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Integrated optimization modelling
framework for low-carbon and green
regional transitions through resource-based
industrial symbiosis

Xin Xie1, Hang Fu1,2, Qisheng Zhu1 & Shanying Hu 1

The development and utilization of bulk resources provide the basic material
needs for industrial systems. However, most current resource utilization pat-
terns are unsustainable, with low efficiencies and high carbon emissions. Here,
we report a quantitative tool for resource-based industries to facilitate sus-
tainable and low-carbon transitions within the regional economy. To evaluate
the effectiveness of this tool, the saline Qinghai Lake region was chosen as a
case study. After optimizing the industrial structure, the benefits of economic
output, resource efficiency, energy consumption, solid waste reduction, and
carbon emission reduction can be obtained. The scenario analyses exhibit
disparities in different transition paths, where the carbon mitigation, eco-
nomic output, and resource efficiency that benefit from optimal development
paths are significantly better than those of the traditional path, indicating the
urgency of adopting cleaner technology and industrial symbiosis for regional
industries.

The development and utilization of bulk resources, including oil,
natural gas, mines, and saline lake brine, meet the basic raw material
requirements for industrial systems. Industrialization, urbanization,
and the increasing demand for high-value-added industrial products
have contributed to the formation of complex resource use patterns
for the regional economy. However, the majority of current resource
use systems exhibit unsustainable patterns, leading to high green-
house gas emissions, low resource use efficiency, excessive envir-
onmental impacts, and a low input‒output ratio, which promote
industrial sustainability1,2.

The complex multidimensional characteristics of resource
endowments are vital for developing a unique industry structure for
the regional economy. Thus, high-quality and sustainable resource use
requires systematic planning and optimizationmeasures to determine
the optimal path for regional industrial development. The concept of
industrial ecology is a multifield discipline that includes system engi-
neering, mathematical programming, and economics to construct a

sustainable and stable industrial development pattern1,3–5. Industrial
symbiosis (IS), which originates from the concept of an eco-industry, is
an effective tool for integrating resource endowment and industrial
technologies to maximize the benefits of regional resource use1,2,6–8.

The concept of IS has been extensively utilized to evaluate the
sustainability and carbon emissions of resource use patterns at a
regional scale9. Currently, the scientific efforts of IS focus mainly on
the following routes: qualitative, quantitative, and systematic plan-
ning. The qualitative route usually evaluates the formation and con-
struction of an ecological industrial system via self-organizing/self-
emerging/serendipitous and planned/designed/goal-directed meth-
ods by constructing multidimensional indicators and full-range input‒
output processmatching7,8,10–12, which is extensively used to evaluate IS
formation at certain industrial parks, such as those in Kalundborg and
Ulsan7,13. However, this route is basedmainly on experience and expert
planning under the current foundation of local industry, and mathe-
matical and universal methods that can be used for planning in other
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regions are lacking, particularly when addressing multiple resources,
products, and technologies14,15. Quantitative planning usually involves
two ormore resource optimizations, such as water16,17, energy, carbon,
materials18,19, and a combination of thesemethods via energy andmass
balance approaches20–22. Although analyzing the metabolism of key
sources can provide valid information on energy, element, and
resource use efficiency, it is still difficult to simultaneously cover and
optimize the multiplicity of resource categories and account for their
interactions23–26. Systematic planning is based on the construction of IS
networks (ISNs), and some studies have evaluated the industrial sym-
biosis system of parks through social network and ecological network
approaches using indicators such as resilience and centrality27–29.
These routes may provide a better understanding of the systematic
depiction of the industrial pattern of resource exploration; however,
due to the complexity of the network, constructing complete and
reliable ISNs from natural resources to products is difficult with the
factors of resource endowment, existing industrial conditions, and
relevant policies14,15. Thus, current IS studies still lack a systematic,
quantitative, and general framework for designing a sustainable path
transition of resource use patterns for the regional economy.

In this work, we present a resource-based regional industrial
economy development optimization model (RRIEDOM). This is a
bottom-up model that integrates a multimethodology of industrial
ecology in material flow analysis, network analysis, and optimization
techniques to address diverse economic, environmental, and resource
objectives. TheQinghai Salt Lake Industrial Region is selected as a case
study for this model. First, this model incorporates a comprehensive
technology database comprising 358 chemical technologies andmore
than 200 chemical products to establish a complex industrial network,
as described in detail in the Methods section. Second, utilizing this
database, the current situation of the Qinghai Salt Lake Industry in

2020 and an optimal industrial structure that minimizes resource and
environmental costswhilemaximizing economicoutput are evaluated.
Third, to determine the most efficient pathway for transitioning from
the existing industrial framework to the optimal structure with the
lowest transition expenses, six scenarios are designed. These scenarios
align with increasingly stringent climate policies by incorporating
carbon-negativemeasures suchas cleanelectricity30,31, carbon capture,
utilization, and storage (CCUS)32,33, and steam boiler retrofitting34,35.

Results
Current status of the regional chemical industry
Utilizing the RRIEDOM model, an assessment was conducted con-
cerning the chemical industry’s initial configurations in the saline
Qinghai Lake area. Figure 1 represents the original and optimal
resource development patterns. The indicator analysis before and
after optimization is shown in Fig. 2. Primary industries with low effi-
ciency, elevated carbon emissions, and limited added value are pre-
dominant. Specifically, the gross industrial output value was 9.47
billion United States dollars (USD). This achievement is accompanied
by significant electricity, water, and energy consumption of 116 × 108

kWh, 1.54 × 108 tons, and 5.82 million tons, respectively. Notably, the
manufacturing of chemical products, including potash, polyvinyl
chloride (PVC), methanol, and Li2CO3, accounted for 7.4 million tons,
2.2 million tons, 1 million tons, and 30 thousand tons, respectively. A
comprehensive list of additional products is provided in the ‘sheet
input-out matrix’ of Supplementary Data 1.

From the perspective of industrial categories, the primary drivers
of industrial output were the saline lake industry (SLI) and organic
chemical industry (OCI), contributing 76.32% and 10.4%, respectively;
the remaining minor contributors were the inorganic chemical
industry (IOCI),metal smelting andprocessing industry (MSPI), lithium

Fig. 1 | Original and optimal saline lake industrial structure. The original
structure (a) is obtained by accounting for the industries in the Salt Lake Industrial
Zone, and the optimal structure (b) of the Salt Lake Regional Industry is obtained
after optimization under the guidanceof the RRIEDOM.The industrial output value
and diversity under the optimal industrial structure are greater than those under
theoriginal structure. Thenodes represent specific chemical industry technologies,
the size represents the industrial output value of each node, and the edges repre-
sent the corresponding material interactions. Each node is assigned a unique

number, which is used as follows: A - saline lake industry (38 nodes), B - organic
chemical industry (55 nodes), C - inorganic chemical industry (44 nodes), D - metal
smelting and processing industry (16 nodes), E - lithium deep processing industry
(21 nodes), and F - comprehensive waste utilization industry (10 nodes). Detailed
information on each node is provided in SupplementaryData 1. The transition from
the original structure to the optimal structure is shown in Supplementary Fig. 20.
The node information for each industry is shown in Supplementary Tables 1–6.
Source data are provided as a source data file.
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deep processing industry (LDPI), and comprehensive waste utilization
industry (CWUI), respectively. Moreover, SLI also emerged as the lar-
gest carbon emitter, responsible for 80.42%of emissions, equivalent to
32.31million tons of CO2. Regarding energy consumption, SLI and OCI
played pivotal roles, accounting for 48.54% and 39%, respectively,
equivalent to 2.82 million tons and 2.33 million tons, respectively.
Collectively, these sectors absorbed nearly 80% of the capital invest-
ment, totaling 5.9 billion USD, and, within the SLI industry, specializing
in producing primary chemical products utilizing saline lake brine as a
raw material.

From a technological standpoint, the original structure consisted
of 24 distinct technologies and nodes. The potash from brine tech-
nology (labeled A2 in the network of Fig. 1) yielded a substantial pro-
duction of 7.4 million tons of potassium chloride (KCl). The economic
contributions within this network stemmed primarily from potash
production technology, PVC production from calcium carbide tech-
nology, and calcium carbide production itself, at 27%, 28%, and 12%,
respectively. Carbon emissions were attributed chiefly to calcium
carbide PVC and calcium carbide production, accounting for 54% and
23%, respectively, of the total carbon emissions. Among the nodes,
calcium carbide PVC (A12, in Fig. 1) emerged as the most significant
energy consumer, utilizing 0.528 million tons of coal annually to
support the production of 2.2 million tons of PVC, with the most sig-
nificant capital investment of 4.85 billion USD. Concerning solid waste
output, calcium carbide PVC (A12) and calcium carbide production
(A14) constituted the two predominant contributors, accounting for

86.8% of the total solid waste output. Potash from brine, PVC from
calcium carbide, and Li2CO3 production emerged as the top three
profit-generating nodes, contributing to nearly 78% of the total net-
work profit.

From the entire sectorial and technological view of the regional
chemical industry, substantial potential for optimizing the utilization
of local resources could be obtained by applying diverse technologies
under the RRIEDOM framework.

Benefit of optimizing the industrial structure for the regional
economy
RRIEDOM determines the optimal structure with the input of the local
resource endowment, including the size of each technology, the pro-
duction of chemical products of the industrial network, and the
recommended strategies for introducing technologies. The original
optimal structure and indicators of both structures are shown in
Figs. 1 and 2. After industrial structure optimization, 86 technologies
(from a total of 358 available technologies from the database) and
70 chemical products were chosen by RRIEDOM to maximize the
economic output while comprehensively utilizing local resources.

The optimal structural configuration yields an industrial output of
52.7 billion USD and a substantial profit of 10.7 billion USD, repre-
senting a 597% increase in industrial output compared to the original
structure (industrial output of 9.49 billion USD). Notably, this transi-
tion ismarked by a noteworthy reduction in criticalmetrics: electricity
intensity plummeted from 1.22 to 0.29 kWh/USD, resulting in a mere

Fig. 2 | Indicators of the original structure and optimal structure of the saline
lake industrial zone.Thirteen indicators are obtainedby calculating the economic
efficiency, environmental impact, and resource consumption of the original
structure of the industry. After modeling, economic efficiency, such as industrial
output and profit, of the whole industry improved, environmental impacts, such as
carbon emission and solid waste output, decreased, and resource consumption,
such as water consumption and energy consumption, decreased. The 13 indicators
are electricity consumption (a), solid waste output (b), water consumption (c),
energy consumption (d), capital investment (e), profit (f), industrial output (g),

carbon emission (h), electricity consumption intensity (a, blue diamond), solid
waste intensity (b, blue diamond), water consumption intensity (c, blue diamond),
energy consumption intensity (d, blue diamond), and carbon emission intensity
(h, blue diamond). The abbreviations for each industry are SLI - saline lake industry,
OCI - organic chemical industry, IOCI - inorganic chemical industry, MSPI - metal
smelting and processing industry, LDPI - lithium deep processing industry, and
CWUI - comprehensive waste utilization industry. The indicators of the optimal
structure of each node are shown in Supplementary Figs. 22–30. Source data are
provided as a source data file.
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34% increase in electricity consumption. Furthermore, this transfor-
mation is characterized by significant reductions across various
dimensions. The solid waste output notably decreased by approxi-
mately 34.5 million tons, while the electricity consumption intensity
substantially decreased from 1.22 to 0.29 kWh/USD. Similarly, the
intensity of solid waste output remarkably decreased from 7.67 to 0.73
tons per 104 USD. Water consumption has been significantly curtailed
by nearly 8 million tons, and water consumption intensity has sub-
stantially decreased from 162.2 to 14.97 tons per 104 USD. The total
carbon emissions are projected to decrease by an impressive 56%,
decreasing from 37 to 17 million tons.

There is a discernible shift in economic contributions when
examining this transition from an industry perspective. The original
structure, predominantly SLI-dominated with a contribution of 76.32%
amounting to 7.2 billion USD, is transformed into an LDPI-dominated
structure, where the LDPI contributes 49.7%, which is equivalent to
26.3 billion USD. Furthermore, carbon emissions are transitioning
from being primarily attributed to SLI, accounting for 80.4% and
totaling 32.3million tons, to being driven by OCI, which now accounts
for 36.4% and totals 6.52 million tons.

The results of the optimal structure exhibited significant
potential for energy savings, resource savings, and environmental
protection. It is essential to investigate the possible transition path
from the original structure to the optimal structure to reveal the
properties of the different paths concerning the environment,
resources, and the economy.

Transition path from the original structure to the optimal
structure
Six scenarios were designed to investigate the sustainable develop-
ment path for the regional industry and to determine the optimal
transition path from the original structure to the optimal structure. S0,
which was developed under the original structure and gradually
introduced the technologies recommended by RRIEDOM; S1, which
was developed with certain constraints on the industrial structure to
simulate the empirical pattern; S2, which was developed under the
original structure, allowing a 10-year transition to the optimal struc-
ture by identifying and eliminating the low-efficiency technologies and
gradually deploying the technologies recommended by RRIEDOM; S3,
which is similar to S2 but with a transition period of 5 years; S4, which
assumes that there is nooriginal structure anddevelops only under the
guidance of RRIEDOM with the interaction of available technologies
database; and S5, which is similar to S2 but with a longer transition
period of 20 years. Detailed scenario descriptions are provided in the
“Supplementary Method 5 Scenario Settings” subsection of the Sup-
plementary Information. A concise overview of the results from the six
scenarios is shown in Fig. 3.

The empirical pattern represented by S1 exhibits the lowest eco-
nomic output and benefits among the six scenarios. S0, S2, S3, S4, and
S5 exhibit significant increases in accumulated industrial output and
profit that far exceed the levels of S1 (Fig. 3a). However, the environ-
mental impact and resource consumption of these scenarios are con-
sidered disparities. Due to its similar industrial structure to S1, S0
presents a favorable economic output but a high energy-cost and low-
added value industrial structure, with elevated energy consumption
ranging from approximately 91% to 221%, increased water consumption
ranging from approximately 96% to 360%, andmore significant carbon
emissions ranging fromapproximately 98% to931%, and it only achieves
48% to 58% of the economic benefits observed in other scenarios.

In scenarios S2, S3, S4, and S5, relatively low energy consumption,
carbon emissions, and reduced water consumption with high eco-
nomic output are obtained. Compared with the similar economic level
of S0, carbon emissions decrease by approximately −8.78 to 0.19 × 108

tons, water consumption decreases by approximately −42.11 to
1.9 × 108 tons, and energy consumption decreases by approximately

−1.41 to 0.24 × 108 tons. For scenarios S2, S4, and S5, the environmental
costs and resource consumption in these transition scenarios initially
decrease during the early stage (2025–2035) and subsequently
increase (2035–2055). This trend is attributed to the low sustainability
of the current industrial system; once the optimal industrial structure
is reached, the most efficient industrial development pattern, which is
similar to S4, can be achieved by the RRIEDOM model. Notably, S4 is
the scenario with no fundamental industry assumed by this study,
which is the absolute sustainable solution compared with other tran-
sition scenarios. Figure 4 illustrates that the expeditious attainment
of the optimal path yields considerable cumulative resource and
environmental advantages. Compared to scenario S1, transitioning
to the optimal path by 2035 can avert the accumulation of approxi-
mately 6.62 × 108 tons of carbon emissions, conserve approximately
31.67 × 108 tons of water resources, and generate additional profits of
approximately 6.62 × 108 USD.

Implementing alternative decarbonization measures such as
CCUS, clean energy, and steam boiler retrofitting causes a gradual
decline in carbon emissions across all scenarios. Compared with
whether carbonmitigationmeasureswere established (Fig. 3d, f), S2 to
S4 experienced a notable reduction in carbon emissions, reaching
their lowest points by 2030. Notably, even under the original struc-
tures represented by S0 and S1, carbon emissions are projected to
decrease by 50% by 2050. However, we also discover that the carbon
mitigation potential of these end-of-pipe measures is less effective
than that of industrial transition at the same economic output level.
For instance, by implementing carbon emissions reduction measures,
a maximum reduction of merely 2.40 × 108 tons of carbon emissions
canbe achieved across various scenarios (refer to Table 1). However, in
the case of industrial restructuring, it becomes possible to prevent a
minimum of 8.3 × 108 tons of emissions. Due to the inevitability of
accumulated emissions, selecting a technology optimization approach
in the earlier stages proves to be more efficient than gradually imple-
menting additional carbon reduction technologies. In essence, prior-
itizing cleaner production methods over subsequent end-of-pipe
treatments is advantageous.

Potential of alternative carbon reduction measures
In addition to technological optimization, the potential of alternative
carbon reduction measures (ACRMs) must be addressed. We further
discussed the variation in carbon reduction measures in terms of the
method, cost-to-benefit ratio, and effectiveness (Fig. 5). Implementing
carbon reduction technologies yields substantial reductions in carbon
emissions across different scenarios. The emission reductions in these
scenarios range from approximately 1.35 to 4.16 × 108 tons, constitut-
ing approximately 27% to 56% of the total actual carbon emissions for
each scenario.

For S0 and S1, adopting clean energy leads to significant reduc-
tions in emissions, which are approximately 42% and 38% of the total
ACRM for scenarios S0 and S1, respectively. Additionally, the imple-
mentation of CCUS technology resulted in even more significant
reductions, reaching approximately 53% and 58% for S0 and S1,
respectively. For scenarios S2 to S5, the primary driver of carbon
reduction is the deployment of clean energy, which contributes to
approximately 68% to 70% of the overall reduction. This finding is
primarily attributed to the relatively low direct carbon emissions in
these scenarios, with the primary source of carbon emissions stem-
ming from electricity production. In these scenarios, only a small
portion of the carbon reduction can be attributed to steam boiler
retrofits, accounting for approximately 4% to 10% of the respective
emissions reductions.

Compared with clean energy and steam boiler retrofitting, CCUSs
are alternative candidates for future emission reductions despite
the significant consideration of associated costs. For a more compre-
hensive cost analysis, the expense of implementing CCUS for emission
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abatement is evaluated as a percentage of the overall profit within a
price range spanning approximately 15–53USD/ton, as shown in Fig. 5b.
In S1, the ratio of achieving carbon emission reductions to profit ranges
from 7.9–27.6% under the different CCUS prices. The difficulty in
reducing emissions will significantly increase if the cost of CCUS
remains high. When considering more stringent emission reduction
policies, such as a zero-emission policy, the proportion could increase
to 50%, which may prove financially untenable. In the optimal scenario,
S4, the predominant carbon emissions stemmed from electricity con-
sumption, with limited process-related emissions. Consequently, the
proportion of carbon reduction achieved through CCUS remains rela-
tively modest, and the cost-to-benefit ratio of CCUS ranges from 0.7%
to 2.3%.

Discussion
According to the RRIEDOM simulation, the paths of the different sce-
narios are minimal environmental impact and resource consumption
under the corresponding development goals. Therefore, highly effi-
cient technologies will be given top priority by RRIEDOM until the
potential of such technologies is exhausted, and then subefficient

technologies will be chosen25. Notably, there will be synergistic effects
between high-efficiency technologies and subefficient technologies if
subefficient technologies provide the necessary materials needed by
high-efficiency technologies. Such synergistic effects can be visualized
by analyzing industrial networks. For example, the technologies of
saline brine extraction of lithium can lead to the development of
potassium extraction technologies (A2, in Fig. 1) because the material
of the former technology (old brine) can only be provided using the
byproduct of the latter technology. In contrast, the cost of extraction
directly from saline brine remains high, so the development of lithium
extraction will synergistically promote potassium extraction. Conse-
quently, a more efficient and diverse industrial symbiosis network can
be constructed.

To quantify the effectiveness of technological adjustment by
RRIEDOMin termsof IS enhancements, ameticulous examinationof the
number of symbiotic materials within the material input‒output matrix
was conducted. There are 21 types of materials (a total of 255 types of
materials) that interact twice with other technologies in the original
structure, whereas that of the optimal structure has 62 types of mate-
rials, indicating that the interaction linksbetween the industrial network

Fig. 3 | Results of 6 scenarios during a 30-year simulation of saline lake
industries from 2025 to 2055. Six scenarios were designed using the resource-
based regional industrial economy development optimization model (RRIEDOM)
simulation, including S0, which was developed under the original structure and
gradually introduced the technologies recommended by RRIEDOM; S1, which was
developed with certain constraints on the industrial structure to simulate the
empirical pattern; S2, which was developed under the original structure, allowing a
10-year transition to the optimal structure by identifying and eliminating the low-
efficiency technologies andgradually deploying the technologies recommendedby
RRIEDOM; S3, which is similar to S2 but has a transition period of 5 years; S4, which
assumes that there is no original structure and develops only under the guidance of

RRIEDOMwith the interaction of available technologies database; and S5, which is
similar to S2 but has a longer transition period of 20 years. Through the simulation
of six scenarios, six paths for the development of the Salt Lake Industrial Zone are
obtained, and in the optimal development mode (S4 scenario), the whole devel-
opment path has the least resource consumption, the least environmental impact,
and the greatest economic benefits. The indicators are industrial output (a), benefit
(b), capital investment (c), carbon emission (d), carbon emission intensity (e),
carbon emission intensity without measures (f), electricity consumption (g), water
consumption (h), and energy consumption (i). The supplementary results for each
scenario are shown in Supplementary Figs. 31–35. Source data are provided as a
source data file.
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are strengthened after optimization. Materials such as ammonia (NH3),
KCl, salt (NaCl), hydrogen (H2), lithium carbonate (Li2CO3), and sulfuric
acid (H2SO4), which are traditional saline lake products, are the most
common symbiotic materials in the optimal structure. The primary
symbiotic materials and frequency of symbiosis in the industrial net-
work are shown in Fig. 6.

Stakeholders prefer to select the alternative carbon reduction
measures (ACRMs) mentioned in this study rather than adjust their
original industrial structure36,37. This study confirms that the transition

to the optimal structure for low-energy-consuming technologies will
have better benefits than the subsequent deployment of carbon
reduction measures. Instead of developing energy-intensive technol-
ogies at an early stage and employing carbon reduction measures to
compensate for end-of-pipe treatment at a later stage, employing the
optimal industrial structure at the early stage is an essential pattern of
sustainable development to avoid carbon emissions. Notably, a longer-
term transition (10 or 20 years) is recommended to promote resource
consumption and increase efficiency.

The contribution of clean energy to carbon reduction was greater
than that of CCUS under the optimal path. Achieving the 2 °C target in
the Paris Agreement necessitates reducing the electricity factor to 15 g/
kWh by the year 2050, assuming that all electricity consumption is
sourced from the grid38. Despite the substantial gap in the widespread
adoption of CCUS in China, the cost of CCUS remains prohibitive for
extensive implementation39,40. A range of CCUS prices is assumed to
determine the cost of carbon reduction within a region. The cost of
decarbonizing the structure ofhigh-energy-consumption technologies
is high because the direct emissions from such technologies are sig-
nificantly greater than those from the technologies in the optimal
structure. However, the potential for clean energy in S1 and S0 has
dissipated, and further decarbonization will show a greater reliance on
CCUS and technological improvements.

Notably, there is an optimal path for regional industrial develop-
ment under local resource endowment, which is composed of a set of
deployed technologies. S4 is the optimal path for Qinghai Lake saline
exploration with the highest resource efficiency among all the scenar-
ios. Any deviation from such a pathwill result inmore carbon emissions
and higher resource consumption for the given development goal.

Table 1 | Variation in cumulative indicators among the S0,
S2–S5 scenarios and S1 scenarios

Variation △(S0-S1) △(S2-S1) △(S3-S1) △(S4-S1) △(S5-S1)

Industrial output
(108 USD)

6573.94 6298.25 5511.21 4752.46 6259.75

Benefit (108 USD) 1546.47 1515.97 1308.23 1090.33 1504.55

CE (108 ton) 0.19 –6.62 –7.83 –8.78 –6.70

CR (108 ton) 0.41 –2.34 –2.40 –2.37 –2.35

CEWM (108 ton) 0.60 –8.96 –10.23 –11.16 –9.04

Water consump-
tion (108 ton)

1.90 –31.67 –37.44 –42.11 –32.04

Energy con-
sumption
(108 tce)

0.24 –1.06 –1.29 –1.41 –1.07

The accumulated indicators include industrial output, benefit, accumulated carbon emission
(CE), accumulated carbon reduction (CR), accumulated carbon emission without measures
(CEWM), water consumption, and energy consumption; △ = variation compared with the S1
scenario, e.g., △(S0-S1) represents the difference between the indicators S0 and S1.

Fig. 4 | Accumulated indicators of saline lake industries under different sce-
narios.Analyzing the paths under 6 scenarios (S0 to S5), the scenarios (S0, S1) with
no changes to the original industrial structure have greater cumulative resource
consumption and environmental impacts, while the paths (S2, S3, S4, S5) with
adjustments and optimization to the original industrial structure have greater
economic benefits, indicating that the original industrial structure has the char-
acteristics of high resource consumption and low value added. The indicators

involved in the analysis include (a) carbon emissions with indicators of accumu-
lated carbon emission (CE), accumulated carbon reduction (CR), and accumulated
carbon emissionwithoutmeasures (CEWM); (b) water consumptionwith indicators
of accumulated water consumption; (c) the economy with indicators of accumu-
lated industrial output and accumulated benefit; and (d) energy consumption with
indicators of accumulated energy consumption. Source data are provided as a
source data file.
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To discuss how the basic industry affects the optimal path transition,
three cases with different initial industries for comparison of carbon
emissions were selected, namely, with no initial industry, an initial
industry with only 1 million tons of PVC, and an initial composition of
the local industrial structure. As shown in Fig. 7, the green curve, orange
curve, andpurple curve represent three cases of initial industries, which
have no relatively minor scale of initial industry or large scale of initial
industry, respectively. With economic development, all cases of carbon
emissions exhibit increasing trends; additionally, the growth rate gra-
dually accelerates with economic growth. The priorities of industrial
technologies with low-carbon, high-economic value are selected by
RRIEDOM, guided at the first stage of economic growth. Subsequently,
the growth rate of carbon emissions continued to accelerate due to the
arrival of resource bottlenecks in the development of highly efficient
technologies,where supportingupstream industrieswith loweconomic
value and high carbon emissions must follow. With the continuous
development of the economy, the carbon emission intensity of all paths

will eventually approach and reach the optimal development model,
but a large gap in accumulated carbon emissions still exists, which can
be inferred from the integral difference among the three different paths
and the comparison of the accumulated carbon emission gaps between
S5 and S4, as shown in Fig. 4. Thus, the greater the deviation of the
current industry system from the optimal development path is, the
greater the accumulated cost and input that should be paid during
industrial transformation, indicating the necessity of planning the lay-
out of industrial structure optimization as soon as possible.

Most studies on industrial symbiosis networks have focused only
on a single material, such as water, energy, or another specific
material41,42. It is difficult to provide a comprehensive perspective on
the planning and utilization of resources, which is only suitable for
making minor adjustments and improvements after a complete
industrial structure has been established. However, it is difficult to
explore how to optimize the use of resources to achieve sustainable
development from a global perspective. Previous studies, including

Fig. 5 | Carbon mitigation cost and benefit of saline lake industries by a
resource-based regional industrial economydevelopment optimizationmodel
(RRIEDOM). Three types of emission reduction methods were considered to
achieve carbon reduction, namely, carbon reduction through carbon capture, uti-
lization, and storage (CCUS), clean energy, and steamboiler retrofitting. The cost of
carbon reduction and the amount of carbon reduction under different scenarios
are simulated, in which CCUS under the S0 and S1 scenarios involves a greater

contribution to carbon reduction, but due to the higher direct carbon emissions of
these two paths, the corresponding cost of carbon reduction is also the highest,
whereas the optimal path (S4) avoids the largest amount of carbon emissions.
a CCUS, clean energy, and steam boiler retrofitting under the different scenarios,
b ratio of the CCUS cost to the CCUS benefit under the different scenarios at the
different CCUS prices, and c cumulative carbon reduction through the industrial
transition. Source data are provided as a source data file.
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Fig. 6 | Frequency of material symbiosis for the original structure and the
optimal structure.Thematerial interactions in the original and optimal structures
are analyzed, and the material interactions in the optimal structure (a) exhibit
complex diversity compared with those in the original structure (b). For example,
the number of material interactions for Li2CO3 in the optimal structure is 13,

indicating that 13 exchanges of the input and output nodes occur due to Li2CO3-
related technologies in the optimal structure. For the number of materials, refer to
the Supplementary Data 1 file. The production of materials is shown in Supple-
mentary Fig. 21. Source data are provided in a source data file.

Fig. 7 | Originaldevelopmentpath andoptimaldevelopmentpathof saline lake
industries. Three paths were designed to explore the properties of the different
development paths. Path − 1 (purple solid line): Initial structure of the industrial
area as a starting point, followed by resource-based regional industrial economy
development optimization model (RRIEDOM) modeling to guide development.

Path−2 (orange solid line): Startingpointwithpolyvinyl chloride (PVC)demandof 1
million tons, followed by RRIEDOMmodeling. Path − 3 (green solid line): No initial
structure setup, direct development using RRIEDOM modeling. For further dis-
cussion of Fig. 7, please refer to Supplementary Discussion 1 in the Supplementary
Information. Source data are provided as a source data file.

Article https://doi.org/10.1038/s41467-024-48249-6

Nature Communications |         (2024) 15:3842 8



the proposal of interactive inference and optimization, need more
technical databases to support this idea14. In contrast, the process of
interactive inference is complicated and prone to problems such as
combinatorial explosions14,15. Themodel hasbeen enhanced to identify
suitable industrial chains for large-scale regional resource develop-
ment. The model provides optimal strategies for resource develop-
ment and technology deployment. The constructed network
encompasses selection relationships for more than 200 types of
materials, mitigating empirical issues associated with expert manual
selection15.

This study has established many complex industrial networks and
strategies for the development of local resources. Notably, the demand
constraint was not incorporated into themodel because its objective is
to maximize resource utilization and regional scope. However, pro-
mising technologies, such as low-technology readiness level technol-
ogies (low-TRL), are not included in establishing the available
technology database. For example, technologies for ammonia pro-
duction were selected based on coal and natural gas consumption.
Current studies on the use of ammonia from sustainable energy sour-
ces have beenwidely reported43–45. These types of technologies are not
included in this database because of the consideration of instant
applications. After the development and massive commercial applica-
tion of low-TRL technologies, these technologies can be selected in the
database to plan the optimal path. The incorporation of these

promising technologies will promote high-efficiency networks and
improve resource efficiency and decarbonization.

Methods
There are seven sections of RRIEDOM, as shown in Fig. 8: resource
endowment investigation, establishment of the node information
database, interactive inference, establishment of available technolo-
gies database, core node identification, construction of super-
structure, multiobjective optimization, and scenario setting. The
following section provides a brief description of each section. A
detailed description of the RRIEDOM model is provided in the ‘Sup-
plementary Method 3 Optimization Mathematical Model’ subsection
of the Supplementary Information.

Resource endowment survey
Resource endowment investigations necessitate a comprehensive
examination of the types and quantities of regional bulk resources,
including ores, coal, petroleum, and saline lake brine. In this study,
field research was conducted in the saline Qinghai Lake circular
economy industrial zone.

The location of the resources that need to be planned and
developed should bedetermined; the information about the resources
that can bedeveloped in the target area shouldbedetermined through
field research, government consultation, enterprise research, expert

Fig. 8 | Framework of the resource-based regional industrial economy devel-
opment optimization model (RRIEDOM). RRIEDOM integrates the various
approaches of resource endowment, interactive inference, mathematical optimi-
zation of technical databases, social network analysis (SNA), and systems engi-
neering superstructure for quantitative and systematic regional resource

development of the saline lake industry (SLI), organic chemical industry (OCI),
inorganic chemical industry (IOCI), metal smelting and processing industry (MSPI),
lithium deep processing industry (LDPI), and comprehensive waste utilization
industry (CWUI).
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interviews, etc.; and a database should be constructed. This includes
the types of resources that can be developed, potential resource
reserves, and the maximum amount of resources that can be devel-
oped each year.

Through a field study of the Qinghai Salt Lake Industrial Zone, 19
natural resources were identified as resource endowments. Salt lake
brine, coal, oil, natural gas, lead-zinc ore, and limestone are the
resources to be developed, and through the data collection, it was
determined that the carnallite’s current maximum amount of exploi-
tation per year is 0.17 billion tons.

Node information base construction
The establishment of a node information database requires a com-
prehensive investigation of current technologies related to the
production of chemical products via literature and government
documents.

The overarching objective is to delineate the industry sectors
within the designated geographic region that hold potential
for exploitation and, subsequently, to establish a comprehensive
database.

The procedural framework encompasses the following steps: (1)
delimiting industry categories, encompassing the salt lake chemical
industry, organic chemical industry, inorganic chemical industry,
metal processing industry, lithium power industry, and waste treat-
ment industry; (2) creating node information databases for each
industry; and (3) formulating the database via a comprehensive lit-
erature review, on-site investigation, and expert interviews.

As exemplified by an extensive series of on-site investigations, a
collective sum exceeding 358 nodes was successfully identified,
including 6 distinct industrial categories. Detailed node information is
provided in the Supplementary Data 1 file.

Interaction inference
The primary objective is to amalgamate data sourced from the node
informationdatabase to formulate the network superstructure specific
to each respective industry.

The procedure entails the following steps: (1) identifying and
categorizing natural resources, (2) organizing and amalgamating these
identified resources, (3) correlating nodes, and (4) establishing the
network structure, among other pertinent actions.

Core node identification
Social network analysis (SNA) was conducted during this period. SNA
was initiated in the 1920s to focus on the relationships between dif-
ferent social entities46. In this study, two major indicators in SNA were
applied: betweenness centrality (BC) and degree centrality (DC)47,48.
The DC represents the number of nodes linking to other nodes, where
in this study, it is the number of links of nodes that acquire materials
from other nodes and the number of links that deliver materials to
other links. The nodeswith a high BCmeasure the degree of the node’s
control over the core link utilization; if the node with a high BC fails at
onepoint of operation, itwill affect theoperation ofmultiple industrial
links and may cause cascading failures27,49. The BC and DC results for
each node are shown in Supplementary Figs. 13–18 and in Supple-
mentary Tables 7–12.

DCi =
degðiÞ
N � 1

ð1Þ

where deg(i) is the degree of node i, i.e., the number of edges directly
connected to node i, andN is the total number of nodes in the network.

BCi =
X

i≠s≠t

σstðiÞ
σst

ð2Þ

where i is a node in the network, σst is the number of shortest paths
from node s to node t, and σstðiÞ is the number of paths passing
through node i in these shortest paths.

Construction of the superstructure
Anetworkcomposedof core nodeswasobtained after applying SNA to
a comprehensive industrial network. This core network is divided into
six industrial superstructures: SLI (38 nodes), OCI (55 nodes), IOCI (44
nodes), MSPI (16 nodes), LDPI (21 nodes), and CWUI (10 nodes). In
total, 184 nodes were selected in the core network, with 709 links of
possible material exchange. Considering the intricate nature of
visualizing the process network, a superstructure visualization is
defined, as illustrated in Fig. 9. The colors denote the different cate-
gories, such as the industry category; the size of each node indicates
the property of nodes, such as scale, CO2 emissions, energy con-
sumption, and water consumption; and the links show the possible
material exchange between two nodes. Other materials related to a
node that do notparticipate in anexchange are removed in this type of
visualization for simplicity.

Multiobjective optimization
The framework of the optimization section of the core industrial net-
work is illustrated in the ‘Supplementary Method 3 Optimization
Mathematical Model’ subsection of the Supplementary Information.
The optimization mathematical model is a multiobjective NLP model
consisting of eight parts: (i) network design constraints for the pro-
duction of all nodes and resources; (ii) policy constraints of parks in
different years; (iii) constraints of node bounds; (iv) economic output
and cost functions of parks, industries, and node levels; (v) environ-
mental impact functions of parks, industries, and node levels; (vi)
resource consumption functions of parks, industries, and node levels;
(vii) intensity and productivity functions of parks; and (viii) objective
functions. The basic target of such a model is to utilize natural
resources through the core industrial network to produce the main
chemical products while minimizing the environmental impact and
resource consumption and maximizing the economic output with
limited capital investment and available technology databases.

Scenario setting
Six scenarios were developed to explore the optimal and transition
paths for the simulation of local resource development, labeled
S0 to S5.

S0 was developed under the original structure and gradually
introduced the technologies recommended by RRIEDOM;

S1 was developed with certain constraints on the industrial
structure to simulate the empirical pattern;

S2 was developed under the original structure, allowing a 10-year
transition to the optimal structure by identifying and eliminating low-
efficiency technologies and gradually deploying the technologies
recommended by RRIEDOM;

S3 was similar to S2 but had a transition period of 5 years;
S4 assumes that there is no original structure and develops only

under the instructions of RRIEDOM with the interaction of available
technology databases;

S5 was similar to S2 but had a longer transition period of 20 years.
In response to increasingly stringent climate policies, three

potential carbon reduction strategies have been evaluated: clean
energy adoption, CCUS implementation, and steam boiler retrofitting.
Scenarios S2, S3, and S5 represent transition paths, while scenario
S4 signifies the optimal path.

A detailed description of the scenario settings is provided in the
‘Supplementary Method 5 Scenario setting’ subsection of the Supple-
mentary Information. A detailed description of the scenario settings is
shown in Supplementary Fig. 19.
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For more detailed information about RRIEDOM, please refer to
Supplementary Information Methods 1–5, which provide a detailed
description of the model. The Supplementary Data 1 file is also
provided.

Data collection
To substantiate the research presented in this article, we required a
substantial volume of technical data. We collected detailed technical
data from diverse sources, including the Intergovernmental Panel
on Climate Change (IPCC)50, China’s National Bureau of Statistics51,
China’s industry standards52, government industry reports53,54, park
industry reports54, and project environmental impact assessment
documents. The related data are provided in the SupplementaryData 1
file. For more information on the data, please refer to Supplementary
Discussion 2.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 1–6 are provided as a source data file.
All data used for this analysis are provided in the SupplementaryData 1
file. Source data are provided with this paper.
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