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Systematic dissection of tumor-normal
single-cell ecosystems across a thousand
tumors of 30 cancer types

Junho Kang1,9, Jun Hyeong Lee2,9, Hongui Cha3, Jinhyeon An 2,
Joonha Kwon 2,4, Seongwoo Lee1, Seongryong Kim1, Mert Yakup Baykan 1,
So Yeon Kim2, Dohyeon An2, Ah-Young Kwon 5, Hee Jung An5,
Se-Hoon Lee 3,6 , Jung Kyoon Choi 2,7 & Jong-Eun Park 1,8

The complexity of the tumor microenvironment poses significant challenges
in cancer therapy. Here, to comprehensively investigate the tumor-normal
ecosystems, we perform an integrative analysis of 4.9 million single-cell tran-
scriptomes from 1070 tumor and 493 normal samples in combination with
pan-cancer 137 spatial transcriptomics, 8887 TCGA, and 1261 checkpoint
inhibitor-treated bulk tumors. We define a myriad of cell states constituting
the tumor-normal ecosystems and also identify hallmark gene signatures
across different cell types and organs. Our atlas characterizes distinctions
between inflammatory fibroblasts marked by AKR1C1 or WNT5A in terms of
cellular interactions and spatial co-localization patterns. Co-occurrence ana-
lysis reveals interferon-enriched community states including tertiary lymphoid
structure (TLS) components, which exhibit differential rewiring between
tumor, adjacent normal, and healthy normal tissues. The favorable response of
interferon-enriched community states to immunotherapy is validated using
immunotherapy-treated cancers (n = 1261) including our lung cancer cohort
(n = 497). Deconvolution of spatial transcriptomes discriminates TLS-enriched
from non-enriched cell types among immunotherapy-favorable components.
Our systematic dissection of tumor-normal ecosystems provides a deeper
understanding of inter- and intra-tumoral heterogeneity.

Tumors are highly heterogeneous entities composed of malignant
cells and diverse tissue-infiltrating stromal and immune cells that form
the tumor microenvironment (TME)1. The advent of single-cell RNA
sequencing (scRNA-seq) technologies has provided unbiased and

systematic molecular profiling for high-resolution characterization of
extensive heterogeneity embedded in the TME2–4.

Molecular and cellular heterogeneity within the TME collectively
influences various aspects of tumors, including progression, metastasis,
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and treatment response1. As evidence of intra-tumoral and inter-tumoral
heterogeneity mounts, various attempts are being made to compile
consensus gene signatures at the pan-cancer level. For example, a pan-
cancer atlas of T, myeloid, and malignant cells has recently been
published5–8. Although these pan-cancer analyses well characterize the
cell types of interest, complex interactions among the TME components
and the distinctions from paired normal tissues have not yet been fully
appreciated, leading to a limited perspective of tumor heterogeneity,
neglecting or oversimplifying potentially crucial molecular and cellular
interactions. Indeed, TMEphenotypes are not simply binarized into anti-
tumor or pro-tumor but rather represent interactive cellular organiza-
tions or ecosystems9. Targeting tumor-specific interactions underlying
tumor ecosystems presents an appealing strategy that can yield syner-
gistic therapeutic effects9,10. Therefore, it is crucial to dissect the intri-
cate andmultilayered ecosystems across diverse cancer and tissue types
to develop more efficient therapeutic strategies.

Cancer immunotherapy based on checkpoint blockade has
emerged as a promising therapeutic strategywith a profound impact on
cancer treatment. However, the heterogeneous nature of tumor eco-
systems poses one of themain remaining challenges, that is, the varying
efficacy of checkpoint inhibitors across cancer types and patients11.
Recent studies have highlighted interferon signatures and tertiary lym-
phoid structure (TLS), an ectopic aggregate of immune cells with a
lymphoid-like structure, as a key determinant of responses to
immunotherapy12–14. Nevertheless, a detailed understanding of compo-
nents favorable for immunotherapy that are associated with TLS
remains elusive. Therefore, a comprehensive pan-cancer dissection of
tumor ecosystems is necessary to discriminate TLS-enriched and non-
enriched cell types that confer favorable responses to immunotherapy,
elucidate the mechanisms by which these components shape tumor
immunity, and unravel the interactions among them. Such insights will
enable us to better comprehend the differential response to immu-
notherapy observed in patients of diverse cancer types.

Herein, we construct an unsorted tumor-normal single-cell tran-
scriptomic atlas covering 30 cancer types and 4.9 million cells from
1070 tumors and 493 normal samples. Our analysis incorporates
diverse analytical approaches including the AND-gating algorithm and
non-negative matrix factorization (NMF) visualization at single-cell
resolution to unveil the distinctions between tumor/normal ecosys-
tems. We outline hallmark gene signatures across diverse cell types
and organs. Our analysis reveals the heterogeneity of inflammatory
fibroblasts, including CXCL1/3/8 expressing AKR1C1+ and WNT5A+

inflammatory fibroblasts, which exhibit distinct organ allocations, tis-
sue preferences, cellular interactions, and spatial co-localization pat-
terns. By analyzing the co-occurrence patterns of cell states, we have
uncovered tumor-specific rewiring of interferon-enriched community
which comprise TLS components including CCL19+

fibroblast and
LAMP3+ DC that hold distinct clinical significance in immunotherapy-
treated cohorts (n = 1261), including our lung cancer (LC) cohort
(n = 497). Furthermore, we categorize cell types enriched in TLS and
those that are not within the spectrum of immunotherapy-favorable
components using spatial transcriptome analysis and derive a TLS
signature that predicts favorable responses to immunotherapy. In
summary, our pan-cancer meta-atlas provide deeper insights into
tumor-normal ecosystems and serve as a valuable resource for the
development of diagnostic and therapeutic strategies. We have
deposited the comprehensively analyzed datasets to the Zenodo
repository (DOI:10.5281/zenodo.10651059) and our atlas can be inter-
actively visualized at https://cellatlas.kaist.ac.kr/ecosystem/.

Results
Construction of a pan-cancer tumor-normal single-cell
meta-atlas
To generate a comprehensive census of the tumor and normal eco-
systems, we selected published scRNA-seq datasets on cancer,

adjacent normal, and healthy normal samples that have not been
enriched for specific cell types. As a result, a tumor-normal single-cell
transcriptomic atlas encompassing 30 different cancer types across
104 datasets was constructed (Supplementary Data 1). After data
curation, this meta-atlas covered 4.9 million cells from 1,070 tumors
and 493 normal samples derived from 999 donors (Fig. 1A). Breast
cancer (BRCA) was the most abundant cancer type, followed by LC,
head and neck cancer (HNSC), and hepatocellular carcinoma (HCC).

To profile a variety of ecosystems across diverse cancer and tissue
types, entire collected single-cell datasets were integrated and anno-
tated at a global scale. Then, an AND-gating algorithm (see Methods)
was applied to characterize differentially expressed genes that are cell
type-specific and universally found in tumor and normal tissues of
various organs. Subsequently, the annotated gene expressionmatrices
were then split into major cell types and decomposed into various cell
states using an NMF analysis3,8 (Fig. 1B–D and Supplementary Fig. S1A,
B). To maximize the recovery of rare cell states, NMF modules were
collected per individual samples by scanningmultiple parameters, and
the resulting modules were clustered and projected to Uniform
Manifold Approximation Projection (UMAP) to search recurring con-
sensus modules.

Among the clusters ofNMFmodules (cell states), we identified the
ones representing the contaminations from ambient RNAs or doublets
and removed those clusters from further analysis using an automated
pipeline (Fig. 1E and Supplementary Fig. S1C). NMF module clusters
enriched with ribosomal/mitochondrial genes were also filtered out.
The final UMAP representation of NMF modules demonstrates the
overall structure of recurring cell states across multiple samples
(Fig. 1E). Utilizing UMAP representation for NMF modules allows us to
visually inspect the characteristics of each cell state by their origin
(e.g., tissue type, organ, etc.). The cell states were defined and anno-
tated based on genes with the highest average NMF weights (Supple-
mentary Data 2). This allowed us to dissect tumor single-cell and bulk
transcriptome data using the cell state filters derived at single-cell
resolution (Fig. 1E, Cell state heterogeneity) and monitor their co-
occurrence across normal and tumor samples to identify potential
interactions between cell types and their contribution to the TME
(Fig. 1E, Coincidence). We also applied the cell state signatures to
deconvolute bulk RNA-seq cohorts (TCGA, immune checkpoint ther-
apy) to check their clinical implications (Fig. 1E, Survival analysis).
Finally, we projected cells using our cell states as a reference compo-
nent to assess the correspondence between cell states and cell types15

(Fig. 1E, Cell projection to reference components) and deconvoluted
spatial transcriptomics across 11 cancer types (n = 137) using our cell
types (Fig. 1E and Supplementary Data 3, Spatial transcriptomics).

Identification of universal hallmark gene signatures of tumor-
normal ecosystems
An AND-gating algorithm (see Methods) was implemented to sys-
tematically characterize hallmark genes that are recurrently upre-
gulated in tumors compared with normal tissues, and vice versa, in
major cell types comprising the TME of diverse organs (Supple-
mentary Fig. S2A and Supplementary Data 4). For CD8+ T cells, co-
stimulatory molecule (CD27) and immune checkpoint or exhaustion
markers such as CXCL13, PDCD1, TIGIT, CTLA4, LAG3, and TNFRSF9
were commonly elevated in tumors whereas IL7R, PTGER2, and
PTGER4 were elevated in normal tissues (Fig. 2A, B). Of note, CD8+

T cells of pancreatic tumor tissues did not show upregulation of
PDCD1 and LAG3, which potentially accounts for the current inap-
plicability of immune checkpoint inhibitors in pancreatic cancer
(PAAD) in contrast to other cancer types16. Similarly, tumor-
associated NK cells were marked by ZNF683 and KRT81. Tregs in
tumors elevated genes with regulatory functions such as RBPJ,
CXCR3, and ZBED2whereas Tregs in normal tissues upregulated CCR7
and CXCR5, indicating distinct mechanisms for immune cell
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recruitment and infiltration17 (Fig. 2A, B). In particular, tumor-
infiltrated macrophages universally expressed immune checkpoint
(IL4I1)18, M2 polarization-related (SPP1)5,19, and inflammatory genes
(CCL7, ADAMDEC1, and SLAMF9), whereas dendritic cells in tumors
were found to exhibit elevated expression of CCL19 and LAMP3,
which are associated with inflammatory and migratory functions
(Fig. 2A, B). Gene ontology (GO) analysis revealed that genes upre-
gulated in tumor-infiltrating macrophages, dendritic cells, and CD8+

T cells were enriched in related functions and pathways including
defense responses to viruses, response to type II interferon, inflam-
matory responses, chemotaxis of lymphocytes, and cytokine-
mediated signaling pathways (Fig. 2C).

As for non-immune cell types, cancer cells universally manifested
protein serine/threonine kinase activity (PRKCA, GSK3B, and CAMKK2),
glycolysis (PLOD1, EGLN3, and P4HA1), mTORC1 signaling (SLC2A1,
GMPS, and PDK1), andGOtermsassociatedwith the positive regulation
of the cell cycle process (E2F7, E2F8, and KIF23; Fig. 2C and Supple-
mentary Fig. S2B). Cancer-associated fibroblasts (CAF) expressed well-
known markers including FAP, COL1A1, COL10A1, MMP11, and
CTHRC120,21, and other genes such as INHBA, SLC12A8, F2R, and

COL12A1 in various organs (Fig. 2A, B). Tumor endothelial cells upre-
gulated angiogenesis-associated genes including CHST1, FOLH1, and
MMP1522–24. Both tumor-associated fibroblasts and endothelial cells
were enriched in terms related to extracellular matrix organization,
regulation of cell migration, cell-matrix adhesion, and filamin binding
(Fig. 2C). Overall, these results outline dysregulated hallmark sig-
natures of the TME components.

Deconvolution of tumor-normal ecosystems into hetero-
geneous cell states
The systematic dissection of the complex tumor and normal ecosys-
tems identified a myriad of cell states or co-regulated genes that are
strongly consistent with previously reported signatures and those that
have not been yet identified in the previous pan-cancer analyses5

(Fig. 3A and Supplementary Fig. S3, 4). For myeloid cell states, we
noted CTSK+ macrophage (SLC9B2 and CTSK), CXCL9+ macrophage
(CXCL9 and ENPP2), Langerhans cell (CD1A and CD207), mononuclear
phagocyte (DLEU2 and FMN1), and PRR-induced activation state
marked by chemokines (CXCL1 and CXCL5), migratory (SLAMF1) and
immunoregulatory markers (ITGB8). SLAMF1 and ITGB8 are
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A Characterization of hallmark genes in tumor and normal ecosystems across
organs. Cell type is noted on top of the heatmap and only the genes that are
upregulated in four or more cancer types are depicted. Each box in the heatmap
represents log2 fold-change values with positive values indicating upregulation in
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upregulated during TLR-induced DCmaturation25–28, thus named PRR-
induced activation. We also identified various B cell states, including
the germinal center B cell (GCB; SUGCT and RGS13) and plasma cell
precursor (FNDC3B and FNDC3A) states (Supplementary Fig. S3F).
Evaluation of tissue enrichment of immune cell states with Ro/e ana-
lysis revealed preferences of exhausted CD8+ T cell (LAG3 and TOX),
SPP1+ (SPP1 and ANGPTL4), CTSK+, and CXCL9+ macrophage states in
tumors (Supplementary Fig. S5A, B)5. GCB and plasma cell states were
abundant in adjacent normal tissues, while PRR-induced activation
states were enriched in healthy normal tissues (Supplementary
Fig. S5B, C). Utilizing cell type specific cell state profiles as a reference
for embedding, we identified cell types that well reflect corresponding
cell states (Fig. 3B and Supplementary Fig. S6, 7): the PRR-induced
activation state was captured as a PRR-inducedmo-DC cell cluster that
predominantly originated from gynecological cancers such as ovarian
cancer (OV) and uterine corpus endometrial carcinoma (UCEC)

patients, consistent with the distribution of PRR-induced activation
state score (Supplementary Fig. S8).

The epithelial and neural cells were deconvoluted into 35 states
(Supplementary Fig. S9) and the subsequent reference component
analysis using these cell states clustered cells by their origins (Sup-
plementary Fig. S10A, B). Epithelial hallmark programs such as cycling
(TOP2A and BIRC5) and stress (PPP1R15A and KLF5) were found.
Regarding previously cataloged signatures7,29, renal cell carcinoma
(RCC) and glioblastoma manifested high levels of hypoxia and metal
response while low-grade glioma, UCEC, and neuroblastoma exhibited
low levels of partial epithelial-to-mesenchymal transition (pEMT),
oxidative phosphorylation, and antigen-presenting machinery sig-
natures, respectively (Supplementary Fig. S10C, D).

Notably, we classified and annotated diverse cell states of
mesenchymal origin, including the CCL19+

fibroblast (CCL19 and
CXCL13), PI16+

fibroblast (MFAP5 and IGFBP6), myofibroblast (ACTA2
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Fig. 3 | Deconvolution of the tumor-normal ecosystem into heterogeneous cell
states. UMAP visualization of (A) myeloid cell states and (B) corresponding
reference component analysis of myeloid cells. NMF modules were graphically
clustered and colored according to cell states (A). Then, cells were mapped to the
reference components composedofmyeloid cell state genes (B). DC, dendritic cell;
mono-derived MΦ, monocyte-derived macrophage; mo-DC, monocyte-derived
dendritic cell; pDC, plasmacytoid dendritic cell; PRR, pattern recognition receptor.
UMAP visualization of (C) mesenchymal cell states and (D) corresponding refer-
ence component analysis of mesenchymal cells. NMF modules were graphically
clustered and colored according to cell states (C). Then, cells were mapped to the

reference components composed of mesenchymal cell state genes (D). E Ro/e
analysis of tissue enrichments in mesenchymal cell states. The dotted vertical line
representswhereRo/e is zero.FCircos plot illustrating co-occurrences between the
cell states in normal (blue) and tumor (yellow) tissues. The length of the arcs
represents the sum of co-occurrences with other cell states in adjacency. A longer
arc indicates more frequent co-occurrence with other cell states. Basal sq, basal
squamous state. DC, dendritic cell; Tex, exhausted CD8+ T cell; T-exclusion, T cell
exclusion program; Treg, regulatory T cell. Source data are provided as a Source
Data file.
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and MYH11), desmoplastic fibroblast (LRRC15 and MMP11), and fibro-
blast states exclusive to specific organs that potentially reflect organ-
specific functions (Fig. 3C, D and Supplementary Fig. S11). These states
were also identified as a variety of mesenchymal subpopulations when
projected onto the reference components. While the desmoplastic
fibroblast state was highly tumor-specific, the myofibroblast popula-
tions were evenly distributed across non-malignant tissues, in contrast
to the previous reports suggesting myofibroblasts as major CAFs
(Fig. 3E)30,31.

These diverse cell states are collectively engaged to shape the
complex tumor ecosystem (Fig. 3F). For instance, in tumors, the T cell
exclusion program of epithelial cells was closely associated with the
Treg states, promoting immune escape and tumor progression29,32.
The basal squamous state coincided with inflammatory states such as
CXCL9+macrophage, LAMP3+ DC, andmesenchymal-derived interferon
states exclusively in tumor tissues, suggesting the intrinsic feature of
basal squamous originated cancer types (HNSCand skin squamous cell
carcinoma) that triggers the immune cell infiltration (Fig. 3F). In par-
ticular, multiple coincidences involving mesenchymal-derived inter-
feron state with interferon states from other cell types and LAMP3+ DC
were identified (Fig. 3F). Its tumor-specific coincidence with the
LAMP3+ DC suggests thatmesenchymal-derived interferon is necessary
to initiate the tumor interferon signaling for the subsequent recruit-
ment of immune cells and T cell priming.

Characterization of AKR1C1+ and WNT5A+ inflammatory fibro-
blasts as distinct subtypes
Fibroblasts are a highly heterogeneous population with diverse func-
tions such as collagen deposition, angiogenesis, and cytokine secre-
tion that play a central role in forming the TME33. Fibroblasts promote
inflammation and orchestrate the tissue microenvironment toward
immunosuppression in the context of cancer34, but the diversity of
inflammatoryfibroblasts has not been extensively explored inprevious
pan-cancer studies30,31. As we project mesenchymal cell collections
upon the defined states, we identifiedmultiple fibroblast subtypes that
displayed immune-related gene expression (Fig. 4A). Among them, we
noted the distinctions between AKR1C1+ and WNT5A+ expressing
inflammatory fibroblasts, both of which coincided with PRR-induced
activation state and shared similar cytokine gene expressions (CXCL1/
3/8; Fig. 4A and Supplementary Fig. S12A). However, they significantly
differed in terms of marker genes (AKR1C1, FOSL1, LIF, and THAP2 vs.
WNT5A,GREM1,TNC, andMMP1), tissueorigins (normal vs. tumor), and
organ preferences (Figs. 3E, 4A, B, and Supplementary Fig. S12B, C). To
investigate whether these two states represent genuinely distinct
subtypes of fibroblasts, we conducted a detailed examination of
scRNA-seq datasets encompassing both tumor and normal tissues of
the breast, colon, head and neck, and ovary. Tumor tissues expressed
more chemokine genes (CXCL1/3/8) than normal tissues with the
exception of the breast tissue. Simultaneously, the expressionpatterns
of AKR1C1 and WNT5A in these two types of inflammatory fibroblasts
were distinct across different organs (Fig. 4C). BRCA and OV patients
expressed both AKR1C1 and WNT5A, while normal breast tissues
expressed only AKR1C1. Intriguingly, colorectal cancer (CRC) and
HNSC patients expressed WNT5A but not AKR1C1 whereas the corre-
sponding normal tissues showed opposite expression pat-
terns (Fig. 4C).

To gain insight into how these inflammatory fibroblasts shape the
TME, we performed ligand-receptor analysis to unravel distinct inter-
actions of AKR1C1+ and WNT5A+ inflammatory fibroblasts with other
cell types in BRCA, CRC, HNSC, and OV samples (Fig. 4D and Supple-
mentary Fig. S12D, E). Discrete interaction patterns were identified
between these two inflammatory fibroblasts. The AKR1C1+ inflamma-
tory fibroblast interacts with CTSK+ macrophages (CD44:SIGLEC15),
which are known to induce cancer progression and metastasis in
multiple cancer types35 (Fig. 4D and Supplementary Fig. S12D).

Moreover, the AKR1C1+ inflammatory fibroblast strongly expresses IL6
which interacts with IL6R expressed on DC1 and PRR-induced mo-DC,
potentially contributing to tumor growth and therapeutic
resistance36,37. We also identified an interrelation between TNFRSF12A
(AKR1C1+ inflammatory fibroblast) and TNFSF12 (ILC3)38. In contrast,
the WNT5A+ inflammatory fibroblast interacts with cancer cells via
IL24:IL20RA and WNT5A:FZD5 pathways, which could promote cancer
progression and chemoresistance39,40 (Fig. 4D and Supplementary
Fig. S12E). Furthermore, WNT5A+ inflammatory fibroblast showed
strong interactions with fibroblast populations including desmoplastic
fibroblasts (WNT5A:PTK7, WNT5A:ROR2, and GREM1:ACVR1), with
themselves in homotypic interactions (WNT5A:PTK7 and GRE-
M1:ACVR1), and BMP4+

fibroblasts (GREM1:ACVR1) to mimic wound
repair process to potentiatemesenchymal proliferation andmigratory
phenotype of cells through both autocrine and paracrine
mechanism41,42 (Fig. 4D and Supplementary Fig. S12E). Proangiogenic
and proinflammatory engagement of GREM1 from WNT5A+ inflamma-
tory fibroblast and ACVRL1 from endothelial cells were also
recognized43. Collectively, WNT5A+ inflammatory fibroblasts secrete
diverse ligands such as WNT5A, GREM1, and IL24, that potentiate pro-
liferation, migration, and survival in numerous contexts, including
tissue regeneration, inflammation, and cancer41,44–46. They interactwith
diverse cellular components such as cancer cells, fibroblasts, and
endothelial cells to ultimately shape the pro-tumorigenic and core
inflammatory TME. To locate and validate WNT5A+ inflammatory
fibroblast populations, we performed RNA single-molecule fluores-
cence in situ hybridization (smFISH) targeting WNT5A, GREM1, and
PDGFRA in CRC and HNSC tissue samples. The presence of WNT5A+

inflammatory fibroblasts was confirmed by the overlapping signals
from theWNT5A,GREM1, and PDGFRARNAprobes in the desmoplastic
stroma of cancer tissues (Fig. 4E and Supplementary Fig. S13, 14).

We hypothesized that distinct microenvironmental surroundings
induce the divergent phenotypes of these two inflammatory fibro-
blasts. To examine their co-localization patterns, we analyzed spatial
transcriptomics (BRCA, OV, and UCEC for AKR1C1+ inflammatory
fibroblast, and CRC and HNSC for WNT5A+ inflammatory fibroblast).
AKR1C1+ inflammatory fibroblast significantly co-localized with cancer
cells, neutrophil, CTSK+ macrophage, DC1, and PRR-induced mo-DC
(Fig. 4F, G and Supplementary Fig. S15A, B). In contrast, WNT5A+

inflammatory fibroblast significantly co-localized with desmoplastic
fibroblast, exhausted CD8+ T cell, Treg, DC1, and PRR-induced mo-DC,
highlighting its role in shaping the immunosuppressive TME (Fig. 4F, G
and Supplementary Fig. S15A, B). In particular, AKR1C1+ and WNT5A+

inflammatory fibroblasts were mutually exclusive with desmoplastic
fibroblast and neutrophil, respectively, further highlighting the dis-
tinctions between the two inflammatory fibroblasts (Fig. 4F, G and
Supplementary Fig. S15A, B). The cellular interactions and spatial
proximity of WNT5A+ inflammatory fibroblasts with exhausted CD8+

T cells and Tregs prompted us to investigate its association with
immunotherapy treatment in pre/post-treated HNSC samples47. There
was a trend toward an increase in WNT5A+ inflammatory fibroblasts
and desmoplastic fibroblasts after immunotherapy treatment, unlike
other mesenchymal populations (Supplementary Fig. S15C). This
indicates that WNT5A+ inflammatory fibroblasts are potentially affec-
ted in the course of immunotherapy treatment. Collectively, although
the two inflammatory fibroblasts express CXCL1/3/8 in common, dis-
tinct organ/tissue preferences, cellular interaction patterns, and spa-
tial proximities with other cell types suggest their differential role in
forming an immune-evasive and pro-tumorigenic TME.

Tumor-specific rewiring of interferon-enriched and pro-
tumorigenic community
To depict multicellular ecosystems across tissue origins, we con-
structed an undirected network with co-occurrences of the cell states
and identified diverse network communities within the tumor,
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adjacent normal, and normal tissues (Fig. 5A–C). Remarkably, one
tumor ecosystem was distinctly occupied by interferon states from
various cell types within the tumor (interferon-enriched community;
Fig. 5A). This community also contained well-known components of
the TLS (LAMP3+ DC, CCL19+

fibroblast, and Tfh), particular DCs and
macrophages (DC1, pDC, and CXCL9+ macrophage), and antigen-
presenting machinery states. In contrast, several immune cell states

included within the interferon-enriched community were scattered
throughout the healthy normal network (Fig. 5B). Interestingly, the
vicinity of LAMP3+ DC with other immune cell states included in the
interferon-enriched community (DC1, pDC, Langerhans cell, and Tfh)
was identified in the adjacent normal network (Fig. 5C), implying that
distinct configurations of cellular ecosystems even exist within the
adjacent normal tissues compared to healthy normal tissues.
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We also identified another tumor-specific community occupied
by pro-tumorigenic states, such as pEMT, epithelial T cell exclusion
program, SPP1+ macrophage, and desmoplastic fibroblast (Fig. 5A).
Tumor-enriched macrophages (CTSK+ and C1QC+ macrophage) and
WNT5A+ inflammatory fibroblast states, which contribute to diverse
aspects of tumorigenesis, were also found in the pro-tumorigenic
community40,48,49.

Determination of immunotherapy-predictive cell states across
cancer types
Having identified the diversity and dynamics of interferon-enriched
and pro-tumorigenic communities among tumor, adjacent normal,
and healthy normal tissues, we utilized those cell states to deconvolute
the bulk transcriptomes of checkpoint inhibitor-treated samples in
bladder cancer (BLCA), melanoma (MEL), RCC and our LC cohort
(Fig. 5D). The clinical benefits of checkpoint blockadewere highlighted
by the exhaustedCD8+ T cell,mesenchymal-derived interferon,CXCL9+

macrophage, CD160+ intraepithelial lymphocyte, Treg, DC1, ISG15+

macrophage,XCL1+/CD16+NKcell, IFIT1+ interferon signaling, Tfh,GCB,
LAMP3+ DC, pDC, CD16+ monocyte-derived macrophage, CCL19+

fibroblast, and plasma cell precursor states in the pan-cancer meta-
analysis (Fig. 5E). Simultaneously, previously defined gene signatures
such as the PD-L1 pathway, antigen-presenting machinery, and inter-
feron signatures from various studies conferred favorable responses
to immunotherapy. The cell states with significant predictive power
were mostly components of the interferon-enriched community.
Among the cell states favorable for immunotherapy, we confirmed the
presence of interferon-expressing mesenchymal cells (CXCL10 and
PDGFRA) in the HNSC tissue sample using RNA smFISH (Supplemen-
tary Fig. S16).

In contrast, the desmoplastic fibroblast, osteoblast, mesothelium-
derived fibroblast, and CTSK+ macrophage cell states were associated
with poor responses to immunotherapy across the cohorts, many of
which belonged to the pro-tumorigenic community (Fig. 5E). Con-
sidering that these pro-tumorigenic component states (i.e., desmo-
plastic fibroblast, osteoblast, and CTSK+ macrophage) negatively
impact immunotherapy responses across different cancer types,
alternative treatment strategies should be pursued for patients with
pro-tumorigenic ecosystems. Notably, the majority of cell states pre-
dicting immunotherapy response did not significantly affect the
prognosis across TCGA cohorts (Supplementary Figs. S17, 18).

Despite the heterogeneous effect of diverse cell states in immu-
notherapy, we questioned whether a common gene signature exists
among responders. To identify genes that are differentially regulated
regardless of organs between immunotherapy responders and non-
responders for major cell types, we investigated immunotherapy
cohorts of 4 cancer types at single-cell resolution (BRCA, LC, MEL, and
RCC; Supplementary Data 5). In CD8+ T cells, PDCD1, LAG3, CXCL13,
CXCR6, VCAM1, CCDC141, and ZBED2 were commonly expressed in
immunotherapy responders, while ZNF80 was expressed in non-
responders (Supplementary Fig. S19A and Supplementary Data 6). In
macrophages, universal upregulation of SCIN, OLFML3, PLD4, P2RY11,
and SLAMF7 were identified in responders, while non-responders
expressed COLEC12, PROS1, CTSK, MOB3B, ADAMTSL4, TSPAN15, and

GPX3 (Supplementary Fig. S19A). Beneficial survival effects of uni-
versally expressed CD8+ T cell genes in immunotherapy responders
were also validated in our LC cohort, indicating common gene
expression programs in immunotherapy responders hold prognostic
significance even in patients of different cancer types (Supplementary
Fig. S19B).

Systematic investigation of tumor ecosystems with spatial
transcriptomics across multiple cancer types
To examine the spatial organization of the tumor ecosystem, we
conducted a systematic analysis of spatial transcriptomics data across
11 different cancer types (n = 137, Fig. 6A). Given that TLS has pre-
viously been linked to favorable immunotherapy responses12,13, we first
aimed to derive a gene signature specific to TLS and also investigate
spatial relationships between components associated with favorable
responses to immunotherapy and pathologically defined TLS. To
achieve this goal, we utilized the RCC spatial transcriptome data which
contains pathologically defined TLS spots50. By performing differential
expression analysis betweenTLSandnon-TLS spots,weobtained aTLS
signature that effectively distinguishes TLS from non-TLS spots
(p = 1.5e−5; Fig. 6B and Supplementary Data 7). Our TLS signature also
predicted favorable responses to immunotherapy in immunotherapy-
treated cohorts (p = 1.4e−5; Fig. 6C and Supplementary Fig. S20A).
Additionally, we utilized cell2location to deconvolute each spatial spot
with single-cell transcriptome profiles and compared cell type abun-
dances between TLS and non-TLS spots. We identified cell types that
were significantly enriched in TLS, including Treg, plasma cell, CD16+/
XCL1+ NK cells, Tfh, LAMP3+ DC, CCL19+

fibroblast, and ILC3 (Fig. 6D). It
is noteworthy that some cell types, such as exhausted CD8+ T cell,
ISG15+ macrophage, DC1, and pDC, lack spatial association with TLS,
yet they exhibited favorable responses to immunotherapy similar to
TLS-enriched cell types (Figs. 5E, 6D).

By evaluating the spatial co-localization patterns of TLS-enriched
cell types in other cancer types, we confirmed the co-localization of
TLS-enriched cell types including LAMP3+ DC, Treg, plasma cell, and
CCL19+

fibroblast across multiple cancer types (Fig. 6E). Furthermore,
we observed that our TLS signature effectively captures spots abun-
dantwith TLS-enriched cell types in various tumor samples of different
cancer types (Fig. 6E). In contrast, pro-tumorigenic components
exhibited distinct co-localization patterns (Supplementary Fig. S20B).
Notably, desmoplastic fibroblasts and SPP1+ macrophages both co-
localized with WNT5A+ inflammatory fibroblasts but were mutually
exclusive with eachother, indicating independent contributions to the
pro-tumorigenic milieu. In summary, our study leveraged pan-cancer
single-cell transcriptomes and spatial transcriptomes to characterize
the intricate spatial organization of the TME.

Discussion
In this work, we integrated a transcriptomic atlas comprising 4.9 mil-
lion cells from 999 individuals across 30 cancer types, including both
tumor and non-tumor tissues. Our analysis outlined hallmark gene
signatures and systematically visualized the cell states that shape
tumor-normal ecosystems. Furthermore, we elucidated distinctions
between AKR1C1+ and WNT5A+

fibroblasts shaping the core

Fig. 4 | Characterization of AKR1C1+ and WNT5A+ inflammatory fibroblasts.
A Dot plot of marker gene expressions of inflammatory fibroblast subtypes.
Inflamm., inflammatory. B Distribution of inflammatory fibroblasts across organs
where the y-axis represents the proportion of inflammatory fibroblasts in tumor
tissues. H&N, head and neck; Inflamm., inflammatory. C Dot plot showing gene
expressionofAKR1C1+ andWNT5A+ inflammatoryfibroblastmarker genes innormal
and tumor tissues of relevant organs. H&N, head and neck. D Ligand-receptor
interactions of AKR1C1+ andWNT5A+ inflammatory fibroblasts with other cell types.
The interaction intensity was calculated by multiplying the normalized expression
values of ligands and receptors in each cell-cell pair. DC, dendritic cell; Inflamm.,

inflammatory; ILC3, type 3 innate lymphoid cells; mo-DC, monocyte-derived den-
dritic cell; PRR, pattern recognition receptor. E Representative (n = 3) images of
in situ RNA smFISHdetection ofWNT5A (red), PDGFRA (green), andGREM1 (yellow)
in the desmoplastic stroma of CRC (top) and HNSC (bottom) tissues. scale bar:
100μm. Magnification: 20X. Spatial co-localization patterns of (F) AKR1C1+ and (G)
WNT5A+ inflammatoryfibroblastwith other cell types in relevant organs,with colors
representing cell abundance. DC, dendritic cell; Inflamm., inflammatory; mo-DC,
monocyte-derived dendritic cell; PRR, pattern recognition receptor. Source data
are provided as a Source Data file.
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inflammatory TME. Diverse components of the interferon-enriched
community including LAMP3+ DC, CCL19+

fibroblast, CXCL9+ macro-
phage, and mesenchymal-derived interferon states confer favorable
responses to immunotherapy and form different ecosystems between
tumor, adjacent normal, and healthy normal tissues. High-resolution
annotation of comprehensive cell states from our pan-cancer single-
cell atlas, in combination with spatial transcriptomics, enabled the
categorization of cell types enriched in TLS and those that are not

within immunotherapy-favorable components, and the investigation
of patterns that are highly reflective of complex tumor biology.

Although the gene expression divergence is mitigated during the
malignant transformation of tissues in many cancer types51, the evi-
dence of the co-expressed gene modules in the TME at single-cell
resolution is lacking. Herein, we aimed to identify hallmark gene
expression programs in malignant tissues compared with normal tis-
sues across various cell types, irrespective of the organs. Despite the
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Fig. 5 | Tumor-specific occurrence of interferon-enriched and pro-tumorigenic
community and determination of immunotherapy-predictive cell states. Co-
occurrence network in the (A) tumor, (B) normal, and (C) adjacent normal tissues.
The color of the nodes and edges corresponds to the modularity community and
the thickness of the edges corresponds to the magnitude of adjacency. DC, den-
dritic cell; EMT, epithelial-to-mesenchymal transition; ILC3, type 3 innate lymphoid
cells; NK, natural killer cell; pDC, plasmacytoid dendritic cell; PRR, pattern recog-
nition receptor; Texclusion, T cell exclusion program; Tfh, T follicular helper cells;
Th17, T helper type 17; Treg, regulatory T cell. D Summary of the immunotherapy-
treated bulk RNA-seq cohorts with response data used in this study. * indicates
newly generated data. E Forest plot of immunotherapy-response predictive cell
states and gene signatures from other studies through meta-analysis of

immunotherapy-treated bulk RNA-seq cohorts (n = 1261 patients). The x-axis
represents the odds ratio, in which the dotted vertical line represents an odds ratio
of 1, and the y-axis denotes cell states and previously defined gene signatures. For
each cell state, rectangles and extended lines represent odds ratios and 95% con-
fidence intervals, respectively, calculated through meta-analysis from logistic
regression for clinical response across immunotherapy-treated cohorts. Only cell
states that achieved statistical significance are depicted. Cell states with odds ratios
greater than 1 are those associated with favorable responses to immunotherapy.
The colors correspond to the cell type categories of each cell state. APM, antigen-
presenting machinery; DC, dendritic cell; EMT, epithelial-to-mesenchymal transi-
tion; IFNG, interferon-gamma; NK, natural killer cell; pDC, plasmacytoid dendritic
cell; Treg, regulatory T cell. Source data are provided as a Source Data file.
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Fig. 6 | Spatial transcriptome analysis of tumor ecosystems across multiple
cancer types. A Overview of pan-cancer spatial transcriptome analyzed in this
study. B Boxplot comparing TLS signature scores between TLS and non-TLS spots.
Statistical significance was calculated with the two-sided Wilcoxon rank sum test
(p = 1.5e−5, n = 17). In the box plot, the center line, upper box limit, lower box limit,
and whiskers represent the median, first quartile, third quartile, and 1.5x inter-
quartile range, respectively. C Predictive power of TLS signature for immunother-
apy response in bulk RNA-seq cohorts treated with immunotherapy. The rectangle
and extended lines represent the odds ratio and 95% confidence interval, respec-
tively, calculated using TLS signature scores through meta-analysis from logistic
regression for clinical response across immunotherapy-treated cohorts (p = 1.4e−5,

n = 1261). Nominal two-sided p-values were obtained from themeta-analysis results
of the logistic regression analysis. D Barplot of TLS-enriched cell types using TLS-
labeled RCC spatial transcriptomes. The statistical significance of the enrichment
or depletion was calculated using the two-sided Wilcoxon rank sum test and
adjusted with the Benjamini-Hochberg method. Only the cell types reaching sta-
tistical significance are presented. DC, dendritic cell; ILC3, type 3 innate lymphoid
cells; mono-MΦ, monocyte-derived macrophage; NK, natural killer cell; Tfh, T
follicular helper cells; Th17, T helper type 17; Treg, regulatory T cell, Trm; Tissue-
residentmemory. E Spatial co-localizations of TLS signatureswith diverse cell types
across cancer types. DC, dendritic cell; Treg, regulatory T cell. Source data are
provided as a Source Data file.
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high heterogeneity embedded in the tissue ecosystems, our findings
suggest that pan-organ gene expression programs exist across diverse
cell types. These universal gene expression programs may account for
the widespread application of immunotherapy (e.g., PD-1/PD-L1 inhi-
bitors and CTLA4 inhibitors) in a variety of cancers, in contrast to the
targeted therapywhichhas limited indications in specific cancer types.
Comprehensive future studies are necessary to uncover the immuno-
regulatory role of the TME hallmark genes, which may represent
immune checkpoints or therapeutic targets in the TME of diverse
cancer types.

Our study features a thorough investigation of themesenchymal
states in tumor and normal tissues. In particular, we identified
AKR1C1+ andWNT5A+ inflammatory fibroblast states, which exhibited
similar coincidence patterns with PRR-induced activation state and
cytokine gene expression profiles. Although these inflammatory
fibroblast populations have been previously recognized in several
cancer types40,52,53, our study provides a detailed exploration and
uncovered the distinctions between these populations in terms of
tissue and organ preferences, cellular interactions, and spatial co-
localization patterns, thus underscoring the need for an integrative
atlas. TheAKR1C1+ fibroblast state was characterized by genes such as
AKR1C1, CXCL8, CXCL2, CXCL3, and TNFAIP6 that are predictive of
adverse responses to immunotherapy54–58. Therefore, targeting the
AKR1C1+ inflammatory fibroblast might offer new therapeutic
insights, especially in OV and UCEC. Intriguingly, WNT5A+ inflam-
matory fibroblast has been shown to interact with diverse TME
components configuring inflammatory and pro-tumorigenic milieu
viaWNT5A, GREM1, and IL2441,44–46. Future studies that therapeutically
target WNT5A+ inflammatory fibroblasts should be pursued to miti-
gate deleterious consequences associated with these pro-
tumorigenic fibroblasts. Moreover, myofibroblasts in our study
exhibited relatively higher enrichment in normal tissues compared
with the findings of the previous pan-cancer study30. It is worth
noting that our study encompassed both tumor and normal samples
from various organs, and the tissue enrichments of myofibroblasts
represent a comprehensive outcome across all organs (Fig. 3E).
Organ-wise analysis revealed myofibroblast enrichment in tumor
tissues of the breast, pancreas, liver, and kidney (Supplementary
Fig. S18C), suggesting a potential tumorigenic role of these fibro-
blasts in these organs59–61. However, tumor-normal enrichment of
myofibroblasts in the colon and stomach was comparable, aligning
with prior studies that have documented the presence of myofibro-
blasts in the normal intestine62,63.

Various cell states arising from distinct cell types, many of which
were components of the interferon-enriched community, were
favorable for immunotherapy. While TLS has previously been iden-
tified as a predictor of immunotherapy response12,13, we emphasize
that both TLS-enriched and non-enriched cell types contribute
positively to immunotherapy responses. Furthermore, our TLS sig-
nature, which effectively distinguishes TLS from non-TLS spots in
RCC patients, predicts favorable responses to immunotherapy and
also successfully co-localizes with TLS-enriched cell types in various
cancer types. However, it remains to be confirmed whether TLS-
enriched cell types are comparable in TLS-defined tissues of cancer
types other than RCC. In addition, multiple states that confer adverse
responses to the checkpoint blockade were also characterized,
highlighting the need for alternative therapeutic options. To
emphasize, although these immunotherapy-predictive cell states
merely showed no prognostic significance on TCGA cohorts, immu-
notherapy showed differential treatment responses according to cell
states for each cancer type, indicating that distinct mechanisms
prevail in the course of immunotherapy treatment across
cancer types.

Our study presents a distinctive perspective by constructing an
extensive atlas that combines single-cell, spatial, and

immunotherapy-treated bulk datasets, and by systematically com-
paring tumor and normal ecosystems across diverse organs. This
allowed us to unravel hallmark gene signatures of the tumor-normal
ecosystems, outline distinctions between AKR1C1+ and WNT5A+

inflammatory fibroblasts, and characterize TLS-enriched and non-
enriched cell types among immunotherapy-favorable components.
The pan-cancer tumor-normal single-cell meta-atlas presented in the
study would provide essential insights into a deeper understanding
of tumor-normal ecosystems and lay the groundwork for future
studies in precision oncology. For the benefit of the research com-
munity, our atlas can be accessed through the Zenodo repository
(DOI:10.5281/zenodo.10651059) and web portal (https://cellatlas.
kaist.ac.kr/ecosystem/).

Methods
Ethics approval and consent to participate
Our immunotherapy cohort study was approved by the Institutional
Review Board of Samsung Medical Center (SMC 2018-03-130). All
patients enrolled in the study provided informed written consent.

Our immunotherapy-treated lung cancer cohort
Histologically confirmed lung adenocarcinoma and lung squamous
cell carcinoma patients, including previously reported cases64, treated
with either PD-1 or PD-L1 inhibitorswere recruited. Clinical information
of this cohort was collected from electronic medical records and
tumor response was evaluated with Response Evaluation Criteria in
Solid Tumors (v1.1). Progression-free survival (PFS) was defined as the
time from the initiation of PD-1/PD-L1 inhibitors until the date of
documented disease progression or death from any cause, whichever
occurred first. Overall survival (OS) was defined as the time from the
initiation of PD-1/PD-L1 inhibitors to death from any cause (Supple-
mentary Data 8). The AllPrep DNA/RNA Mini Kit (Qiagen, USA) was
used to purify RNA from formalin-fixed paraffin-embedded (FFPE) or
fresh tumor samples. Subsequently, NanoDrop and Bioanalyzer (Agi-
lent, USA) were used to measure the RNA concentration and purity.
Library preparationwas performedwith either the TruSeq RNALibrary
Prep Kit v2 (Illumina, USA) or the TruSeq RNA Access Library Prep Kit
(Illumina, USA), following the manufacturer’s instructions. In total, we
generated transcriptome data for 497 immunotherapy-treated LC
patients.

Single-cell data inclusion criteria and collection
For data selection, we first searched for relevant 10x scRNA-seq data-
sets to homogenize and reduce batch issues arising from different
chemistries. Datasets were searched and downloaded from PubMed,
Google Scholar, Gene Expression Omnibus, Single Cell Portal (https://
singlecell.broadinstitute.org/single_cell), COVID-19 Cell Atlas (https://
www.covid19cellatlas.org/), and Curated Cancer Cell Atlas (https://
www.weizmann.ac.il/sites/3CA/).

The inclusion criteria were as follows: studies generated from 10x-
genomics reagent kits and studies that include cancer, pre-cancerous,
benign tumors, and normal samples. Among normal control samples,
non-malignant tissues derived from cancer patients (annotated as
adjacent normal) and tissues from healthy normal individuals (anno-
tated as normal) were collected separately. Studies that only include
sorted cells (e.g.,; CD45+ sorting), fluid samples (e.g.; ascites, CSF, or
PBMC), cell-line cultures, mouse studies, and studies generated from
nuclei-seq were excluded. Altogether, a total of 104 scRNA-seq data-
sets comprising 1070 tumors, 493 normal (adjacent normal + healthy
normal) samples, and approximately 4.9 million cells from 999 indi-
viduals, were collected and integrated (Supplementary Data 1).

Single-cell RNA sequencing data analysis
The gene columns of each dataset were re-aligned according to the
GRCh38 human reference genome (official Cell Ranger reference,
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version 2020-A). For each dataset, cells with fewer than 1000 UMI
counts and 500 detected genes were considered to be empty droplets
and removed from the dataset. Cells with more than 7000 detected
genes were considered potential doublets and removed from the
dataset. The Scanpy (v.1.8.2) Python package was used to load the cell-
gene count matrix and for analysis65. Clustering, annotation, and
downstream analysis were performed using the tools in the Scanpy
package complemented with some custom codes. Scrublet was used
for doublet detection66.

To reduce the computational burden and accelerate downstream
analysis, a subset of cells was selected for each dataset with a Geo-
metric sketch that mirrors the transcriptional diversity and preserves
rare cell types67 (Fig. 1B–D and Supplementary Fig. S1A).

Cell type annotation and batch correction
We merged all tumor-normal scRNA-seq and divided the datasets to
reduce the computational burden, visualize, and annotate cells.
BBKNN was used as a batch effect correction algorithm to generate a
connected graph structure68, and after obtaining UMAP at a global
scale, annotations weremade based on cell type-specificmarker genes
(Supplementary Fig. S1B). Then, we examined and refined major cell
type annotations for each dataset.

Copy number variation inference for identification of
malignant cells
Single-cell transcriptome-based large-scale copy number variation
(CNV) of malignant cells was inferred using inferCNVpy (using the
package available at https://github.com/icbi-lab/infercnvpy, v.0.4.2)
with default window size and gencode v29 for genomic location
reference. We employed infercnvpy.tl.infercnv to infer CNV and selec-
ted normal immune cells or fibroblasts as reference normal cells
depending on each cancer type. Following dimensional reduction
(infercnvpy.tl.pca) and clustering based on CNV profiles (infercnv-
py.tl.leiden), cells were visualized on a CNV UMAP (infercnvpy.tl.umap)
and CNV scores were calculated using infercnvpy.tl.cnv_score. Putative
malignant cells were defined based on two criteria: (i) Formation of
separate clusters, a known property ofmalignant cells69, and (ii) higher
CNV scores comparedwith knownnormal cell types (normal epithelial,
fibroblasts, or immune cells based on each cancer type).

AND-gating algorithm of differential expression of genes for
identification of hallmark gene signatures
We applied an AND-gating algorithm to extract tumor-enriched or
immunotherapy-favorable gene signatures for each cell type across
different cancers70 (Supplementary Fig. S2A). Cells from a specific
organ were subsetted and differential expression analysis was per-
formed to identify genes that were (i) upregulated in the cell type of
interest compared with other cell types (log2 fold-change >0) and (ii)
highly expressed in the cell type of interest in tumor tissues (or
immunotherapy responders) compared with normal tissues (or
immunotherapy non-responders; log2 fold-change >0.5 and adjusted
p < 0.05). Genes that satisfied both conditions were retained to cre-
ate tumor-specific/immunotherapy-favorable gene signatures. The p
values were calculated using the two-sided t test on log-normalized
gene matrices and adjusted with the Benjamini-Hochberg method
(Python packages scipy.stats v.1.10.0 and statsmodels.stats v.0.13.5).
After obtaining the gene signatures derived from the AND-gating for
each cell type and organ, we integrated the gene signatures from
multiple organs to identify hallmark gene signatures for each
cell type.

Biological annotation of the hallmark gene signatures of tumor-
normal ecosystems
Weutilized Enrichr71 to annotate the biological functions of the tumor-
specific hallmark gene signatures across diverse cell types. We

employed GO terms from MsigDB Hallmark 2020, GO Biological Pro-
cess 2023, and GO Molecular Function 2023, and only the terms with
an adjusted p <0.05 were considered as significant (Fig. 2C).

NMF pre-processing and visualization
After cell type annotation, we performed NMF for each individual tis-
sue separately, accounting for each cell type category and tissue ori-
gin, to generate cell states that contribute to the heterogeneity within
each individual. Starting from the log-normalized centered expression
matrix of all genes, the negative values were set to zero. The
sklearn.decomposition.NMF method was applied with default para-
meters as implemented in the scikit-learn python package v1.0.2.
Considering that NMF requires a K parameter that influences the
results, we ran NMF using different values (K = 5,6,7,8,9), thereby
generating 35 modules for each individual.

Next, we applied a graphical approach to cluster and visualize the
NMF modules. First, we max-normalized and merged all modules
derived from each cell type and converted it to an anndata object.
After highly variable gene selection, we removed low-quality modules
(modules with anNMFweight less than 10−20 or greater than 150−170,
depending on each cell type). Dimensional reduction using principal
components and UMAP visualization was performed, and small mod-
ule clusters with less than 150 modules were removed. Leiden clus-
tering was then performed and a list of the top 50 genes was derived
for each cluster. We then removed clusters enriched with either ribo-
somal protein genes or mitochondrial-encoded genes, composed of
NMF modules from a single study, and suspected to reflect doublet
cells or the soup effect based on high similarity to the expression
profile from another cell type (e.g.; T cells genes inmesenchymal NMF
modules).

Automation of doublet or soup effect cluster removal
To identify and remove NMF module clusters (cell states) indicating
doublet cells or the soup effect, we built an algorithm for automating
doublet or soup effect cluster detection. In detail, we identified the 2
organs (only 1 organ if there weremore than 2-fold differences of NMF
module counts between the two predominant organs) that compose
the majority of the NMF cluster of interest. We then subsetted the
corresponding organs in our geometric sketched anndata of our
tumor-normal meta-atlas. With the top 50 genes derived from the
cluster, we scored each cell type category in the subsetted anndata
using the sc.tl.score function in the Scanpy package. If the scores were
greater than0.2 in a different cell type (e.g., T cells) comparedwith the
cell type of interest (e.g., mesenchymal), the cluster was defined as a
doublet or soup effect cluster andwas subsequently removed. Clusters
with higher mesenchymal scores were not discarded from epithelial
cell states to prevent the EMT state from being removed.

Defining and annotating cell states
After visualizing NMF modules and clustering the states, the top 50
genes with weighted averages were identified for each state. For
overlapping genes between cell states, we orthogonally assigned the
genes to the state with a higher NMF weighted average (Supplemen-
tary Data 2). Azimuth (https://azimuth.hubmapconsortium.org/), The
Human Protein Atlas (https://www.proteinatlas.org/), and Enrichr71

were used as main references to annotate cell states. Also, to validate
our cell states, we compared our states to the gene signatures derived
from other studies with the Pearson correlation (Supplemen-
tary Fig. S4).

Construction of reference components with the cell states
To assess the correspondence between cell states and cell subtypes,
we projected cells utilizing cell-type specific cell state profiles as
reference components15. For cell states from each cell type category,
orthogonal genes with weighted averages were identified for each
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state (see Defining and annotating cell states). Then, cell cycling and
cell states derived from ambient RNAs or doublets were removed, and
the genes constituting the remnant states were selected as variable
genes in the log-normalized scRNA-seq dataset. Reference compo-
nents were constructed by performing matrix multiplication between
the scRNA-seq anndata and the cell state weighted averages
(RCA=anndata.X.dot(cell state weighted average)). These reference
components were used to replace the principal components, and
subsequently, BBKNN was performed, using the dataset as a batch
key68. Then, final cell type annotations were made based on cell type-
specific marker genes (Fig. 3B, D and Supplementary Figs. S6, and 7).

Measuring cell state score distributions and coincidence
analysis
To identify which cell states are enriched in the cells of each individual,
we scored each individual with the orthogonal genes of the cell states
using the sc.tl.score_genes function to measure cell state scores. For 8
cancer types that constitute the majority of the pan-cancer atlas
(BRCA, CRC, HCC, HNSC, LC, OV, PAAD, and RCC), we calculated the
mean scores for each individual, and Pearson correlation was per-
formed between cell states to measure the coincidence. For each
coincidence between cell states, the adjacency was calculated with the
WGCNA package (v.1.71)72, and the Circos plot was depicted with the
circlize package73 (v.0.4.15). The thickness of lines in the Circos plot
corresponds to the adjacency between cell states.

The ratio of observed to expected of cell states
To quantify the tissue or organ preference of the cell states, we cal-
culated the ratio of observed to expected (Ro/e). To quantify the tissue
Ro/e, we created a 3 × 2 contingency table by counting the occurrence
of tissue origins (i.e.; normal, adjacent normal, and tumor) of NMF
modules from the cell state of interest and others. To simultaneously
consider the tissue and organ origins when calculating the Ro/e, we
first extracted NMFmodules of a cell state, determined proportions of
organ origins within these modules, and filtered out those derived
from organs constituting less than 3%. Then, for each tissue origin, a
contingency table was created by counting the occurrence of the
organ origins of NMF modules from the cell state of interest versus
other cell states. An expected number was derived using chi-square
analysis and Ro/e was calculated as log2observedexpected. We considered a cell
state enriched or depleted in a specific tissue/organ if Ro/e > 0 or Ro/
e < 0, respectively.

Ligand-receptor interaction analysis
To understand the functional characteristics of AKR1C1+ and WNT5A+

inflammatory fibroblasts, we investigated the potential cellular inter-
actions between AKR1C1+ and WNT5A+ inflammatory fibroblasts with
other cell types using cell-cell interaction inference tools such as
CellPhoneDB (v.3.1.0)74, focusing on gene expression programs spe-
cific to these two inflammatory fibroblasts. The interaction intensity
was calculated by multiplying the normalized expression values of
ligands and receptors in each cell-cell pair.

RNA smFISH
RNA smFISH was performed on FFPE tissue sections obtained from
desmoplastic stromas in patients with CRC and HNSC. We used RNA-
scope® probes targeting humanWNT5A (AD604921, 1:1500, Opal 570),
GREM1 (AD312831-C2, 1:1500, Opal 690), and PDGFRA (AD604481-C3,
1:3000, Opal 520) to identify WNT5A+ inflammatory fibroblasts, and
CXCL10 (AD311851, 1:1500, Opal 570) and PDGFRA (AD604481-C2,
1:3000, Opal 520) to identify interferon-expressing fibroblasts. Five-
µm thick FFPE tissue sections were deparaffinized with xylene and
subsequently processed with RNAscope® Multiplex Fluorescent
Reagent Kit Assay, following the manufacturer’s instructions. Fluor-
escence images were acquired with a ZEISS LSM 980 confocal

microscopeusing FITC (Opal 520), TRITC (Opal 570), Cy5.5 (Opal 690),
and DAPI channels.

Survival analysis using bulk transcriptome
To evaluate the prognostic value of cell states and hallmark sig-
natures in each cancer type, we performed survival analysis with
TCGA RNA-seq data. Upper-quartile normalized FPKM data was
collected from UCSC Xena across 28 cancer types75. TCGA clinical
data (OS) was obtained from data provided by the TCGA Pan-
Cancer clinical data resource76. Enrichments of cell states and
hallmark signatures were calculated for each TCGA primary cancer
sample using the single-sample gene set enrichment analysis
(ssGSEA) function implemented in the Corto package (v.1.1.10)77.
Patients were grouped into depleted and enriched groups based
on the average cell state score of the analyzed samples. The Kaplan
−Meier curves were plotted with a ggsurvplot function and the log-
rank test was performed to quantify statistical significance. The
Benjamini-Hochberg method was applied to correct multiple
testing. To evaluate the prognostic significance of cell states in
relevant organs, we determined the Ro/e filtering threshold for
each cell type using the following formula:

Ro=e filtering threshold =meanðRo=eÞ � 1s:dðRo=eÞ ð1Þ

We identified cell states as rare within an organ if the tumor-
derived Ro/e values for those cell states within that organ did not
exceed the filtering threshold. This prevented the deconvolution of
rare cell states that are not relevant to the survival analyses of specific
organs.

Network construction with cell states
We constructed an undirected network with cell states to visualize
their co-occurrence patterns. When constructing each tissue network,
we utilized cell states that are identified in the corresponding tissue
origin (e.g., WNT5A+ inflammatory fibroblast in tumor network only).
After calculating the co-occurrence of cell states, the adjacencymatrix
was calculated with the WGCNA package (v.1.71)72. The adjacency
values of the cell state pair with a p value greater than 0.05 were set to
0 to minimize spurious effects. Then, the adjacency matrix was
imported into gephi (v.0.10.1) to construct a connected network78. We
conducted community detection with default parameters, colored the
nodes with modularity class, and enlarged the nodes with the average
weighted degree. We selected ForceAtlas2 for graph embedding.

Collection and processing of immunotherapy cohorts’
transcriptome data
We collected bulk transcriptome of immunotherapy-treated cohorts
(4 cancer types, 8 cohorts). Transcriptomic data of the LC cohort was
generated by Samsung Medical Center (our LC cohort, n = 497; See
Our immunotherapy-treated lung cancer cohort). For MEL cohorts,
Van Allen et al. (n = 75)79, Gide et al. (n = 73)80, Riaz et al., (n = 46)81, and
Hugo et al. (n = 25)82 cohorts were gathered. Along with the BLCA
cohort by Mariathasan et al. (n = 347)83, RCC cohorts including
McDermott et al. (n = 165)84 and Miao et al. (n = 33) were also
collected85. For all cohorts, the raw FASTQ files were obtained and
processed in a unified pipeline (Fig. 5D). First, the adapter sequences in
the FASTQ file were trimmed out by Trimmomatic (v.0.39)86. To filter
out rRNA, SortMeRNA (v.2.1b) was used87. The filtered reads were
aligned to the hg38 reference genome by the STAR aligner (v.2.7.6a) in
two-pass basic mode with gencode annotation (v.35)88,89. The aligned
reads were then sorted by samtools (v.1.7) and the read counts were
calculated by HTSeq (v.0.12.4)90,91. To quantify gene expression, the
read counts were normalized in the TPM value.
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Analysis of immunotherapy cohorts
ssGSEA with gseapy (v.0.10.8) was performed to score cell state
per sample and the normalized enrichment score was used in the
analysis92. For our pan-cancer analysis, only samples with both
response and survival data were included; patients who had
durable clinical benefits (complete response, partial response,
stable disease with PFS > 6 months or OS > 1 year) were classified
as responders, and others as non-responders. We then conducted
a meta-analysis to identify the associations between the clinical
response to immunotherapy and cell states in multiple cohorts.
First, the scaled signature score was fitted to the clinical response
with logistic regression for each cohort. The calculated estimates
and standard errors were then pooled across cohorts using the
metagen function in the meta package93. Finally, considering the
heterogeneity between studies, the random effect model was
established to estimate the effect of the cell states. From the
random effect model, the overall estimate, standard error, and p-
values were obtained.

Pan-cancer spatial transcriptome analysis
Spatial transcriptome analysis of 137 cancer datasets across 11
cancer types was performed with cell2location94 using default
parameters to quantify the spatial distribution of cell types
(Fig. 6A). For each spatial transcriptome cancer type, we
employed the respective cancer scRNA-seq datasets from our
pan-cancer single-cell atlas as a reference. Then, we employed
spot-wise Pearson correlation with an estimated abundance of
cell types to quantify spatial colocalization patterns, analogous to
previous studies95,96. A high positive Pearson correlation indicated
that two cell types exhibited similar spatial distributions, while a
negative Pearson correlation suggested distinct spatial distribu-
tions between the two cell types.

Construction of TLS gene signature and identification of TLS-
enriched cell types
To create a TLS signature and pinpoint cell types enriched in TLS
using the RCC spatial transcriptome data with information of
pathologically defined TLS spots50. A pseudo-bulk matrix was
compiled for both TLS and non-TLS spots in each sample, and
subsequent differential expression analysis was performed with
PyDESeq2 (v.0.4.3)97. From genes exhibiting an adjusted p < 0.01,
we selected the top 50 genes with the highest log2 fold-change
values (Supplementary Data 7). Enrichment of TLS gene signature
was quantified with the sc.tl.score function of the Scanpy package
for each spot, enabling the identification of spots enriched with
the TLS signature in spatial transcriptome tissues65. To identify
TLS-enriched cell types, we compared cell abundances between
TLS and non-TLS spots with the Wilcoxon signed-rank test
(Python packages scipy.stats v.1.10.0) and characterized cell types
that are enriched in TLS (Fig. 6B).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The scRNA-seq and spatial transcriptome datasets analyzed in this
study are provided in Supplementary Data 1, 3, and 5, along with their
accession codes and links. The processed scRNA-seq and spatial
transcriptome data are available at Zenodo repository (DOI:10.5281/
zenodo.10651059)98. Processed immunotherapy-treated lung cancer
cohort data generated in this study have been deposited in the Gene
ExpressionOmnibus repositoryunder accession codeGSE218989. Raw
sequencing data of the immunotherapy-treated lung cancer cohort
have beendeposited in the EuropeanGenome-phenomeArchive (EGA)

under controlled access with accession number EGAD50000000469.
Data requests for academicor intellectualpurposeswill be reviewedby
the data access committee, and are expected to be respondedwithin 4
weeks. Our dataset can be interactively visualized at https://cellatlas.
kaist.ac.kr/ecosystem/. Source data are provided with this paper.

Code availability
The codes used for data analysis are available from the Zenodo repo-
sitory (https://doi.org/10.5281/zenodo.10651059)98.
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