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A time-resolved multi-omics atlas of
transcriptional regulation in response to
high-altitude hypoxia across whole-body
tissues

Ze Yan1,2,4, Ji Yang1,2,4, Wen-Tian Wei1,2, Ming-Liang Zhou3, Dong-Xin Mo1,2,
Xing Wan1,2, Rui Ma1,2, Mei-Ming Wu1,2, Jia-Hui Huang1,2, Ya-Jing Liu1,2,
Feng-Hua Lv 1,2 & Meng-Hua Li 1,2

High-altitude hypoxia acclimatization requires whole-body physiological reg-
ulation in highland immigrants, but the underlying geneticmechanismhas not
been clarified. Here we use sheep as an animal model for low-to-high altitude
translocation. We generate multi-omics data including whole-genome
sequences, time-resolved bulk RNA-Seq, ATAC-Seq and single-cell RNA-Seq
from multiple tissues as well as phenotypic data from 20 bio-indicators. We
characterize transcriptional changes of all genes in each tissue, and examine
multi-tissue temporal dynamics and transcriptional interactions among genes.
Particularly, we identify critical functional genes regulating the short response
to hypoxia in each tissue (e.g., PARG in the cerebellum and HMOX1 in the
colon). We further identify TAD-constrained cis-regulatory elements, which
suppress the transcriptional activity of most genes under hypoxia. Phenotypic
and transcriptional evidence indicate that antenatal hypoxia could improve
hypoxia tolerance in offspring. Furthermore, we provide time-series expres-
sion data of candidate genes associated with human mountain sickness (e.g.,
BMPR2) and high-altitude adaptation (e.g.,HIF1A). Our study provides valuable
resources and insights for future hypoxia-related studies in mammals.

Hypoxia is a severe challenge to an organism’s homeostatic equili-
brium, affecting the physiological and pathological processes of
organisms at high altitude1,2. The geneticmechanisms underlying long-
term hypoxia adaptation have revealed positively selected genes and
non-coding variants associated with cardiovascular, respiratory, and
metabolic traits in highland human and other vertebrates3–6, such as
EPAS1 and EGLN genes (e.g., EGLN1, EGLN2 and EGLN3) in the hypoxia-
inducible factor (HIF)-prolyl hydroxylase domain (PHD)-Von Hippel-
Lindau (VHL) pathway7. However, in human and animals inhabiting
lowlands, visible physiological adjustments in response to hypoxia

(e.g., acute increase in ventilation) occur during short-term acclimati-
zation aftermoving to ahigh altitude8,whosemechanismshavenot yet
been elucidated. Both short-term acclimatization and long-term
adaptation have a genetic background, thus they are genetically
linked to each other9. For instance, differentially expressed genes
(DEGs) identified during short-term acclimatization may have corre-
sponding single-nucleotide polymorphisms (SNPs) or structural var-
iants (SVs) between high-altitude and low-altitude populations during
long-term adaptation10. Common signaling pathways may be enriched
during short-term response and long-term adaptation to hypoxia11. In
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the case of maladaptation, hypoxia can lead to high-altitude diseases,
such as polycythemia, pulmonary hypertension, and heart failure in
immigrants from lowland areas and chronicmountain sickness in high-
altitude inhabitants12–14. Hypoxia also induces serious sickness in live-
stock transported to high-altitude areas, such as pulmonary hyper-
tension in sheep15 and brisket disease in cattle16.

Sheep (Ovis aries) are an excellent model for studying hypoxia
adaptation and acclimatization since they have adapted to a variety of
environments (e.g., lowland and highland) around the world17,18.
Compared with other large animals, such as non-human primates,
dogs, pigs and horses, sheep are an applicable animal model for bio-
medical research in terms of cost-effectiveness and ethical isssues19,20.
For example, sheepmodels have beenwidely used for studying human
cardiopulmonary, respiratory, neurological, immunological, and
reproductive diseases21–25 and for fetal-neonatal development and
pathologies26. Additionally, Dolly the sheep was the first animal to ever
be successfully cloned fromcultured somatic cells27,making it possible
to use the somatic cell nuclear transfer (SCNT) technique for both
biomedical and agricultural applications of sheep28.

In this study, we performed a low-to-high altitude translocation
experiment in sheep (Fig. 1a) and generated multiple layers of data
(Fig. 1b), including whole genome sequences (WGS), whole-body
transcriptomes, chromatin accessibility (i.e., ATAC-Seq) and single-cell
RNA-Seq (scRNA-Seq) data, and blood physiological and biochemical
phenotypes. We aimed to (1) identify time-series expression changes
and regulatory elements in response to short-term hypoxia across
tissues; (2) reveal multi-tissue expression patterns of genes implicated
in high-altitude adaptation and diseases in human; and (3) test the
acclimatization of offspring to hypoxia. This research promotes our
understanding of themechanisms conferring resilience to hypoxia and
provides valuable resources for future studies of hypoxia-related dis-
eases in human and livestock.

Results
Low-to-high altitude translocation experiment
Hu sheep andTibetan sheep, two representativeChinesenative breeds
that originally inhabited low-altitude plain (Zhejiang Province, China)
and the high-altitude Qinghai-Tibet Plateau (QTP), respectively, were
included in the experiment. Tibetan sheep initially spread to the QTP
from northern China along with the colonization of nomads
~3100 years ago and have become well adapted to the high-altitude
environment29. Therewere three different scenarios in our experiment
(Fig. 1a): (i) scenario 1, low- altitude Hu sheep (i.e., Hu sheep ewes from
low altitude, n = 10) raised in Neijiang (~350m.a.s.l, the southeast of
Sichuan Province, “0 d” hereafter); (ii) scenario 2, high- altitude Hu
sheep (n = 43: ewes, n = 40; rams, n = 3) that were translocated from
the low altitude to Aba Autonomous Prefecture (~3500m.a.s.l, eastern
edge of the QTP in Sichuan Province) and acclimatized for four dif-
ferent time periods after translocation (i.e., 7 days, 14 days, 21 days and
~8 months, “7 d, 14 d, 21 d, 8 mon” hereafter); and (iii) scenario 3,
Tibetan sheep (i.e., Tibetan sheep ewes at high altitude; n = 10) raised
in Aba. In addition, offspring (n = 18) of the ewes under the above three
scenarios (six lambs for each scenario) were included in our
experiment.

Data summary
To comprehensively study transcriptomic, epigenomic and pheno-
typic changes in sheep acclimatization from the low altitude to the
high altitude, we collectedmultiple tissues from experimental animals
to perform high-throughput sequencing (Fig. 1b). We produced 49
WGS from heart tissue and 1277 RNA-Seq datasets from 19 major tis-
sues (Supplementary Data 1 and 2). We then uniformly processed the
data, yielding ~24 billion uniquely mapped paired-end reads with an
average mapping rate of 97.92% (95.89 – 98.31%) for theWGS datasets
(Supplementary Data 3) and ~23 billion reads with an averagemapping

rate of 84.3% (61.05 – 91.37%) for the RNA-Seq datasets (Supplemen-
tary Data 4).We also generated 66 chromatin accessibility datasets for
eight tissues (i.e., heart, artery, lung, liver, hypothalamus, rumen,
duodenum, and adipose) by ATAC-Seq, and produced six high-
resolution scRNA-Seq datasets for lung tissue (i.e., for low-altitude
Hu sheep, high-altitude Hu sheep at four acclimatization time points
and Tibetan sheep) (Supplementary Data 1 and 2). After raw data
processing, we obtained ~4.5 billion informative reads with an average
unique mapping rate of 98.63% (84.57 – 99.27%) for ATAC-Seq (Sup-
plementary Data 5) and ~ 4.0 billion reads with a confident mapping
rate of 79.71% (52.70 – 95.40%) for scRNA-Seq (Supplementary Data 6).

To evaluate physiological acclimatization under high-altitude
hypoxia, we collected phenotypic data for 20 blood parameters,
including blood oxygen saturation (SpO2) and 19 bio-indicators (e.g.,
erythropoietin, nitric oxide, and cardiac enzymes) (Supplementary
Data 7 and 8). We also included 37 whole-genome sequences30 and
high-throughput chromosome conformation capture (Hi-C) data from
a sheep that were previously published31 for the integrated analysis
(Fig. 1c and Supplementary Data 9 and 10).

Phenotypic and transcriptional characteristics
Previous evidence from several vertebrate taxa suggested that phy-
siological adjustments have played a significant role in high-altitude
hypoxia tolerance and could well represent environment-induced
physiological changes3,32. We examined 10 Hu sheep ewes before (i.e.,
0 d) and after their translocation to the QTP at four time points (i.e., 7
d, 14 d, 21 d and ~8mon) to track the changes in SpO2 and other blood
indicators. We observed that the mean value of SpO2 decreased shar-
ply (0 d vs. 7 d, 0 d: 97.3, 95% confidence interval: 96.68 − 97.92; 7 d:
82.5, 95% confidence interval: 81.87 – 83.15; Wilcoxon rank sum test,
P = 7.50 × 10−13) at 7 d but increased constantly at 14 d and later with
acclimatization (Fig. 2a and Supplementary Data 11). However, com-
pared to Tibetan sheep, Hu sheep still exhibited significantly lower
levels of SpO2 (Hu sheep: 87, 95% confidence interval: 96.68 − 97.92;
Tibetan sheep: 92.65, 95% confidence interval: 91.68– 93.62; Wilcoxon
rank sum test, P = 1.40 × 10−9) even after 8 months (Fig. 2a and Sup-
plementary Data 11), probably reflecting potentially different
mechanisms underlying phenotypic plasticity and genetic adaptation
to high-altitude hypoxia in mammals3. In addition to SpO2, we
observed distinct patterns of the other bioindicators in the translo-
cated Hu sheep (Supplementary Fig. 1). For example, nitric oxide
synthetase (NOS), which restricts the synthesis of the vasodilator NO,
decreased after translocation and showed significantly lower average
values than in Tibetan sheep (Hu sheep: 5.43 µmol/L, 95% confidence
interval: 6.69 – 7.41; Tibetan sheep: 6.40 µmol/L, 95% confidence
interval: 5.88 – 6.92; Wilcoxon rank sum test, P =0.013) (Fig. 2b and
Supplementary Data 11), verifying that down-regulated NO synthesis
contributes to hypoxic pulmonary vasoconstriction32–34. In general, the
levels of triglycerides (TG) and glucose (GLU), which are associated
with energy metabolism, increased over time (Supplementary Fig. 1
and Supplementary Data 11), suggesting enhanced energy production
in response to hypoxia. The change in total bilirubin (T-BIL), an indi-
cator that is positively correlated with liver damage, followed a bell
curve (Supplementary Fig. 1 and Supplementary Data 11), implying
that liver impairment was gradually relieved during acclimatization.
Cardiac enzymes (CK) showed non-significant changes among the
four-time points examined during acclimatization (P > 0.05) but pre-
sented significantly lower averages than in Tibetan sheep (Hu sheep:
58.96U/L, 95% confidence interval: 48.64 – 75.56; Tibetan sheep:
146.7 U/L, 95% confidence interval: 69.15 − 224.25; Wilcoxon rank sum
test, P =0.0087) (Fig. 2c and Supplementary Data 11), indicating non-
activation during short-term hypoxia.

To characterize the global expression patterns of whole-body
tissues, we first applied t-distributed stochastic neighbour embedding
(t-SNE) analysis based on the gene expression profiles of samples. The
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Fig. 1 | Schematic diagram of the study. a Design of the animal translocation
experiment. Hu sheep (gray) and Tibetan sheep (black) originally inhabited low-
altitude and high-altitude environments, respectively. There were three scenarios
examined inour experiment: low-altitudeHu sheep raised in the lowlands (scenario
1); high-altitude Hu sheep, namely low-altitude Hu sheep that were translocated to
the highlands (scenario 2) and acclimatized until four time points; and Tibetan

sheep raised in highlands (scenario 3). In addition, offspring of the ewes in the
above three scenarios were included. b Sample collection and data generation. We
collected 19 whole-body tissues and produced phenotypic, genomic (WGS), tran-
scriptomic (bulk-RNA, single-cell RNA), and epigenetic (ATAC-Seq) data. Tissue
marked in red (i.e., heart)wasused for generatingWGSdata.cMajor bioinformatics
and statistical analysis involved in the study.
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resultant sample clustering recapitulated the different tissues accu-
rately (Fig. 2d), consistent with the hierarchical clustering of expres-
sion profiles (Supplementary Fig. 2a–d). The functions of the genes
with tissue-specific expression reflected known tissue biology (Sup-
plementary Data 12). Next, we explored the effect of hypoxia on gene
expression within tissues over time. We only observed a particular
pattern of gene expression in the abomasum, which showed an
obvious separation of samples before and after 14 d (Supplementary
Fig. 3). In particular, GKN2, an abomasum-specific gene that is asso-
ciated with oxidative stress-induced gastric cancer cell apoptosis35,36,
showed increased expression with time (Supplementary Fig. 4).

Furthermore, we investigated associations between blood gene
expression and bio-indicators using weighted correlation network
analysis (WGCNA). Among 13,707 genes remaining after filtration, we

determined 14 genemodules (in M1-M14) labeled with different colors
(Supplementary Fig. 5a, b), and 10 gene modules were significantly
correlated (FDR <0.05) with one or more bio-indicators (Fig. 2e, Sup-
plementary Fig. 5c and Supplementary Data 13). In particular, we
observed that M3 was significantly positively associated with ery-
thropoietin (EPO), nitric oxide synthetase (NOS), glutathione perox-
idase (GSH-Px) and alkaline phosphatase (ALP). The results of Gene
Ontology (GO) enrichment among the genes in M3 were congruent
with their associated bio-indicators (Fig. 2f). For example, EPO is
involved in the regulation of hemopoiesis (e.g., EGR3, HOX5 and FOS),
NOS is associatedwith blood vessel development (e.g.,NR4A1, JUN and
RHOB), and GSH-Px is related to the response to reactive oxygen
species (e.g., NR4A3, PLK3 and TNFAIP3). Protein-protein interaction
analysis also showed that genes (e.g., JUN, FOS and NR4A1) related to
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Fig. 2 | Characteristics of phenotype and gene expression. a Changes in blood
oxygen saturation [SpO2, average value with 95% confidence interval (CI)] with
acclimatization time. Hu sheep (n = 10): 0 d, 97.30 (CI: 96.68 − 97.92); 7 d, 82.51 (CI:
81.87 − 83.15); 14 d, 83.67 (CI: 82.68 − 84.66); 21 d, 85.38 (CI: 84.24 − 86.52); 8 mon,
87.0 (CI: 86.03 − 87.97); and Tibetan sheep (n = 10): 92.65 (CI: 91.68 − 93.62).
Boxplots are represented by minima, 25% quantile, median, 75% quantile, and
maxima with data points. b, c Changes in the nitric oxide synthetase (NOS) (b) and
cardiac enzyme (CK) (c) values (averagevaluewith 95%CI) over time. Inb, Hu sheep
(n = 10): 0 d, 7.05 µmol/L (CI: 6.69 − 7.41); 7 d, 5.71 µmol/L (CI: 5.17 − 6.25); 14 d,
5.23 µmol/L (CI: 5.03 − 5.43); 21 d, 5.78 µmol/L (CI: 5.33 − 6.23); 8 mon, 5.43 µmol/L
(CI: 5.07 − 5.79); and Tibetan sheep (n = 10), 6.40 µmol/L (CI: 5.88 − 6.92). In c, Hu
sheep (n = 10): 0 d, 62.1 U/L (CI: 48.64 − 75.56); 7 d, 60.0U/L (CI: 40.45− 79.55); 14 d,

64.2 U/L (CI: 56.87 − 71.53); 21 d, 55.2 U/L (CI: 44.64 − 65.76); 8 mon, 53.3 U/L (CI:
44.91 − 61.69); and Tibetan sheep (n = 10), 146.7 U/L (CI: 69.15 − 224.25). P values in
the figures a–c come from the two-sided Wilcoxon rank sum test. d t-distributed
stochastic neighbor embedding (t-SNE) clustering of 1277 RNA-Seq samples.
e Association between gene modules and bio-indicators in blood. The rows
represent the 14 gene modules (i.e., M1-M14), and the columns show 19 bio-
indicators. Multiple testing was corrected using the Benjamini-Hochberg method.
* FDR <0.05. fGene Ontology (GO) analysis forM3. gGene examples inM3. Scatter
plots showthe Pearson’s correlationbetween the expression levelsof genes and the
values of bio-indicators over time. The two-sided P values are calculated by the
linear regression model. Source Data are provided as Source Data file.
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the above GO terms were at the center of the regulatory network
within the genes in M3 (Supplementary Fig. 5d). Furthermore, we
explored the changes between gene expression and bio-indicators
over time (Supplementary Fig. 6). The overall expression levels of
NR4A1 and EGR3 (from gene module M3 in Fig. 2e) were significantly
and positively correlated with NOS (Pearson’s r = 0.55, P = 3.44 × 10−5)
(Fig. 2g) and with EPO (Pearson’s r =0.38, P =0.0072) (Fig. 2g),
respectively. NR4A1 showed higher expression and higher NOS values
at 0 d (i.e., normoxia) (Supplementary Fig. 5e). A similar expression
trend was also observed for EGR3 (Supplementary Fig. 5f).

Temporal transcriptome dynamic and multi-tissue interaction
Toexplore the transcriptional changes duringhypoxia acclimatization,
we identified differentially expressed genes (DEGs) between five
adjacent time points across tissues. Overall, we observed large varia-
tions in transcriptional regulation between and within tissues in terms
of the number of DEGs, particularly between 0 d and 7 d (Fig. 3a). We
identified the most active tissues (i.e., tissues with the top 3 counts of
DEGs) in each comparison. Certain tissues (e.g., kidney, colon, adipose
and cerebellum) showed activation in the comparisons of multiple or,
particularly, adjacent time points (Fig. 3a). We performed power
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analyzes to test the credibility of differential expression analyzes in
comparisonof “0dvs. 7 d” in cerebellumand “7d vs. 14 d” in colon. The
results showed that FDR of the actual detection of DEGs was less than
0.05 when we used the same thresholds (i.e., |log2FC | > 0.75) for
simulateddata and actual data (SupplementaryFig. 7), indicating that a
large number of DEGs identified in the active tissues are reliable and
not technical artifact. For example, kidney showed activation in all four
comparisons of adjacent time points, indicating that kidney functions
concerning ATP production and stress hormone secretion were
important for the hypoxia response37,38. Colon showed activation in
both the “7 d vs. 14 d” and “14 d vs. 21 d” comparisons, implying that
hypoxia strongly affects intestinal homeostasis39 during acclimatiza-
tion. We also found that the cerebellum only showed activation in “0 d
vs. 7 d”, which suggested that hypoxia severely affects the cerebellum
first, before the other examined tissues. These observations demon-
strated that certain organs or tissues, such as kidney, colon, adipose,
and cerebellum, that were actively involved in rapid hypoxia acclima-
tization had main functions (e.g., energy metabolism, endocrine, and
nervous system functions) that differed from those of tissues (e.g.,
heart and lung) involved in long-term hypoxia adaptation, such as
cardiovascular and respiratory functions.

To further dissect themagnitude of transcriptional change during
hypoxia acclimatization, we also identifiedDEGs across tissues in high-
altitude Hu sheep at four-time points (7 d, 14 d, 21 d, and 8 mon) in
comparisonwith low-altitude Hu sheep (0 d) (SupplementaryData 14).
Similar to the adjacent time comparison, we detected a large number
of DEGs in cerebellum in all comparisons and in colon from “0 d vs. 14
d” comparison (Supplementary Fig. 8). Power analyzes evaluated false
discovery rate (FDR) of the identified DEGs in the above tissues and
found the FDR values were less than 0.05, which support high cred-
ibility and exclude technical artifacts in these DEG detection (Supple-
mentary Figs. 9 and 10).

Next, we examined the distribution of DEGs across tissues for
eachcomparisonbetween adjacent timepoints.Mostof theDEGswere
assigned to particular tissues, while a small number of DEGs showed a
ubiquitous distribution (Fig. 3b and Supplementary Data. 11). We then
identified tissue-shared (i.e., in at least five tissues) and tissue-specific
DEGs (i.e., in only one tissue) for each comparison (Fig. 3c, d and
Supplementary Data 15 and 16). In the comparison of “0 d vs. 7 d”, the
functional enrichment of tissue-shared DEGs showed the involvement
of the genes in multiple biological processes (Supplementary Data 17),
such as skeletal muscle cell differentiation (e.g., BTG2, ATF3, and
NR4A1), response to hypoxia (e.g., NR4A2, EGR1, and CPEB2) and the
response to corticosteroids (e.g., NR4A3, IGF1R, and FOS) (Fig. 3e).
However, tissue-shared DEGs from the other three comparisons
mostly participated in energy metabolism, such as mitochondrial
organization (e.g., NDUFAF8, ROMO1, and UQCC2) and ATP metabolic
processes (e.g., ND1, COX2 and ATP5PF) (Supplementary Data 17).
These results implied that the initial hypoxic stimulus (e.g., the first 7 d
after translocation to QTP) resulted in collective responses of multiple
life systems4. Additionally, the functions of tissue-specific DEGs
reflected the respective tissue biology and hypoxia response (Sup-
plementary Data 17). For instance, in the comparison of “0 d vs. 7 d”,
cerebellum-specific DEGswere associatedwith synaptic signaling (e.g.,
NTNG1, TNF, and GABBR2) and regulation of the cellular response to
stress (HIF1A, ATF4, and PARG), while colon-specific DEGs were
involved in cellular metal ion homeostasis (e.g., HMOX1, TRPM8, and
CXCR5) and the regulation of angiogenesis (e.g., ISL1, THBS4, and
ADGRB2) (Fig. 3f). Taken together, the findings indicated that hypoxia
acclimatization could have activated both hypoxia response processes
in multiple tissues and the functions of specific tissues, which were
collectively regulated by polygenic (i.e., tissue-specific DEGs) and
pleiotropic (i.e., tissue-shared DEGs) genes40.

Previous evidence suggests that the maintenance of systemic
homeostasis and responses to environmental challenges typically

requires transcriptional interactions among multiple organs and
tissues41,42. To identify transcriptional interactions underlying hypoxia
acclimatization, we used the k-means method to analyze multi-tissue
interactions based on log2FC (log2-transformed fold change) values in
the above differential expression analysis and obtained 5 – 7 clusters in
different comparisons (Supplementary Fig. 12a–d). Overall, in the
comparison of “0 d and 7 d”, gene cluster 5 (e.g., NOTCH1) showed the
greatest increase in expression in the cerebellum but decreased
expression in kidney and adipose at 7 d compared to 0 d (Fig. 3g and
Supplementary Fig. 12e). Notably, we observed possible interactions
among themost active tissues, such as cerebellum, kidney and adipose
in the “0 d vs. 7 d” comparison (Fig. 3a) and colon in the “7 d vs. 14 d”
and “14 d vs. 21 d” comparisons (Supplementary Fig. 12b, c). These
findings implied the action of potential transcriptional networks
among particular tissues at different time points during
acclimatization.

High sensitivity of cerebellum in response to hypoxia
To explore the expression patterns within tissues across time points,
we conducted a time-series differential expression analysis to identify
dynamically changed genes (DCGs) (i.e., genes with significant
expression changes throughout the acclimatization process). Since
genes with similar expression patterns could be involved in the same
biological process43,44, we further classified DCGs into different gene
clusters based on their expression patterns with the c-meansmethod45

(SupplementaryData 18). The numbers of ourDCGs indifferent tissues
ranged from 68 (cerebrum) to 10,459 (cerebellum) (Fig. 3h) and were
categorized into 2 – 6 clusters across tissues (Supplementary Fig. 13).
In most tissues, the changes in the expression of DCGs over time
reflected similar patterns of the temporal transcriptional changes
described above (Fig. 3a and Supplementary Fig. 13). For example,
DCGs in the cerebellum were categorized into four clusters (Fig. 3i),
and the overall expression patterns of these clusters varied greatly at 7
d. This observation was consistent with the large transcriptional
changes in the cerebellum in the “0 d vs. 7 d” comparison (Fig. 3a).
Furthermore, the DCGs in each cluster from the cerebellum exhibited
distinct biological functions (Fig. 3j). Specifically, the functions of the
DCGs in cluster 1 were associated with energy metabolism (e.g.,
aerobic respiration and ATP metabolic process), while in cluster 3, the
gene functions were related to brain biology (e.g., neuron projection
morphogenesis and brain development) (Fig. 3j). These results
revealed adjustments in energy metabolism and the biological func-
tion of the cerebellum in response to hypoxic challenge.

Hypoxia-adaptive genes in adaptation and acclimatization
The evolution of gene expression and regulation is a major source of
phenotypic diversity46–48. To explore the roles of hypoxia-adaptive
genes in long-term adaptation and short-term acclimatization, we
integrated gene expression data with genome sequencing data to
perform a joint analysis. We first calculated pairwise FST values
between 37 genomes of 7 sheep breeds originating from the low alti-
tude (n = 20) and high altitude (n = 17) regions and chose the top 5% of
the FST distribution as candidate selected regions (Supplementary
Fig. 14a and Supplementary Data 19). The functional annotation of
putatively selected genes (i.e., FST genes) from the candidate regions
revealed their high relevance to high-altitude adaptation (Supple-
mentary Fig. 14b and Supplementary Data 20). We detected DEGs
between low-altitudeHu sheep andTibetansheep ineachof the tissues
(Supplementary Data 21). For each tissue, we intersected FST genes
with inter-breed DEGs and DCGs separately. We examined the dis-
tribution of two categories of intersected genes (i.e., FST genes in DEGs
and FST genes in DCGs) across tissues (Fig. 4a, Supplementary Data 22
and Supplementary Fig. 15). We identified 52 multi-tissue FST genes
(i.e., FST genes in at least five tissues) in DEGs and 179 multi-tissue FST
genes in DCGs (Supplementary Data 22 and 23), including 13 common
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genes (i.e., APOLD1, NDUFB9, ERBB4, NFKBIZ, NR4A3, RPS8, CIAO2A,
AHCYL2, ESRRG, KIAA0930, RASGEF1B,MRPS25 and TNFRSF21) (Fig. 4c
and Supplementary Data 24). The 13 common genes are significantly
greater than expected by chance (permutation test, P < 0.001)
(Fig. 4c). The results indicated that these 13 FST genes could have
played an important role in hypoxia adaptation and acclimatization by
regulating the expression of multiple tissues. Furthermore, we exam-
ined changes in the expression levels of these genes across sheep
tissues (Fig. 4d and Supplementary Fig. 16) and investigated their
functions in the humanGWAS atlas database (Supplementary Data 25).
We found that the human trait/disorder associations (e.g., hypoxia-
related traits) of these genes were largely consistent with dynamic
expression changes in analogous sheep tissues. For instance, APOLD1,
which was significantly (P <0.05) associated with cardiovascular (e.g.,
high blood pressure), respiratory (e.g., asthma) and hematological
(e.g., hemoglobin) traits (Fig. 4e and Supplementary Data 25), showed
significant expression changes in the heart, lung and kidney (Fig. 4d).
Likewise, NR4A3 was significantly (P <0.05) associated with metabolic
(e.g., fat-free mass), nervous/neurological (e.g., neuroticism and
insomnia) and cardiovascular (e.g., resting heart rate) traits (Fig. 4e
and Supplementary Data 25) and was dynamically expressed in adi-
pose, cerebellum, heart and artery (Fig. 4d). These results suggested
that the 13 identified tissue-shared hypoxia-adaptive genes could reg-
ulate hypoxia-related traits by controlling expression in different tis-
sues in both genetic adaptation and short-term acclimatization.

Additionally, we conducted permutation test to examine whether
the overlaps between FST genes and all DEGs within Hu sheep from 19
tissues were significantly higher than that expected at random. The
result showed that 1770 overlapped genes between long-term adap-
tation (i.e., 2648 FST genes) and short-term acclimatization (i.e., 13,891
DEGs) is significantly higher than that expected at random (i.e., 1234
genes, P <0.001) (Supplementary Fig. 15), implying that long-term
selection may favor individuals with SNPs that correspond to DEGs
during short-term acclimatization.

Chromatin accessibility across tissues under hypoxia
To identify regulatory elements related to dynamic expression, we
applied ATAC-Seq to detect genomic chromatin accessibility across
eight important tissues (i.e., hypothalamus, rumen, heart, lung, liver,
duodenum, spleen and adipose) under the three scenarios described
above. We obtained a total of 1,662,152 statistically significant peaks
(P < 0.01) (Supplementary Fig. 17a), and the open chromatin regions in
the eight tissues were highly enriched at transcription start site (TSS)
(Fig. 5a). The distribution of peaks varied among tissues (Supplemen-
tary Fig. 17b), but in general, the highest proportion of peaks were
located in intergenic regions, followed by intronic region, while the
lowest proportion were located in 5′ UTRs (Supplementary Fig. 17c).
One exceptionwasadipose,whichshowed the largestnumber of peaks
in regions ≤ 1 kb frompromoters. TheATAC-Seq signals showed strong
correlations among biological replicates at the whole-genome level
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(Supplementary Fig. 17d) and were clustered by different tissues
instead of breeds and time points (Fig. 5b). Moreover, we observed a
strong positive correlation (Pearson’s r =0.66, P =0.076) between the
numbers of protein-coding genes (PCGs) and ATAC-Seq peaks across
tissues (Fig. 5c), which demonstrated that open chromatin regions
positively regulate transcriptional activity.

As hotspots for transcription factor (TF) activities, open chro-
matin landscapes have unique effects in driving the biological func-
tions of tissues49,50. We characterized tissue-specific and conserved
peaks across tissues. The results showed that peaks located in the
distal intergenic and intron regions are more tissue-specific, whereas
those in the promoter, exon, 3′ UTR, 5′ UTR and downstream regions
are more conserved (Supplementary Fig. 18a, b). We further identified
corresponding tissue-specific TFs (Supplementary Data 26), and TF
binding motifs (TFBMs) were significantly (P < 0.05) enriched in the
specific peaks of various tissues, such as the TFBMs ofMEF2D in heart,

HNF4A in liver and ETS1 in spleen (Supplementary Fig. 18c, d). We also
implemented differential expression analysis between pairwise com-
parisons of low-altitude Hu sheep, high-altitude Hu sheep after trans-
location to the QTP for 8 months, and Tibetan sheep for each tissue
and determined TFBMs in differentially accessible regions (DARs)
(Supplementary Data 27). We found that some tissue-specific TFBMs
were significantly (P < 0.05) enriched in DARs of corresponding tissues
(Fig. 5d). For example, the heart-specific TFBM of MEF2Dwas found in
DARs of heart tissue. The expression of MEF2D gradually increased
with time (Fig. 5d), suggesting the continuous activation of MEF2D
target genes in the heart, which is in line with the role ofMEF2D in the
regulation of cardiac muscle51.

Regulation of gene expression by cis-regulatory elements
To leverage the chromatin accessibility information captured by
integrating gene expression, we used a correlation-based method to
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predict cis-regulatory elements (CREs) and their target genes within
the same topologically associated domains (TADs), enabling the cap-
ture of all CREs (e.g., promoters and enhancers). We obtained 3032
TADs using previously published Hi-C data which was generated from
the blood of Tibetan sheep31. A total of 2,875,658 independent peak-
gene assignments were derived from all the TADs, and after filtration,
460,421 high-quality peak-gene pairs were retained for the following
analysis. Subsequently, we examined the functions of target genes for
the tissue-specific and conserved peaks. The target genes reflected
tissue specificity and tissue biological functions well (Supplementary
Data 28). For example, lung target genes were significantly (FDR <
0.05) associated with lung development (e.g., FOXF1, NKX2-1, and LIF)
and epithelial cell differentiation (e.g., HOXA7, TMOD1, and SOX17)
(Supplementary Fig. 18e). This observation indicated that CREs fre-
quently interact within TADs to regulate gene expression.

We further explored the role of CREs in the regulation of gene
expression during hypoxic acclimatization. We first performed differ-
ential expression analysis between pairwise comparisons of low-
altitude Hu sheep, high-altitude Hu sheep after translocation to the
QTP for 8 months, and Tibetan sheep based on the RNA-Seq data. For
each comparison, we annotated target genes linked to the DARs and
detected the common genes showing both up- or down-regulated
expression and changes in chromatin accessibility (Fig. 5e and Sup-
plementaryData 29).We identified a total of 19,151 commonpeak-gene
pairs between groups (i.e., low-altitude Hu sheep vs. high-altitude Hu
sheep, low-altitude Hu sheep vs. Tibetan sheep and high-altitude Hu
sheep vs. Tibetan sheep) across tissues, including 364 up-regulated
and 18,787 down-regulated genes (Fig. 5f). We found that the common
genes identified from the comparison of low-altitude Hu sheep vs.
high-altitude Hu sheep were related to hypoxia adaptation. For
example, down-regulated common genes in high-altitude Hu sheep
were significantly (FDR <0.05) enriched in the response to hypoxia
and regulation of hemopoiesis in the liver (Fig. 5g and Supplementary
Data 30). In particular, PPARG, whose expression was down-regulated
due to less accessible chromatin (Fig. 5h), is relevant to the regulation
of cardiovascular circadian rhythms52. Additionally, LIMD1, whose
functions are associated with the regulation of hippo signaling53 and
the response to hypoxia54, was up-regulated in the hypothalamus in
high-altitude Hu sheep due to open accessibility (Fig. 5h). Therefore,
the expression of the aforementioned common genes was regulated
(i.e., up- or down-regulated) by chromatin accessibility and further
affected hypoxia acclimatization.

Acclimatization to high altitude in offspring
To explore the acclimatization to high altitude in offspring, we
examined the values of SpO2, gene expression, and chromatin acces-
sibility in lambs and ewes of the three sheep groups (i.e., low-altitude
Hu, high-altitude Hu, and Tibetan sheep). Strikingly, the high-altitude
Hu lambs showed no significant difference in the mean value of SpO2

measures from Tibetan lambs (high-altitude Hu lamb: 85.92, 95%
confidence intervals: 83.81 − 88.03; and Tibetan lamb: 87.7, 95% con-
fidence intervals: 85.87 − 89.55; Wilcoxon rank sum test, P =0.16)
(Fig. 6a). We performed differential expression analysis between
pairwise comparisons of the three lamb groups and focused on the
DEGs from the comparisons of high-altitude Hu lambs vs. low-altitude
Hu lambs and Tibetan lambs vs. low-altitude Hu lambs (Fig. 6b). Based
on comparison with low-altitude Hu lambs, we found that the DEGs
detected in high-altitude Hu lambs and Tibetan lambs were sig-
nificantly (FDR <0.05) enriched in many common GO terms, such as
extracellular matrix organization in kidney, localization within mem-
branes in cerebrum and the cellular response to angiotensin in artery
(Fig. 6c and Supplementary Data 31). Some of these GO terms (e.g.,
extracellular matrix organization and localization within membrane)
were directly activated by hypoxia55, suggesting that high-altitude Hu
lambs and Tibetan lambs may share similar hypoxia-responsive

biological processes. Additionally, we noticed that several hypoxia
response processes were only identified in the comparison of high-
altitude Hu lambs vs. low-altitude Hu lambs, including the response to
hypoxia in the lung and response to decreased oxygen levels in the
artery and lung (Fig. 6d).

We further examined the expression profiles of the important
functional genesCAT andUCP3 in response to hypoxia in lung,NPPC in
response to decreased oxygen levels and HBB in blood circulation in
artery. The expression patterns of the genes were similar to the pat-
terns of SpO2 alterations (Fig. 6e). Moreover, we identified common
genes showing both up- or down-regulated expression and changes in
chromatin accessibility between the lamb groups for each sampled
tissue (i.e., lung, heart and hypothalamus) (Supplementary Data 29).
For example, the expression of functional genes for high-altitude
adaptation, such as SIK1, OTOF, SOCS1 and JUN in heart and CXCL856–58

in lung, showed significant (P < 0.05) downregulation in high-altitude
Hu lambs compared to low-altitude Hu lambs. Overall, the results
indicated that high-altitude Hu lambs show developed adaptive char-
acteristics at birth according to the three above measures, presenting
similar values to Tibetan lambs but significant differences from those
of low-altitude Hu lambs. The hypoxia exposure of parents could
account for the improved oxygen regulatory ability in their offspring
under hypoxia stress.

Expression of human high-altitude adaptive and disease genes
We first examined the similarity of global expression patterns between
sheep and human. We retrieved publicly available RNA-Seq data from
the human Genotype-Tissue Expression (GTEx) consortium (v8) and
conducted comparative analysis using 17,279 one-to-one orthologous
genes in 14 common tissues (i.e., hypothalamus, pituitary, cerebellum,
ileum, colon, leukocyte, spleen, heart, muscle, artery, adipose, lung,
liver and kidney). The t-SNE-based expression clustering among sam-
ples clearly recapitulated tissues rather than species (Fig. 7a). Similar
results were observed in the hierarchical clustering of tissues based on
median gene expression (Fig. 7b).

We collected candidate genes associated with high-altitude
adaptation (e.g., Tibetan, Andean and Ethiopians) (Supplementary
Data 32) and mountain sickness (e.g., pulmonary hypertension, poly-
cythemia and heart failure) in human (Supplementary Data 33). We
calculated the expression correlations of the adaptive and disease-
related genes between sheep andhuman and found thatmost adaptive
genes (97.82%, 1160 out of 1207 genes) and disease-related genes
(97.43%, 580 out of 613 genes) were significantly correlated (Pearson’s
correlation, P <0.05) (Supplementary Data 34). Therefore, we used the
sheep time-series transcriptomic data to investigate the expression
changes in these genes with time across tissues (Supplementary
Figs. 19 and 20). For example, BMPR2 is a well-known gene associated
with pulmonary hypertension59,60, and its expression levels were highly
correlated (Pearson’s r =0.96, P = 7.21 × 10−8) between human and
sheep across tissues (Fig. 7c). The expression changes in BMPR2 in
critical tissues such as lung, artery, and heart showed distinct patterns
over time. Specifically, the expression level changed greatly at 7 d in
lung and at 21 d in artery and gradually increasedwith time in the heart
(Fig. 7c). Additionally, the expression levels of the high-altitude adap-
tive gene HIF1A displayed a high correlation (Pearson’s r = 0.86,
P = 8.45 × 10−5) between human and sheep (Fig. 7d). The expression of
this gene fluctuated with time in the lung but gradually increased with
time in heart and cerebellum (Fig. 7d). We noted that genes respon-
sible for similar traits or diseases showed similar time-series expres-
sion patterns in relevant tissues (SupplementaryData 35). For instance,
APOLD1 and KCNA5, which are associated with pulmonary hyperten-
sion, showed similar expression patterns to BMPR2 in lung, artery and
heart (Supplementary Data 35). The adaptive genes EPAS1 and VEGFA
exhibited similar expression patterns to HIF1A in the cerebellum and
kidney (Supplementary Fig. 20 and Supplementary Data 35).
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As the HIF and PHD genes are key regulators of high altitude
adaptation, we further examined the expression patterns of three HIF
genes (i.e., EPAS1, ARNT andHIF1A) and a PHD gene (i.e., EGLN2) in our
sheep model. We found consistently and significantly (Wilcoxon rank
sum test, P <0.05) up-regulated expression of HIF genes EPAS1, ARNT
and HIF1A and down-regulated expression of PHD gene EGLN2 in the
cerebellum in high-altitude Hu sheep (i.e., 7 d, 14 d, 21 d and 8mon) as

compared to low-altitude Hu sheep (Supplementary Fig. 21). The
expression of EPAS1, EGLN2 and ARNT across tissues in low-altitude Hu
sheep was significantly (P < 0.05) correlated with that in high-altitude
Hu sheep, and EPAS1 showed the highest correlation coefficient values
(Pearson’s r >0.97) (Supplementary Fig. 22). For individual tissues, the
expression of HIF genes EPAS1, ARNT and HIF1A in cerebellum showed
the maximum extent of expression changes across the four
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acclimatization time points when low-altitude Hu sheep were translo-
cated to high altitude (Supplementary Fig. 21a–c). We also observed
that the expression levels of HIF genes EPAS1, ARNT and HIF1A in cer-
ebellumwere significantly (Wilcoxon rank sum test, P <0.05) higher in
Tibetan sheep than those in low-altitude Hu sheep (Supplementary
Fig. 23). These results indicate that the expression patterns of HIF
genes in cerebellummay play an important role in the acclimatization
and adaptation to hypoxia.

Furthermore, we used lung scRNA-Seq data to dissect the parti-
cular cell types involved in high-altitude adaptation and diseases
(SupplementaryData 36 and 37).We examined the expression ofHIF1A
and BMPR2 across all cell types in lung tissues. We found high
expression levels of HIF1A in classical monocytes (CMs) and club cells
(CLU) andBMPR2 in vein endothelial cells (VECs) (Fig. 7e). Additionally,
we found that the time-series expression patterns of HIF1A and BMPR2
were similar to those obtained from bulk RNA in lung (Fig. 7f). Cell-cell
communication analysis showed that cell communication events
continuously increasedwith time, in which proliferating T cells (PTCs),
CMs and CLUs maintained high levels of communication. Moreover,
wepredicted that core transcription factors (TFs), such asNFKB1, RELB
and CEBPB, regulate HIF1A and BMPR2 (Fig. 7h). Notably, NFKB1, a
transcription regulator of HIF1A, can be activated by oxidant-free
radicals and ultraviolet irradiation61, which is functionally relevant to
high-altitude adaptation. The function of the BMPR2-related tran-
scription regulator RELB is associated with the NF-kappa-B pathway,
which is involved in disease-related processes such as inflammation,
immunity, and tumorigenesis62.

Discussion
Using sheep as amodel, we have created the first comprehensive time-
series transcriptome atlas of whole-body major tissues for lowland
animals translocated to a high-altitude environment and tran-
scriptomes for their offspring born at high altitudes. Leveraging these
critical data, we are able to explore the gene expression patterns of
major tissues during the acclimatization process, which offers an
exceptional opportunity to dissect the differences in the regulatory
mechanisms underlying genetic adaptation and short-term acclimati-
zation to hypoxia as well as the transcriptional changes responsible for
the acclimatization in offspring. The sheep time-series transcriptomes
also provide valuable resources for depicting the temporal expression
of genes associated with human high-altitude adaptation and diseases.

The high-altitude hypoxia adaptation of indigenous highland
inhabitants has always been related to the morphological and func-
tional remodeling of the lungs, heart, and artery3,63,64. However, in the
short-term acclimatization of high-altitude Hu sheep translocated
from lowlands, we found that the cerebellum, kidney, adipose,muscle,
colon, ileum, blood and spleen were among the most active tissues in
response to hypoxia stress based on the numbers of DEGs identified
between adjacent time points (Fig. 3a) and DCGs across the examined
time points (Fig. 3h). This provided clear evidence that different body
systems involving distinct tissues and consequently different strate-
gies for oxygenutilization shouldbe required for long-termadaptation
and short-term acclimatization to hypoxia, respectively. For instance,
the nervous (cerebellum), metabolic (kidney, adipose, muscle),
digestive (colon, ileum), and immune (blood, spleen) systems seem to
make major contributions to short-term hypoxia acclimatization

through the coregulation of central coordination, energy metabolism,
intestinal homeostasis, and immune response (Fig. 3i and Supple-
mentary Data 17). These systems and tissues may have to reduce
oxygen consumption under hypoxia because they are oxygen-
consuming parts of the body65–67. In contrast, the respiratory (lung)
and cardiovascular (heart and artery) systems are mainly responsible
for long-term hypoxia adaptation, and they can improve the exchange
and transportation of oxygen in response to hypoxia68,69. Thus, mul-
tiple systems and tissues actively respond to short-term hypoxia
acclimatization because short exposure to hypoxia can stimulate the
stress response of the whole body, leading to dramatic physical
adjustments34,70. By integrating the expression profiles and bioindica-
tors of blood, we identified 10 gene modules (e.g., M3) that were sig-
nificantly correlated with informative bioindicators of the hypoxia
response, such as erythropoietin (EPO), nitric oxide synthetase (NOS),
glutathione peroxidase (GSH-Px) and alkaline phosphatase (ALP)
(Fig. 2e). The functions of these bioindicators suggested that the
transcriptional regulation of oxygen transportation (EPO, NOS)71,72,
antioxidation (GSH-Px)73 and energy metabolism (ALP)74 through the
blood and circulatory systems may also contribute to short-term
hypoxia acclimatization. Notably, the level of SpO2, one of the most
important indicators of blood oxygen content, recovered with accli-
matization across time points (Fig. 2a), indicating the successful gra-
dual acclimatization of high-altitude Hu sheep through the
collaborative regulation of the aforementioned different systems and
tissues.

From the whole-genome selection test between low-altitude and
high-altitude sheep together with differential expression analysis
across tissues, we identified 52 FST genes that were differentially
expressed between Tibetan sheep and low-altitude Hu sheep, and 179
FST genes that showed dynamic changes in expression during the
acclimatization of translocated Hu sheep in at least five tissues (i.e.,
multi-tissue FST gene) (Fig. 4a-c). These two panels of multi-tissue FST
genes appeared tobeputatively selected in the genome and effectively
expressed in multiple tissues, providing new clues for delineating the
genetic basis of long-term adaptation and short-term acclimatization
to high-altitude hypoxia at the multi-tissue level. Notably, we found 13
genes (e.g., APOLD1, NDUFB9, ERBB4, NFKBIZ, NR4A3, RPS8, CIAO2A,
AHCYL2, ESRRG, KIAA0930, RASGEF1B, MRPS25 and TNFRSF21) that
were shared between the two panels (Fig. 4c), which could represent
reliable candidates for both hypoxia adaptation and acclimatization at
the genomic and transcriptional levels. For example, APOLD1 and
NR4A3 showed significant expression changes in many tissues
(Fig. 4a, b), and they were reported to be functionally associated with
cardiopulmonary, metabolic, and neurological phenotypes75–78 (Sup-
plementary Data 25). This implied roles of these genes in hypoxia
adaptation (cardiopulmonary changes) and acclimatization (metabolic
and neurological adjustments). Moreover, we found that the over-
lapped genes between long-term adaptation and short-term acclima-
tization are significantly higher than the random overlaps
(Supplementary Fig. 15). Previous studies usually investigated short-
term and long-term responses to environmental stress separately, but
the interaction between the two processes has been rarely evaluated,
e.g., whether short-term transcriptional response may facilitate or
constrain long-term genetic adaptation11,79. Our results provided
a valuable example that short-term acclimatization could facilitate

Fig. 6 | Acclimatization to high altitude in offspring. a Changes in SpO2 in the
three lamb groups. The average values with 95% confidence interval (CI) of SpO2 in
lamb groups are: low-altitude Hu lamb (n = 6), 91.50 (CI: 90.63 − 92.37); high-
altitude Hu lamb (n = 6), 85.92 (CI: 83.81 − 88.03); and Tibetan lamb (n = 6), 97.71
(CI: 85.87 − 89.55). b Numbers of DEGs from the high-altitude Hu lamb vs. low-
altitude Hu lamb (left) and Tibetan lamb vs. low-altitude Hu lamb comparisons
(right). c Common GO terms enriched with the DEGs of low-altitude Hu lambs vs.
high-altitude Hu lambs and low-altitude Hu lambs vs. Tibetan lambs in the kidney

(top) and cerebrum (bottom). d GO terms enriched only with the DEGs from the
low-altitude Hu lamb and high-altitude Hu lamb comparison in artery (top) and
lung (bottom). e Expression levels of key genes from hypoxia response-related GO
terms (n = 6). expr, expression. Boxplots are represented by minima, 25% quantile,
median, 75% quantile, andmaxima. Each dot represents individual expression level
in different groups. P values in the figures a and e come from the two-sided Wil-
coxon rank sum test, “ns” indicates not significant. Source Data are provided as
Source Data file.
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long-term adaptation to high-altitude hypoxia. Additionally, we
explored the roles of CREs in gene expression by integrating differ-
ential expression and differential chromatin accessibility analysis.
Among the common genes showing both up- or down-regulated
expression and changes in chromatin accessibility, most genes in high-

altitude Hu sheep and Tibetan sheep were down-regulated compared
with those in low-altitude Hu sheep across tissues (Fig. 5f and Sup-
plementary Data 29).

Oxygen sensing machinery can be subject to both positive (e.g.,
up-regulation) and negative regulatory (e.g., down-regulation)
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Fig. 7 | Time-series transcriptome of genes implicated in adaptation and dis-
ease in human. a Conservation of transcripts of 14 common tissues in human and
sheep. t-SNE clustering of samples in our study (n = 1277) and the human GTEx v8
consortium (n = 6792) based on batch-corrected expression. Species (left) and
tissue types (right) are distinguished by color.bHierarchical clustering of common
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value. c, d Gene examples for human pulmonary hypertension (i.e., BMPR2) and
high-altitude adaptation (i.e., HIF1A). c Pearson’s correlation between humans and
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the HIF1A gene. e The expression of BMPR2 and HIF1A across cell types in the lung.
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mast cell; IM, interstitial macrophage. h Transcription factors (TFs) regulating
HIF1A and BMPR2. Source Data are provided as Source Data file.
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feedbacks80. Our results were consistent with previous findings
showing that negative feedback loops, e.g., down-regulation of
angiogenesis-associated genes (e.g., PPARG) in deer mice and down-
regulation of high-altitude adaptation genes (e.g., EPAS1) in Tibetans,
play an important role under hypoxic stress81,82. Additionally, previous
studies investigated hypoxia-induced changes to chromatin accessible
regions and associated gene expressions, and revealed the impact of
chromatin landscape on gene regulation across different cell types
(e.g., HeLa cells, HL-1 cells and HUVEC cells)82–84. Here, we evaluated
the chromatin accessibility in low-altitude Hu sheep and its correlation
with the expression of differentially expressed genes in translocated
high-altitudeHu sheep across tissues. The low tomoderate correlation
coefficients (r = 0.33 − 0.49, P > 0.05) from the linear regression
(Supplementary Fig. 24) implied that differences in OARs across tis-
sues in low-altitude Hu sheep did not have a significant impact on the
expression of DEGs across tissues in translocated high-altitude Hu
sheep. With regard to the chromatin and expression changes within
high-altitude Hu sheep, we provided an exceptional example of whole-
genome chromatin dynamics in response to hypoxia, with chromatin
accessibility mostly decreased by down-regulation, which subse-
quently repressed the expression of most genes. The above findings
could contribute to our understanding of the molecular mechanisms
dictating gene repression in hypoxia at the transcriptomic and
epigenomic level.

Interestingly, we found that high-altitude Hu lambs exhibited
SpO2 values and gene expression patterns similar to those of Tibetan
lambs (Fig. 6a, e), implying that high-altitude Hu lambs had already
acclimatized to high-altitude hypoxia at birth. Notably, the DEGs
detected in the comparisons of high-altitude Hu lambs vs. low-altitude
Hu lambs andTibetan lambs vs. low-altitudeHu lambswere enriched in
some common GO terms (e.g., extracellularmatrix organization in the
kidney, localization within membrane in the cerebrum and cellular
response to angiotensin in artery) that could be directly activated by
hypoxia55 (Fig. 6c and Supplementary Data 31). The observation sug-
gested similar genetic regulation of relevant tissues (e.g., cerebrum,
kidney, and artery) in response to hypoxia in high-altitude Hu lambs
and Tibetan lambs. The enriched functions of DEGs also showed GO
categories specific to high-altitude Hu lambs in response to hypoxia in
the lungs and artery (Fig. 6d and Supplementary Data 31). This may
indicate that high-altitude Hu lambs descended from short-term
hypoxia-acclimatized parents should require more transcriptional
regulation and physical adjustments to cope with hypoxia than indi-
genous Tibetan lambs. It should be noted that at the current time, we
can’t distinguish whether the successful acclimatization of Hu lamb
was due to direct antenatal exposure to low oxygen in utero or a true
heritable effect. Compared with humans85 and other lowland animals
translocated to high altitudes (e.g., cattle86 and mouse87), sheep
showed much less fetal growth restriction and neonatal mortality
based on both the observation made in our translocation experiment
(neonatalmortality: 26.32%) andprevious reports88. Since hypoxiamay
increase stillbirth and infant mortality89,90, the DEGs identified in high-
altitudeHu lambsmay hold the potential to dissect the genetic basis of
low mortality of offspring under hypoxia and thus contribute to the
improvement of pregnancy outcomes in human22 and other animals.

Our comprehensive transcriptome data for major tissues in the
sheep model showed high correlations with human GTEx data
according to tissue type, based on the expression clustering of 17,279
one-to-one orthologous genes in 14 common tissues (Fig. 7a, b). This
demonstrated that our sheep expression atlas could be used to
improve the interpretation of the genetic mechanisms underlying
hypoxia-related adaptation and diseases in humans. At the gene level,
the expression levels of two representative human genes (i.e., BMPR2,
associated with pulmonary hypertension59,60, and HIF1A, changes in
gene expression are associated with high-altitude hypoxia
adaptation91,92 exhibited significantly high correlations in relevant

tissues between human and sheep (Fig. 7c, d and Supplementary
Data 34), further demonstrating the rationality of employing sheep
expression profiles for illustrating the expression patterns of human
adaptation and disease genes. Importantly, the time-series character-
istics of sheep transcriptomes may be valuable for providing missing
information about temporal expression changes in the aforemen-
tioned human genes (Fig. 7c, d). We expect that our time-series sheep
transcriptomes reflect analogous dynamic expression changes in
investigated human genes at the tissue and cell levels (e.g., lung).

Apart from the findings stated above, it is worth discussing
potential limitations to the present study. To warrant the credibility of
the whole-genome selection test, we used multiple analyzes to
demonstrate that Hu sheep and Tibetan sheep used in this study are
pure breeds. Our Hu sheep were clustered with the pure individuals
from low altitude from phylogenetic tree analysis (Supplementary
Fig. 25) and exhibited the closest genetic distance with Tibetan sheep
(Supplementary Fig. 26) and Supplementary Data 38). For Tibetan
sheep, we didn’t detect any interbreed introgression from 16 Chinese
sheep breeds (Supplementary Fig. 27) or interspecific introgression
from sympatric wild sheep (e.g., argali)93 based on the Structure ana-
lyzes (Supplementary Fig. 28), ABBA-BABA (Supplementary Fig. 29)
and gene tree (Supplementary Fig. 30). Following these findings, we
excluded the potential impact of phylogenetic relationship or genetic
introgression on the whole-genome selection test between high-
altitude Tibetan sheep and low-altitude sheep (e.g., Hu sheep) in our
study. Nevertheless, we cannot completely rule out the possibility of
introgression and its effect on high altitude adaptation of Tibetan
sheep. First, although introgression was not detected in Tibetan sheep
used in this study, such introgression may be identified in future stu-
dies when more individuals of Tibetan sheep are included and ana-
lyzed. Second, our introgression analyzes only utilized SNPs and did
not consider other types of genetic variations (e.g., SVs). A recent
study found that the introgressed segments between yak and cattle
related to altitude adaptation were only revealed based on SVs in a few
key genes (e.g., EPAS1)10. SVs could contribute to the high altitude
adaptation of both animals (e.g., yak)10 and plants (e.g., Arabidopsis
thaliana)94. For instance, an insertion in the promoter region of the
HPCA1 gene enhances gene expression and promotes the adaptation
of Arabidopsis thaliana to alpine environments94. Despite the impor-
tance of SVs, it is unfortunate that we don’t have long-read sequencing
genomic data and a large panel of samples to yield precise and com-
prehensive SVs for corresponding analysis in this study. Also, the focus
of the present study is to reveal transcriptional regulation in response
to high-altitude hypoxia, therefore genomic analysis on SVs is beyond
our main topic. Future studies focusing on SVs may discover whole-
genome SV characteristics and the impact of SVs on introgression,
gene expression, and high-altitude adaptation in sheep.

In conclusion, we generated time-series transcriptome resources
of major tissues in a sheep model for high-altitude- or hypoxia-related
studies. We identified a credible set of active tissues and crucial genes
for the short-term hypoxia acclimatization of sheep and for the accli-
matization of their offspring. These tissues and genes likely function in
multiple body systems and may work together to shape adaptive or
maladaptive traits in response to hypoxia. We further utilized sheep
time-series transcriptomes to mirror the dynamic expression changes
in high-altitude adaptation and disease genes of humans, which will
probably provide insights into the molecular mechanisms underlying
human adaptation and diseases. Our study demonstrates how multi-
tissue expression profiles across time can be used to inform multiple
aspects of short-term acclimatization and disease interpretation.

Methods
Ethical statement
All experimental protocols in this study were reviewed and approved
by the Institutional Animal Care and Use Committee of China
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Agricultural University (CAU20160628-2) and the local animal research
ethics committee. Animal care, maintenance, procedures, and
experimentation were performed in strict accordance with the
guidelines and regulations approved by the Welfare and Ethics Com-
mittee of the Chinese Association for Laboratory Animal Sciences.

Experimental design
Individuals ofHu sheep andTibetan sheep, two representativeChinese
native breeds that originally inhabited low-altitude regions (Zhejiang
Province, China) and the high-altitude regions [the Qinghai-Tibet Pla-
teau (QTP), China], respectively, were included in the experiment.
Overall, adult ewes (~1.5 years) and lambs (~2 months) of the two
breeds with good health and body condition were raised under three
different scenarios: native in a low altitude region (scenario 1), trans-
located froma lowaltitude to high altitude (scenario 2), andnative ona
high altitude (scenario 3) (Fig. 1a). In scenario 1, 10 adult ewes
(~1.5 years) and 6 lambs (~2 months) of Hu sheep were housed at
~350m.a.s.l. on the Wanghu Livestock Farm in Neijiang City, Sichuan
Province, China. In scenario 2, 40 adult ewes and 3 rams of Hu sheep
born and raised in the livestock farm under scenario 1 were translo-
cated to the Tibetan Sheep Breeding Farm of Sichuan Province (Aba
Tibetan and Qiang Autonomous Prefecture, Sichuan Province, China)
andproduced 10 lambs after approximately 8months. In scenario 3, 10
adult ewes and 6 lambs of Tibetan sheep were housed at ~3500m.a.s.l.
on the sheep farm under scenario 2. Tibetan sheep have inhabited the
QTP for approximately 4000 years29,95. All animals raised in experi-
mental farms were under standard and uniform housing and feeding
conditions. Animals were fed twice per day with formula diets con-
taining 16% crude protein, 5% crude fiber, 7% crush ash, 0.6% calcium,
0.7% lysine and 0.5% phosphorus and had ad libitum access to water
and mineral salt. The details of the experimental animals are sum-
marized in the Supplementary Data 2.

Collection of blood biochemical data and animal tissues
Phenotypicdata of 20 bloodparameters (i.e., blood oxygen saturation,
glucose, triglycerides, alanine transaminase, aspartate aminotransfer-
ase, total bilirubin, alkaline phosphatase, lactate dehydrogenase, uric
acid, blood urea nitrogen, creatinine, cardiac enzymes, calcium,
superoxide dismutase, glutathione peroxidase, catalase, nitric oxide,
malondialdehyde, erythropoietin and nitric oxide synthase) and sam-
ples from 19 whole-body tissues [i.e., heart, liver, spleen, lung, kidney,
rumen, abomasum, duodenum, ileum, jejunum, colon, cerebrum,
cerebellum, hypothalamus, pituitary, artery, muscle, adipose and
blood (leukocyte)] were collected from all the animals in the above
three scenarios. In scenario 2, data and tissues of the 40Hu sheep ewes
were collected at four sequential time points [7 days, 14 days, 21 days
and ~8months (245 days)] after their translocation to the QTP, with 10
ewes sampled at each timepoint. Inparticular, 10 tissues of the6 lambs
of Hu sheep born on the QTP were collected at an age of ~2 months,
approximately 8 months after transportation (Fig. 1a). In scenarios 1
and 3, the same phenotypic data and tissues of 10 ewes and 6 lambs of
Hu sheep (scenario 1) and 10 ewes and 6 lambs of Tibetan sheep
(scenario 3) were collected (Supplementary Data 7). Blood oxygen
saturation (SpO2) values and 19 additional blood biochemical indica-
tors were examined in the animals (Supplementary Data 8). Arterial
SpO2 was measured using the Tough/Ear Blood Oxygen Metre Veter-
inary SpO2 PR Monitor (RocSea, Jingzhou, China) when the animals
were stationary. Blood samples were collected with a 5mL vacuum
tube and were centrifuged immediately to isolate plasma. The isolated
plasma samples were then stored in a −80 °C freezer and used to
measure the 19 blood biochemical indicators with commercial assay
kits (Jincheng Bioengineering Inc., Nanjing, China).

Animals were slaughtered by carotid artery exsanguination. Fol-
lowing sacrifice, tissues were isolated and placed on an ice board for
dissection. Each tissue was cut into 5 – 10 pieces of approximately

50 – 200mg each. Samples were then transferred into 2mL cryogenic
vials (Corning, NY, USA, Cat. No. 430917), snap frozen in liquid nitro-
gen, and stored until DNA extraction for WGS or RNA extraction for
RNA-Seq. In total, 49 samples fromheart tissue of 49 sheep (10 ewes of
Hu sheep in the low altitude region and 39 ewes of Hu sheep translo-
cated to the QTP) were collected for whole genome sequencing
(Fig. 1b). A total of 1277 samples from 19 various tissues of 78 sheep
were collected for bulk RNA-Seq (Fig. 1b). Additionally, 66 samples
from eight tissues (i.e., hypothalamus, rumen, heart, lung, liver, duo-
denum, spleen and adipose) of 12 sheep were collected for ATAC-Seq,
including 18 samples of three tissues (lung, heart and hypothalamus)
from six lambs (two lambs of Hu sheep in the low altitude region, two
lambs of Hu sheep in the QTP, and two lambs of Tibetan sheep in the
QTP) and 48 samples of eight tissues from six ewes (two ewes of Hu
sheep in the low altitude region, two ewes of Hu sheep in the QTP, and
two ewes of Tibetan sheep in the QTP) (Fig. 1b).

Six samples (i.e., low-altitude Hu sheep in scenario 1, high-altitude
Hu sheep at four acclimatization time points in scenario 2, and Tibetan
sheep in scenario 3) fromdifferent parts of the lung (left lung and right
lung) were harvested and then cleaned with PBS for scRNA-Seq. For
each sample, sliced tissues were stored in tissue storage solution
(Miltenyi Biotec, Bergisch Gladbach, Germany, Cat. No. 130-100-008)
at 4 °C for single-cell suspension preparation and library construction.

DNA extraction, library preparation and sequencing
DNA was extracted from flash-frozen heart tissue using the Tissue kit
(QIAGEN, Shanghai, China). DNA integrity was evaluated on agarose
gels and Qubit® DNA Assay Kit in Qubit® 3.0 Flurometer (Invitrogen,
USA). Library construction and data sequencing were implemented by
the Illumina platform. DNA libraries were constructed using TruSeq
Library Construction Kit (Illumina, San Diego, USA). In brief, the DNA
was fragmented, end polished, A-tailed, and ligatedwith the full-length
adapter. The length of 350 bp fragments were selected, PCR amplified
and purified with AMPure XP system (Beckman Coulter, Beverly, USA).
The prepared libraries were examined insert size using Agilent 2100
Bioanalyzer (Agilent Technologies, CA, USA) and amplified. Then
sequencing was implemented on the Illumina Novaseq 6000 platform
by Novegene Co., Ltd. (TianJin, China). 150bp paired-end reads with a
target depth of ~20-fold coverage per genome were generated.

RNA extraction, library preparation and sequencing
Total RNA was extracted from flash-frozen tissues with RNA TRIzol
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s pro-
tocol. After purification, RNA quality was checked using agarose gel
electrophoresis and aNanoPhotometer® spectrophotometer (IMPLEN,
CA, USA). RNA integrity (RIN) was examined on an Agilent 2100
Bioanalyzer (Agilent Technologies, Waldbronn, Germany) with a cut-
off of an RIN < 7.00, and theRNA concentrationwasmeasuredwith the
Agilent 2100 RNA 6000 Nano Kit (Agilent Technologies, Waldbronn,
Germany). First-strand cDNA was generated using the FastKing One-
Step RT‒PCRKit (TIANGENBiotech, Beijing, China), and cDNA libraries
were constructed by the Illumina TruSeq RNA Library Prep Kit v2
(Illumina, CA, USA). RNA-Seq was implemented on the Illumina HiSeq
2500 (Illumina, CA, USA) at Novegene Co., Ltd. (TianJin, China), gen-
erating 150 bp paired-end reads.

ATAC library construction and sequencing
Library preparation for ATAC-Seq followed a modified OmniATAC
protocol96 in cryopreservednuclei. Specifically, weighed frozen tissues
(~20mg) were first lysed in cold homogenization buffer (10mM Tris-
HCl, pH 7.4, 10mM NaCl, 3mM MgCl2, 0.1% Igepal). Nuclei were then
resuspended and collected from the interface after iodixanol-based
density gradient centrifugation. Thereafter, nucleus tagmentation was
performed in Tn5 transposase reaction mix (Illumina Tagment DNA
Enzyme and Buffer kits) under incubation at 37 °C for 30min in a
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thermomixer with shaking at 1000 rpm, and two equimolar adapters
were added. Immediately following the transposition reactions, DNA
was purified with the Qiagen MinElute PCR Purification Kit (Qiagen,
Netherlands, Cat. No. 28004) and eluted in EB buffer. To amplify the
library, PCR was then performed in a mix of 10 µM Nextera i7 and i5
primers and NEBNext Q5 High-Fidelity PCR Master Mix (New England
Biolabs, MA, USA) according to the following protocol: 72 °C for 5min,
98 °C for 30 sec, and 11 cycles of 98 °C for 10 sec, 63 °C for 30 sec and
72 °C for 1min. PCR products were purified with the Qiagen MinElute
PCR Purification Kit and AMPure XP beads (Beckman Coulter, Cat. No.
A63880) and resuspended in ultrapure nuclease-free distilled water.
Library quality was assessed with a Qubit 2.0 system (Life Technolo-
gies, MA, USA), and fragment size was examined using an Agilent 2100
Bioanalyzer. The libraries were sequenced on an Illumina NovaSeq
6000 system with a 150 bp paired-end sequencing method.

scRNA-Seq library construction and sequencing
scRNA-Seq libraries of lung tissueswere constructed following previous
protocols withminormodifications97–99. For the lung tissues, gentle and
rapid generation of single-cell suspensions was achieved by using a
modified version of the procedure of a mouse Lung Dissociation Kit
(Miltenyi Biotec, Bergisch Gladbach, Germany; Cat. No. 130-095-927). In
summary, we dissected sheep lung tissue into single lobes and rinsed
the lobes in petri dishes containing PBS (pH = 7.2) to remove residual
vessels, blood clots and mucin. Clean lobes were subjected to shacking
digestion at 37 °C for 25 – 30min with enzyme mix, which consisted of
2.4mL of 1× Buffer S, 100 µL of Enzyme D, and 15 µL of Enzyme A. The
digestion solution was briefly centrifuged at 600 × g for 2min at 4 °C,
and the precipitated pellet was resuspended in 2.5mL 1× Buffer and
filtered with a 70 µM MACS SmartStrainer (Miltenyi Biotec, Bergisch
Gladbach, Germany; Cat. No. 130-098–462). Then, the obtained cell
suspensionwas centrifugedat 300× g for 10min at 4 °C.After removing
the supernatant, the cell pellet was resuspended in an appropriate
buffer to the required volume for scRNA-Seq.

Qualified single-cell suspensions containing at least 8000 cells
were loaded onto a chromium single-cell controller (10× Genomics),
and single-cell gel beads were generated in the emulsion according to
the manufacturer’s protocol. Then, scRNA-Seq libraries were con-
structed using Single Cell 3’ Library and Gel Bead Kit v3.1 (8000 initial
cell capture number) and were subsequently sequenced using a
NovaSeq 6000 sequencer (Illumina).

Whole-genome sequence (WGS) data
Data collection. Whole-genome sequences were consisted of 49 WGS
(average depth = ~15×) generated in this study and 152 WGS (average
depth = ~17×) representing 16 Chinese native sheep breeds and one wild
species retrieved from previous studies29,30,100–102. Detailed information
on the populations, including the names, sampling locations and num-
ber of samples, was summarized in Supplementary Data 3, 9 and 39.

Variant calling. SNP calling followed previous protocols30. First, we
filtered low-quality bases and artifact sequences using Trimmomatic
(v.0.36)103 and aligned the high-quality paired-end reads (150bp or
100bp) to the sheep reference genome Oar_rambouillet_v1.0.
(GCA_002742125.1) using BWA (v0.7.8)104 with the default parameters.
Next, we removed duplicates in the BAM files using theMarkDuplicates
module in GATK (v4.1.2.0)105. SNPs were then detected using the GATK
HaplotypeCaller module with the GATK best-practice recommenda-
tions. Thereafter, we merged the GVCFs files called individually by the
CombineGVCFs module and called SNPs with the GenotypeGVCFs mod-
ule. Finally, we selected the raw SNPs using the SelectVariants module
and filtered them using VariantFiltering of GATK with the parameters
(QUAL< 30.0 | | QD< 2.0 | |MQ<40.0 | | FS > 60.0 | | SOR> 3.0 || MQ
RankSum< −12.5 || ReadPosRankSum< −20.0).

SNP quality control. SNP quality control was conducted with the fol-
lowing criteria using VCFtools (v0.1.17)106: 1) call rate > 90% and 2)
minor allele frequency (MAF) > 0.05. Any SNPs that failed to meet any
of the above criteria were filtered, and we obtained 833,880,778 SNPs
for downstream analysis.

Hi-C data preprocessing
Quality control and data preprocessing. Hi-C data from the blood of
sheep were retrieved from the NCBI Sequence Read Archive (SRA)
under accession number SRR19426890. We first trimmed adapter
sequences and low-quality reads with Trimmomatic (v.0.36)103 and
obtained ~780 million clean reads. Hic-Pro (v2.9.0)107 was then used to
process the Hi-C data from raw sequencing data via a pipeline
including alignment, matrix construction, matrix balancing, and
iterative correction and eigenvector decomposition normalization
(ICE) with the default parameters.

Detection of TADs. To explore the ATAC-Seq peak-to-gene linkage, we
identified topologically associating domains (TADs) as follows.Wefirst
implemented the conversion of Hi-C matrices to Cooler format via
HiCPeaks (v0.3.2)108. To detect the TADs, we then calculated the
directionality index (DI) with a resolution of a Hi-C matrix at 40 kb
using the hitad function from TADLib (v0.4.2)109. In total, we obtained
3032 TADs for subsequent analysis.

RNA-Seq data preprocessing
Raw RNA-Seq reads with low base quality scores (quality scores ≤ 20)
were first trimmed, and then adapter contamination was further
removed using fastp (v0.20.1)110. The high-quality clean reads
were next mapped to the sheep reference genome Oar_rambouil-
let_v1.0 (GCA_002742125.1) by the program STAR (v2.7.9a)111 with the
settings (-quantMode GeneCounts, -outFilterMismatchNmax 3, -out-
FilterMultimapNmax 10). Properly paired and uniquely mapped reads
were extracted by using SAMtools (v1.11)112 with the command (view -f
2). Gene counts were generated by the featureCounts program from
the Subread package suite (v2.0.3)113. We also normalized the raw
counts of genes using the transcripts permillion (TPM)methodwith an
in-house script.

ATAC-Seq data preprocessing
RawATAC-Seq readswere trimmed forNextera adaptersby using fastp
(v0.20.0)110 with the options (-q 15 -l 18), and the clean reads were
aligned to the sheep reference genome Oar_rambouillet_v1.0 using
BWA (v0.7.17)104 with the default parameters. PCR duplicates were
removed using Picard module from GATK (v4.1.2.0)105, and uniquely
mapped high-quality reads were collected using SAMtools (v1.11)112

with the options (view -f 2 -q 30). The reads mapped to the mito-
chondrial genome were also discarded, and the final BAM files were
kept for subsequent analysis.

ATAC-Seqpeakswere calledbyGenrich (v0.6.1)114 with theoptions
(-j -p 0.01 -b). Peak calling was first implemented in each library and
then for each tissue based on concatenating all the replicates by using
BEDTools (v2.30.0)115 with the bedtoolsmerge function. The P valuewas
calculated for each peak assuming a null model with a log-normal
distribution and corrected based on the Benjamini-Hochberg model.

The following parameters were measured as recommended by
the ENCODE project (https://www.encodeproject.org/atac-seq/#
standards) for the validation of ATAC-Seq libraries. The fraction of
reads in peaks (FRiP) scores, nonredundant fraction (NRF) and other
quality metrics (e.g., PCR bottlenecking coefficients, PBCs) for each
sample were calculated with either SAMtools (v1.11)112 or in-house
scripts. Details of the quality control scores are included in Sup-
plementary Data 5. Global correlations between samples were cal-
culated with the R package DiffBind (v3.2.7)116.
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To generate consensus peaks, peaks for individual samples were
merged with the multiBigwigSummary BED-file function in deepTools
(v3.5.0)117. BAM files were converted into a normalized coverage track
of bigWig format using the bamCoverage command in deepTools with
the options (--binSize 10 --normailzeUsingRPKM -centerReads), and
ATAC peaks were then visualized with Integrative Genomics Viewer
(IGV) software (v2.9.4)118. Raw read counts in these peaks were deter-
mined by multiBamSummary BED-file function and were normalized
for reads per kilobase per million (RPKM) reads with the function
normalize.quantiles in the R package preprocessCore (v1.40.0)119.
Additionally, t-SNE clustering of the ATAC-Seq profile was performed
as described for the t-SNE analysis of the RNA-Seq data above.

Population genetics analysis
We filtered the SNP data set with a MAF <0.01, Hardy-Weinberg
equilibrium < 0.001 and a proportion ofmissing genotypes > 0.05.We
implemented LD pruning with the PLINK (v1.90)120 option (indep-
pairwise 50 5 0.05). After the filtering and linkage disequilibrium (LD)
pruning, 8,445,599 SNPs were retained for population genetics ana-
lyzes. First, we calculated the identity-by-state (IBS) genetic distance
matrix between the individuals using the PLINK (v1.90)120 (–distance 1-
ibs) and visualized the IBS distance matrix by an unrooted neighbor-
joining (NJ) phylogenetic tree using the SplitsTree (v4.18.3)121. FST dis-
tance between groups were estimated using smartpca function in
EIGENSOFT (v.6.0.1)122.

Whole-genome selective sweep tests
To identify potential selective signatures associated with hypoxia
adaptation between populations in high- and low-altitude regions, we
selected domestic sheep from plateau (n = 17) and plain (n = 20) areas
(Supplementary Data 18). We calculated genome-wide pairwise FST
values123 between the high- and low-altitude populations with a sliding
window approach (10 kb sliding windows with 10 kb steps) using the
Python script popgenWindows.py (https://github.com/simonhmartin/
genomics_general). Regions with the top 5% of the average FST dis-
tribution were defined as selective signatures and then annotated to
corresponding gained genes.

Introgression analysis
We tested for the presence of interpopulation introgression from the
other Chinese native sheep breeds into Tibetan sheep and interspecific
genetic introgression from wild relatives into Tibetan sheep (Supple-
mentary Data 39 and 40) usingD statistics (i.e., ABBA-BABA statistics)124.
We calculated the D statistics for the four-taxonmodel (H1, H2, H3, H4)
using the function qpDstat implemented in the AdmixTools (v7.0.1)125.
For the interpopulation introgression analysis, we used Menz sheep as
the reference population (H1), Tibetan sheep as the target population
(H2), individual populations of Chinese native sheep as the donor (H3),
and ancestral alleles as outgroup (H4)30. For the interspecific intro-
gression analysis, we usedMenz sheep as the reference population (H1),
Tibetan sheep as the target population (H2), Argali as the donor (H3),
and ancestral alleles as outgroup (H4)30. The statistical significance of
theD statistics was evaluated using a two-tailed Z-test, and |Z-score | > 3
was set as the threshold of statistical significance.

We also used the sNMF (v1.2)126 to conduct Structure analysis for
Tibetan sheep and argali. Additionally, we examined the possibility of
interspecific introgression between argali and Tibetan sheep in the top
selective regions between low-altitude sheep and Tibetan sheep. We
extracted the SNPs located in the genomic regions encompassing the
top 5 FST gene (i.e., 50 kb up and downstream), and then constructed
gene tree for each of these genes with SplitsTree (v4.18.3)121.

Tissue specificity of gene expression andchromatin accessibility
First, we clustered all 1277 samples based on TPM and the t-distributed
stochastic neighbour embedding (t-SNE) method as implemented in

the R package Rstne (v0.16)127. To examine tissue similarity, median
gene expression for each tissuewas calculated and thenused to cluster
tissues based on the Euclidean distance with the corresponding func-
tion in the R package ComplexHeatmap (v2.8.0)128.

Then, the 19 whole-body tissues were classified into 10 different
broad categories (i.e., muscle, immune, intestine, rumen, brain, artery,
adipose, liver, lung and kidney) (Supplementary Data 1). To char-
acterize the genes showing tissue-specific expression, we compared
gene expression in the samples of a target tissue with that in tissues
from the other categories129 using the R package limma (v3.48.3)130.
Known covariates (e.g., age and time point) were calibrated via the
combat function of the R package sva (v.3.40)131. We ranked t-statistics
computed by limma and considered the top 5% of genes with an
absolute value of log2-transformed fold-change (|log2(FC)|) > 1 and a
false discovery rate (FDR) < 0.01 as tissue-specific genes (TSGs).

For the ATAC-Seq data, we used a Shannon entropy-based
method132 to compute the tissue specificity index with a normalized
peak matrix. Specifically, for each peak, we defined its relative acces-
sibility in tissue i asRi= EiPN

i= 1
Ei
, where Ei is the normalizedmedian reads

per kilobasemillion (RPKM) value for the peak in tissue i,
PN

i = 1Ei is the
sumof normalizedmedianRPKMvalues in all tissues, andN is the total
number of tissues. The peak entropy score across tissues can be

defined as H =
PN

i= 1 � 1*Ri* log 2ðRiÞ, where the value of H ranges
between 0 and log2(N). An entropy score close to zero indicates highly
tissue-specific accessibility of the peak; conversely, a score close to
log2(N) indicates ubiquitous accessibility of the peak. We selected
peaks with an entropy score < 2.5 as the tissue-restricted peaks, while
peaks were assigned to particular tissues with maximal RPKM values.
Peaks with the top 500 entropy scores were considered
conserved peaks.

Comparative transcriptome analysis
Human RNA-Seq data normalized by the transcripts per million (TPM)
method was generated by the human GTEx consortium. From the
GTEx v8 release (https://gtexportal.org/home/datasets), weobtained a
subset of 6792 RNA-Seq samples from 14 common tissues and 17,279
one-to-one orthologous genes between human and sheep. We then
used the function IntegrateData with the parameters (anchorset =
expression, dims = 1:30) in the R package Seurat (v4.2.0)133 to combine
the expression values of orthologous genes in human and sheep by
removing hidden confounding factors. Thereafter, we performed t-
SNE clustering of the samples using a two-dimensional projection
based on corrected expression values of orthologous genes. We cal-
culated the median values of gene expression in each tissue of sheep
and human separately, representing the expression of the particular
tissue in each species134. Additionally, we performed hierarchical
clustering using the R package ComplexHeatmap (v2.8.0)128 to explore
the relationships of tissues based on the median values.

Characterization of gene expression changes along a timeline
In each tissue of the Hu sheep translocated to high altitude, we iden-
tified significantly differentially expressed genes (DEGs) between
adjacent timepoints (0d vs. 7 d, 7 d vs. 14 d, 14 d vs. 21 d, and 21 d vs. ~8
mon) with thresholds of an FDR <0.05 and |log2(FC)| > 0.75 using the R
package DESeq2 (v1.32.0)135. We also identified DEGs between low-
altitudeHu sheep and high-altitudeHu sheep (0d vs. 7 d, 0 d vs. 14 d, 0
d vs. 21 d and 0 d vs. 8 mon) with aforementioned thresholds and
software. For comparisons with great number of DEGs in particular
tissues (adjacent time comparisons: “0 d vs. 7 d” in the cerebellum and
“7 d vs. 14 d” in the colon; high altitude and low- altitude Hu sheep
comparison: “0 d vs. 14 d”, “0 d vs. 21 d”, “0 d vs. 8 mon” in the
cerebellum and “0 d vs. 14 d” in the colon), we used R package pow-
simR (v0.090)136 to conduct power analysis and examine whether the
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identified great number of DEGs was hypoxic effect on large tran-
scriptional change or technical artifact.

Between the adjacent time points, k-means clustering was used to
characterize the patterns of gene expression changes in different tis-
sues. We first built a log2(FC) matrix and determined the k value with
the fviz_nbclust function in the R package factoextra (v1.0.7)137. Com-
mon genes among different tissues were then clustered into a set of k
groups based on the Euclidean distance with the kmeans function in R.

Additionally, we collected candidate genes related to high-
altitude adaptation and mountain sickness in human from previous
studies (Supplementary Data 32 and 33). Furthermore, we character-
ized the time-series patterns of gene expression changes across tissues
using the same methods described above.

Time series analysis
Furthermore, we performed time series analysis of gene expression to
identify dynamically changing genes (DCGs) over time using the R
package maSigPro (v1.64.8)138. First, we calculated the raw count
matrix and retained genes with a sum of all counts ≥ 10 reads in all the
samples.We then performed normalizationwith the vst function in the
R package DESeq2 (v1.32.0)135. We ran maSigPro with a degree = 4 and
considered genes with a goodness-of-fit (R2) ≥0.4 as DCGs. We also
applied a soft-clustering approach (c-means clustering) in the R
package mFuzz (v.2.23.0)139 to identify the most common profiles for
individual tissues.We designated clusters when increasing the number
would not add a new cluster but instead split a previous cluster.

Weighted gene co-expression network analysis (WGCNA)
We employed the R package WGCNA (v1.12.0)140 to construct a gene
co-expression network for an aggregated expression matrix in blood.
Similar to the time-series analysis, we kept genes with a sum of all
counts ≥ 10 reads in all the samples and a median absolute deviation
(MAD) value > 0.01 (top 75% of MAD) and then performed normal-
ization with the vst function in the R package DESeq2 (v1.32.0)135,
resulting in 13,707 genes for weighted gene co-expression network
analysis. Subsequently, we transformed the normalized matrix to a
similarity matrix based on the pairwise Pearson’s correlation among
the 13,707 genes and then converted the similarity matrix into an
adjacency matrix. By using the dynamic hybrid cutting method, we
clustered genes with similar expression patterns (r > 0.85) into 14 dis-
tinct gene modules and used principal component analysis (PCA) to
summarize modules of gene expression with the blockwiseModules
function. We then used module eigengene values of the first principal
component to test the correlation between module expression and
phenotypic data.

Genomic annotation of ATAC-Seq peaks
We annotated the ATAC-Seq peaks using the annotatePeak function in
the R package ChIPseeker (v1.28.3)141. Based on the distance from the
peak center to the transcription start site (TSS), the peaks were
assigned to functional genomic regions such as promoter (TSS ± 2 kb),
downstream, distal intergenic, intron, exon, 5′ untranslated region
(UTR), and 3′UTR.We then calculated the percentage of peaks located
in the upstream and downstream regions from the TSS of the nearest
genes and visualized the distribution using the plotDistToTSS function
in ChIPseeker.

Differential accessibility analysis
In each tissue, we defined differentially accessible regions (DARs)
among groups (e.g., three groups in dataset 1: the ewes of Hu sheep,
the Hu sheep translocated to the QTP after 8 months and Tibetan
sheep; three groups in dataset 2: the lambs of Hu sheep, Hu sheep
raised on the QTP for ~8 months and Tibetan sheep) using the dba.-
count, dba.contrast, dba.analyze and dba.report functions of the R

package DiffBind (v3.6.1)116. We set the thresholds as follows: P
value < 0.05 and |log2(FC)| > 0.5.

Motif enrichment analysis
We converted the locations of target peaks from the sheep reference
genome Oar_rambouillet_v1.0 (GCA_002742125.1) to the human refer-
ence genome GRCh38 (GCA_000001405.15) using the program Lift-
Over (v377) with the default settings. Then, enrichment analysis of
known binding motifs in peaks was performed using the “findMotifs-
Genome.pl” script in the software HOMER (v4.8)142. P values were cal-
culated with a hypergeometric test, and a P value < 0.05 was regarded
as the threshold for identifying significant motifs.

Gene-linked candidate cis-regulatory elements within TAD
We utilized the correlation approach to identify putative causal rela-
tionships between ATAC-Seq peaks and gene expression in the same
samples143,144. For each TAD in the sheep genome defined above, we
computed the Pearson correlation coefficient (PCC) between the
estimates of chromatic accessibility [log2(RPKM+ 1)] and gene
expression [log2(TPM+ 1)]. To examine the significance level (P value)
of these correlations, a null distribution was estimated empirically by
calculating the PCCof the TAD-constrained peaks with all the genes on
the chromosome. Significant associations between TAD-constrained
peaks and the expression of relevant genes were identified according
to a P value < 0.05 and PCC ≥0.25.

Functional enrichment analysis
Human homologs of the sheep Ensembl genes were fetched using the R
package biomaRt (v2.52.0)145. Gene Ontology (GO) enrichment analysis
was implemented based on the human database org.Hs.eg.db (v3.16)146

to identify significant biological functions using the R package Cluster-
Profiler (v4.0.5)147, with the parameters of OrgDB = org.Hs.eg.db, fun =
enrichGO, ont = BP, pvalueCutoff =0.05, and pAdjustMethod = BH.

Phenome-wide association analysis (PheWAS)
The GWAS ATLAS database (https://atlas.ctglab.nl/) provides abun-
dant resources for associating a given gene or SNP with a wide variety
of human phenotypes; this strategy has been widely used and proven
to be a useful approach, complementary to regular GWAS148,149. To
explore whether human orthologues of key candidate genes detected
in the context of hypoxia acclimatization in sheep are associated with
similar adaptive traits in human, we performed PheWAS analysis for
human orthologous genes across 3302 human phenotypes. We inclu-
ded only humanGWASswith a sample size > 10,000 in the analysis and
considered geneswith anFDR <0.05 tobe significantly associatedwith
the corresponding phenotypic trait.

Analysis of phenotypic measures
For the SpO2 and 19 additional blood biochemical indices, phenotypic
measurement data were represented as the mean ± standard error
(SE). Statistical analysis was implemented in RStudio v4.2.0. First, we
assessed the normality of the dataset with the shapiro.test function.
Then, statistically significant differences among groups of animals at
different time points were determined by one-way ANOVA (analysis of
variance) with the function aov when the datasets conformed to the
normal distribution, and Tukey’s honestly significant difference (HSD)
test was performed to correct for multiple comparisons using the
TukeyHSD function. For the datasets not under a normal distribution,
the Kruskal-Wallis test was used to estimate the significant differences
among groups with the function kruskal.test, while the Wilcoxon rank
test was used to determine differences between pairwise groups with
the pairwise.wilcox.test function. Variations of each phenotypic indi-
cator were considered statistically significant with a Benjamini-
Hochberg adjusted P value < 0.05.
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Analysis of scRNA-Seq data
After sequencing, the high-quality reads were aligned to the sheep
reference genome ARS-UI_Ramb_v2.0 (GCA_016772045.1). We created
the premRNA reference following the protocol of 10× Genomics and
earlier studies150. To obtain the filtered count matrix for subsequent
analysis, we calculated gene counts using Cell Ranger (v7.0) (https://
github.com/10XGenomics/cellranger) with the default parameters.

The single-cell expression matrices obtained as described above
were processed following the protocols of the R package Seurat
(v.4.2.0)133. We retained cells with more than 200 genes and a low
percentage (< 30%) of UMIs mapped to mitochondrial genes. We also
used the R package DoubletFinder (v.2.0.3)151 to mitigate potential
doublets with the doubletFinder_v3 function. We applied the canonical
correlation analysis (CCA) method for dataset integration to correct
batch effects as follows. First, normalization for each sample was
implemented with the SCTransfrom function. We then determined
features and anchors for data integration using the PrepSCTIntegration
and FindIntegrationAnchors functions with the default parameters.
Furthermore, we generated an integrated expression matrix for each
tissue via the IntegrateData function.

We scaled the integrated data and applied the RunPCA function in
the dimensional reduction. Cells were clustered with the FindClusters
function and visualized using uniform manifold approximation and
projection (UMAP). Gene markers for each cell type or subtype were
foundusing FindAllMarkerswith theWilcoxon rank sum test (P <0.05, |
log2FC | > 0.25), including known canonical marker genes and novel
ones (Supplementary Data 37).

We predicted core regulatory transcription factor (TF)-gene pairs
from the scRNA-Seq data using the R package GENIE3 (v1.6.0)152 with
the RcisTarget database v1.4.0 (https://resources.aertslab.org/
cistarget/) as a reference. Specifically, we used GENIE3 and the work-
flow in R package SCENIC (v1.1.2.2)153 with the default parameters to
infer TF-target gene regulatory networks basedon the gene expression
matrices of each tissue and the DEGs of each cell type. Then, Rcis-
Target was used to identify enriched TF-binding motifs and predict
candidate target genes (regulons) based on the hg38 RcisTarget
database, whichcontains cross-species genome-wide rankings for each
motif. Only the TF target genes with high-confidence annotations and
corresponding transcription regulatory networks were visualized with
Cytoscape (v3.7.1)154.

Cell-cell communication was inferred from the scRNA-Seq data
using CellPhoneDB software (v2.0)155. Only receptors and ligands
expressed in at least 10% of cells of a given cell type were retained for
further analysis, whereas the interactionwas considered nonexistent if
either the ligand or the receptor was unqualified. The average
expression of each ligand‒receptor pair was compared among differ-
ent cell types to identify their cell-specific expression. Only the ligand‒
receptor pairs with significant means (P <0.05) were used for sub-
sequent inference of cell-cell communications in each tissue across
time points. The visualization of the changes in the number of
ligand–receptor pairs along the examined timescale for each tissue
was implemented using Cytoscape (v3.7.1)154.

Statistics and reproducibility
No statistical method was used to predetermine the sample size, and
no data were excluded from the analyses. The experiments were not
randomized, and the investigators were not blinded to allocation
during experiments and outcome assessment.

For all the boxplots, the horizontal lines inside the boxes repre-
sent the median or mean values. Box bounds indicate the lower
quartile (Q1, the 25th percentile) and the upper quartile (Q3, the 75th
percentile). Whiskers represent minima (Q1 − 1.5 × IQR) and maxima
(Q3 + 1.5 × IQR), where IQR is the interquartile range (Q3-Q1). The
values of each individual were plotted with data points.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The high-throughput sequencing data generated in this study have
been deposited in the Sequence Read Archive (SRA) database under
accession code PRJNA1053506 for WGS, PRJNA1000743 and
PRJNA1001016 for RNA-Seq and PRJNA1001505 for ATAC-Seq and
scRNA-Seq data. The public data used in this study are available in the
SRA database under accession code SRR19426890 for Hi-C and
PRJNA624020, PRJNA645671 and PRJNA160933 for WGS data. For the
WGS data from Lv et al. 30, access can be obtained by contacting the
author of that paper for research purposes. The processed RNA-Seq
data are available at Gene Expression Omnibus (GEO) database under
accession code GSE261409. Source data are provided with this paper.

Code availability
All the computational scripts and codes used in this study are available
on GitHub repository: https://github.com/zeyan-0717/sheep-
transcriptome-atlas and Zenodo: 10.5281/zenodo.10799788.
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