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Quantifying 3′UTR length from scRNA-seq
data reveals changes independent of gene
expression

Mervin M. Fansler1,2,3, Sibylle Mitschka 2,3 & Christine Mayr 1,2

Although more than half of all genes generate transcripts that differ in 3′UTR
length, current analysis pipelines only quantify the amount but not the length
of mRNA transcripts. 3′UTR length is determined by 3′ end cleavage sites (CS).
We map CS in more than 200 primary human and mouse cell types and
increase CS annotations relative to the GENCODE database by 40%. Approxi-
mately half of all CS are used in few cell types, revealing that most genes only
have one or two major 3′ ends. We incorporate the CS annotations into a
computational pipeline, called scUTRquant, for rapid, accurate, and simulta-
neous quantification of gene and 3′UTR isoform expression from single-cell
RNA sequencing (scRNA-seq) data. When applying scUTRquant to data from
474 cell types and 2134 perturbations, we discover extensive 3′UTR length
changes across cell types that are as widespread and coordinately regulated as
gene expression changes but affect mostly different genes. Our data indicate
that mRNA abundance and mRNA length are two largely independent axes of
gene regulation that together determine the amount and spatial organization
of protein synthesis.

In mRNAs, the 3′ untranslated region (3′UTR) is located between the
coding sequence stop codon and the poly(A) tail. mRNA and 3′UTR
length is determined by pre-mRNA cleavage and polyadenylation
(CPA), which is initiated upon recognition of the polyadenylation sig-
nal (PAS) by the CPA machinery1–3. Approximately half of all human
genes use alternative cleavage and polyadenylation (APA) to generate
mRNA isoforms that differ in their 3′UTRs but encode the same
protein4–6. In addition, ~25% of genes use intronic polyadenylation
(IPA) signals to generate mRNA isoforms with alternative last exons,
thus producing different protein isoforms5,7–10. APA is a widespread
phenomenon, which is dysregulated in disease1,2. Alterations in 3′UTR
length affect the presence of binding sites for microRNAs and RNA-
binding proteins, and can regulate mRNA stability and translation11,12.
More recently, 3′UTRs have emerged as important regulators of sub-
cytoplasmic location of translation and mRNA-dependent co-transla-
tional protein complex assembly13–22, reviewed in3,23,24.

APA was initially posited to be a mode of gene expression reg-
ulation, where a switch in the 3′UTR isoform ratio results in changes of
overall gene expression11,12. However, studies of transcriptome-wide
APA reported that fewer than 20% of 3′UTR changes regulatemRNA or
protein abundance. This suggested that mRNA abundance and 3′UTR
length may be independent gene outputs4,6,25–28. Since these analyses
were performed in fewer than ten cell types, it remains unclear whe-
ther the independence of gene and 3′UTR expression is a general
phenomenon.

Whereas differential gene expression analysis is ubiquitously
performed, the study of 3′UTR length is still very limited due to several
technical roadblocks. Initial 3′UTR analysis methods required custom
3′ end sequencing protocols4–6, which were not amenable for wide-
spread use. Now, 3′-tag-based single-cell RNA sequencing (scRNA-seq)
protocols can be used to quantify differential 3′UTRs29–33. However,
most reads from10xGenomics data donot spanmRNA3′ end cleavage
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sites (CS), which prevents exact de novo mapping of mRNA 3′ ends.
This limitation can be overcome by assigning reads to the closest
known CS, obtained from CS databases34,35. These databases have
grown substantially to contain ~300,000CS for humanprotein-coding
genes35, and they present a highly complex landscape of alternative
3′UTRs.

We set out to reassess the CS landscape and generated a com-
prehensive CS atlas based on primary cells obtained from Microwell-
seq (MWS) data of 206 human and mouse cell types36,37. Our MWS CS
annotationwas generated from7 billion CS-spanning reads. It expands
GENCODECS annotations by 40% and enables classification intomajor
and minor CS based on their usage across cell types, revealing that
most genes have only one or twomajor 3′ ends. Moreover, we provide
a fast and reliable workflow for simultaneous gene expression and 3′
UTR quantification from scRNA-seq data. We applied our quantifica-
tion pipeline, called scUTRquant and a statistical testing package,
called scUTRboot to scRNA-seq datasets covering 474 cell types and
2134 genetic perturbations and observed that changes in gene
expression and in 3′UTR length occurred in different groups of genes,
indicating that they largely represent independent regulatory events.
We find that only about half of all gene regulatory events cause
changes in mRNA abundance greater than 1.5-fold, whereas the other
half affects mRNA length, which may impact the spatial control of
protein synthesis. Together, we provide much needed resources and
tools to enable profiling and mechanistic studies of 3′UTRs, from
increasingly abundant scRNA-seq data.

Results
Mapping andcharacterizationofmRNA3′ endCS in 206primary
cell types
Typical 10x Genomics reads rarely contain untemplated adenosines,
but approximately 35%of reads obtained fromMWSspanmRNA3′ end
CS (Fig. 1a)36,37. We analyzed MWS datasets from 104 murine and 102
human primary cell types, overall obtaining 7 billion CS-spanning
reads to map mRNA 3′ ends at single-nucleotide resolution (Fig. 1b).
Briefly, we removed poly(A) tails from the reads and mapped the
remaining portions to the genome, and then filtered out low abun-
dance reads as well as peaks derived from priming at genomic ade-
nosine stretches. The resulting mRNA 3′ end CS were intersected with
GENCODE annotations and classified into three groups, (i) commonCS
(GENCODE-annotated and observed in MWS data), (ii) MWS-only CS
(not present in GENCODE), and (iii) GENCODE-only CS (annotated in
GENCODE but not detected in MWS data). Our MWS CS annotation
increases the number of CS relative toGENCODEby 40% (Fig. 1b). Two-
thirds of the sites not found in GENCODE were detected in fewer than
10 cell types, suggesting that their absence in current annotationsmay
indeed be attributable to their cell type-specific expression patterns
(Fig. S1a). MWS-only CS were derived from tissues that span all
developmental stages, including embryo, fetal, neonatal, and adult
tissues. The largest fractions ofMWS-onlyCSwere obtained fromadult
tissues, such as omentum, pleura, and testis (Fig. S1b, c).

We assessed the quality of theMWS-only CS, by analyzing binding
sites of the CPA machinery. Functional CS typically contain a PAS, an
upstream cleavage factor (CF) I binding site and a downstream CFII
binding site3. We also calculated APARENT2 scores which infer clea-
vage probability derived from a residual neural network model that
was trained on data from a massively-parallel reporter assay38,39.
Moreover, we analyzed PhastCons DNA sequence conservation sur-
rounding the CS40. We observed that MWS-only CS have slightly
weaker sequence contexts and lower predicted cleavage rates com-
pared to common CS, but they show similar levels of sequence con-
servation (Fig. 1c–e, Fig. S1d–f) suggesting that they are proper, but
weaker CS.

Next, we compared our MWS CS annotation with existing data-
bases for individual genes. We found that the locations of both

common and MWS-only CS strongly agree with the CS locations in
PolyA_DB V3.2 and PolyASite 2.0 (Fig. 1f–h, Fig. S2a)34,35. In contrast,
GENCODE annotations areoften incomplete and lackCS located closer
to the stop codon, also called proximal CS (Fig. 1f, Fig. S2b).Most of the
MWS-only CS were obtained from cell types that are absent in existing
CS databases, as illustrated for human ROCK1 (Fig. 1f). Although the
ROCK1 gene is expressed in 90 cell types, the additional distal CS was
only detected in lung alveolar stem cells, lung macrophages, and cord
blood hematopoietic stem cells (HSCs), thus making it a cell type-
restricted site.

Analyzing CS usage acrossmany cell types revealed that not all CS
have similar usage rates, but instead can be broadly categorized into
major andminor sites (Fig. 1g, Fig. S2c). For eachCS,we calculated aCS
usage score, representing the fractionof cell types that use a particular
CS divided by the number of cell types that express the gene (Sup-
plementary Data 1 and 2). We observed that nearly half of all CS are
minor sites as they are used in less than 10% of cell types that express
the corresponding gene (Fig. 1g, Fig. S2c). For 2674genes, weobserved
that the most distal CS annotated in GENCODE are minor sites (Fig. 1f,
Fig. S2b), indicating that many annotated 3′UTRs in GENCODE are
misleadingly long. Importantly our analysis revealed that most
expressed mRNAs have only one or two major 3′ ends. This is in con-
trast to the CS annotations in current CS databases that suggest that
most genes contain more than five different 3′ ends (Fig. 1h, Fig. S2d).

scUTRquant uses a truncated UTRome for fast and accurate
gene and 3′UTR expression quantification
With this CS atlas in hand, we set out to develop a computational
pipeline for gene and 3′UTR isoform quantification from raw scRNA-
seq data. Our comprehensive reference CS atlas circumvents the need
for de novo peak calling and its reliance on computationally intensive
read mapping to a reference genome. Instead, we built a pipeline
around the kallisto-bustools41 workflow and implemented calibrations
for resolving 3′ end isoforms. As reads mapping to different locations
within 3′UTRs usually lack splice junctions, they cannot always be
assigned unambiguously to different transcript isoforms. Therefore,
we generated a truncated UTRome for pseudoalignment of 3′ end
sequencing data, similar to Diag et al. 42 (Fig. 1b). We determined the
cut-off for the truncation empirically and observed thatmore than95%
of 3′ end reads of tested reference genes map within 500 nucleotides
(nt) upstream of CS (Fig. S3a). For closer spaced CS, we performed
simulations to determine error rates for isoform quantification as a
function of CS distance43. We observed that CS within 200 nt of each
other could not be reliably quantified (Fig. S3b). Therefore, we merge
their counts and assign them to the distal CS. We call this pipeline
scUTRquant, which is available on our GitHub repository (https://
github.com/Mayrlab/scUTRquant).

We tested the consistency of gene counts obtained from the
truncatedUTRomewith standardprocessing, on several 10xGenomics
scRNA-seq datasets44. Values from scUTRquant and Cell Ranger
showed nearly perfect correlations, as evidenced by Spearman’s rank
correlation coefficients (ρ) exceeding 0.99 (Fig. S3c) for UMI counts
per cell, and 0.92 for UMI counts per gene (Fig. 2a). Moreover, Louvain
clustering results based on gene counts were similar (Fig. S3d, e).
These results demonstrate that gene counts obtained from scUTR-
quant are consistent with the current gold standard analysis tool.

Next, we validated scUTRquant-derived 3′UTR isoform counts by
comparing with values generated by bulk 3′ end sequencing methods.
In FACS-sorted HSCs, we observed a strong correlation between
scUTRquant values and bulk 3′-seq data (Fig. 2b, Spearman’s
ρ = 0.86)45–47. For embryonic stem cells (ESCs), the correlation was less
strong (Fig. S3f, Spearman’s ρ =0.70), which may be caused by dif-
ferent cultivation conditions48–51. Nevertheless, we still consider the
level of correlation between the current gold standard method and
scUTRquant transcript counts as excellent, considering that the
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procedures were performed by different laboratories using vastly
different methods.

Next, we assessed the reproducibility of 3′UTR isoform counts
across biological replicates for both scRNA-seq and bulk 3′ end
sequencing. We found that scRNA-seq samples exhibited a sub-
stantially stronger correlation than bulk 3′ end sequencing replicates
(Fig. 2c, d, Fig. S3g, h)45–51. Importantly, scRNA-seq-derived biological

replicates were highly consistent, even when they were sequenced by
different laboratories (Fig. 2d, Fig. S3h)46,47,50,51. We investigated
potential reasons for the better reproducibility. As increased read
depth or removal of PCR duplicates were not the cause, we speculate
that higher data reproducibility in scRNA-seq may be due to standar-
dization and automation of library preparation workflows. Together,
these results reveal a better accuracy and substantially higher
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precision of 3′UTR isoform quantification from scRNA-seq data, sug-
gesting that this method should become the new standard.

scUTRquant and scUTRboot provide a workflow for 3′UTR ana-
lysis from scRNA-seq data
We conceived scUTRquant as part of a broader workflow for analyzing
3′UTR isoforms from scRNA-seq data (Fig. 3a). scUTRquant takes as
input either raw scRNA-seq data (in FASTQ format) or output from
other pipelines (in BAM format), together with a kallisto index from a
truncated CS annotation file, called a UTRome. The comprehensive
UTRomes for human and mouse are included as default options,
comprising CS annotations for both intronic and last exon isoforms of
all protein-coding genes. However, to provide flexibility for use with
other organisms, we developed the Bioconductor package ‘txcutr’52

that can generate compatible indexes given any GFF or GTF tran-
scriptome annotation (Methods). The scUTRquant pipeline outputs
gene counts, 3′UTR isoform counts, or both, as well as quality control
reports for all samples. Countmatrices are formatted as Bioconductor
‘SingleCellExperiment’ objects that can be readily used for other
scRNA-seq analysis applications. Moreover, previously established cell
type annotations can be provided as input and scUTRquant will attach
these as column data.

For identification of statistically significant changes in 3′UTR iso-
forms, we implemented a companion R package, called scUTRboot53

(Methods). It provides a flexible set of non-parametric tests for chan-
ges in APA or IPA, and directional 3′UTR changes (shortening or
lengthening).

Classification of genes into single- and multi-UTR genes
Next, we used our scUTRquant pipeline to gain insights into broader
patterns and characteristics of mRNA 3′UTR expression, from

scRNA-seq data. We analyzed single- or multi-UTR genes across 355
unique human cell types from the Tabula Sapiens dataset54. We
classified a gene as multi-UTR based on the presence of at least two
CS in the last exon, resulting in 3′UTR isoforms with relative
expression of at least 10% of all 3′UTR counts in at least one
cell type. Of 16,185 detected protein coding genes, 8056 expressed
a single 3′UTR isoform, while 8129 genes were classified as multi-
UTR genes, corresponding to 50% of human genes (Fig. S4a and
Supplementary Data 3). Independently of single- or multi-UTR
genes, we identified 4113 (25%) genes that generate IPA isoforms,
thus changing the encoded protein (Fig. S4b and Supplemen-
tary Data 3).

Similarly, we processed scRNA-seq datasets comprising 119
mouse cell types obtained from Tabula Muris, brain, ESCs, and bone
marrow46,47,50,55,56. Among the 16,195 expressed protein-coding
genes, we classified 6766 (42%) as multi-UTR genes and we identi-
fied 1869 (12%) genes that generate IPA isoforms (Fig. S4c, d and
Supplementary Data 4). Across mouse and human datasets, we
observed that the majority of genes that are expressed in few cell
types only generate one 3′UTR isoform, whereas most genes with
broad expression patterns are classified as multi-UTR genes. Inter-
estingly, true ubiquitously expressed genes (detected in more than
88% of cell types) are also more likely classified as single-UTR genes
(Fig. S4e, f).

Among all genes classified as multi-UTR genes, we find that a
fifth of them expressmore than one 3′UTR isoform at a rate of 10% or
higher in only a few cell types (Fig. S4g–j). This suggests that someCS
may predominantly produce lowly expressed isoforms. Moreover,
we find that minor CS isoforms usually contribute only a small frac-
tion of a gene’s total expression across all tissue samples (6% and 4%
in human and mouse, respectively). In contrast, major CS isoforms

Fig. 1 | Mapping and characterization of mRNA 3′ end CS in 206 primary
cell types. a Read distribution at mRNA 3′ end CS from 10x Genomics compared
with MWS data. Shown is the terminal exon of the mouse Vamp2 gene. nts,
nucleotides. b Schematic of CS annotation from MWS data and generation of a
truncatedUTRome for downstreamgene and 3′UTR isoformquantification. cMotif
distribution surrounding human CS (position 0). PAS (AWTAAA) in [−50,0], CFI
binding site (TGTA) in [−100,0], CFII binding site (TKTKTK) in [0,50] for the indi-
cated annotation categories. d Calculated APARENT2 cleavage probabilities for all
human CS in a 30-nt window stratified by annotation category as shown in (b). Box
shows interquartile range (IQR) with median and whiskers 1.5*IQR. e Mean

PhastCons score of 30 genomes in a 100-nt window centered on human CS, but
excluding coding sequences. Box shows IQR with median and whiskers 1.5*IQR.
f GENCODE transcript annotations depicting the last exons of the human NUDT21,
PCF11, and ROCK1 genes. Shown are chromosome coordinates (hg38), CS from
existing PAS databases and our MWS CS annotation, together with APARENT2
cleavage probability scores and CS usage scores. Major CS are highlighted by the
gray boxes. g CS usage score distribution for human CS that were identified by
MWS. h Numbers of major MWS CS per gene compared to CS counts from two
other databases. Shown are CS in all human protein coding genes.
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and those originating from common CS had the highest relative
expression levels (Fig. S4k, l). Importantly, the majority of multi-
UTR genes, 60% in human and 52% in mouse, switch between dif-
ferent dominant isoforms in at least one of the analyzed cell types
(Fig. 3b), illustrating the highly dynamic expression pattern of 3′UTR
isoforms.

Coordinated 3′UTR length changes during differentiation
Next, we used the scUTRquant pipeline to re-analyze a published bone
marrow dataset with the aim of identifying cell-type specific differ-
ences in 3′UTR length during red blood cell (Erythroblasts, Ery) dif-
ferentiation from HSCs46,47. To classify 3′UTR changes into shortening
or lengthening, we used a weighted UTR expression index (WUI)57. For
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genes with two or more 3′UTRs, the isoform expression ratio is
weighted based on the order of occurrence, with the shortest and
longest isoforms being assigned weights of 0 and 1, respectively
(Fig. S5a). The higher the WUI value of a gene, the more of its
expression is derived from long 3′UTRs. For example, for genes with
two 3′UTRs, theWUI represents the fraction of UMI counts thatmap to
the longest 3′UTR isoform.

Along the Ery differentiation trajectory, we identified 1311 genes
with differential gene expression (DGE) using a minimum fold-change
of 1.5 as well as 1637 genes with differential 3′UTR length (DUL), con-
sidering WUI changes of at least 0.1 (Fig. 3c–f). Along the Ery differ-
entiation trajectory, both DGE and DUL changes were gradual and
coordinated, and they affected similar numbers of genes.

Gene expression and 3′UTR length represent independent axes
of gene regulation
To examine if changes in gene expression and 3′UTR length affect the
same genes, we assessed pair-wise comparisons of HSC and Ery and
identified 876 DGE and 873 DUL changes between the two cell types
(Fig. S5b). Only 103 genes simultaneously changed both gene expres-
sion and 3′UTR length, indicating that, during differentiation, the
majority of genes were affected by only one of these regulatory pro-
cesses (Fig. 3g).

To examine the relationship between changes in gene expression
and 3′UTR length more broadly, we determined DGE and DUL in an
additional 16 differentiation and cell type sample pairs, including ESC,
hematopoietic and neuronal cell types. In most pairwise comparisons,
we observed similar numbers of gene expression and 3′UTR length
changes (Fig. 3g). Importantly, the genes that changed their mRNA
abundance or their 3′UTR length had little overlap, which ranged from
0–7.4%, considering both types of changes (Fig. 3g). The degree of
overlap was consistent with statistical independence in 14/17 sample
pairs (Supplementary Data 5). The overlap between DGE and DUL was
still minimal, even when we lowered the cutoff for the expression fold
change to 1.25 (Fig. S5c, Supplementary Data 5). To further exclude a
bias caused by data thresholding, we calculated Pearson correlation
coefficients across all pairwise comparisons. The average correlation
coefficients were estimated to be less than 0.1, and 3/17 comparisons
yielded no significant correlation between the gene expression and 3′
UTR length variable (Fig. S5d, Supplementary Data 5). These data
demonstrate that for most genes, expression and 3′UTR length chan-
ges indeed represent two independent axes of gene regulation (Sup-
plementary Data 5).

The MWS CS atlas increases detection of differential 3′UTR
length by 40%
To investigate whether the MWS CS annotation can resolve more dif-
ferential 3′UTR events, we calculated the number of DUL changes
when using GENCODE annotations compared with using our UTRome.

When using the MWS CS annotation, we were able to test 20%-80%
(median 70%)moremulti-UTR genes and detected 110%-220% (median
150%) more differential 3′UTR events (Fig. S5e). When normalizing for
the number of expressed multi-UTR genes that were analyzed, we still
observed a median 40% higher fraction of genes with differential 3′
UTR events compared to using GENCODE annotations only (Fig. 3h).
This shows that our more comprehensive CS annotation substantially
increases the number of genes with detectable and significant changes
in 3′UTR expression across diverse cell types.

3′UTR analysis of a Perturb-seq dataset identifies previously
unknown regulators of APA
We anticipate that the most common application for scUTRquant will
be the quantification of 3′UTR isoforms across cell types. To demon-
strate additional uses, we applied scUTRquant to a Perturb-seq dataset
containing 2134 knockdown experiments for essential genes, to iden-
tify so far unknown regulators of APA58. To validate this approach, we
plotted global APA and IPA changes after knockdown of known reg-
ulators. The scUTRquant analysis recapitulated previously published
results, namely that knockdown of core CPA factors causes overall 3′
UTR lengthening, whereas knockdown of CFI strongly induces 3′UTR
shortening (Fig. S6a–h)33,59,60. Knockdown of the PAF complex also
increased IPA, which is consistent with its known role as positive reg-
ulator of transcription elongation (Fig. S5a–h)1. The effect of each
perturbation on global 3′UTR shortening or lengthening is reported in
Supplementary Data 6.

To identify additional APA regulators, we calculated a z-scaled
difference inWUI (dWUI) between each perturbation and the group of
97 non-targeting controls, followed by clustering on the perturbations
and the response genes (Fig. 4a). We identified 18 perturbation clus-
ters, which contain groups of factors, thatwhen knocked down inK562
cells, caused similar patterns of 3′UTR shortening or lengthening in
specific groups of response genes (Fig. 4a, b, Supplementary
Data 7 and 8). Among the perturbation clusters, we identified several
known APA regulators, including members of the CPA machinery as
well as splicing, nuclear export, and transcription elongation factors.
We also observed several clusters that contain members of large pro-
tein complexes, includingCCT, nuclear exosome, proteasome, and the
ribosome (Fig. 4a, b).

When performing gene ontology analysis with the set of 836 APA
regulator genes compared with all analyzed 2057 essential genes, we
found that “RNA binding” (GO:0003723) was the top-ranked term
(1.87 × 10−28 FDR-corrected p-value). This result indicates that a large
fraction of proteins encoded by the APA regulators can directly
interact with mRNA. In contrast, we observed a significant de-
enrichment of terms related to intracellular transport, DNA binding
and actin binding (Supplementary Data 7). This suggests that knock-
down experiments of essential genes related to these important
functions do not elicit specific APA pattern changes. Taken together,

Fig. 3 | scUTRquant analysis of diverse cell types demonstrates that changes in
gene expression and 3′UTR length are independent gene regulatory events.
a scUTRquant pipeline schematic. Inputs are scRNA-seq raw data and a truncated
CS annotation file. The txcutr tool generates truncated UTRomes for any genome.
Outputs are quality control parameters and count matrices for gene and 3′UTR
expression. The 3′UTR count output can be used as input for scUTRboot to identify
significant differences across known cell types. b Fraction of all multi-UTR genes
with dominant isoform switch in at least one cell type across 234 human and 82
mouse cell types. cHeatmap showingDGE for single- andmulti-UTRgenes between
mouse HSC and Ery. DGE was tested with Welch t-test ( | FC | > 1.5, q-value < 0.05),
with 1059 genes increasing and 252 genes decreasing expression between Ery and
HSC. HSC, hematopoietic stem cell, Prog1, progenitor cell type 1, Prog2, progenitor
cell type 2, MEP, myeloid-erythroid progenitor, ProE, pro-erythroblast, Baso1,
basophilic erythroblast 1, Baso2, basophilic erythroblast 2, Ery, polychromatic
erythroblast. d As in (c), but shown is DUL for multi-UTR genes, calculated with

scUTRboot’s WUI bootstrap test (difference in WUI >0.10, q-value <0.05). Across
the differentiation trajectory, 3′UTR lengthening and shortening is observed in 362
and 1275 genes, respectively. e Example gene (mouse Rac1) with significant DUL,
but not significant DGE. Box shows median and IQR; whiskers are 95% confidence
intervals for TPM (left) and WUI (right). Numbers of cells expressing the gene are
indicated. f As in (e), but example gene (mouse Pim1) with significant DGE, but not
significant DUL. g, As in (c) and (d), but pair-wise cell type comparisons were
performed. Shown is significant DGE of single- andmulti-UTRgenes. Formulti-UTR
genes, DUL only or DUL and DGE is also shown. MEF, mouse embryonic fibroblast;
ODC, oligodendrocyte; MG, microglia; OPC, oligodendrocyte precursor; epi, epi-
thelial cell; mes, mesenchymal cell; imm, immature; lum, luminal cell; mamm,
mammary; neuroendo, neuroendocrine. h As in (g), but the fraction of DUL genes
relative to the number of expressed multi-UTR genes is shown, when using two
different CS annotations as input for scUTRquant.
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despite originating from the same gene, steady-state expression reg-
ulation of 3′UTR isoforms can occur at various processing stages,
including through posttranscriptional regulation.

To assess if the dWUI changes observed in each perturbation
cluster are reproducible, we analyzed the 3′UTR isoformchanges upon
knockdown of the same factors in a different cell type (RPE1 cells)58.
For all 18 clusters, we observed significant positive correlations
between the cluster-average z-scaled dWUIs and the z-scaled dWUIs of
the replicating perturbations, showing that the 3′UTR isoform changes
correlated significantly (Fig. S6i). These results validate our experi-
mental approach and indicate that the identified APA regulators
induced similar 3′UTR isoform changes in two different cell systems.

As the majority of identified APA regulators were previously
reported to be involved in gene expression regulation58, our data
suggests that gene and 3′UTR isoform expression are controlled by a
shared set of factors (Fig. 4c). To identify whether specific complexes
have a bias towards gene or 3′UTR regulation, we intersected DGE and
DUL for each perturbation cluster. Whereas perturbing the core CPA
machinery mostly affected gene expression, CFI knockdown was
biased towards 3′UTR regulation (Fig. 4c). Surprisingly, single-UTR
genes were not enriched among DGE events, indicating that the gene
class alone does not predict the preferred mode of gene regulation
(Fig. S6j). These results further suggest that multi-UTR genes can
change either their expression or their 3′UTR length depending on the
context.

Reduction of ribosomal proteins causes widespread APA
changes
To obtain deeper insights into APA regulation, we divided the changes
induced by each perturbation cluster into 3′UTR shortening or
lengthening (Fig. 5a and Supplementary Data 8). The strongest APA
regulatorwas CFI,whose knockdownnearly exclusively induced 3′UTR
shortening, as was reported previously for other contexts33,59,60. Per-
turbation of mRNA export factors also predominantly induced 3′UTR
shortening (Fig. 5a), indicating that the presence of CFI or export
factors promotes full-length mRNA isoform expression. In addition to
CFI, perturbationof splicing factors caused the largest numbersofAPA
changes (Fig. 5a). This was followed by perturbation clusters that
contain general transcription factors, translation initiation factors, and
the ribosome (Fig. 5a). Although inhibition of translation is known to
be associated with mRNA decay61, it was surprising to find that inhi-
bition of factors that target the mRNA region common to 3′UTR iso-
forms can differentially affect their expression. Together, we found
that ~64% of analyzed multi-UTR genes (2032 genes) exhibited a sig-
nificant DUL change in at least one cluster condition. In 522 genes, we
recorded a switch of the dominantly expressed isoform, with some
clusters causing more switching events than others (Fig. S7a).

Next, we characterized the extent of overlap in target genes that
are regulated in the same or opposite direction across perturbation
clusters (Fig. 5b).As expected, perturbationclusters that containgenes
with related molecular functions showed the strongest overlap. For
example, all four clusters with genes related to ribosome function
induced 3′UTR shortening (or lengthening) of common target gene
sets. The two splicing clusters also affected similar genes. Interestingly,
we observed that the targets of CFI and mRNA export factors were
highly overlapping (Fig. 5b), which suggests that these factors may be
part of a common pathway. Moreover, whereas perturbation of spli-
cing, transcription, and CPA factors induced 3′UTR lengthening of
similar genes (Fig. 5b), perturbation of the ribosome caused 3′UTR
shortening of this gene set (Fig. 5c).

Most APA changes affect the shorter 3′UTR isoform
APA changes are commonly described as 3′UTR shortening or
lengthening, but these patterns arise through various types of isoform
changes (Fig. 5d). 3′UTR shortening can occur through exclusive

upregulation of the shorter isoform, exclusive downregulation of the
longer isoformor changes that affect both isoforms (Fig. 5d). Across all
changes that affect genes with two 3′UTR isoforms, we observed that
balanced changes, where both isoforms change in opposite directions,
are not the dominantmode of regulation (Fig. 5d). Balanced regulation
events occur most frequently in clusters likely involved in nuclear
mRNA processing (Fig. S7b). Most often, the shorter 3′UTR isoform
changes abundance (Fig. 5d). Interestingly, genes thatwere affectedby
many perturbation clusters had significantly weaker proximal CS
(Fig. S7c–e). Taken together, these results suggest that isoform-
specific 3′UTR transcript regulation is very common and that proximal
CS are most important for dynamic regulation.

Gene features of the coding sequence are frequently associated
with APA
To better understand why specific groups of response genes are
affected by particular perturbation clusters, we identified gene and
mRNA features that correlate with 3′UTR changes, stratified by each
perturbation cluster (Fig. 5e, Fig. S8). For example, a high percentage
of sub-optimal codons promoted 3′UTR shortening in most pertur-
bations (Fig. 5e, Fig. S8). In addition to codon optimality, we identified
several additional features that are intrinsic to the gene or mRNA
region common to both 3′UTR isoforms. These features include
maximum intron length and coding region length (Fig. 5e, Fig. S8 and
Supplementary Data 9).

We further observed that stronger distal PAS scores are asso-
ciated with 3′UTR shortening in several perturbation clusters (Fig. 5e,
Fig. S8). This result is not intuitive at first glance but may be explained
by the fact that CS with the highest PAS quality metrics often employ
auxiliary mechanisms to promote cleavage. For example, high-scoring
PAS sites usually harbor NUDT21 binding sites, which allow binding of
the CFIm complex, thus strongly enhancing pre-mRNA cleavage26.
Hence, the knockdown of CFIm components (cluster 1) preferentially
causes shortening in genes where the distal sites have NUDT21 binding
sites, and these sites usually have high PAS scores. Similarly, the
sequence context surrounding the CS could further improve isoform
expression by coupling 3′ end cleavage and mRNA export62,63. Since
long isoforms are more dependent on dedicated export pathways, the
depletion of export factors may lead to preferential shortening in
genes that usually employ these mechanisms.

Steady-state 3′UTR isoform expression levels are controlled by
both mRNA production and degradation. We observed a significant
correlation between estimated isoform half-life and isoform expres-
sion changes across many perturbation clusters, especially among
those that contain proteins primarily involved in transcriptional pro-
cesses (Fig. 5e, Fig. S8). Isoform half-life correlates significantly with
perturbation clusters 1, 2, 11-13, and 15-18, which all contain factors
involved in transcriptionandmRNAprocessing, suggesting that a large
part of mRNA degradation occurs co-transcriptionally and during
mRNA maturation/export64,65. These results reveal that mRNA pro-
duction and degradation are linked and cannot be cleanly separated.

Discussion
Our study presents a comprehensive annotation of human andmouse
mRNA 3′ end CS using data from hundreds of primary cell types that
span all major organs and developmental stages36,37. We performed
rigorous quality control and filtering for internal priming and show
that MWS CS are of high quality. By integrating our MWS-derived CS
with available GENCODE annotations, we provide the most compre-
hensive CS catalog for human and mouse to date, extending current
GENCODE CS annotations by 40%.

In addition to expanding CS annotations, our large-scale analysis
on cell type-specific CS usage allowed us to categorize CS into major
and minor sites. This revealed that most genes only have one or two
major CS. As their locations within the mRNA are identical across cell
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types, our data suggests that CS locations are intrinsic gene features.
With these data, we would argue that the locations of major CS should
be used to re-define 3′UTR boundaries in widely used transcriptome
annotations. Within recent years, GENCODE and RefSeq databases
have accumulated 3′UTR annotations and have included very long 3′
UTRs for many genes in human andmouse (Fig. 1f, Fig. S2b). Although
these CS may be used in a few rare cell types, they represent minor CS
that should not be used for the definition of 3′UTR length under most
conditions. Our categorized CS annotation clarifies transcriptome-

wide mRNA 3′ end boundaries and increases our understanding of cell
type-specific differences in mRNA 3′ ends.

In addition to the CS annotation, we developed an open-source
computational pipeline, that makes it simple to quantify gene and 3′
UTR isoform expression from new or existing scRNA-seq data. By
building on the kallisto-bustoolsworkflow,we provide a fast and direct
means of quantification that is compatiblewithmost 3′-end tag scRNA-
seq libraries. We established optimal parameters for reliable quantifi-
cation and implemented these as default settings. With our pre-
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defined CS annotation, scUTRquant quantifies a consistent set of 3′
UTR isoforms, making it easier to integrate datasets. Coupled with
scUTRboot, significant differences in 3′UTRs across samples are
identified, which facilitates the integration of 3′UTRquantification into
standard scRNA-seq data analysis.

To demonstrate how scUTRquant can be used to gain new bio-
logical insights, we analyzed the global 3′UTR changes in a Perturb-seq
data set that contains over 2000 knockdown experiments58. We
established a comprehensive catalog of 3′UTR regulators that vali-
dated known factors and substantially expanded our knowledge of the
mechanisms of APA regulation. For instance, in addition to factors of
the CPA machinery, we observed that splicing has a substantial and
widespread impact on expression of alternative 3′UTRs. Moreover, we
identified the ribosome and translation initiation as major influencers
of differential 3′UTR expression. While translation has long been
recognized as an important regulator of mRNA decay61, we provide
evidence for translation-dependent differential turnover of mRNAs
with alternative 3′UTRs. This may be surprising as the coding regions
of alternative 3′UTR isoforms are identical. Our data suggest that 3′
UTR-bound RNA-binding proteins communicate with the translation
environment to trigger translation-dependent mRNA decay. This may
allow the ribosome to integrate signals from different parts of the
mRNA, including codon usage from the coding sequence and 3′UTR-
bound RNA-binding proteins.

We further applied the scUTRquant pipeline to 3′UTR analysis
across 474 human and mouse cell types. We found that in 60% of
human genes the dominant isoform switches in at least one cell type
(Fig. 3b). By integrating changes in gene expression and in 3′UTR
length across many cell types, our analysis revealed that mRNA
abundance and 3′UTR length are two independent measures of gene
output (Fig. 3g). Our results confirm previous observations that were
obtained from a limited number of cell types4,6,25–28. Here, we demon-
strate that only approximately 10% of differential 3′UTR events are
associated with changes in gene expression, which indicates that in
most cases, APA is not a mechanism for gene expression regulation.
Importantly, we revealed that only approximately half of all changes in
gene output affect mRNA abundance, whereas the other half affect 3′
UTR length and, therefore, control the presence or absence of reg-
ulatory motifs in mRNAs.

What is the reason whymost significant changes in 3′UTR isoform
expression are not associated with significant gene expression chan-
ges? We observed that the majority of 3′UTR isoform abundance
changes affect the less abundant isoform (Fig. S5f). As a result, even a
two- or three-fold change in isoform abundance does not change
overall gene expression bymore than 1.5-fold. Whereas 3′UTR isoform
changesmaynot alter overallmRNA level of a gene, the 3′UTR changes
still have important consequences for individual isoforms.

Importantly, 3′UTRs are known as major regulators of mRNA
localization23,24, even in non-neuronal cell types and cell lines15,21,66–68. It
was shown recently that mRNA architecture features, including mRNA
and 3′UTR length, correlated strongly with subcytoplasmic mRNA
distribution21. Moreover, 3′UTRs have emerged as important regulators
of mRNA-dependent assembly of proteins complexes13,14,18,19,22. Taken

together, our large-scale analysis revealed that about half of all gene
regulatory events captured in scRNA-seqdatagoundetectedwhenusing
standard gene expression analysis pipelines. Rather than controlling the
abundance of transcripts, these changes may instead predominantly
modulate where in the cytoplasm an mRNA isoform is translated.

Methods
Cell type-specific identification of mRNA 3′ ends from primary
cells using MWS data
CS identification. FASTQ files of MWS data from the Mouse Cell Atlas
v1.136 (GEO:GSE108097) and the Human Cell Landscape37

(GEO:GSE134355) were downloaded and then assembled using PEAR
v0.9.6 with settings ‘-n 75 -p 0.0001’. Cell and UMI barcodes were
extracted from assembled reads and placed into read headers using
umi_tools v1.1.2; remaining poly-T regions at the 5′ end of assembled
reads were trimmed using cutadapt v3.5 with arguments ‘--front = ‘

T{100}’ -g = ‘T{12}’ -n 10 -e 0’, retaining only sequences with minimum
length of 21 nts. Readswere alignedwithHISAT v2.2.1 to themm10 and
hg38 genomes, respectively. Cell type annotations were used to
demultiplex sample-level BAMs to cell-type-level for each dataset. Per
cell type strand-specific coverage at the 5′ ends of aligned reads was
computed using the ‘genomecov -dz −5’ command of BEDTools v2.30.
Per cell type, all entries within 30 nt radius were merged to the local
mode and retained when > 5 reads per million. Cell type coverages per
strand were subsequently summed with GNU′s datamash v1.7, and
then a final pass of merging to the local mode within a radius of 30 nt
was performed to harmonize minor variations in cell-type-level CS
identification. The resulting sites were considered as CS candidates
(mouse: N = 170,617; human: N = 150,191).

CS filtering. Candidate CS were intersected with 40 nt intervals cen-
tered at 3′ ends of GENCODE vM25 and v39 transcripts with positively
identified 3′ ends (excluding tag ‘mRNA_end_NF’), respectively. Inter-
secting sites (mouse: N = 27,872; human: N = 31,026) were classified as
“validated”; non-intersecting sites were subsequently intersected with
40 nt intervals centered at cluster centers in the PolyASite v2.0 Mus
musculus and Homo sapiens atlases using all clusters surpassing a 3
TPM threshold35. Intersecting sites (mouse: N = 30,020; human:
N = 29,897) were classified as “supported”; non-intersecting sites were
filtered through cleanUpdTSeq v1.32 with maximum posterior prob-
ability of 0.0001 of being an internal priming site69. Passing sites
(mouse: N = 22,824; human: N = 18,055) were classified as “likely”. The
union of “supported” and “likely” CS was formed and each site was
annotated according to the GENCODE vM25 and v39 annotations, with
one of the ordered labels: “three_prime_UTR”, “five_prime_UTR”,
“exon”, “intron”, “extended_five_prime_UTR”, “extended_-
three_prime_UTR”, or “intergenic”, where the existing 5′ ends of tran-
scripts were extended 1 kb upstreamand existing 3′ ends of transcripts
were extended 5 kb downstream.

Generation of the MWS CS annotation and transcriptome trunca-
tion. The GENCODE vM25 and v39 annotations were filtered for
protein-coding transcripts with known 3′ ends. CS with a

Fig. 5 | Regulatory logic of 3′UTR changes in 18 perturbation clusters. a Left
panel: Bar plot showing the number of genes with significant 3′UTR shortening
(blue) or lengthening (red) in each perturbation cluster relative to 97 samples
expressing non-targeting guide RNAs. DUL analysis was performed using a two-
sided Mann-Whitney test with a q-value < 0.05. Right panel: Dot plot showing the
averageWUI difference for significant genes in the cluster.bHeatmapdepicting the
probability of significant gene overlap between perturbation clusters with syner-
gistic regulation either in 3′UTR lengthening (upper right, red) or 3′UTR shortening
(lower left, blue), calculated using a one-sided Fisher’s exact test. cAs in (b), but for
antagonistic regulation of gene sets. d Left panel: Schematic diagram showing
potential mechanisms leading to DUL. Regulation can either occur in a transcript-

specific manner (affecting only one of the isoforms) or in a compensatory fashion
(both isoforms change in a coordinated manner). Right panel: The mechanism of
change, categorized as either short UTR (SU)-specific (green), coordinated (gray),
or long UTR (LU)-specific (blue) is shown for the significant genes from (a). Coor-
dinated changewasdefined as a relative shift of expression of at least 50% fromone
to the other isoform. e Gene and mRNA features that are significantly associated
with 3′UTR changes (dWUI) observed in each perturbation cluster. Shown are the
number of significant correlations with q-value < 0.05 for each feature. ARE, AU-
rich element; CDS, coding sequence; SS, splice site. See also Fig. S8 and Supple-
mentary Data 9.
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“three_prime_UTR” label were intersected with these transcripts and
new transcript versions ending at the CS were generated (“upstream”).
All protein-coding transcripts with known 3′ ends were extended by
5 kb downstream, intersected with the “extended_three_prime_UTR”
set of CS, and new transcript versions ending at the CSwere generated
(“downstream”). All transcripts (GENCODE, upstream, downstream)
were truncated to include 500 nts from their 3′ end. Truncated tran-
scripts with fewer than 50 nts difference were reduced to a single
representative copy, with prioritization for downstream sites. The
collection of remaining truncated transcripts was exported to GTF and
the corresponding sequences to FASTA. This expanded the GENCODE
annotations with 19,936 and 22,522 additional 3′UTR isoforms,
respectively. This annotation is called MWS CS annotation. The GTF
and BED files are deposited on figshare (https://figshare.com/s/
0709e2551cc1ee4c4941).

Complete pipelines are deposited at https://github.com/Mayrlab/
hcl-utrome (https://doi.org/10.5281/zenodo.8118411) and https://
github.com/Mayrlab/mca-utrome (https://doi.org/10.5281/zenodo.
8118416).

Characterization of CS in the MWS CS annotation
Sequence motifs surrounding CS. DNA sequence in a window of
1000 nt centered at each CS was extracted. For each motif, the center
positions of all occurrences were determined across all sequences.
Smoothed density is computed with ggplot’s ‘stat_density’, with global
mode scaled to 1.

APARENT2 cleavage probabilities. DNA sequence in a window of 205
nt centered at each CS in the MWS CS annotation was extracted and
used as input to APARENT-ResNet v1.0.239. Cleavage probability for a
site was computed as the sum of probabilities obtained from
APARENT-ResNet in the 30 nt window centered at the CS.

DNA sequence conservation scores. Conservation scores were
extracted in 100 nt windows centered at CS, with annotated coding
sequence regions excluded, using the Bioconductor package ‘Geno-
micScores’ v2.10.0 with databases “phastCons30way.UCSC.hg38” and
“phastCons60way.UCSC.mm10”. Means were computed for each set
of scores from the window.

Comparisons with existing CS databases. When counting the num-
ber of CS per gene we restricted the analysis to protein-coding genes.
When analyzing for consistency with previous annotations, we calcu-
lated the strand-specificdistanceof eachhumanMWSCS to the closest
CS annotated in two other CS databases34,35. For this purpose, we
performed liftover of CS annotated in PolyA_DB v3.2 tomatch the hg38
reference genome. When comparing to the PolyASite 2.0 database, we
consider a MWS CS to have a distance of 0 nt relative to the closest
PolyASite 2.0 CS if it falls within any CS of the annotated CS cluster.
Plots of examplegenes includedonly clusters fromPolyASite 2.0with a
minimum TPM of 1 or relative expression ratio above 0.05. PolyA_DB
v3.2 CS were similarly filtered but using a 1 RPM threshold. GENCODE
(humanv39;mouse vM25)werefiltered to exclude transcripts denoted
with “mRNA_end_NF”.

The CS usage score classifies CS intomajor andminor sites. The CS
usage score is the fraction of cell types that use a CS in the data from
MWS divided by the number of cell types that express the gene. If a CS
is used in <10 cell types where the gene is expressed, it is considered a
minor CS. All CS together with their CS usage scores are reported in
Supplementary Data 1 and 2 (for human and mouse CS annotations).

Definition of scUTRquant parameters
Empirical distributions of 10x Genomics peak width. A set of 56
peaks located at the 3′ ends of transcripts was manually curated by

examining the genomic alignments of 10x Genomics Chromium
v2 samples from the Tabula Muris dataset55 (GEO:GSM3040890-
GSM3040917). Peaks were selected for absence of splice sites, poten-
tial internal priming sites (A-rich regions), and nearby alternative CS in
the immediate 800 nts upstreamof the annotated CS. The coverage of
5′ ends of reads was extracted with the ‘bedtools genomecov −5’
command for each sample from the Tabula Muris dataset and the
distance from the annotated CS of the corresponding transcript was
computed. For each sample, the 95th percentile for distance from the
3′ end across all genes was computed. Additionally, for each gene, the
95th percentile for distance from the 3′ end across all samples was
computed (Fig. S3a). Analysis code is available at https://github.com/
Mayrlab/tmuris-peaks (https://doi.org/10.5281/zenodo.10895191).

Kallisto transcript quantification resolution. To resolve CS nearer
than 500 nt apart we enabled the expectationmaximization algorithm
implemented in kallisto-bustools to proportionally assign ambiguous
reads43. As 3′ end sequencing data violate the assumption of uniformly
distributed reads used in the implementation43, we investigated to
what extent overlapping isoforms might induce quantification errors.
We performed simulations to determine the error-rate as a function of
CS distance.

The sequence of the Ensembl transcript Rac1-201
(ENSMUST00000080537) was used as the basis for a two-isoform
transcript expression simulation. The first simulated isoform (“distal”)
used the annotated 3′ end; the second (“proximal”) was created by
removing specified intervals from the 3′ end. For each round of
simulation, samples of read distances from the 3′ end of each tran-
script were generated according to a discretized gamma distribution
with mean 300 and standard deviation of 100. Reads of 100 nts were
generated using the respective transcript sequences and the randomly
sampled positions. The ‘kallisto quant’ commandwas used to estimate
transcript abundance, using the parameters ‘--single -l1 -s1 --fr-stranded
--pseudobam’ and truncated versions of the transcripts as index.
Relative error for each transcript was computed using estimated and
true abundances. A parameter sweep was performed with all combi-
nations of the followingparameters: (a)CSdistances between [50-700]
with 50 nt steps; (b) truncated transcript lengths [350–600] with 50 nt
steps; (c) proximal counts {50,100}; (d) distal counts {50,100}. Each
parameter combination was simulated for 10 replicates. Final resolu-
tion was selected based onmean relative errors approaching zero. We
concluded that CS within 200 nt of each other cannot be reliably dis-
criminated when quantifying (Fig. S3b), therefore, we configured the
scUTRquant pipeline to merge their counts and assign them to the
distal CS. Analysis code available at https://github.com/Mayrlab/
kallisto-overlap (https://doi.org/10.5281/zenodo.10895237).

Kallisto customization and scUTRquant settings. The ‘kallisto bus’
command of kallisto version 0.46.2 was extended to support strand-
specific pseudoalignment for both FASTQ and BAM input files. It is
available at https://github.com/mfansler/kallisto/releases/tag/v0.46.
2sq (https://doi.org/10.5281/zenodo.10902020). All 10x Genomics 3′
end datasets were pseudoaligned with ‘kallisto bus --fr-stranded’. Cell
barcodes for the corresponding technology version (v2 or v3) were
used as whitelists for the ‘bustools correct’ command. Truncated iso-
forms in the same gene with 3′ ends nearer than 200 nts apart (mouse:
N = 18,057; human: N = 29,574) were merged in the ‘bustools
count’ step.

txcutr generates truncated UTRomes for any genome annota-
tion as input for scUTRquant
Thedefault CS annotation for the scUTRquant pipeline is the humanor
mouse UTRome which contains the MWS CS annotation. Additional
truncated UTRomes for any genome annotation can be created with
the Bioconductor ‘txcutr’ package (https://doi.org/10.18129/B9.bioc.
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txcutr) and used as CS annotation input for scUTRquant. The Bio-
conductor ‘txcutr’ package generates truncated GTF annotations,
FASTA sequences, and merges tables52.

To investigate how many additional differential 3′UTR events can
bedetectedwhenusing themouseMWSCSannotation comparedwith
GENCODE vM25, we used ‘txcutr’ v0.99.0 (equivalent to Bioconductor
version 1.0.0). This index was generated with a 500 nt truncation
length and a merge distance of 200 nts. In brief, the GENCODE vM25
annotation was first pre-filtered with an AWK script to remove any
entries with the ‘mRNA_end_NF’ tag (indicating unvalidated 3′ ends)
and restricted to protein-coding transcripts. The txcutr method
‘truncateTxome’ clipped all transcripts longer than the specified
length, anchored at the 3′ end, intersected the truncated transcripts
with the child exons of that transcript, and then redefined the genomic
range of the gene to the union of all child transcripts. Transcripts that
were identical after truncation were deduplicated to retain only one
representative copy, which was annotated with the transcript ID of the
transcript with lexicographical priority. The resulting TxDb object was
then exported as a GTF and a FASTA file using txcutr’s ‘exportGTF’ and
‘exportFASTA’ methods. Finally, a merge table was generated with
txcutr’s ‘generateMergeTable’ by further truncating transcripts to the
specified merge distance, anchored at the 3′ end, intersecting within
the parent gene, and recording the most downstream transcript with
which each intersects. Additional specification and implementation
details are found in the txcutr documentation. The generation of this
index is reproducible from the Snakemake pipeline available at https://
github.com/Mayrlab/txcutr-db (https://doi.org/10.5281/zenodo.
8118405).

Validation of scUTRquant-derived gene and 3′UTR
isoform counts
CellRanger and scUTRquant UMI count correlations. To test the
accuracy of gene counts obtained from the truncated UTRome, we
compared gene expression values calculated with scUTRquant and
CellRanger on six 10xGenomics 3′ endmousedemonstration datasets,
available as FASTQ files from the 10x Genomics website (‘heart_1k_v2’,
‘heart_1k_v3’, ‘heart_10k_v3’, ‘neuron_1k_v2’, ‘neuron_1k_v3’, and ‘neu-
ron_10k_v3’). They were processed through the scUTRquant pipeline
using the ‘utrome_mm10_v2’ target with default settings. The corre-
sponding filtered HDF5 UMI counts from CellRanger 3.0.0 were also
downloaded and loaded as SingleCellExperiment objects in R44. For
each dataset, only cells (or genes) present in both the CellRanger and
scUTRquant results were plotted and used to compute Spearman
correlations.

Similarly, three 10x Genomics 3′ end human demonstration
datasets (‘pbmc_1k_v2’, ‘pbmc_1k_v3’, and ‘pbmc_10k_v3’) were pro-
cessed through the scUTRquant pipeline using the ‘utrome_hg38_v1’
target with default settings. Comparisons were performed against
CellRanger UMI counts in the same manner as above.

The scripts and input files needed to download and run these
datasets were incorporated into the scUTRquant pipeline as examples
that users can run following the pipeline documentation.

CellRanger and scUTRquant clustering comparisons using
gene counts. For each 10x Genomics dataset, the CellRanger and
scUTRquant counts were filtered to common cells. Clustering was
performed following Amezquita et al.70. In brief, size factors were
computed with the ‘computeSumFactors’ from the ‘scran’ Bio-
conductor package71, and then used to compute normalized log
counts. The top 1000 high-variance genes were used to compute the
first 20 principal components. Louvain clustering was performed on
the cells in this reduced representation. The Adjusted RAND Index
(ARI) between the CellRanger and scUTRquant clusters was computed
using the ‘aricode’ R package.

Comparison of 3′UTR isoform counts obtained by scUTRquant with
bulk 3′ end sequencing methods. For scRNA-seq data, we used
mouse datasets from FACS-sorted HSCs (LSK samples) subsetting to
only include cells given annotations in Wolf et al.,46,47

(GEO:GSM2877127-GSM2877132) and from ESCs50,51

(GEO:GSM3629847, GSM3629848, GSM4694997). The UMI counts
were summarized to TPM per sample by aggregating counts across all
cells in each sample and normalizing to UMIs per million. Bulk 3′-seq
datasets on the same cell types were obtained. For FACS-sorted HSC
samples45 (ArrayExpress, E-MTAB-7391), 3′UTR isoforms were quanti-
fied by pseudoalignment of read 2 using the UTRome annotation and
‘kallisto quant’. For bulk ESC datasets48,49, TPM values and CS locations
were obtained from the PolyASite v2.0 database35 and intersectedwith
the UTRome annotation using a 50 nt interval around cluster centers.
TPM values between the samples were compared and Spearman’s
correlation coefficients were calculated.

Application of scUTRquant to scRNA-seq data from 474 human
and mouse cell types
Classification of single- and multi-UTR genes from 119 mouse
cell types. Samples from Tabula Muris (GEO:GSM3040890-
GSM3040917), ESC (GEO:GSM3629847, GSM3629848), bone marrow
(GEO:GSM2877127-GSM2877132), and brain (GEO:GSM3722100-
GSM3722115) datasets46,47,50,55,56 were quantified for 3′UTR isoform
expression following the default settings of scUTRquant with the
‘utrome_mm10_v2’ target and cells were annotated with published cell
type annotations. Cell type labels for bone marrow cell types were
obtainedby combining publicly available transcriptome andproteome
information for erythroblast differentiation47,72. Cells not previously
annotated in published analyses were excluded.

All datasets were merged into one SingleCellExperiment object
and counts were size-factor normalized using the ‘computeSumFac-
tors’ method from Bioconductor package ‘scran’71. UMI counts were
aggregated by cell type and the percentage of isoform expression per
gene was computed, excluding isoforms whose 3′ ends were located
within a GENCODE-annotated intron of the corresponding gene. For
each gene, the number of isoforms with at least 10% expression in at
least one cell type were counted. Genes with two or more such iso-
forms were classified as multi-UTR genes; otherwise, they were clas-
sified as single-UTR genes. To identify genes that generate intronic
polyadenylation (IPA) isoforms, all mRNA 3′ ends of a transcription
unit were included. IPA isoforms were counted if they contained at
least 10% of reads of a gene in at least one cell type. The data onmouse
single-, multi-UTR, and IPA genes together with the 3′UTR length are
reported in Supplementary Data 4. The Snakemake pipeline for clas-
sification is available at https://github.com/Mayrlab/atlas-mm (https://
doi.org/10.5281/zenodo.10895352).

Classification of single- and multi-UTR genes from 355 human
cell types. 10x Genomics samples from Tabula Sapiens54 were down-
loaded in BAM format and processed similarly to the mouse data, but
using the scUTRquant ‘utrome_hg38_v1’ target. The data on human
single, multi-UTR, and IPA genes together with the 3′UTR length of
each isoform are reported in Supplementary Data 3. The Snakemake
pipeline for classification is available at https://github.com/Mayrlab/
atlas-hs (https://doi.org/10.5281/zenodo.10895337).

Analyzing CS usage as a function of transcript expression. Cell type
samples of human andmousewere subsetted to contain aminimumof
200 cells, resulting in 234 human and 82 mouse samples. Transcripts
were filtered to those where all reads in the quantification window
coud be unambiguously assigned to one CS (no merging) and total
gene expression was > 5 TPM (excluding IPA). Isoforms were grouped
by CS annotation category (common/ MWS-only/ GENCODE-only) or
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CS usage category (major/ minor) as indicated in Supplementary
Data 1 and 2. The isoform expression fractions for each CS transcript
were calculated as TPM of isoform/total TPM of gene and the median
across all cell type samples was plotted.

Analysis of isoform switching. The highest expressed 3′UTR isoform
was identified for each multi-UTR gene with total expression > 5 TPM
(excluding IPA). Only cell types that contained aminimumof 200 cells
were analyzed (234 human and 82 mouse cell types, respectively). A
gene was designated as switching if it had at least one different
dominant isoform in at least one cell type.

Identification of differential 3′UTR isoform expression between
samples using scUTRboot
To identify statistically significant changes among 3′UTR isoforms
across samples, we developed a companion R package, called
‘scUTRboot’53. It provides a flexible set of non-parametric testing
procedures to test for changes in 3′UTR isoform or IPA isoform
expression, directional changes (3′UTR shortening/lengthening) or
focus on ratio changes in specific classes of isoforms. The scUTRbootR
package is deposited at https://github.com/mfansler/scutrboot
(https://doi.org/10.5281/zenodo.8057843).

Two-sample bootstrap test with scUTRboot. scUTRboot implements
two-sample hypothesis testingwith a bootstrap strategy for estimating
p-values. The ‘twoSampleTest’ function implements three general
modes of tests based on the statistic computed across the samples: a
UTR expression Index (UI), a Weighted UTR expression Index (WUI),
and a Wasserstein Distance (WD), also called the Earth Mover′s
Distance.

For the UI statistic, users provide an indicator vector (‘feature-
Index’), indicating a feature such as short 3′UTR isoform (SU), long 3′
UTR isoform (LU), or IPA isoform for each gene. The UI statistic per
gene is computed as the difference in the fraction of relative expres-
sion of this isoform in the gene across the two sets of cells. This
characterizes the difference across sets of cells for a single feature.

TheWUI statistic generalizes the UI statistic for genes with several
isoforms by using a weighted mean of expression ratios across iso-
forms. scUTRboot supports the use of arbitrary weights. Throughout
this work, we use a particular form we call the ‘Weighted UTR Index’,
where the weights correspond to the positional rank of the CS from 5′
to 3′ scaled to the unit interval. That is, the shortest and longest iso-
forms are assigned weights of 0 and 1. An example of this is shown in
Fig. S5a. Concretely, a two-isoformgenewill haveweights {0,1}, a three-
isoform {0, 1/2, 1}, a four-isoform {0, 1/3, 2/3, 1}, and so forth.

Alternatively, users interested in statistical tests of average 3′UTR
length could input the length of each isoform as the weight (not
reported).

TheWD statistic per gene is computed as half the total difference
in all isoform expression ratios in the gene across the two sets of cells.
When a gene has exactly two isoforms, the UI and WD statistics are
identical in magnitude. For genes with several isoforms, the WD sta-
tistic incorporates changes in any isoform.

For each of these modes, p-values per gene are estimated using
bootstrap resampling under the null hypothesis that the two sets of
cells were sampled from identically distributed populations. Specifi-
cally, the union of the two sets of cells is used to sample with repla-
cement sets of cells of the same size as the original samples. For each
bootstrap sample, the statistic of interest is computed per gene and
the p-value is estimated as the fraction of bootstrap statistics as
extreme or greater than the observed statistic, with a pseudocount of 1
included to provide a conservative upper bound for rare events. All
tests are two-sided.

scUTRboot includes a ‘minCellsPerGene’ option to exclude genes
that are not sufficiently coexpressed in the samples to compare with

confidence. When this is set, bootstrap samples that do not satisfy this
minimum are discarded, and the p-value will only be computed from
the retained samples. The number of retained bootstraps samples
used to estimate the p-value is included in the test results.

Bootstrap mean TPM and WUI estimates. For each cell type, 2000
bootstrap samples were generated by resampling with replacement
from the pool of all cellswith that cell type. For each bootstrap sample,
two statistics were computed: a TPM value and WUI. The TPM value
was computed by averaging the TPM value from across all cells in the
sample, by gene.

The WUI value was computed by first summing the transcript
counts across cells to pseudobulk and then computing the WUI per
gene. Percentile statistics were then calculated for these values across
the bootstrap samples to determine the confidence interval on the
mean TPMs and mean WUIs.

Pairwise two-sample bootstrap tests on the differentiation trajec-
tory from HSC to Ery. scUTRboot was used to perform two-sample
WUI tests for all non-IPA isoforms detected in at least one cell type in
the differentiation trajectory46,47. Tests were performed on all pairs of
cell types (8 cell types, 28 unique pairs) using 10,000 bootstrap sam-
ples on all co-expressed genes (minimum 50 cells expressing each
gene) and corrected for multiple testing using Benjamini-Hochberg
procedure. Genes were classified as significant if |dWUI | > 0.10 and q-
value < 0.05.

Comparing differential gene expression with differential 3′UTR
isoform length. Differential gene expression was performed on pairs
of cell types following Amezquita et al.,70. In brief, gene-level UMI
counts were log-normalized using size factors and a pseudocount of 1.
Differential expression was tested with a Welch t-test73. All p-values
were corrected using the Benjamini-Hochberg procedure and genes
were classified as significant if fold-changes exceeded 1.5 in either
direction and q-value < 0.05.

To identify genes with differential 3′UTR isoform expression, two-
sample WUI tests were performed on all cell type pairs (Fig. 3g) using
scUTRboot on size-factor normalized UMI counts. All p-values were
corrected using the Benjamini-Hochberg procedure and genes were
classified as significant if |dWUI | > 0.10 and q-value < 0.05.

To test if gene expression and 3′UTR isoform length are inde-
pendent, for each comparison, all coexpressed multi-UTR genes were
classified as either non-significant, DGE only, DUL only, or both. A Chi-
Square test for independence was performed on the resulting
tabulation.

For each cell type pair, the fraction of genes where lower-
abundance 3′UTR isoformshad larger fold-changeswas computed. For
each significant gene and cell type pair, the isoform with the largest
absolute log-fold-change was identified in the cell type of lower
expression. Then, we testedwhether the isoformhad lower abundance
than the alternative isoform in that cell type. Only two-UTR geneswere
considered.

Application of scUTRquant to a scRNA-seq dataset with 2134
perturbations
Processing of the Perturb-seq data set. BAM files for the K562 6-day
and RPE1 7-day essential gene Perturb-seq experiments58

(SRA:SRR19653800-SRR19653847; SRA:SRR19653359-SRR19653414)
were processed with scUTRquant using ‘utrome_hg38_v1’ index con-
figured for 10x Chromium 3′ end v3. Cell annotations were extracted
from the deposited H5AD objects (“K562_essential_raw_single-
cell_01.h5ad”; “rpe1 _raw_singlecell_01.h5ad”) and provided to scUTR-
quant, which transferred the perturbation annotations required for
downstream analysis (https://doi.org/10.25452/figshare.plus.
20029387.v1). Cells lacking a published annotation were omitted
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from further analysis. Cells were summarized to pseudobulk by
aggregating counts from cells with identical perturbations.

For theK562data,we identified all isoforms in terminal exonswith
a mean of at least 10% of the gene expression within the 97 non-
targeting perturbations, and classified genes with at least two such
isoforms as multi-UTR genes in this cell line. This procedure yielded
4780 multi-UTR genes comprised of 11,129 isoforms in active use. The
twohighest expressed isoforms in the terminal exonof each genewere
designated short UTR (SU) and long UTR (LU) with respect to their 5′
−3′ order. TPM values were calculated for all genes and all SU and LU
isoforms. WUI values were computed for each multi-UTR gene in each
perturbation. The rate of IPA isoform expression was computed for all
genes with expressed IPA isoforms for each perturbation.

For the RPE1 data, we used the isoforms in terminals exons iden-
tified from the K562 data to compute WUI values to maintain con-
sistency of isoform weightings when comparing across datasets.
Except for the “Cluster validation with RPE1 perturbations” section, all
subsequent sections pertain only to the K562 data.

The code for processing and analysis of the Perturb-seq data set is
available at https://github.com/Mayrlab/gwps-sq (https://doi.org/10.
5281/zenodo.10895730).

Calculation of average dWUI and dIPA values. To calculate the
global difference in 3′UTR isoform expression between each pertur-
bation and the 97 samples containing non-targeting guide RNAs, the
average difference in WUI (dWUI) was calculated. To do so, all multi-
UTR genes with a mean expression of > 5 TPM and mean WUI-values
between 0.1 and 0.9 in the samples containing the 97 non-targeting
guide RNAs were analyzed and the difference in the mean WUI values
between the perturbation and the control samples was calculated.
Similarly, a difference in IPA (dIPA) values was calculated from IPA
geneswith amean expression of > 5TPMandmean IPA-values between
0.1 and 0.9 in cells receiving the non-targeting sgRNAs cells. For each
perturbation, all average dWUI and dIPA values are reported in Sup-
plementary Data 6. These statistics average across all expressedmulti-
UTR or IPA genes for each perturbation. As a global average, it is most
sensitive to unidirectional changes in WUI and IPA. Changes in oppo-
site directions will cancel out.

Clustering. For each multi-UTR gene, we computed a baseline mean
WUI value using the 97 non-targeting perturbations, weighted by the
number of cells in each perturbation. We excluded genes that had
more than 20% of cells non-detecting or a mean gene TPM lower than
20 in the non-targeting perturbations, leaving 1775 genes. For all per-
turbations with at least 30 cells (N = 2077), a dWUI was computed as a
deviation from the baseline mean WUI. Missing WUI values in a target
gene/perturbation pair were imputed as dWUI=0 (identical to base-
line). A z-scaleddWUI (zdWUI)wascomputedby scaling the variance in
dWUI across all targets to 1 without centering since the center is
already determined by the non-targeting perturbations. Three rounds
of clustering were then performed using these zdWUI values.

In the first round of clustering, we identified and removed sets of
perturbations that showed no pattern of regulation. We first reduced
the space from 1775 response genes to 30 principal components.
Then, clustering was performed on the perturbations using walktrap
community detection on a k = 5 nearest neighbors graph. We exam-
ined the heatmaps of zdWUI of each perturbation cluster and
observed that the two largest clusters had no visible patterns.
Therefore, we removed all the 1241 perturbations in these clusters
from further analysis.

For the second round of clustering, we aimed to identify and
remove sets of genes that showed no pattern of regulation. Dimen-
sionality reduction and clustering were performed similarly to before,
but now on the perturbation space and with k = 4. Three large clusters
of genes showed no visual pattern of regulation, and their 892 genes

were removed. The third round clustered the reduced set of 836 per-
turbations on the reduced set of 883 target genes. This final procedure
used k = 3 and identified 18 perturbation clusters and 17 target gene
clusters.

Gene ontology (GO) analysis of clustered perturbations. The
g:Profiler web tool (version e109_eg56_p17_773ec798) was used to
identify enriched and depleted GO terms among the 836 gene per-
turbations that are cluster members relative to the background of all
2057 essential genes surveyed in the K562 dataset.

Identification of protein complexes and pathways within pertur-
bation clusters. To identify protein complexes or pathways within
each of the 18 perturbation clusters, we generated a protein-protein
interaction network based on the genes assigned to each perturba-
tion cluster. Data from the String database v11.574 were accessed
through the StringApp v2.0.1 and only high-confidence physical
interactions (confidence score > 0.8) were included for the network
creation. Figure 4b was generated using Cytoscape v3.9.1, where
average dWUI values of each perturbation were mapped to node
colors and nodes were grouped by perturbation cluster. The dWUI
values for each gene in each perturbation cluster are reported in
Supplementary Data 7.

Differential gene expression and differential 3′UTR length within
each perturbation cluster. For dWUI testing, we required either the
set of non-targeting perturbations or the perturbations in a given
cluster to have amean TPM> 5.We then performed a two-sidedMann-
Whitney test between the WUI values for each gene comparing non-
targeting and targeting perturbations. P-values were corrected for
multiple testing using Benjamini-Hochberg procedure. Genes were
considered significant if q-value < 0.05. Differential gene expression
testing was similarly performed and results for both differential gene
expression and 3′UTR length are reported in Supplementary Data 8.
Isoform switching analysis was performed as described in the cell type
analysis section but using the sets of significant DUL genes in each
perturbation cluster.

Cluster validation with RPE1 perturbations. To confirm the con-
sistency of the clusters across cell types, the cluster-average zdWUIs
from the K562 data were correlated with the zdWUIs of corresponding
perturbations from the RPE1 data. For RPE1 perturbations, any per-
turbations with fewer than 30 cells were excluded, which retained 112
non-targeting perturbations and 646 perturbations that replicated a
clustered perturbation in the K562 data. The 112 non-targeting per-
turbations were used similarly to those in the K562 data to compute
dWUIs and zdWUIs for all the RPE1 data (see sectiononClustering). For
each cluster, the zdWUIs for response genes used in clustering that
also had statistically significant dWUI tests were used to compute
Pearson correlations between the cluster-average zdWUIs from K562
and zdWUIs of each replicating perturbation from RPE1. Pearson cor-
relations were also computed with the zdWUIs of the non-targeting
perturbations, providing a control distribution of random correlations
for each cluster. For each cluster, a one-sidedMann-Whitney was used
to test for a difference between the control correlations and the cor-
relations of replicating perturbations for that cluster, with the alter-
native hypothesis of greater correlation in replicating perturbations.
P-values were corrected for multiple testing using the Benjamini-
Hochberg procedure.

Overlap of genes between perturbation clusters. To find APA reg-
ulators that target similar genes, we determined the extent of overlap
within their target genes. Gene overlaps between perturbation clusters
were analyzed with the GeneOverlap R package v1.32.075 and -log10-
transformed p-values were reported (Fisher’s exact test).
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Classification of shortening or lengthening by isoform-specific
regulation in eachperturbationcluster. For the geneswith significant
differential 3′UTR expression in each cluster (Fig. 5a), we analyzed
isoform-specific regulation patterns. The analysis was limited to genes
that had two 3′UTR isoforms.

First, we estimated isoform expression levels within a perturba-
tion cluster from gene expression and WUI values with:

TPMSU Cluster =meanðTPMClusterÞ � ð1�meanðWUIClusterÞÞ ð1Þ

TPMLU Cluster =meanðTPMClusterÞ �meanðWUIClusterÞ ð2Þ

Next, cluster-specific absolute TPM changes (dTPM) relative to
the control conditions were calculated for each isoform:

e.g.

dTPMSU Cluster = TPMSU Cluster � TPMSU Control ð3Þ

For compensatory (or balanced) 3′UTR isoform regulation, we
require that at least half of the expression gained by one isoform is lost
by the other 3′UTR isoform in the gene, or vice versa:

Compensatory regulation, if:

�0:5≥
dTPMLUCluster

dTPMSUCluster

≥ � 2 ð4Þ

Conversely, genes for which this criterium was not met were
categorized as having predominantly isoform-specific regulation,
which was assigned to the isoform with the higher TPM expression
difference (in absolute TPM values).

To examine the relationship between compensation and the
proportion of nuclear proteins (Fig. S7b), we used the subcellular
location information from the Human Protein Atlas database v22.076.
Proteins were classified as having nuclear localization if they had
relevant terms in either the “main” or “approved” location category.
The fraction of genes with such terms was calculated and plotted
against the fraction of balanced DUL events in each cluster.

Identification of gene features that correlate with dWUI in each
perturbation cluster. To investigate the relationship of gene features
with 3′UTR isoform changes in each perturbation cluster we per-
formed Pearson correlation. For all multi-UTR genes with a TPM> 5 in
the non-targeting control condition, the mean dWUI value of each
gene was correlated with their value for the respective gene feature.
This analysis was performed for each perturbation cluster. For each
feature, multiple testing correction was performed using
Benjamini–Hochberg procedure and correlations with a q-value < 0.05
were considered significant.

Supplementary Data 9 lists all correlation results, along with a
comprehensive list of external data sources that were used for the
analysis. When identifying 3′UTR lengths and sequences, we used the
coordinate of the stop codon belonging to the longest annotated
coding sequence (CDS) of the gene (GENCODE v39). The same stop
codonwas assigned to all last exon 3′UTR isoformsof the gene andwas
also used for prediction of stop site readthrough77. Similarly, CDS and
5′UTR length, as well as other features related to their sequence, were
determined based onmRNA annotations from the transcripts with the
longestCDS. Features characterizing 3′UTR sequences, such as AU-rich
elements, GC content and m6A modifications were assigned to both
short and long 3′UTRs when occurring in the common region. For
correlations related to splicing activity, a previously published
dataset78 was used to identify exon junctions with the lowest predicted
splice site score for the 5′ and 3′ splice site in each gene. For analyzing
correlations with m6A methylation marks, previously identified m6A
sites from a HeLa dataset79 (GEO:GSE211303) were mapped to coding

regions and 3′UTRs of all multi-UTR genes expressed in K562 cells.
Then, m6A scores were calculated as the sum of methylation levels at
all sites within a region. For analyzing correlations with codon optim-
ality, the fraction of non-optimal codons in each CDS was computed,
where non-optimality was assigned according having a negative codon
stabilization coefficient (CSC) score in a K562 SLAM-seq experiment80.
The R package ‘codonopt’ was created to compute codon optimality
with these CSC scores, and is available at https://github.com/mfansler/
codonopt (https://doi.org/10.5281/zenodo.10845963).

Isoform-specific mRNA half-life analysis. A K562 SLAM-seq experi-
ment was used for mRNA stability analysis80 (GEO:GSE126522). FASTQ
files were processed using the SLAM-DUNK pipeline81 with our MWS
UTRome as reference annotation. For each isoform, the mean con-
version rate per timepoint (0, 120, 240, 360min) was computed as the
weighted mean of conversion rates weighted by read counts
(‘ReadsCPM’) across the three replicates. Mean conversion rates per
isoform were modeled with first-order kinetics with the R ‘glm’ func-
tion, and mRNA half-life computed from the coefficients. The pro-
cessing pipeline is available at https://github.com/Mayrlab/slam-k562-
utrome (https://doi.org/10.5281/zenodo.10887802).

Quantification and statistical analysis
Statistical tests used throughout this study are indicated in the
Methods section. Unless otherwise indicated, statistical significance
testingwas two-sided, and an FDRof 5%was used after the Benjamini-
Hochberg adjustment. Figure legends document the statistics indi-
cated by bars, error bars, and box-whiskers.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This paper analyzes existing, publicly available data. The accession
numbers for the datasets are listed below and in the corresponding
Methods sections discussing their processing. The Mouse Cell Atlas
v1.136 data used in this study are available in the GEO database under
accession code GSE108097. The Human Cell Landscape37 data used in
this study are available in the GEO database under accession code
GSE134355. The bulk 3′-seq FACS-sorted HSCs data45 used in this study
are available in the ArrayExpress database under the accession code E-
MTAB-7391. The scRNA-seqmouseHSPCdata46,47 used in this study are
available in the GEO database under the accession code GSE107727.
Themouse ESC scRNA-seq data50 used in this study are available in the
GEO database under the accession codes GSM3629847, GSM3629848,
and GSM4694997. The mouse brain data56 used in this study are
available in the GEO database under the accession code GSE129788.
The Tabula Muris data55 used in this study are available in the GEO
database under the accession code GSE109774. The raw Tabula
Sapiens data54 used in this study is on AWS under restricted access due
to data privacy restrictions; access can be requested at https://tabula-
sapiens-portal.ds.czbiohub.org/whereisthedata. The K562 6-day
essential gene Perturb-seq experiments58 used in this study are avail-
able in the SRA database under accession codes SRR19653800-
SRR19653847 [https://www.ncbi.nlm.nih.gov/Traces/study/?acc=
SAMN28561243]. The RPE1 RPE1 7-day essential gene Perturb-seq
experiments58 used in this study are available in the SRA database
under accession codes SRR19653359-SRR19653414 [https://www.ncbi.
nlm.nih.gov/Traces/study/?acc=SAMN28561244]. The cell annotations
for the Perturb-seq experiments58 used in this study are available on
figshare (https://doi.org/10.25452/figshare.plus.20029387.v1). The
m6A sites mapped by eTAM seq in HeLa data79 used in this study are
available in the GEO database under accession code GSE211303. The
K562 SLAM-seq data80 used in this study are available in the GEO
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database under accession code GSE126522. The codon stability coef-
ficients data used in this study are from Fig. 1-Source Data 280 available
at https://doi.org/10.7554/eLife.45396.006. The PolyASite 2.0
databases35 for human and mouse used in this study are available at
https://polyasite.unibas.ch/atlas. The PolyA_DB v3.2 database34 for
human andmouseused in this study are available at https://exon.apps.
wistar.org/polya_db/v3/misc/download.php. The protein subcellular
localization data used in this study are available in the Human Protein
Atlas database (v22.0)76 at https://www.proteinatlas.org. The STRING
Database v11.5 data74 used in this study are available at https://version-
11-5.string-db.org/. Processed data generated in this study are available
in the following locations: The GTF and BED files for the MWS CS
annotation in human and mouse data generated in this study are
available on figshare (https://doi.org/10.6084/m9.figshare.23549526).
The SingleCellExperiment and SummarizedExperiment objects gen-
erated in this study by scUTRquant and post-processing pipelines are
available on figshare (https://doi.org/10.6084/m9.figshare.25513528).
The intermediate data objects used to generatefigures are available on
figshare (https://doi.org/10.6084/m9.figshare.25529632). TheMWSCS
annotations for human generated in this study are provided in Sup-
plementalData 1. TheMWSCSannotations formousegenerated in this
study are provided in Supplemental Data 2. The human gene annota-
tions from analyzing 355 human cell types generated in this study are
provided in Supplemental Data 3. The mouse gene annotations from
analyzing 119 mouse cell types generated in this study are provided in
Supplemental Data 4. The independence and correlation test results
between significant DGE and DUL generated in this study are provided
in Supplemental Data 5. The average dWUI and dIPA for K562 6-day
essential perturbations generated in this study are provided in Sup-
plemental Data 6. The APA regulator clusters and GO term analysis
generated in this study are provided in Supplemental Data 7. The DGE
and DUL significance testing results for APA regulator clusters gener-
ated in this study areprovided in Supplemental Data 8. The correlation
test results among DUL changes and genomic features generated in
this study are provided in Supplemental Data 9.

Code availability
All original code has been made publicly available on Github as of the
date of publication. The repositories for processing pipelines are listed
below and in the corresponding Methods sections: The code to gen-
erate the human MWS annotation is deposited at https://github.com/
Mayrlab/hcl-utrome (https://doi.org/10.5281/zenodo.8118411). The
code to generate the mouse MWS annotation is deposited at https://
github.com/Mayrlab/mca-utrome (https://doi.org/10.5281/zenodo.
8118415). The code to process bulk HSPC data with the mouse MWS
annotation is deposited at https://github.com/Mayrlab/
sommerkamp20 (https://doi.org/10.5281/zenodo.10892209). The
code to process SLAM-seq data and compute isoform-specific mRNA
half-lives is deposited at https://github.com/Mayrlab/slam-k562-utrome
(https://doi.org/10.5281/zenodo.10887801). The code to generate cus-
tom truncated transcriptomes for the scUTRquant pipeline is deposited
at https://github.com/Mayrlab/txcutr-db (https://doi.org/10.5281/
zenodo.8118404). The repositories for original software intended for
reuse are listed below and in the corresponding Methods sections: The
scUTRquant pipeline is deposited at https://github.com/Mayrlab/
scUTRquant (https://doi.org/10.5281/zenodo.8118393). The source
code for the customized version of kallisto is deposited at https://
github.com/mfansler/kallisto/releases/tag/v0.46.2sq (https://doi.org/
10.5281/zenodo.10902020). The scUTRboot R package is deposited at
https://github.com/mfansler/scutrboot (https://doi.org/10.5281/
zenodo.8057843). The txcutr Bioconductor package is deposited at
https://bioconductor.org/packages/txcutr (https://doi.org/10.18129/B9.
bioc.txcutr). The codonopt R package for computing codon optimality
is available at https://github.com/mfansler/codonopt (https://doi.org/
10.5281/zenodo.10845962). The repositories for analyses and figures

presented in the manuscript are listed below: The code to characterize
the human MWS annotation is deposited at https://github.com/
Mayrlab/hcl-analysis (https://doi.org/10.5281/zenodo.10892181). The
code to characterize themouseMWSannotation is deposited at https://
github.com/Mayrlab/mca-analysis (https://doi.org/10.5281/zenodo.
10892185). The code to characterize peak widths in Tabula Muris data
is deposited at https://github.com/Mayrlab/tmuris-peaks (https://doi.
org/10.5281/zenodo.10895190). The code to characterize kallisto reso-
lution for overlapping transcripts is deposited at https://github.com/
Mayrlab/kallisto-overlap (https://doi.org/10.5281/zenodo.10895237).
The code to characterize isoform expression across the Tabula Sapiens
dataset is deposited at https://github.com/Mayrlab/atlas-hs (https://doi.
org/10.5281/zenodo.10895336). The code to characterize isoform
expression across mouse datasets is deposited at https://github.com/
Mayrlab/atlas-mm (https://doi.org/10.5281/zenodo.10895351). The
code to process and analyze the Perturb-seq data set is deposited at
https://github.com/Mayrlab/gwps-sq (https://doi.org/10.5281/zenodo.
10895730). Additional code to generate analyses and figures is depos-
ited at https://github.com/Mayrlab/scUTRquant-figures (https://doi.
org/10.5281/zenodo.10910013).
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