demonstrated robustness against the
presence of a large number of neutral loss or internal ion series12, we
do not expect this to be overly detrimental. A limitation to take into
consideration is that our model is not able to predict fragment ion
intensities for peptides containing free cysteine side chains or PTMs
that were not seen during training.

It is important to note that the applied collision energy has a
profound impact on the information content of the obtained MS/MS
spectra24. Thus, collision energy calibration is needed for accurate
fragment ion intensity predictions. The impact of collision energy in
the timsTOF instrument is a bit more complicated compared to its
impact in the Orbitrap. During IMS, ions are subjected to a series of
collisions. This kinetic energy can be transferred to internal energy,
similarly to what takes place during the activation of ions in collision-
induceddissociation. Because IMS energizes thepeptides significantly,
the use of lower collision energies is advised24. Similarly to what has
beenobserved for retention time alignment35, we expect a benefit from
collision energy alignment to account for the run-to-run fluctuations.
Therefore, the collision energy calibration is implemented in Okto-
berfest for PSM rescoring25.

Another potential application of our timsTOF ground-truth data-
set could be to develop a CCS prediction model for non-tryptic pep-
tides. Similar to fragment ion intensity and RT predictions, CCS
predictions can be used as features during PSM rescoring36. SomeCCS
predictionmodels already exist22,37–39, including a recentmodel trained
on tryptic peptides, phosphopeptides, and immunopeptides38.

Although currently the timsTOF Prosit 2023 model is dependent
on MaxQuant, as it relies on the search engine to sum the MS/MS
scans, in the future, it will be further extended to support other
search engines as well and become search engine agnostic, similar to
how Oktoberfest has recently extended applicability of Prosit

Orbitrap predictions beyond MaxQuant. Based on previous
studies11–13 we expect an improvement of the identification rate when
applied to other search engines as well. The timsTOF Prosit 2023
model is available on Koina (Prosit_2023_intensity_timsTOF, https://
koina.proteomicsdb.org) and can be used via Oktoberfest.

Methods
Data acquisition
Synthetic non-tryptic peptides data acquisition. Within the Proteo-
meTools project, 302,105 unique non-tryptic peptideswere synthesized,
comprising 168,688 HLA class I, 73,464 HLA class II, 31,744 AspN, and
31,435 LysN sequences. For detailed information on the peptide origins,
please refer to the original publication byWilhelm et al.12. Peptide pools
for synthesis and measurement contained roughly 1000 peptides each.
Near-isobaric peptides (±10 p.p.m.) were distributed across different
pools of similar length to avoid ambiguous masses in pools wherever
possible. Ten microliters of the stock solution were transferred to a 96-
well plate and spiked with two retention time standards (Pierce Reten-
tion Time Standard and PROCAL40) at 100 fmol per injection. An equi-
molar amount of approximately 50 fmol of each peptide was injected
into an Evosep One HPLC system (Evosep) coupled to a hybrid TIMS-
quadrupole TOFmass spectrometer (Bruker Daltonik timsTOF Pro) via a
nano-electrospray ion source (Bruker Daltonik Captive Spray). The
100 samples per day (SPD) method was used. The Endurance Column
15 cm× 150μm ID, 1.9μm beads (EV1106, Evosep) was connected to a
Captive Spray emitter (ZDV) with a diameter 20μm (1865710, Bruker)
(both from Bruker Daltonics).

The timsTOF Pro was calibrated according to the manufacturer’s
guidelines. The source parameters were: capillary voltage 1500V, dry
gas 3.0 l/min, and dry temp 180 °C. The temperature of the ion transfer
capillary was set to 180 °C. The column was kept at 40 °C. The data-
dependent Parallel Accumulation-Serial Fragmentation (PASEF)
method was used to select precursor ions for fragmentation with 1
TIMS-MS scan and 10 PASEF MS/MS scans, as described by Meier
et al.14. The TIMS-MS survey scan was acquired between 0.70 and
1.70 Vs/cm2 and 100–1700m/z with a ramp time of 100ms. The m/z
and ion mobility information was used to select precursors with char-
ges ranging from 1 to 3. No polygon was used for precursor ion
selection. Dynamic exclusion was used to avoid re-selecting of pre-
cursors that reached a target value of 20,000 a.u. The timsTOF Pro was
controlled by the OtofControl 6.0 software (Bruker Daltonik GmbH).
The collision energy was increased as a function of decreasing ion
mobility (ranging from0.76–1.68 Vs/cm2), starting from 20 eV to 70 eV.

Synthetic tryptic peptides data acquisition. The “proteotypic” syn-
thetic peptide set from ProteomeTools19, covering confidently and

Fig. 5 | PSM rescoring of samples cleavedwith either AspN, GluC, or trypsin. In
general, PSM rescoring was able to boost the annotation rate for samples from all
three enzymes, retaining true PSMs, gaining PSMs, and losing only a small number
of previously incorrect PSMs. a PSM rescoring of the sample cleaved with AspN
resulted in a 1.5-fold increase. PSM rescoring of the sample cleaved with GluC
resulted in a 1.7-fold increase. PSM rescoring of the sample cleaved with trypsin

resulted in a 1.4-fold increase. b The performance of the timsTOF Prosit 2023
model was assessed using violin plots depicting the normalized spectral contrast
angle between predicted and observed spectra. The median spectral angle
observed for AspN,GluC, and trypsin respectively, was0.77, 0.78, and0.80. Source
data are provided as a source data file.
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frequently identified proteins (124,875 peptides covering 15,855
human annotated genes), was obtained by Meier et al.22. The data was
downloaded from the PRIDE repository with identifier PXD019086.

As per Meier et al., LC–MS was performed on an EASY-nLC 1200
(Thermo Fisher Scientific) system coupled to timsTOF Pro mass
spectrometer (Bruker Daltonik, Germany) via a nano-electrospray
ion source (Bruker Daltonik Captive Spray). Approximately 200 ng
of peptides were separated on an in-house 45 cm × 75 µm reversed-
phase column at a flow rate of 300 nL/min in an oven compartment
heated to 60 °C. The column was packed in-house with 1.9 µm C18
beads (Dr. Maisch Reprosil-Pur AQ, Germany) up to the laser-pulled
electrospray emitter tip. Mobile phases A and B were water and 80%/
20% ACN/water (v/v), respectively, and both buffered with 0.1%
formic acid (v/v). The pooled synthetic peptides were analyzed with
a gradient starting from 5% B to 30% B in 35min, followed by linear
increases to 60% B and 95% in 2.5min each before washing and re-
equilibration for a total of 5min.

The timsTOF Prowas operated in data-dependent PASEF41 mode
with 1 survey TIMS-MS and 10 PASEF MS/MS scans per acquisition
cycle. They analyzed an ion mobility range from 1/K0 = 1.51 to
0.6 Vs/cm2 using equal ion accumulation and ramp time in the dual
TIMS analyzer of 100ms each. Suitable precursor ions for MS/MS
analysis were isolated in a window of 2 Th form/z < 700 and 3 Th for
m/z > 700 by rapidly switching the quadrupole position in sync with
the elution of precursors from the TIMS device. The collision energy
was lowered stepwise as a function of increasing ion mobility,
starting from 52 eV for 0–19% of the TIMS ramp time, 47 eV for
19–38%, 42 eV for 38–57%, 37 eV for 57–76%, and 32 eV until the end.
The m/z and ion mobility information was used to exclude singly
charged precursor ions with a polygon filter mask. Dynamic exclu-
sion was used to avoid re-sequencing of precursors that reached a
target value of 20,000 a.u.

Preparation of the training data
The raw Bruker data from synthetic peptides from ProteomeTools19

were analyzed with MaxQuant version 2.1.2.042. Individual spectrum
peak files were searched against pool-specific databases43. Default
parameters were used, unless mentioned otherwise: carbamido-
methylated cysteine was specified as a fixed modification and
methionine oxidation as a variable modification. The minimal
sequence length was set to 7 and the maximum sequence length was
set to the maximum length of peptides in the pool. For timsTOF data
the precursormass tolerancewas set to 10 ppmand the fragmentmass
tolerance was set to 40 ppm. For Orbitrap data the precursor mass
tolerance was set to 4.5 ppm and the fragment mass tolerance was set
to 20 ppm. Only the top PSM was used per spectrum and PSMs were
filtered at a 0.01 posterior error probability (PEP). Only peptides
expected in the pool, including full-length and N-terminally truncated
peptides, were selected. All PSMs, even for the same peptide, with an
Andromeda score ≥70 were included.

Unprocessed spectra were extracted from the raw Bruker
files with OpenTIMS44, using the precursorID from the accumula-
tedMsmsScans.txt and the frameID from the pasefMsmsScans.txt
MaxQuant output files. Frame-level scans were summed based on
the scan number frommsms.txt withMasterSpectrum version 1.145. The
b and y ions were annotated for fragment charges ranging from 1 to 3.

The data were split into three distinct sets with each peptide and
subsequence of a peptide only included in one of the three: training
(80%, 153,809 tryptic PSMs and 77,577 non-tryptic PSMs), validation
(10%, 16,483 tryptic PSMs and 7,778 non-tryptic PSMs), and test (10%,
14,262 tryptic PSMs and 7,872 non-tryptic PSMs). For each PSM in the
training set, MS/MS spectra were predicted with the HCD Prosit 2020
model across collision energies ranging from 5 to 45 eV. The SA was
calculated between the observed spectra and the predicted spectra,
and the collision energy corresponding to the top-scoring predicted

spectra was selected as the optimal collision energy. This process was
performed separately for each peptide type (tryptic, non-tryptic) and
precursor charge state (1–3). A robust linear model was trained using
RANSAC regression in scikit-learn version 1.2.246 to predict the differ-
ence between the reported collision energy and the optimal collision
energy, based on the peptide mass.

To calibrate the validation and test set, the collision energy dif-
ference was predicted for each peptide mass, and this difference was
applied to obtain the aligned collision energy. Themodels used for the
collision energy calibration are available on the MassIVE repository
(MSV000092456).

Prosit 2023 model training
The HCD Prosit 2020 model12 was fine-tuned using the training set. To
control for overfitting, the validation set was used with early stopping,
employing a patience of 5 epochs. The test set was used after themodel
was fully trained to evaluate its generalization and potential biases.

Themodel architecture remained unchanged, and the normalized
spectral contrast loss21 was used as a loss function. We used the Adam
optimizer47 with a cyclic learning rate algorithm48. During training, the
learning rate cycled between a constant lower limit of 0.00001 and an
upper limit of 0.0002 which is continuously scaled by a factor of 0.95
with the ‘’triangular”mode. Themodel was trained with a batch size of
2000 on an Nvidia V100 GPU. The model improved significantly in
predicting fragment ion intensity during the initial epochs, as depicted
in Supplementary Fig. 9, and converged at epoch 28 with a median
SA of 0.86.

Statistical analysis
To evaluate the consistency of the timsTOF Prosit 2023 model across
different peptide lengths and collision energies, a Pearson correlation
was performed, resulting in Pearson correlation coefficients of −0.38
and 0.22, respectively. In addition, we investigated the influence of the
charge state on the fragment ion intensities with a one-way ANOVA,
resulting in ap-value of 6.97E−247. Subsequently, Tukey’s post hoc test
was used to assess the differences between charge states 1 and 2
(p-value = 0.96), 1 and 3 (p-value = 5.56E−12), and 2 and 3 (p-value =
5.56E−12). To evaluate the effect of N- and C-terminal amino acids on
the model’s performance, a one-way ANOVA was used, resulting in
p-values 1.85E−27 and 3.68E−60, respectively. Then, Dunnett’s post
hoc test was used to compare peptides with a C-terminal arginine or
lysine to all peptides (p-value = 4.95E−09). All statistical tests were
performed on the test set.

General PSM rescoring pipeline
Before PSM rescoring, all spectrum peak files were searched using
MaxQuant version 2.0.3.1 with default parameters unless specified
otherwise: carbamidomethylated cysteine was specified as a fixed
modification and methionine oxidation as a variable modification. For
timsTOF data the precursor mass tolerance was set to 10 ppm and the
fragment mass tolerance was set to 40 ppm. For Orbitrap data the
precursor mass tolerance was set to 4.5 ppm and the fragment
mass tolerance was set to 20 ppm. The minimum peptide length was
set to 8 amino acids and the maximum peptide length depended on
the HLA class, with a length set to 16 amino acids for HLA-I and 30
amino acids for HLA-II. Specific settings for the individual datasets are
detailed below.

The unfiltered search results, including decoy PSMs, were used as
an input for the PSM rescoring with Oktoberfest version 0.6.025. In
brief, unprocessed MS/MS spectra corresponding to the identifica-
tions were extracted from the raw Bruker files and the b and y ions
were annotated at fragment charges 1 up to 4. Collision energies were
calibrated by predicting the top 100 scoring PSMs for each charge
state with a collision energy range between 5 and 45 eV. The SA was
calculated between the observed spectra and the predicted spectra
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and the optimal collision energy was determined by selecting the
collision energy corresponding to the top-scoring predicted spectra. A
robust linear model was trained using RANSAC regression in scikit-
learn version 1.2.246 to predict the difference between the reported
collision energy and the optimal collision energy, based on the peptide
mass. Subsequently, this model was used to determine the optimal
collision energy. Both retention time and fragment ion intensities were
predicted and featureswere generated (Supplementary Table 1) to add
to Percolator49, which was used for the PSM and peptide FDR
estimation.

Application of Prosit and PSM rescoring to external datasets
Re-analysis of the comparison dataset. To compare the PSM
rescoring performance on Orbitrap versus timsTOF data, we utilized a
comparison dataset comprising both HLA-I and HLA-II peptides mea-
sured on an Orbitrap and on a timsTOF. For detailed information on
data acquisition, please refer to the original publication by Gravel
et al.15. In brief, 10 samples were measured in technical triplicate (two
technical replicates for the HNSCC sample) on the Orbitrap Fusion
Lumos mass spectrometer (Thermo Fisher Scientific, Waltham, USA)
and on the timsTOF Pro (Bruker Daltonik, Germany). The fragmenta-
tion methods used for the Orbitrap instrument were resonance-type
collision-induced dissociation (CID) at a normalized collision energy of
35% for HLA-I peptides and higher-energy collisional dissociation
(HCD) at a normalized energy of 30% for HLA-II peptides. The data was
downloaded from the PRIDE repository with identifier PXD038782.

Individual spectrum peak files were searched against a database
containing 20,598 human UniProt entries downloaded from https://
www.ebi.ac.uk/reference_proteomes/ on 23/03/202343. Carbamido-
methylated cysteine was not included as a fixed modification, because
cysteine was not carbamidomethylated during sample processing.
Before PSM rescoring all PSMs containing free cysteine side chains
were removed. The Orbitrap data was searched with a precursor tol-
erance of 20 ppm and the timsTOF data with a precursor tolerance of
40 ppm. To perform PSM rescoring on theOrbitrap data we employed
the 2020 CID Prosit model with a collision energy set to 35 for HLA-I
peptides, and the 2020 HCD Prosit model with collision energy set to
30 for the HLA-II peptides. For timsTOF data, PSM rescoring was per-
formed using the timsTOF Prosit 2023 model with the calibrated col-
lision energies.

To evaluate the effect of the fragment ion intensity prediction
model, PSM rescoring was performed on the timsTOF data with the
different models. To isolate the benefit of fragment ion intensity
information during rescoring, RT prediction-based features were
excluded during this analysis. The features abs_rt_diff, lda_scores,
pred_RT, and iRT were removed from the list of features detailed in
Supplementary Table 2.

Re-analysis of an immunopeptidomics dataset measured on
timsTOF SCP. To investigate whether low input samples benefit from
PSM rescoring, we rescored a timsTOF SCP dataset. For detailed
information on data acquisition, please refer to the original publication
by Phulphagar et al.26. In brief, HLA-I peptides were directly enriched
from 1 million to 40 million A-375 cell equivalents by single shot
injections on timsTOF SCP. Each sample was measured in technical
triplicate (four technical replicates for the 40 million sample). Indivi-
dual spectrum peak files were searched against a compiled database
comprised of the human reference proteome Gencode 34 (ftp.ebi.a-
c.uk/pub/databases/gencode/Gencode_human/release_34) with 47,429
non redundant protein-coding transcript biotypes mapped to the
human reference genome GRCh38, 602 common laboratory con-
taminants, 2043 curated small ORFs (lncRNA and upstream ORFs),
237,427 novel unannotated ORFs (nuORFs) supported by ribosomal
profiling nuORFDB v1.037, for a total of 287,501 entries9. The data were
downloaded from the PRIDE repository with identifier PXD040740.

To validate the peptide identifications acquired through PSM
rescoring, gained, shared, and lost peptides were clustered with
GibbsCluster version 2.027 with parameters for MHC class I ligands of
length 8–13. Based on the Kullback–Leibler distance in function of the
number of clusters, the optimal number of motifs in the data was
selected. For each motif the position-specific scoring matrix was
extracted and put into Seq2logo version 2.050 to get the position-
specific frequencymatrix of the Kullback–Leibler logos. All logos were
visualized using the Python package Logomaker version 0.851. The
logos from gained, shared, and lost peptides were plotted next to the
logos of the HLA-types present in the cell line to which they had the
lowest Kullback–Leibler distance. For the HLA motif, peptide lists of
the large monoallelic HLA class I cell line study by Sarkizova and
Klaeger et al.52 were used.

For each peptide we calculated the binding affinity to every HLA
allele present in the cell line, using NetMHCpan version 4.128. For each
peptide the best, i.e. lowest, percentile rank value was retained. A
percentile rank cutoff of 2wasused forweakbinders and0.5 for strong
binders28.

Re-analysis of a dataset with multiple proteases. To investigate
whether samples digested with trypsin, GluC, or AspN benefit from
PSM rescoring, we rescored a timsTOF Pro dataset that was digested
using different proteases. For detailed informationondata acquisition,
please refer to the original publication by Fossati et al.31. In brief, for
spectral library generation 500 ng for each fraction were acquired
using DDA PASEF. The number of missed cleavages was fixed to 2,
using cysteine carbamidomethylation as fixed modification, and
N-terminal acetylation and methionine oxidation as variable mod-
ifications. Individual spectrum peak files were searched against a
combined human-Mtb database encompassing the Mycobacterium
Tuberculosis proteome (4,081 entries, downloaded from Uniprot on
12/02/2021) andHomoSapiens proteome (20,397 entries, downloaded
on 07/01/2021). The data were downloaded from the PRIDE repository
with identifier PXD025671.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MS datasets are available via the PRIDE and MassIVE repositories
with the identifier MSV000092456 [https://massive.ucsd.edu/
ProteoSAFe/dataset.jsp?task=357750c7e94a4ec0924a5df9a0e70705]
(non-tryptic timsTOF dataset, also accessible with PXD043844),
PXD019086 (tryptic timsTOF dataset; reanalysis available on
MSV000092462 [https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?
task=14823bb1cb6e4508a180d8d5b6b179eb]), PXD038782 (compar-
ison dataset; reanalysis available on MSV000092461 [https://massive.
ucsd.edu/ProteoSAFe/dataset.jsp?task=b64af9dc5bb2430a8bf9e0d11
d977b76]), PXD025671 (multiple proteases dataset; reanalysis avail-
able on MSV000093954 [https://massive.ucsd.edu/ProteoSAFe/
dataset.jsp?task=06e103c793aa4faeb467efa59d2200c1]), and MS
V000091456 [https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=
3a576bb329b14c709adfc2efad54b70b] (SCP dataset; reanalysis avail-
able on RMSV000000693.1 [https://massive.ucsd.edu/ProteoSAFe/
reanalysis.jsp?task=bfe0766db1464a17add1acfda374ac68]). All pro-
tein databases used in this study are deposited alongside the result
files. Source data are provided with this paper.

Code availability
Source code and scripts are available on GitHub at https://github.com/
wilhelm-lab/koina, https://github.com/wilhelm-lab/oktoberfest, and
https://github.com/adamscharlotte/timsTOF-immunopeptide-
prediction.
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