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LoCoHD: a metric for comparing local
environments of proteins

Zsolt Fazekas 1,2, Dóra K. Menyhárd 1,3 & András Perczel 1,3

Protein folds and the local environments they create can be compared using a
variety of differently designed measures, such as the root mean squared
deviation, the global distance test, the template modeling score or the local
distance difference test. Although thesemeasures have proven to be useful for
a variety of tasks, each fails to fully incorporate the valuable chemical infor-
mation inherent to atoms and residues, and considers these only partially and
indirectly. Here, we develop the highly flexible local composition Hellinger
distance (LoCoHD) metric, which is based on the chemical composition of
local residue environments. Using LoCoHD, we analyze the chemical hetero-
geneity of amino acid environments and identify valines having the most
conserved-, and arginines having the most variable chemical environments.
We use LoCoHD to investigate structural ensembles, to evaluate critical
assessment of structure prediction (CASP) competitors, to compare the
results with the local distance difference test (lDDT) scoring system, and to
evaluate a molecular dynamics simulation. We show that LoCoHD measure-
ments provide unique information about protein structures that is distinct
from, for example, those derived using the alignment-based RMSD metric, or
the similarly distance matrix-based but alignment-free lDDT metric.

The Research Collaboratory of Structural Bioinformatics Protein Data
Bank (RCSB-PDB)1 currently contains more than 217,000 experimen-
tally determined protein structures. As the function of a protein is
closely linked to its structure, this database provides valuable infor-
mation on biological processes related to evolution, development,
disease progression, drug design or agriculture, to name a few. In
order to understand the behavior of these 3D atomic arrangements,
computational tools and algorithms have been developed for their
numerical analysis. In silico methods, such as molecular dynamics
protocols2–4,molecularmodeling software5–7, AI-based systems8–10, and
de novo protein design platforms11,12 have also become increasingly
popular and accessible, generating a vast amount of structural data
concerning bio-macromolecular systems.

The comparison of different conformations of the same protein,
or of the structures of similarly folded but different proteins, can be
realized either by metrics, by generalized metrics (which are less

restricted), or by similarity measures (for an overview of some of the
available methods13–31, please refer to Supplementary Note 1 and Sup-
plementary Table 1). However, if the intention is to compare two
proteins based on the chemical environment of their components, the
commonly used measures do not provide focused information. The
appearance or disappearance of different side-chain interactions (or
interaction networks), changes in salt bridges, hydrogen bonds, π-
cation interactions, polar-polar contacts, hydrophobic cores are all
vital information. Since the nature of these environments dictates how
proteins fold, move, or interact with each other, it should be critical to
develop a method that provides an objective measure for their
characterization.

With this in mind, we developed the local composition Hellinger
distance (LoCoHD) metric presented here, which measures the che-
mical and structural difference between two local environments in
proteins. We aim to provide a highly flexible scheme for objective
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comparison of two arbitrary atomic arrangements within a protein,
while keeping the evaluation simple, intuitive, and relatively fast.

Results
Distribution of LoCoHD scores
In order to assignmeaning to the absolute size of a score, and todecide
whether a given score is “large” or “small”, it is important to know the
underlying distribution from which the score is sampled. Therefore,
we set out to determine how the LoCoHD scores for the FA+Cent and
CG+Cent typing schemes are distributed when the uniform weight
function is used between 3 Å and 10Å (see the Methods section,
Description of the LoCoHD Algorithm subsection for clarification).We
chose these schemes for this initial investigation because the residue
centroid primitive atoms can serve as anchors when comparing any
residue type with any other. This feature is necessary for the random
sampling protocol described in the Methods section (Random
LoCoHD distribution generation subsection). The distributions of
these random samples are shown in Supplementary Fig. 1.

Although theoretically LoCoHD scores can range from 0 to 1, it
can be seen that even random residue-pairs do not frequently achieve
values greater than 40%. The resulting experimental distributions can
be modeled with β-distributions with parameters α = 10.52 and
β = 33.48 (p-value is 2.22*10−12 according to the Kolmogorov-Smirnov
test) for typing scheme FA+Cent, and parameters α = 12.99 and
β = 35.48 (p-value = 1.70*10−9) for typing scheme CG+Cent. For FA
+Cent, the mean LoCoHD value is around 23.98% with a standard
deviation (StDev) of 6.37%, and data ranging from 5.38% to 79.23%. For
CG+Cent on the other hand, themean LoCoHD value is around 26.83%
with a StDev of 6.27%, and data ranging from 5.25% to 62.28%. It is
important to keep in mind, that these distributions come from sam-
pling random residue-pairs, which means that usually not the same
amino acid types are paired and compared, likely resulting in a higher
average LoCoHD score. The residue-pairs showing the lowest and
highest LoCoHD scores in case of the FA+Cent typing were also
extracted from the process. The lowest value (5.38%) belongs to the
residue pair of PDB ID 2IJX (a PCNA3monomer32), chain C, residue Ala17

and PDB ID 1XHK (an ATP-dependent Lon protease33), chain B, residue
Ala501. Both of these residue environments are hydrophobic cores,
containing mostly aliphatic side-chains from valines, leucines, and
isoleucines. The highest value (79.23%) belongs to the residue pair of
PDB ID 6JV7 (a rat complement protein34), chain B, residue Gly28 and
PDB ID 3PL0 (a PF10014 dioxygenase35), chain A, residue Ile143. The
isoleucine’s environment (10 Å around the residue) in 3PL0 contains a
significant amount of aromatic carbon primitive types coming from 10
different aromatic residues. This environment also has a relatively low
charged primitive atom content, coming from only 4 residues. In
contrast, the environment of glycine from 6JV7 contains 3 disulfide
bridges and charged primitive types coming from 8 different residues.
This way, the primitive type distribution of the two environments
highly differ, resulting in the extremely high LoCoHD score.

Statistical descriptors for the different residue type pairs were
also extracted from the random samples. The residue type pairs with
the highest and lowest average LoCoHD scores are shown inTable 1 for
the primitive typing scheme FA+Cent. A t-distributed stochastic
neighborhood embedding (tSNE) was also performed using the mean
LoCoHD of hetero-residue pairs (i.e. where the residue types are not
the same), the result of which is shown in Fig. 1. Using this technique,
we were able to map the 20 proteinogenic residues into a two-
dimensional space, while preserving the topology dictated by their
environmental similarities.

Our analysis shows that the LoCoHD score can distinguish
between environments surrounding residues with different physico-
chemical properties and different environment-organizing behaviors.
The residue pair Val-Thr is the first hetero-residue pair in Table 1, i.e. it
has the lowest average LoCoHD score. Thismeans that, on average, the

environments of Val and Thr are very similar both in composition and
arrangement. This phenomenon is due to the isoelectronic and isos-
teric relationship between these two amino acids. The homo-residue
pair with the highest average LoCoHD score is arginine, an indication
of the diversity of its environments; the arginine side-chains can be
solvated in the bulk solvent, can participate in H-bonds, salt-bridges,
and π-cation interactions through their guanidino groups, and can
participate in hydrophobic interactions through the Cβ-Cγ-Cδ alipha-
tic chain. Arginine also has the highest average LoCoHD scores cal-
culated against all other amino acids. The amino acid with the most
similar environments to arginine environments is lysine, followed by
glutamine and tyrosine. The high environmental similarity between
arginine and lysine is easily explained by their positive charge (see
Fig. 1, boxC). For further examples, see sections SupplementaryNote 2
and Supplementary Figs. 2 and 3 of Supporting Info.

The tSNE analysis in Fig. 1 provides us a visual aid for noticing
patterns in the 20 by 20 residue-residue average LoCoHD matrix.
Points on this scatter plot represent individual amino acid types, while
inter-point distances correlate with the average residue-residue
environment dissimilarities. Besides the previously mentioned pat-
terns, other, otherwise intuitive relationships can also be observed.
Some residues stay close together, like the residue-sets Glu-Gln-Lys-
Arg, Ile-Leu-Phe-Tyr-Trp, or Met-His. It is easy to find common physi-
cochemical patterns in these close amino acids: Lys and Arg are both
long, positively charged residues, Ile-Leu-Phe-Tyr-Trp are all hydro-
phobic residues, with Phe-Tyr-Trp forming a sub-cluster and having
aromatic side-chains, and Met-His are common metal-complexing
residues. Another noticeable pattern is formed by the Gly-Pro-Ala tri-
plet, far away from all other amino acids. These are the residues with
the smallest relative surface areas (with Ser included)36 and are known
to disrupt secondary structural elements.

To further validate the connection between the LoCoHD score of
two residue environments and the presence/absence of secondary
chemical interactions these residues participate in, we wanted to
connect these properties through a machine learning model. It is evi-
dent that a good performingmodel can only be constructed, if there is
a learnable connection between the inputs and the desired output. We
trained a Siamese feedforward neural network that inputs the inter-
action fingerprints of two residues and tries to output the LoCoHD
belonging to those residue environments. An interaction fingerprint
vector contains the type of the residue (out of the 20 possibilities) and
the number of different interactions it forms (6 counting-dimensions:
H-bonds, van der Waals interactions, disulfide bonds, salt bridges, π-π
stacking and π-cation interactions). It is important to note that this
vector does not count the interactions that are present in the envir-
onment but are not formed by the central residue. Using these inputs
themodel was able to approximate the LoCoHD score (typing scheme:
FA+Cent) of the two residue environments with a root mean squared
error of 5.57% (validation: 5.57%) and a mean absolute error of 4.45%
(validation: 4.39%). The final SpR between the predicted and true
LoCoHD values came to be 0.454 (Supplementary Fig. 4). This result
shows that a strong connection can be drawn between the LoCoHD
score and the interaction fingerprint of the two central residues, but
the information provided by the fingerprints is far from complete for
an accurate score prediction.

Based on LoCoHD scores it was also possible to assess the envir-
onmental changes caused by functionally significant single mutations
(and the absence of such in case of benign substitutions, see Supple-
mentary Note 3-4 and Supplementary Figs. 5–8).

Comparison of CASP14 contestants through LoCoHD and lDDT
We tested the performance of five CASP14 contestants against the
LoCoHD scoring system and compared these results to lDDT scoring,
one of the scores used in the competition. 31 target structures were
collected from the CASP14 archive. We compared the environment of
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each true (experimental) and predicted residue for each contestant
and target structure. This was done using the primitive FA+Cent typing
scheme with a uniform weight function between 3 Å and 10Å. Only
hetero-residue contacts were allowed. The geometric center of each
residue was used as the anchor atom.

We generated a dataset for each predicted structure, where each
data point in the dataset belongs to one residue. The data points are
two-dimensional vectors, with the residue’s LoCoHD score as its first
coordinate and the residue’s lDDT score as its second coordinate.
Different statistical descriptors were then generated for each dataset,
namely the per-residue median of the LoCoHD and lDDT values
(denoted prm-LoCoHD and prm-lDDT, respectively), and also their
Spearman’s rank correlation coefficient (SpR). The full statistics of
these descriptors are reported in Supplementary Table 2. Here, we
focus only on the median values, which can be found in Table 2. We

also collected all data points into two-dimensional histograms, one for
each predictor. These are depicted in Fig. 2.

Our first results show an agreement between the contestant-order
set by the median lDDT and LoCoHD values, proving that LoCoHD is
able to separate (true, predicted) structure pairs with high, but dif-
ferent similarities. This is to be expected fromaproper scoring system,
as similarity scores should converge to their maximum values as the
similarity between the structure pair increases, while dissimilarity
scores should tend towards their minimum value. These tendencies
inherently create correlations between different scoring systems, with
higher absolute correlations closer to similarity extremities. This effect
is clearly reflected in the median SpR values in Table 2. For the best-
performer AlphaFold2, the median SpR value among the different
structures is around −0.679, indicating a relatively high correlation. As
we progress downwards on the list however, the SpR steadily decrea-
ses down to −0.485, supporting the aforementioned statement.

We also inspected some special cases individually. Since for every
CASP14 predictor there are five predicted structures belonging to one
target (experimental) structure, we can select target structures for
which the predictions are outstandingly different. Namely, for every
predictor, we identified the target structures for which the predicted
structures show the largest SpR, median LoCoHD, and median lDDT
gaps. These can be seen in Supplementary Table 3.

Table 1 | Rows show the residue-type pairs having the smallest 5 and largest 5 mean LoCoHD scores

Type pair Number of samples Mean Median StDev Confidence interval Minimum Maximum

Val-Val 2507 17.47% 16.76% 4.97% 0.16% 6.44% 38.74%

Val-Thr 3875 18.53% 17.95% 5.27% 0.14% 6.80% 45.36%

Ala-Ala 3105 18.60% 17.92% 5.45% 0.16% 5.38% 41.35%

Ile-Ile 1633 18.90% 18.16% 5.29% 0.22% 7.50% 43.40%

Val-Ile 3928 18.94% 18.41% 5.08% 0.13% 6.78% 40.22%

… 200 additional rows…

Asp-Arg 3074 29.31% 28.98% 6.05% 0.18% 13.48% 52.51%

Gly-Arg 3710 29.43% 28.94% 6.35% 0.17% 11.69% 55.33%

Ser-Arg 3281 29.56% 29.30% 6.37% 0.18% 13.39% 56.21%

Pro-Arg 2289 29.81% 29.36% 6.34% 0.22% 13.58% 63.09%

Cys-Arg 762 29.94% 29.58% 6.08% 0.36% 11.81% 48.34%

Primitive typing scheme FA+Cent with residue centroid anchors and a uniform 3Å to 10Å weight function were used. Two sided confidence intervals were calculated with a 95% upper confidence
bound. Source data are provided as a Source Data file.

Box A

Box C

Box B

Box D

tSNE embedding of amino acids
based on their average LoCoHD distance

Fig. 1 | Average LoCoHD-based residue embedding. The t-distributed stochastic
neighborhood embedding (tSNE) of the 20 proteinogenic residues based on the
average LoCoHD scores of their environments for the primitive FA+Cent typing
scheme. It can be seen that LoCoHD scores can cluster together environments
around residues with similar physicochemical properties. In the embedding the
large aromatic residues (Phe, Tyr, and Trp) form a cluster (boxA), the highly similar
Leu and Ile are close together (box B), the two positive residues Arg and Lys form a
close pair (box C), and the small, secondary structure disrupting residues (Gly, Ala,
Pro) also form a close triple (boxD). Source data are provided as a Source Data file.

Table 2 | lDDT and LoCoHD scoring statistics for the first five
CASP14 contestants

AlphaFold2
(TS427)

BAKER
(TS473)

BAKER-
experimental

(TS403)

FEIG-
R2

(TS480)

Zhang
(TS129)

Median
SpR(lDDT,
LoCoHD)

−0.6788
(±0.1106)

−0.5550
(±0.1239)

−0.5257
(±0.1279)

−0.5071
(±0.1632)

−0.4847
(±0.1583)

Median
prm-lDDT

0.8410
(±0.0884)

0.6000
(±0.1344)

0.5860
(±0.1304)

0.5350
(±0.1471)

0.5210
(±0.1347)

Median
prm-

LoCoHD

0.0814
(±0.0177)

0.1311
(±0.0216)

0.1340
(±0.0211)

0.1425
(±0.0215)

0.1482
(±0.0213)

In this table the median Spearman’s correlation coefficient (SpR), per-residue median (prm-)
lDDTandprm-LoCoHDvalues are reportedover all datasets, i.e. protein structures. The standard
deviation of these values are presented between parentheses. It can be observed, that the lDDT
and LoCoHD scoring systems agree on the order of the five contestants (rowsmedian prm-lDDT
and prm-LoCoHD). Also, it can be seen that as the quality of the prediction decreases (lDDT
decreases, LoCoHD increases) the magnitude of the median SpR value decreases (row median
SpR). Source data are provided as a Source Data file.
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The AlphaFold2 predicted structures T1064TS427_1 and
T1064TS427_5 show large SpR, median LoCoHD, and median lDDT
differences (first row, Supplementary Table 3). The experimental
structure behind target T1064 is the SARS-CoV-2 ORF8 accessory
protein (PDB ID: 7JTL37). Structures can be seen in Fig. 3, score-cor-
relations, and per-residue LoCoHD scores can be seen in Supple-
mentary Fig. 9. Although T1064TS427_1 has a much lower median
LoCoHD than T1064TS427_5, the former structure has an outlier
residue Lys94 with an extremely high LoCoHD score at around 37%
(residue numbering is according to the structure 7JTL) while this
residue is by no means an outlier according to its lDDT score. In the
experimentally determined structure, this lysine does not participate
in interactions with any other residues and its Nζ faces the solvent
bulk. Inmodel T1064TS427_1, this lysine isH-bonded to thebackbone
of Leu118, while being close to Tyr79 and Phe120, which increase the
aromatic content around Lys94. In T1064TS427_5 the two aromatic

residues are farther apart than in the first structure, lowering the
LoCoHD score to 27%. This high environmental difference is not
reflected in the lDDT scores belonging to Lys94 (37% in T1064TS427_1
and 38% in T1064TS427_5). The residueGlu106 has the largest LoCoHD
score in T1064TS427_5, but it does not appear in the top 10 residues
with the largest LoCoHD scores in T1064TS427_1. In the experimental
structure, Glu106 participates in a relatively isolated H-bonding
interaction with Tyr38. Although in T1064TS427_1 the two afore-
mentioned residues are too far away for this H-bond to form, they are
still close together, creating a similar environment around the glu-
tamic acid. In T1064TS427_5 Glu106 faces the solvent bulk, while Tyr38

forms a π-π interaction with Tyr105, which creates a highly different
environment, than in the true structure. This example also shows that
LoCoHD is able to differentiate chemically significant changes in
protein structures that might be overlooked when using purely
structure-based comparisons.

relative population

1

0

A B C

D E

Fig. 2 | The LoCoHD-lDDT relationship. Visualizing the two-dimensional dis-
tributions of the per-residue LoCoHD-lDDT pairs for each CASP14 contestant
examined. On panels A–E the histograms for the structure predictors AlphaFold2,

BAKER, BAKER-experimental, FEIG-R2, and Zhang can be seen, respectively. His-
tograms are depicted as heat maps, with warmer colors indicating higher popula-
tions in the corresponding area. Source data are provided as a Source Data file.
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Similar analysis was performed on some of the CASP15 contest-
ants and their predicted structures. Global lDDT, LoCoHD and CAD-
score31 statistics for contestants TS229 (Yang-Server), TS278 (PEZY-
Foldings), TS439 (Yang) and TS074 (DFolding) are presented in Sup-
plementary Table 4 and in Supplementary Fig. 10. The former three
contestants all achieve a median prm-lDDT of about 0.85, a perfor-
mance similar to that of AlphaFold2 in CASP14. This performance is
also reflected by the low median prm-LoCoHD values and again, the
two scoring systems agree on the contestant order. Meanwhile, Sup-
plementary Figs. 11–14 show the lDDT-LoCoHD analysis of two target
structures and their predictions; H1166TS278_1 and _5, which is a
human Fab S24-188 in complex with the N-terminal domain of the
SARS-CoV-2Nucleocapsid protein (to bepublished, PDB ID: 7SUE), and
H1144TS278_1 and _5, which is a mouse/alpaca CNPase-Nb8d nano-
body-antigen complex (to be published). The environmental differ-
ences in these complex structures, which were highlighted by
LoCoHD, are chemically intuitive and are helpful in pointing out how a
predictor weighs the relevance of the inter-residue interactions during
the reconstruction of a complex.

Comparisonof structure ensembles throughLoCoHDandRMSD
For the analysis of the in-house determined NMR structure ensembles
we chose the tryptophan cage fold extended by 5 residues, the so-
called E5 miniprotein. The structural ensembles of this protein, each
containing 50 different conformations, were previously determined at
five different temperatures ranging from 277K to 321 K38. With
increasing temperature, the protein gradually loses its well-defined
tertiary structure, which is reflected in the diversity of residue con-
formations (Fig. 4A, B). Supplementary Fig. 15A, B show the 50 by 50
LoCoHD distance matrices averaged over all primitive atoms and
plotted as heatmaps. These scores were calculated using the FA typing
scheme, resulting in 197 environment comparisons per structure pair.
Each cell in this matrix describes the relationship of two structures
within the ensemble, i.e. it is the average LoCoHD score of the primi-
tive atom environments computed for the two structures in question.
Meanwhile, Supplementary Fig. 15C, D shows the LoCoHD scores of
each primitive atom. These scores are the averaged LoCoHD values
over all structure comparisons. For the analysis of the E5 ensembles,
these views convey orthogonal information, one about the overall

ED

Tyr79

Leu95

Gly96

Lys94

Pro93

Gln91 Glu92

Ile121

Phe120

Asp119

Leu118

C

Lys94

Leu95

Gly96

Tyr79

Pro93

Gln91

Glu92

Phe120

Asp119

Val117
Leu118

B

Lys94

Leu95

Gly96 Pro93

Glu92

Phe120

Leu118

Gln91

A

Fig. 3 | Case study of the prediction target T1064. Summarizing the residue
environmental differences between the AlphaFold2 predicted structures
T1064TS427_1 and _5 and the true, experimental SARS-CoV-2 ORF8 accessory
protein structure (T1064). Panels A–C show the environments of the residue Lys94

in the experimental structure, in T1064TS427_1 and in T1064TS427_5, respectively.
Low opacity yellow spheres denote ionic interaction centers, yellow dashed lines
denote ionic interactions, orange dashed lines denote pi-cation interactions, full
blue lines denote H-bridges, gray spheres denote pi interaction centers and short-

dashed gray lines denote van der Waals contacts. It can be seen that while in the
true structure this lysine faces the solvent, in the predicted structures this residue
participates in several inter-residue interactions. On panels D and E the first ten
residues can be seen having the largest LoCoHD scores in T1064TS427_1 and in
T1064TS427_5, respectively. For the residues that are present either on panel B or
C, the bars are highlightedwith a red contour. Source data are provided as a Source
Data file.
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dissimilarity of the ensemble elements (different conformations), and
one about the environmental variability of the primitive atoms.

At 277 K the structure of E5 is well ordered. The overall environ-
mental variability of the ensemble is low, as only 3-4 structures are
significantly different from the others (i.e. structures with approxi-
mately 15-17% LoCoHD away from the other structures), and the
median LoCoHD of the primitive atoms is 7.4%. These can be observed
on the corresponding distancematrix (Supplementary Fig. 15A), where
only the bottom rows and leftmost columns are shown inwarmcolors,
and on the corresponding growth plot (Supplementary Fig. 15C),
where most of the values are between 3.7% and 14.5%. In contrast, at
321 K theminiprotein showshigh disorder and a broad conformational
distribution. The distance matrix of this ensemble (Supplementary
Fig. 15B) contains high LoCoHD values, mostly above 15%, with only
about 5 structures showing somesimilarity (upper left blue patch). The
median LoCoHD of the primitive atoms (Supplementary Fig. 15D) also
shifted from 7.4% to 15.1%. This leaves the one sigma range of primitive
atoms between 11.5% and 21.3% at 321 K.

The scatter-plots of the LoCoHD-RMSD pairs are depicted in
Supplementary Fig. 15E, F for ensembles at 277 K and 321 K, respec-
tively. In these plots, each point belongs to a structure-structure
comparison, resulting in 1225 points per plot. The LoCoHD and pri-
mitive atom RMSD values show high correlation at all temperatures in
the E5 ensembles. SpR values range from 0.74 (at 310K) to 0.88 (at
277 K) with no obvious connection between the SpR and the

temperature of the ensemble. At low temperatures, these points form
visually three (277 K) or two (288K and 299 K) clusters, while at higher
temperatures this behavior is not observed, leaving only one point
cloud. The separation of these clusters mainly happens due to the
RMSDmetric, since it produces obvious boundaries,while the LoCoHD
scores do not distinguish such sharp separating values in these cases.
For example, at 277 K there are three “visually obvious” RMSD
boundaries at approximately 2 Å, 3 Å and 3.75 Å. Performing agglom-
erative clustering using the RMSDmatrix (with a distance threshold of
2 Å and complete linkage) results in five clusters. The first cluster
consists of 46 structures and the remaining structures form clusters by
themselves, indicating that these are outlier structures. However,
despite the absence of an obvious LoCoHD boundary, when the same
clustering procedure is applied on the LoCoHD matrix, but with the
number of clusters set to five, the same outlier structures are identi-
fied. Also, when the LoCoHD-RMSDpoint cloud at 321 K is inspected, it
canbe noted thatbetween the narrow rangeof LoCoHD scores of 17.1%
and 18.7%, the points have a large spread along the RMSD axis
(StDev = 1.0Å and a maximum distance difference of 5.6 Å). This indi-
cates the existence of a large structural difference-range within a small
environmental composition difference-range.

An NMR-derived ensemble of the W316A, M317A mutant Gag-Pol
polyprotein of HIV-1 (between residues Pro133-Val353) was downloaded
from the PED (PED ID: PED00072e000, residues numbered by UniProt
ID: P12493, PDB ID: 2M8P) and subjected to similar analyses39. These

E5 ensemble at 277K E5 ensemble at 321K

Arg21

Arg6

Ser25

Gln10

Glu14

Glu3

Glu1

Glu1-Glu3

Arg6-Trp11

Lys13-Glu14

Pro17-Ser19

Arg21

Ser25

A B

C D

Fig. 4 | Comparison of the structures within the E5 ensembles. Panels A and
B depict the structural ensembles of 50 conformers at temperatures of 277K and
321 K, respectively. The E5 miniprotein consists of 25 residues, which fold into an
N-terminal alpha helix, followed by a 310 helix, and a C-terminal polyproline II helix.
At higher temperatures these secondary structural elements disappear and the
protein loses its well-defined structure. Panels C and D highlight the regions as
surfaces within the 277 K and 321 K structures, respectively, where the ensemble-

average LoCoHD scores of the primitive atoms are above 20%. In the low mobility
“cold” structure only a few primitive atoms are present that reach this threshold. In
contrast, in the highmobility “hot” structure a lot of high LoCoHDscore regions are
highlighted. Residues or residue-intervals owning these high LoCoHD primitive
atoms are also indicated in boxes. Surfaces are colored according to primitive atom
LoCoHD scores, with warmer colors indicating higher values (from blue, through
purple, to red). Source data are provided as a Source Data file.
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structures consist of two rigid domains, connected by a flexible hinge
region between residues Ser278-Leu283 as depicted in Fig. 5A, B. The
structural diversity of this ensemble is mainly due to the different
conformational states of this hinge region (Fig. 5C). In ensembles like
this, the RMSD after an all-atom alignment usually produces large and

uninformative values, since a global alignment cannot be performed
optimally on the two domains at the same time.

For the Gag-Pol polyprotein, we used the CG typing scheme
instead of the FA scheme, due to the large number of atoms present in
the system and the resulting high computational time. Also, rather

G

cluster 1
cluster 2
cluster 3
cluster 4

cluster 1
cluster 2
cluster 3
cluster 4

F

Gag-Pol polyprotein ensemble
N-terminal domain + hinge

Gag-Pol polyprotein ensemble
C-terminal domain + hinge

full Gag-Pol polyprotein ensemble

A B C

D E

Fig. 5 | Case study using the HIV-1 Gag-Pol polyprotein. Panels A–C show the N-
and C-terminal domains, and the full ensemble of the HIV-1 Gag-Pol polyprotein,
respectively. Both panels show an ensemble of aligned structures. It can be seen,
thatwhile the domains themselves are very rigid, the hinge region connecting them
(colored magenta) is highly mobile. Panels D and E show the regions in the N- and
C-terminal domains with the highest (greater than 20%) average LoCoHD scores
highlighted as semitransparent surfaces. These surfaces are also colored according

to the average LoCoHD score in that region. The relatively low number of such
primitive atoms indicate low chemical variability. Panels F and G show realizations
of LoCoHD clusterings with a cutoff value of 7%. These panels focus on residues
Arg299 and Arg150, respectively, along with their environments, which can (at least
partially) explain the separation between the four clusters. Source data are pro-
vided as a Source Data file.
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than comparing the full ensembleof 100 structures, weonly compared
the first 50 structures in the ensemble. The molecular surface colored
according to the LoCoHDvalues is depicted in Supplementary Fig. 16A,
while the first twelve primitive atoms with the largest LoCoHD values
are listed in Supplementary Table 5. The structure-structure LoCoHD
distance matrix was also calculated and is shown in Supplementary
Fig. 16B, along with the ordered primitive atom LoCoHD values in
Supplementary Fig. 16C.When comparedwith the distancematrices of
E5 (Supplementary Fig. 15A, B), a different pattern emerges. Blocks
with low LoCoHD scores can be easily distinguished, suggesting high
structural clusterability. This can also be seen in the LoCoHD - RMSD
scatter-plot (Supplementary Fig. 16D), where an obvious gap can be
seen between low and high LoCoHD values, separating the points into
two clusters. In this case the RMSD values (calculated for all structure-
structure pairs) are between 0Å and 20Å and do not discriminate
clusters. The SpR between the LoCoHD values and the RMSD values is
0.24, which is lower than for E5 at any temperature. When agglom-
erative clustering is applied to the LoCoHD distance matrix with a
distance threshold of 7% (a value in the gap between the two LoCoHD
score clusters), 4 distinct clusters are produced. Performing the clus-
tering on the RMSD matrix with a cluster number of 4 does not pro-
duce the same clusters. Again, this is in contrast to the case of E5,
where clustering on the LoCoHD and RMSD matrices produced the
same result. Based on the LoCoHD analysis, we can conclude that the
fluctuation in relative domain positions causes little change in the
chemical environment within each domain (Fig. 5D, E). The largest
changes in LoCoHD indicate that, with the exception of the N-terminal
2 residues (Tyr277, Ser278) of the loop connecting the two domains, the
structure is not perturbed by the domain movements - the most sig-
nificant chemical changes within the domains are observed by three
Arg residues occupying different niches as they rotate on the surface
of the protein (Fig. 5F, G), independent of the large domain
fluctuations.

Interestingly, oneof these, Arg150 (or Arg18, according to adifferent
numbering convention), was shown crucial for the formation of the
hexameric capsid of HIV-140,41,42. Mutations at this site result in distinct
morphological variation of the viral assembly without causing con-
formational changes discernible by solid state NMR. LoCoHD identi-
fied this residue as being able to detect conformational fluctuations of
the matrix – as would be expected of a residue that recognizes the
presence of interaction partners and guides the assembly process.

An additional ensemble LoCoHD-RMSD comparison analysis can
be found in Supplementary Note 5 and in Supplementary Fig. 17.

Using LoCoHD for the analysis of an MD simulation
Molecular dynamics simulations generate trajectories of proteins or
protein complexes that represent the conformational changes of the
systems under study. These trajectories are hundreds of thousands of
time-correlated samples from a structural ensemble. Since a thorough
visual inspection of these trajectories is problematic due to the size of
these datasets, several numerical tools have been developed to plot
the time dependence of different descriptors (such as RMSD, solvent
accessible surface area, principal components, etc.). Here, by analyzing
the MD trajectory of the dimeric form of a structural protein of the
renal filtration barrier, podocin (UniProt ID: Q9NP85)43, we show that
the time-dependent LoCoHD score of different residues can pinpoint
structurally important changes of the simulated protein. The CG+Cent
typing schemewas usedwith the uniformweight function between 3 Å
and 10Å and the residue centroid primitive atoms as anchor atoms.
The trajectory was analyzed between 600 ns and 1600 ns with 2.5 ns
intervals. Each framewas compared to the first frame at 600ns anchor
atomby anchor atom, and the timedependence of the LoCoHD scores
was recorded.

After visual inspection of the LoCoHD score vs. time plots, it
became clear that some residues fluctuated between two or more

different environmental compositions and arrangements. To objec-
tively select these residues from the 344-residue long homodimer, we
calculated Sarle’s bimodality coefficient (denoted by β)44 for the
LoCoHD distribution of each residue;

β=
γ2 + 1
k

where γ is the sample skewness of the distribution and κ is the sample
kurtosis. The higher this number is, the more likely it is that the dis-
tribution of these scores is bimodal. The value β = 0.555 is a good
reference, since it belongs to the uniform distribution. Any distribu-
tion above β = 0.555 is likely to be bimodal. Using this procedure, we
identified six residues - His276 (chain A, β =0.75), Gly273 (chain B,
β = 0.66), Met197 (chain A, β =0.65), Asp267 (chain B, β =0.64), His276

(chain B, β =0.63), and Phe176 (chain B, β =0.63) - as the residues with
the most bimodal LoCoHD score distributions. The LoCoHD score vs.
time plots for these residues are depicted in Supplementary Fig. 18.

The two environmental states of the residue His276 can be easily
characterized by the Χ1 angle (N-Cα-Cβ-Cγ dihedral angle) of the his-
tidine. This dihedral angle takes on values from two angle-ranges, one
between (+155°, −165°) (minor form), and one between (+40˚, +90˚)
(major form). When His276 takes on the former conformation, the his-
tidine side chain faces the bulk solvent and allows the backbone car-
bonyl group of Gly273 - another highly bimodal residue - to form a
H-bond with the backbone NH group of Ser277, extending a short α-
helix (Fig. 6A, B). However, when His276 is in its major form, it is posi-
tioned between Gly273 and Ser277, blocking the formation of the afore-
mentioned H-bond and shortening the helix. This behavior is more
dominant in the case of His276 in chain A. In the case of His276 in chain B,
the histidine also moves away from the Gly273-Ser277 pair, but the for-
mation of the Gly273-Ser277 backbone H-bond appears to be more
sporadic than in the case of chain A.

In the case of the residue Met197 in chain A, the two states are
realized by the orientation of the Met side chain with respect to a
hydrophobic core (Fig. 6C, D). In one setting, the Cε atom stays close
to Val165, Asp166, Leu167, Asn199, and Ala200. This state is similar to the
starting state (t = 600 ns) and has a low LoCoHD score (~8-10%). At
about 1000 ns, the methionine side chain moves away from these
residues and fills a previously unoccupied hydrophobic cavity, created
by Val165, Gln170, Tyr195, Leu203, Val210, and Ile258. This state is different
from the initial state and has higher LoCoHD scores (~16-20%). Here,
the saturability of environments can be easily observed, when the
LoCoHD time dependence of Ala200 and Leu203 are inspected
(Fig. 6E, F). Ala200 has relatively few neighbors besides Met197, and thus
the same sharp change in LoCoHD score can be observed at 1000ns,
since its environmental composition is mainly determined by the pri-
mitive atoms from the methionine. In contrast, Leu203 is constantly
surrounded by other residues (Leu204, Leu205, Leu207, Val210, Ile258), and
although Met197 comes close to it at 1000ns, no visible correlation
between the two LoCoHD score time dependencies can be observed.

The 273–277 segment is in the critical hinge region of the podocin
monomer, the flexibility of whichwas suggested to influence the effect
that pathological mutations exert43. Thus, recognizing that two
interaction-wise different orientations are sampled by His276 may carry
functional significance.

Discussion
The in silico study of protein structures requires precise mathematical
and computational techniques capable of distinguishing between dif-
ferent conformational states and residue-residue interaction network
topologies. Existingmethods that aim tomeasure differences between
atomic arrangements focus mainly on atomic coordinates or intera-
tomic distances, ignoring important physicochemical differences
between the states under study. To overcome these limitations, we
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have developed the local composition Hellinger distance (LoCoHD)
metric and demonstrated that it is able to discriminate between dif-
ferent chemical compositions of residue environments. This metric is
highly flexible, offering several customizable points in its workflow,
and opens up an unexplored area of composition-based residue
environment investigations. Specification of the task is completed in
three conceptually separate steps: the choice of anchor atoms pro-
vides global spatial resolution and helps focusing on the region of

interest; the choice of weighting scheme provides local spatial reso-
lution, allowing the specification of what the user considers to be the
environment of an anchor atom; and the choice of the primitive typing
scheme provides the chemical resolution, a chance to specify which
atoms (or atomgroups) should bedifferentiatedbasedon their nature.

First, we were able to assert the environmental similarity of all
amino acid type pairs between randomly selected and uncorrelated
residue environments. In this way, it was possible to construct the full

Evolution of Leu203 (chain A) LoCoHD score
with respect to the starting structure

low correlation
with the Met197 curve

F

Evolution of Ala200 (chain A) LoCoHD score
with respect to the starting structure

high correlation
with the Met197 curve

E

Met197

Ala200

Leu203

Met197 (chain A) outside the cavity

Met197 (chain A) inside the cavity

Met197

Leu203

Ala200

D
His276 (chain A) minor foff rm

His276Gly273

His276 (chain A) maja or foff rm

His276
Gly273

C

Evolution of Met197 (chain A) LoCoHD score
with respect to the starting structure

outside the cavity

inside the cavity

B
Evolution of His276 (chain A) LoCoHD score

with respect to the starting structure

minor form

major form

A

Fig. 6 | Use of LoCoHD for anMD analysis. PanelA shows the time dependence of
the LoCoHD score of the highly bimodal residue His276, while also showing the clear
separation of the two modes. Panel C shows the atomic representation of these
modes, distinguishing a long (minor) and a short (major) helical form. Full blue lines
denote H-bridges. The important interacting partners are highlighted by sticks.
His276 is shown in purple. Panels B andD show the same representations for Met197.
Here the two forms are the occupied and empty cavity forms. The system starts

with the methionine sidechain outside the cavity and then fills the cavity at about
1000ns due to the conformational change of the aforementioned sidechain. This
behavior can also be followed from the time dependence of the LoCoHD score of
the initially close residue Ala200 in panel E. In contrast, in the case of Leu203, which
also becomes close to Met197 after filling the cavity, this correlation is not present
due to the environmental saturation effect (panel F). Source data are provided as a
Source Data file.

Article https://doi.org/10.1038/s41467-024-48225-0

Nature Communications |         (2024) 15:4029 9



distribution of LoCoHD scores, which provided comparative infor-
mation with other LoCoHDmeasurements. It is important to note that
this distribution is dependent on the primitive typing scheme and
weight function and should be recalculated for each new setup.
Nevertheless, for the two different typing schemes used for this task,
we observed a β distribution of LoCoHD values in both cases. These
had averages of 23.92% and 26.83%, providing good benchmarks for
deciding whether a score is considered large or small. The average
LoCoHD values of specific residue type and category pairs were also
compared to these global values and to each other. These results
respected the chemical intuition regarding thebehavior of amino acids
exceptionally well.

Secondly, the correlation between the LoCoHD score and the
lDDT score, and the correlation between the LoCoHD score and the
RMSD score were also examined. While these correlations were high
for protein pairs with high structural similarity, the different infor-
mation content of these descriptors became more apparent as the
structures became more dissimilar. LoCoHD was able to rank the top
five CASP14 competitors in the same order as lDDT. However, the
absolute correlation between the residue lDDT scores and the residue
LoCoHD scores gradually decreased as the predictive power of the
competitors decreased. In the case of the RMSD score, protein
ensembles with high internal structure-structure similarity showed a
high LoCoHD-RMSD absolute correlation, but this absolute correlation
also decreased with lower internal similarities, as in the case of multi-
domain proteins or IDPs.

Finally, we demonstrated the use of the LoCoHD score in a
molecular dynamics setup. This descriptor, used in a time-dependent
manner, was able to pinpoint structurally important residues within
the podocin dimer simulation. Highly bimodal LoCoHD score dis-
tributions corresponded tobimodal environmental states.Wepropose
that inspection of time-dependent LoCoHD graphs can suggest tra-
jectory convergence, highlight regions where residues undergo inter-
action mode changes, or - when compared to different energetically
optimal environmental arrangements - even provide a distance mea-
sure from local optima.

Methods
Description of the LoCoHD algorithm
To characterize local chemical differences by calculating LoCoHD
scores, two protein structures must be provided, which are then
treated as labeled point clouds. In theory, this initial labeling can
contain as much information as desired, but during the development
and testing of LoCoHD we simply considered atoms to be centers of
interest and labeled themwith their standard PDB name and the name
of the source residue to which the atombelongs. Next, the initial point
clouds of both proteins aremapped to new point clouds, for which the
new labels are chosen from a finite set called the “primitive type set”.
These primitive types should preferably contain chemical quality
descriptive information. For example, one may map the glutamic-acid
Oε1 and Oε2 atoms to the negative oxygen primitive type (O_neg),
while the serine Oδ atom to the neutral oxygen primitive type (O_neu),
discriminating the twochemicallydifferent oxygen-atom types.During
the mapping from the initial atom cloud to the primitive atom cloud,
any number of atoms canbeomitted. Thus, in all of our calculationswe
only considered heavy atoms and ignored all H-atoms. Furthermore,
virtual sites can also be introduced into the primitive atom cloud, like
specific atom-set centroids or center-of-mass sites, with their own
designated primitive types.

Once the primitive atom clouds have been created, a certain
subset of primitive atomsmust be selected from both clouds in such a
way that for each primitive atom in one subset must have at least one
corresponding primitive atom in the other. These atoms are called
“anchor” atoms and they form the basis of the LoCoHD comparisons.
For each corresponding anchor atom pair, our algorithm computes a

LoCoHD score, which reflects the difference in the primitive type
compositionbetween the environments of the anchor atoms. Since the
selection of the anchor atoms defines not only the global spatial
resolution and the focus area of the comparison but also its resource-
efficiency, the applied anchoring-schemehas to be adapted to the task
at hand.

The LoCoHD score for a given anchor atom pair (i, j) is calculated
as follows:

LoCoHDij =
Z 1

0
wðrÞH ðΦiðrÞ,ΦjðrÞÞdr

wherew(r) ≥0 is a weight functionwhose integral on (0,∞) is 1,H is the
Hellinger distance between the two probabilitymass functions (PMFs),
Φi(r) and Φj(r), and Φi(r) is the distance-dependent environmental
composition (DDEC) of the ith anchor atom: a vector with positive
entries and an L1 norm of 1, and it has as many dimensions as many
primitive atom types are used. Φi(r) contains the fraction of
occurrence of each primitive type within a sphere around the ith
anchor atom with a radius of r.

As an example, suppose a primitive type set of {A, B, C} is used and
the environment of the anchor atom is described by the set {(A, 0 Å),
(A, 1 Å), (B, 3 Å), (B, 5 Å)}, in which each entry is a (primitive type,
distance from anchor atom) pair. This means that the anchor atom,
which has a primitive type of ‘A’, is surrounded by 3 other primitive
atoms.Φ(r = 2Å) in this casewould be (1, 0, 0), since only the primitive
type ‘A’ is present in a 2 Å sphere around the anchor, while Φ(r = 4Å)
would be (0.66, 0.33, 0) (two ‘A’ and one ‘B’ type inside the sphere),
and Φ(r = 7Å) would be (0.5, 0.5, 0).

The Hellinger distance45 of two PMFs (here, p and q) is given by:

H p,qð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

X
i
ð ffiffiffiffiffi

pi
p � ffiffiffiffi

qi

p Þ2
r

which guarantees a result between 0 and 1, with 0 meaning total PMF
similarity, and 1 meaning total PMF dissimilarity. Since the weight
function is chosen so that it satisfies the properties of a probability
density function (PDF), the LoCoHD integral is a weighted average of
Hellinger distances, also resulting in a value between 0 and 1.

Due to the discrete nature of atomic positions, the Hellinger dis-
tance between the twoDDEC functions is constant for specific (rn, rn+1)
intervals, with values denoted by Hn. This means, that the LoCoHD
integral can be simplified into an easily computable form:

LoCoHD=
XN�1

n=0

Hn

Z rn+ 1

rn

wðrÞdr =
XN�1

n=0

HnðWn + 1 �WnÞ

Here, we omitted the indices i and j of the anchor atoms for the
purpose of readability. In these equations r0 is considered 0Å, while rN
is considered ∞ Å. The values Wn are the antiderivatives of w(r) eval-
uated at rn.

In addition to omitting all initial (i.e. non-primitive) atoms, it is
also possible to omit primitive atom types from an environment
depending on the central, anchor atom. This is an important feature,
since an atom fromaparticular amino acid is always surroundedby the
other atoms from the same amino acid. For small distances this will
make the DDEC functions more similar, i.e. this will add a systematic,
residue-type dependent bias into the LoCoHD scores. Therefore, it is
advantageous to ignore primitive atoms that belong to the same
residue as the anchor atom. This feature is referred to as “using only
hetero-residue contacts”.

From the previous example, the environment can be expanded
with residue-source information; the original set becomes {(A, 0 Å, X),
(A, 1 Å, X), (B, 3 Å, Y), (B, 5 Å, Z)}, where each third component (X, X, Y,
and Z) denotes the residue-source. Since the anchor atom (A, 0 Å, X) is

Article https://doi.org/10.1038/s41467-024-48225-0

Nature Communications |         (2024) 15:4029 10



from the residue X, the primitive atom (A, 1 Å, X) would be omitted
from the environment if only hetero-residue contacts are allowed.

The whole procedure is depicted in Fig. 7 and in Supplemen-
tary Fig. 19.

Primitive typing schemes
During our work, we investigated several different primitive typing
schemes. These schemes can be characterized by either being “full
atom” (FA) or “coarse grained” (CG) in nature, or whether they contain
residue centroid primitive atoms or not (Cent: a virtual atom at the
geometric center of every residue). These different primitive typing
schemes are referred to as FA, CG, FA+Cent and CG+Cent.

In the FA typing scheme, all heavy atoms in the original structures
aremapped to primitive atoms. The primitive types of these atoms are
assigned from the following primitive type set: negative oxygen
(O_neg), neutral oxygen (O_neu), positive nitrogen (N_pos), neutral
nitrogen (N_neu), aliphatic carbon (C_ali), aromatic carbon (C_aro), and
sulfur (S). In FA+Cent an additional residue centroid primitive atom is
used, with a primitive type of Cent, and coordinates set by the geo-
metric center of the residue’s heavy atoms. Thus, the DDEC functions
produce 7-dimensional vectors in FA, and 8-dimensional vectors in
FA+Cent.

In the CG typing scheme the following primitive types are dis-
tinguished: amide group carbon atoms (AmideC), alcoholic OH group
oxygen atoms (OH), positive centers (Pos), negative centers (Neg),
aromatic centers (Aro), aliphatic centers (Ali), and sulfur atoms (S).

Note, that some of these primitive atoms are not mapped from one
atom, but rather from the geometric centers of certain atom-groups.
Examples are the Oδ1-Oδ2 atom group of Asp for a negative center, or
theCγ-Cδ1-Cδ2-Nε1-Cε2 atomgroupof Trp for an aromatic center. The
CG+Cent typing scheme also contains the heavy atom centroids of the
residues, similar to FA+Cent.

Schemes FA and CG are useful when a one-to-one correspon-
dence can be established between each atom of the two structures,
i.e. all resulting primitive atoms can be used as anchor atoms. This is
the case when comparing different conformations of the same
protein (as in the case of an NMR ensemble or the trajectory of a
molecular dynamics simulation), or when comparing the experi-
mental structure of a protein with its predicted structure (as in the
case of CASP competitions). In contrast, the FA+Cent and CG+Cent
typing schemes are useful when the two proteins to be compared do
not have the same primary structure and thus contain different
residues and atoms. In these cases, the Cent primitive atoms can
serve as anchors, through which the LoCoHD calculations are
performed.

Selection of the primitive atoms is again, task dependent. The FA
and FA+Cent schemes provide the most chemical resolution. In the
case of FA and CG, anchor pairing is only trivial if the two structures to
be compared are comprised of the same atoms. Centroid-containing
schemes (like FA+Cent and CG+Cent) can be used if residue-sized
global spatial resolution suffices, and they also offer a way to reduce
the runtime of the metric calculation.

Protein Structure #1

Protein Structure #2

1
Primitive

type
assigner

Primitive
typing

scheme

Primitive atom set #1

Primitive atom set #2

2
Selection
of anchor

atoms

Primitive atom set #1
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3...
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Fig. 7 | General flowchart for the LoCoHD algorithm. Starting from the protein
structures, the procedure first maps the set of real atomic coordinates and names
(stage 1) to primitive atoms (stage 2). How thismapping is done can be set through
the primitive typing scheme. Then, a subset of these primitive atoms is selected as
anchor atoms (light and dark brown squares, stage 3). The figure emphasizes the
need for a surjective correspondence between these anchor atoms (red dashed

arrows). For each pair of anchor atoms a LoCoHD calculation is performed and the
results of the environment comparisons are obtained (stage 4). The LoCoHD cal-
culations are dependent on the shape of the weight function employed. One can
use the set of these LoCoHD scores directly, or perform a final average (ormedian)
calculation that yields a single number describing the structural similarity of the
two protein structures (stage 5).
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Random LoCoHD distribution generation
To generate these experimental distributions, we used a homology-
filtered PDB database from PISCES46, culled on 2022.02.22. We used a
maximum sequence identity of 25%, a resolution of 2 Å, an R-value of
0.25, and a protein chain length of 300 residues. This resulted in a
databasewith a total of 3444 pdb files. The order of these pdb files was
shuffled, and successive pairs of structures were considered using the
shuffled order. For each pair of structures, all residues of the structure
with the smaller number of residues were randomly paired with resi-
dues of the other structure. In this way, we were able to generate
random residue pairs with uncorrelated environments. The LoCoHD
values of these pairs were then calculated using the FA+Cent and CG
+Cent typing schemes and the uniform weighting function between
3 Å and 10Å. Only hetero-residue contacts were taken into account.

Construction of the LoCoHD predictor neural network
The neural network was constructed, compiled, trained and evaluated
using the Python3TensorFlow2.15.047 package. A Siamese architecture
was used. The network required a pair of 26-dimensional vectors as
inputs, which can be split into two parts: a 20-dimensional one-hot
encoded vector, designating the central residue type, and a
6-dimensional interaction-count vector, counting the number of
interactions for each interaction type the central residue makes (H-
bonds, van der Waals interactions, disulfide bonds, salt bridges, π-π
stacking and π-cation interactions). These interactions were identified
using the RING standalone software48 and counted using in-house
Python3 scripts. The network first creates internal representations of
these vectors through a weight-shared feedforward 2-layered arm-pair
with layer sizes of 256 and 128 neurons and ReLU activations. The
resulting 128 dimensional vectors are then subtracted from each other
and their difference is squared, resulting in a single 128 dimensional
vector. Note, that this intermediate result is invariant with respect to
theorder of the inputs,making the network symmetric. Then, a simple,
3-layered feedforward network processes this further with layer sizes
of 128, 64 and 1 neurons, and activations of ReLu, ReLu and sigmoid,
respectively. The total number of learnable network parameters came
to be 64641. Weight initialization was performed with the uniform
Glorot initializer. Training was performed with the Adam optimizer
(learning rate = 0.001) and the binary crossentropy loss (since the
output can be thought of as a fuzzy binary categorization). Metrics of
mean squared error and mean absolute error were used. Training was
done on batch sizes of 64 for 3 epochs andwith a validation split of 20/
80. A total of 409408 environment-pairs were used for training
obtained from the random LoCoHD distribution generation.

CASP naming convention
In CASP49–51, each contestant and target structurehas an identifier code
in the form of TS[contestant ID] and T[target ID], respectively. Targets
are sometimes prefixed with H, denoting heteromer target prediction,
instead of T, denoting tertiary-structure target prediction. In addition,
each contestant provides five predicted structures, which are denoted
by the codes T[target ID]TS[contestant ID]_[structure ID]. An example
for this kind of notion is T1026TS473_2, which is the second prediction
of TS473 (the predictor named BAKER) for the target T1026 (FBNSV
capsid protein, PDB ID: 6S44). We used this naming convention when
referring to CASP protein structures.

Processing and score calculation for the CASP structures
Structures were downloaded as tar-files from the CASP archive and
were preprocessed with in-house Python3 scripts. Briefly, all experi-
mental and predicted structures were loaded into memory with Bio-
Python 1.8152, non-canonical amino acids and disordered elements
were removed from reference structures, correct chain-name-pairing
was sought using sequence alignment based on the experimental

chains, and residues and atoms were removed from predicted struc-
tures that were not present in the experimental ones. Next, using all
remaining atoms in the predicted structures, they were compared to
the experimental structures using the lDDT and CAD score calculation
modules of OpenStructure 2.7.053. These per-residue scores were fur-
ther extended with our LoCoHD calculations.

Ensemble analyses
To investigate the differences between distance-matrix based LoCoHD
calculations and alignment based RMSD calculations, we compared
different conformations of protein structures within ensembles using
both methods. These ensembles were obtained from previously pub-
lished in-house NMR measurements38 and also from the Protein
Ensemble Database (PED)54. The LoCoHD calculations were performed
using the FA and CG (centroid-less) typing schemes and the uniform
weight function between 3 Å and 10Å, allowing hetero-residue con-
tacts only. Since an ensemble contains different conformations of the
same protein, all primitive atoms were used as anchor atoms. The
atomic coordinates of the primitive atom sets were used for the cal-
culation of the optimal rotation matrix in the singular value decom-
position (SVD)-based alignment algorithm and also for the calculation
of theRMSDvalues.Within an ensemble, each structurewas compared
to every other with respect to their primitive atoms, resulting in a total
of M * N * (N − 1)/2 comparisons, where M is the number of primitive
atoms inside the protein and N is the number of structures within the
ensemble. In other words, a symmetric, zero diagonal, N by N distance
matrix was obtained for each primitive atom.

Visualizations
Structural visualizations were done using PyMol5 2.5.0, while PLIP55

2.3.0 was used for the visualization of residue-residue interactions.
Graphs and plots were created with Matplotlib56 3.8.2.

Statistics and reproducibility
Sample sizes in the PISCES dataset analysis were determined by the
homology filtering method and the random residue pairing method
detailed above. The reported statistical descriptors correspond to a
single randomized run on all structures included in this study. No
blinding was used for the assessment of the outcomes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated, analyzed and necessary for the reproduction
of the case studies (except for the restricted part of the CASP15 data-
set) are collected and available in a Figshare repository57 with an
accession code of https://doi.org/10.6084/m9.figshare.24885540.
Besides the repository, all structural datasets used in this paper are
also freely downloadable from the CASP database (https://
predictioncenter.org/download_area/), from RCSB PDB (https://www.
rcsb.org), from PED (https://proteinensemble.org), or from PISCES.
The podocin MD trajectory and PDB accession code lists used in this
study are also contained within the Figshare repository. Some of the
CASP15 structures (and data related to them) are still under embargo
by their authors’ request and must be requested from the the CASP15
organizers at casp@predictioncenter.org. Specifically, in this manu-
script, the CASP15 structures publicly available on 2023.12.31. were
used, in addition to the restricted targets for invitees requested on
2024.02.16. The release of the embargoed data can be followed at
https://predictioncenter.org/casp15/targetlist.cgi (Description col-
umn). Source data for the figures and tables are provided with this
paper. Source data are provided with this paper.
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Code availability
The Rust and Python code for the LoCoHD project, along with
dependency descriptions52,58 and the Python scripts of the case studies
are all available at theGitHub repositoryhttps://github.com/fazekaszs/
loco_hd. A release version of v0.1.459 was used for this study. Brief
details for the implementation can be found in Supplementary Note 6.
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