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Severeoutcomesofmalaria in childrenunder
time-varying exposure

Pablo M. De Salazar 1,2 , Alice Kamau3, Aurelien Cavelan1,2, Samuel Akech3,
Arthur Mpimbaza4, Robert W. Snow 3,5,8 & Melissa A. Penny1,2,6,7,8

In malaria epidemiology, interpolation frameworks based on available obser-
vations are critical for policy decisions and interpreting disease burden.
Updating our understanding of the empirical evidence across different
populations, settings, and timeframes is crucial to improving inference for
supporting public health. Here, via individual-based modeling, we evaluate a
large, multicountry, contemporary Plasmodium falciparum severe malaria
dataset to better understand the relationship between prevalence and inci-
dence of malaria pediatric hospitalizations - a proxy of malaria severe out-
comes- in East-Africa. We find that life-long exposure dynamics, and
subsequent protection patterns in children, substantially determine the like-
lihood of malaria hospitalizations relative to ongoing prevalence at the
population level. Unsteady transmission patterns over a lifetime in children
-increasing or decreasing- lead to an exponential relationship of hospitaliza-
tion rates versus prevalence rather than the asymptotic pattern observed
under steady transmission. Addressing this increase in the complexity of
malaria epidemiology is crucial to update burden assessments via inference
models that guide current and future policy decisions.

Assessing the burden of malaria life-threatening outcomes in
populations at risk is a critically important step in evaluating and
improving control efforts. Malaria mortality is challenging to mea-
sure accurately in the community1 but remains a fundamental
component of statistical-based interpolation from prevalence esti-
mates, resulting in high uncertainty2. Inference of disease burden
has been approached with different grades of sophistication, ran-
ging from purely data-driven fits to multi-level mechanistic
microsimulations3–6. Independent of the complexity of the
approach, the ability of a model to generate accurate, robust, and
valid malaria disease outcomes using exposure predictors, such as
prevalence, requires (1) high-quality data as input from real-world
observations, and (2) a comprehensive understanding and

identification of the key factors determining the relationship
between exposure and clinical outcomes.

Severe, life-threatening malaria syndromes presenting to hospi-
tals are a valuable proxy for malaria-related death among commu-
nities. High exposure rates in children at a very young age areknown to
offset the risk of severe clinical outcomes at older ages7. This leads to a
characteristic asymptotic pattern between exposure and disease risk
at the population level, consistent with consensual malaria theory and
historical observations4,7–9. Recent work has assessed the empirical
relationship between community prevalence and the risk of severe
malaria syndromes, namely severe anemia, cerebral malaria, and
respiratory distress among children in East Africa, based on the largest
standardized Plasmodium falciparum malaria pediatric dataset
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available to date10. Findings show that the occurrence of these severe
malaria outcomes in the population may relate differently to increas-
ing community prevalence. Particularly, an asymptotic relationship
was observed when predicting severe anemia over community pre-
valence, while an exponential relationship was favored when predict-
ing a combined outcome comprising the three syndromes. Evaluating
new sources of standardized data, such as this contemporary dataset,
contextualized with historical sources of data9,11 improves our under-
standing of the accuracy, robustness, and validity of the inference
frameworks.

Here, we use a previously validated multi-level individual-
based malaria model12, OpenMalaria (https://github.com/SwissTPH/
openmalaria/wiki), to systematically investigate clinical and epide-
miological factors influencing the relationshipbetweenpotentially life-
threatening hospital malaria admissions among children upon a given
observed community prevalence. We use community-based malaria
hospitalization incidence rates in small catchment populations and
adjusted for case under-ascertainment as an empirical proxy of the
incidence of severe malaria outcomes. Our analysis framework inter-
rogates standardized malaria data obtained in Sub-Saharan African
time-sites within the 1990s throughout 20209–11,13, aiming to improve
and update our understanding of the dynamics from P. falciparum
malaria infection to the occurrence of severe outcomes in children.

Results
Malaria admissions were assembled from individual records of 21
hospitals representing 35 time-sites in Kenya, Uganda, and Tanzania,
among children resident in specific catchment areas -within a defined
distance radius from the hospital where surveillance took place-
excluding urban settings where it was possible to estimate single-year
censused population estimates. We assume that the hospitalization
rates per time-site represent a lower limit of the hospitalization inci-
dence and can be reasonably comparable when further adjusting for
case ascertainment. Cases were included if malaria was the primary
cause of hospitalization, and those with underlying conditions were
excluded10,13. We further used data on malaria hospitalization inci-
dence obtained with similar approaches between 1992 and 1997 at
seven hospital time-site locations in Kenya, TheGambia, andMalawi9,11.
This allows us to compare and interpret ourfindingswith a dataset that
has been classically used for informing malaria inference models4,8,14

aiming to estimate severe outcomes of malaria across populations.
For each of the time-sites in the above datasets, the average

number of hospitalizations due to malaria among children three
months to 9 years old per 1000 children per yearwere pairedwith age-
diagnostic method standardized community prevalence estimates, as
empirical P. falciparum Parasite Rates among children 2–10 years old
(ePfPR2–10). The data was obtained from community and school sur-
veys undertaken during the period of hospital surveillance within the
same catchment areas9–11. Further, we assessed the past exposure
dynamics using catchment site-specific time-series of modeled age-
and test-standardized parasite rates estimates, herein referred to as
mPfPR2–10. For each time-site of the contemporary dataset, annual
mPfPR2–10 estimates were obtained using a Bayesian hierarchical
geospatial model detailed elsewhere13,15. In those time sites where
modeled estimates were available for at least 7 past years (n = 27), and
up to a maximum of 9 years, we computed the median mPfPR2–10 of
the time series.We assume that themedian prevalence across the past
7–9 years roughly represents the cumulative past transmission to
which the population of children up to 10 years of age have been long-
life, which can then be compared to the empirical prevalence at the
time of the survey to evaluate the gap between past and present-day
transmission

Visual inspection of the empirical relationship between pre-
valence and hospitalization rates for the 35 time-sites included in the
contemporary dataset does not suggest an asymptotic relationship of

malaria hospitalization incidence across the ePfPR2–10 rangewithin the
full dataset (Fig. 1a.). For illustration, we highlight four representative
time-sites in Fig. 1a and alongside the mPfPR2–10 time-series of these
time-sites for the years prior to the collection of the empirical data
(Fig. 1b). Three major patterns of time-varying transmission are
depicted, showing (1) a substantial increase in themPfPR2–10(Apac A),
(2) relative constant mPfPR2–10 (e.g, Busia) (3) steady increase
(Mubende B) and 4) substantial decrease in the PfPR2–10(e.g., Jinja B).
As depicted in Fig. 1c, there is substantial change between the
ePf PR2–10 and the median value of the mPfPR2–10 over the previous
years for each of the time-sites comparing at least seven years and up
to ten years of modeled past exposure estimates. The difference
between the ePf PR2–10 and the median value of pastmPfPR2–10 can be
interpreted as the gap in past exposure relative to ongoing exposure.
For those time-sites at the higher end of the current ePfPR2–10 range
(i.e., higher than themedian empirical prevalence, 20%), exposure had
primarily substantially increased or remained relatively stable (12 out
of 14 sites). For those time sites at the lower end of the range (lower
than 20%), exposure had decreased or remained relatively stable (13
out of 13 sites). All availablemPfPR2–10 time series for the 35-time sites
are shown in Fig. S113,15.

Understanding the complex relationship between malaria expo-
sure, immunity, and clinical outcomes across populations and time
requires causal analytical frameworks that (a) can combine empirical
observations with theory (b) can address multiple interacting causal
effects, threshold dynamics, and interference (c) have generally
accepted principles to build the models, populate and calibrate their
parameters and test their predictions for avoiding misspecification.
Individual-based models are amongst the few modeling tools that
fulfill these requirements1,2.

Open-Malaria (https://github.com/SwissTPH/openmalaria/wiki) is
an multi-level individual-based model that includes several key fea-
tures that allow to generate counterfactuals of the effect of malaria
exposure on clinical disease under different scenarios of population
structure, changing transmission, health-access, diagnostic thresh-
olds, drug-efficacy, and other major malaria control and prevention
interventions3. Random effects can be incorporated into the modeled
processes and allow the inclusion of uncertainty and heterogeneity in
the simulations. Relevant to our analyses, the framework encompasses
submodels specifically parameterized to empirical data including (1)
population structure4,5; (2) within-host dynamics of parasite burden
and addressing the effect on single individuals of repeated infections
in developing immunity and subsequent infections6–8; (3) disease
progression6,7 and health-seeking behavior including rates of indivi-
duals accessing health services, as well as time to diagnostic and
treatment4; (4) efficacy of case-management including diagnostic
sensitivity and specificity, first- and second-line treatment effective-
ness and efficacy of hospitalization4; and (5) the effect of age-
structured comorbidities on severe malaria outcomes upon
infection5. Further details are provided in the Supplementary Note 2.

We iteratively interrogated the data under different sets of plau-
sible parameterizations of our individual-based model, hereafter
referred to as scenario analysis. The scenario analysis explores
hypotheses of the impact of well-known determinants on disease risk
and changes in contemporary disease risk compared to historical
observations, including the deployment and availability of artemisinin-
derivatives in primary- and hospital-care, improved treatment adher-
ence, the reduction in the occurrence and progression of malaria-
associated comorbidities. In addition to addressing the detailedmajor
key changes between the historical and contemporary datasets, we
further address the life-long exposure dynamics evidenced by the
modeled community prevalenceestimates (Fig. 1b andFig. S1). The risk
of malaria disease outcomes, including those severe, depends on
immunity, which in turn depends on previous exposure dynamics. We
hypothesize that the year-to-year variability of PfPR could strongly
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Fig. 1 | The contemporary relationship between PfPR2–10- malaria hospitaliza-
tion rates and past exposure. a The ePf PR2–10-severe malaria incidence empirical
relationships highlighting four representative time-sites (red, green, purple, and
blue colored dots) within all time-sites (orange dots).b Present daymPfPR2–10 over
time in four representative time-sites (red, green, purple, and blue colored lines)
and time-site ePf PR2–10 (orange) with highlighted time periods for which hospita-
lization incidence estimates were available for the empirical relations in (a).
c Summarizing the prevalence trends over time estimated for each time-site as an

increasing trend -when the estimated median mPfPR2–10 in the past 7 to 9 years is
lower than the ePf PR2–10 at the time of assessment of severe outcomes incidence-
or decreasing trend the estimated medianmPfPR2–10 in the past 7–9 years is lower
than the ePf PR2–10 at the time of assessment of severe outcomes incidence. The
median pastmPfPR2–10 per time-site is plotted as yellow (for those with increasing
trends) or red (for those time-sites with reducing trends), and ePf PR2–10 per time-
site is plotted in orange. Estimates have been computed among the 27-time sites
with at least seven years of available past mPfPR2–10 estimates.
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influence the risk of hospitalization. Thus, we further assessed the
impact of this variability on malaria exposure on the ongoing hospital
admission risk estimated from our individual-based model scenarios.
Here, we define steady exposure as the exposure of a specific popu-
lation that does not change substantially over the years, and we define
unsteady exposure as an exposure that shows substantial increasing or
decreasing dynamics over time. We performed simulations that
included generic step-up and step-down exposure dynamics with dif-
ferences between pre- and intra-survey prevalence within the range of
those observed empirically. Further details are found in the Supple-
mentary Note 3. For each scenario analysis, we performed over 1000
individual-based simulations. We tested the model outputs—PfPR2–10

and incidence rate of malaria admissions—against three regression

models, namely an intercept-only, a log-logistic, and a log-linear
model, which was previously used to evaluate the prevalence-
hospitalization relationship10.

The historical dataset shows higher levels of hospitalization rates
at similar prevalence, consistent with the expected reduction of
comorbidities and improved management effectiveness in the con-
temporary dataset (Fig. 2 and Supplementary Note 5). Figure 2a, b
shows (1) the historical (Fig. 2a) and contemporary (Fig. 2b) empirical
estimates, (2) their respective time-frame-specific simulations under
the assumption of steady exposure, and (3) the regression-based
predicted relationship, shown as the median and 50% and 95% pre-
diction intervals. For both the historical and the contemporary pre-
dictions, the log-logistic regression model provides a better fit to the

a. Recovery of the historical relationship 
given steady transmission

b. Recovery of the contemporary relationship 
given steady transmission

c. Individual base modeled PfPR2-10 and
hospitalization rates time-series

d. Recovery of the contemporary relationship 
given unsteady transmission

Fig. 2 | Recovery of the PfPR2–10-malaria hospitalization rates relationship.
Showing the empirical PfPR2–10-hospitalization rates relationship obtained from
a the historical dataset (orange dots), and b the contemporary dataset (orange
dots) overlapping respective PfPR-hospitalizationmodel-based estimates obtained
through simulations consistent with steady transmission (gray dots, n = 100) and
respective levels of health care access, treatment and comorbidities (b), and the
best-fit model-based log-logistic regressions (median black line, blue ribbons 50%
and 95% prediction intervals). c Representative simulation patterns of PfPR2–10

(black lines, increasing at the top and decreasing at the bottom) and subsequent
malaria hospitalization incidence over time (red columns). d The empirical
PfPR2–10-hospitalization rates relationshipobtained from the contemporarydataset
(orange dots) overlapping PfPR2–10-severity model-based estimates obtained
through simulations scenarios consistent with time-varying exposure (gray dots,
n = 100) and levels in health care access, treatment, and comorbidities, and the
best-fitmodel-based log-linear regression (median black line, blue ribbons 50% and
95% prediction intervals).
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model outputs, with the asymptote reaching around 60% and 40%
PfPR2–10, respectively. However, while the prediction model based on
steady transmission is consistent with the historical empirical data, it
fails to recover the contemporary dataset relationship, with a sub-
stantial number of time-sites outlying from the predictions range,
particularly for the highest ePf PR2–10 values (i.e., over 60%).

Given that model predictions based on steady exposure do not
capture the pattern of the empirical contemporary data, we further
evaluated scenarios with unsteady past malaria transmission (either
increasing or decreasing dynamics), and how these different trends
affect the PfPR2–10-hospitalization rate incidence relationship. Speci-
fically, we performed simulations that included step-up and step-down
exposure dynamics with differences between pre- and intra-survey
prevalence within the range of those observed empirically (see Meth-
ods). Simulations captured representative patterns of time-varying
exposure, with decreasing, steady or increasing transmission before
computing severedisease incidence (Fig. 2c) over the range of PfPR2–10

values. The best fit to a regression model is then obtained using the
log-linearmodel (Fig. 2d). Basedonperformancemetrics16, simulations
under the assumption of unsteady patterns of past exposure predict
the relationship of the contemporary dataset more accurately than
those based on steady exposure. Further, modeled predictions under
unsteady exposure show hospitalization rates in different age groups
increase towards higher ePf PR2–10 in a similar way as observed in the
empirical estimates (Fig. S2). However, this is opposite to thepattern in
historical observations under steady state exposure; severe disease
incidence among youngest children is typically higher in high trans-
mission settings than in low transmission settings, whereas the
opposite occurs among older children4,7–9. Consistent with these
results, our model recovers more accurately the observed hospitali-
zation age structure (Fig. S3, left column for representative time-sites)
under the unsteady transmission assumption (Fig. S3, middle column)
than under the steady-state assumption (Fig. S3, right column). Fur-
ther,when assessing themodel estimates of hospitalization risk later in
time (i.e., allowing the scenarios to maintain a steady-state level
transmission over 5 years), the prevalence-hospitalization rates rela-
tionship transitions to the asymptotic pattern expected for steady
transmission (Fig. S4).

Discussion
Via scenario analysis, we have systematically evaluated the major
clinical and epidemiological determinants influencing the occurrence
of malaria hospitalization upon infection at the population level and
thus proved a contemporary characterization of relationship trends
and changes between malaria community prevalence and life-
threatening disease risk in children. We found that the asymptotic
relationship between prevalence and hospitalization disease risk,
expected under a relatively steady transmission, is lost when children
have been exposed to unstable, time-varying past malaria transmis-
sion. Overall, our analyses support the assumption that substantial
fluctuations in malaria transmission over the years have led to a par-
ticular prevalence-hospitalization relationship observed among the
East-African settings10, where increasing prevalence does not neces-
sarily lead to saturating disease risk but increases toward the highest
rates in an exponential manner. However, our analyses show that if
transmission is further maintained at a steady-state level over suffi-
cient time, disease riskwould also eventually re-equilibrate back to the
asymptotic relationship relative to the parasite rates (fig. S4). To date,
inference frameworks aiming to estimate or predict severe outcomes
of malaria used for policy decisions and public health action do not
explicitly include past exposure as an independent variable5,17. Our
analysis framework is capable of reconciling historical and con-
temporary observations encompassing three decades in sub-Saharan
Africa and underscores the importance of taking the variability of past

malaria exposure among children into accountwhen predicting severe
disease risk.

Our analyses have several limitations that need to be acknowl-
edged. First, we use community-based hospitalization in non-urban
settings as an empirical proxy of the incidence of severe outcomes of
malaria. While these estimates could under- or over-estimate the true
number of severe outcomes, the data was obtained aiming to stan-
dardized the under-ascertainment of cases, estimates would be affec-
ted by site specific treatment-seeking behaviors and therefore
represent a lower limit for hospitalization rate at each time site. Also,
the empirical contemporary dataset does not necessarily represent
urban settings, where the referral pathways from infection to hospi-
talization might be more complex to understand or subject to other
potential biases. Further, the curated data does not include cases
where malaria was not the major syndrome for hospitalization. Our
modeling approach allows access to health (i.e., access to diagnosis,
treatment, and/or hospitalization) to randomly vary within the range
of the rates estimated for the three countries, with sensitivity analysis
showing that deviations from this assumption do not influence the
overall relationship between prevalence and hospitalization. Never-
theless, if the data represents stronger deviations from these
assumptions regarding case identification but remains relatively
similar across time sites, the overall prevalence-severe disease trend
will still hold. Second, the empirical PfPR estimates obtained through
community and school surveys might not necessarily reflect the
underlying prevalence dynamics for the full catchment population,
given how heterogeneous malaria exposure can be at a very granular
spatial level. However, we obtain a similar prevalence-hospitalization
relationship using estimates computed using the geospatial model
(see Section “Discussion”, Fig. S10), thus supporting the assumption of
the empirical values being a representative summarizing value for the
catchment populations. Also, the time series of PfPR values used to
compute exposure steadiness can bear high uncertainty on the precise
estimates. Nevertheless, given that we did not aim to replicate the
prevalence changes over time but addressed this matter focusing on
the relative change, our framework will remain well informed if the
estimates approximate true trends. Third, our model OpenMalaria
simulations are based on spatially homogeneous malaria transmission
because the catchment populations in the empirical data are small.
Assuming a heterogeneous transmission structure can affect the
magnitude of the clinical outcomes, central estimates will not
change18. Fourth, while parameterization of the hospitalization rates,
efficacy of treatment, and comorbidities are consistent with the lit-
erature, for simplicity, we assumed similar ranges of values across
time-sites with stochastic variation. In Supplementary Note 4, we
provide an uncertainty analysis of these mechanistic parameters,
showing that our results hold under no major deviations from tenable
assumptions. Last, we have applied parametric regression models to
simulation data, which likely misspecifies the mechanical interpreta-
tion of the model. Still, we believe this is justified given this approach
was originally used to determine the empirical relationship10 and we
aimed to replicate the trends under potential plausible mechanistic
scenarios.

We have provided evidence that variation in malaria transmission
and subsequent disease protection after life-long exposure can
strongly influence severe disease risk estimates under otherwise
equivalent ongoing force of transmission. Notably, frequent imple-
mentation and withdrawal of infection prevention strategies can
strongly contribute to unsteady malaria exposure patterns and thus
increase severe disease risk. Other potential sources of variability in
the exposure include substantial movement of individuals from areas
with different community prevalence (i.e., via increasing or reducing
the overall population-level susceptibility to severe disease) or strong
environmental changes influencing entomological inoculation rates
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such as urbanization or climatic drivers (i.e., prolonged drought or
excessive rainfall).

Under constant, similar malaria exposure and health access rates,
a population of childrenwith higher immunitywill substantially reduce
their risk of severemalaria and, therefore, the number of severe cases.
However, if malaria transmission has marked changes, either sudden
reductions or increases, the resulting severe disease will be sig-
nificantly lower or higher, respectively, than if the population had
remained under constant transmission. This understanding is critical
to evaluate the effects of interventions, and such mechanistic pro-
cesses need to be included in future analytical approaches providing
predictions of malaria disease burden. The processes that must be
incorporated into disease burden estimates are best defined through
differences in the age–structure patterns of the risk conditional to past
exposure. For example, it is expected that following a strong reduction
inmalaria transmission, severe cases among agegroupsof children at a
certain prevalencewill be reducedearlier in timebutwill likely increase
in later periods if malaria prevalence reaches steady levels. Similarly,
the withdrawal of effective prevention and control strategies will lead
to a higher number of severe cases than those expected when malaria
prevalence has remained unchanged over time. In short, if past
exposure and the dynamics described here are not accounted for in
burden estimates, it will lead to long-term overestimation of severe
malaria risk in places with recent effective interventions. And con-
versely, it will lead to long-term underestimation of severe malaria in
places with deterioration of interventions. Finally, our findings
underpin the need to build back rigorous clinical surveillance of severe
malaria under the changing landscape of parasite exposure in Africa. It
is striking that only two longitudinal clinical series exist since the
launch of the Roll Back Malaria initiative in 200019,20.

Overall, our findings provide evidence that inference in malaria
epidemiology, such as the generation of counterfactual scenarios with
predictions on clinical outcomes for policy decisions, should account
from now on past exposure and subsequent protection to avoid sub-
stantial bias in such risk predictions and highlight the increase in the
complexity of malaria epidemiology arising from unsteady transmis-
sion dynamics.

Methods
Contemporary malaria hospitalization incidence data and
paired community prevalence estimates
The contemporary P. falciparum malaria hospitalization incidence
data has been obtained from 35 time-sites in Kenya (n = 18), Uganda
(n = 14), and Tanzania (n = 3) between 2006 and 2020 and has been
previously described elsewhere10. The data was collated from indi-
vidual records of 21 hospitals, including hospitalizedmalaria cases in
children resident in specific catchment areas within a 30 km range
and excluding urban settings. Given potential differences in
treatment-seeking behaviors at the different sites, the computed
estimates represent the lower limit for hospitalization incidence,
thus requiring further assumptions for adjusting to under ascer-
tainment (see model parameterization in the Supplementary Text).
for In the present analysis, cases were included if malaria was
deemed the primary cause of hospitalization. Per each time-site, the
number of hospitalizations among children 3 months to 9 years old
per 1000 children per year was computed as a proxy of life-
threatening disease incidence from the catchment population,
obtained from census data and census data projections. Hospitali-
zation data was paired with community surveys performed at the
same periods of the hospital surveys for each time-site, adjusting for
diagnostic accuracy (i.e., microscopy vs. rapid test) and standar-
dized by computing the PfPR2–10 as described elsewhere21,22. Further
details on hospitalization data, community prevalence, and esti-
mates of hospital catchment population can be found in Supple-
mentary Note 1.

Modeled community prevalence time-series
We assessed the past exposure dynamics using catchment site-specific
time series of modeled age- and test-standardized parasite rates esti-
mates, referred to asmPfPR2–10

13,15. ModeledmPfPR2–10 estimateswere
explicitly obtained for each time-site catchment population using a
geospatial model detailed elsewhere13,15, a Bayesian hierarchical geos-
tatistical framework based onmore than 180000 geo-coded empirical
prevalence survey data points from East Africa, interpolated in time to
1 × 1 km resolutions using climatic and ecological covariates. For a set
of sites (n = 11), annual mPfPR2–10 estimates are available since 2000,
while for the rest (n = 15) available data begin in 2010. Time series of all
the availablemPfPR2–10 per site are shown in Fig. S1. Thus, for 27 out of
the 35 present-day time sites, mPfPR2–10 time series included at least
seven-time points of past annual estimates. Further, to estimate the
gap between past and present transmission, we first computed the
median value of the annualmPfPR2–10 time-series for each of the time-
sites, under the assumption that it roughly represents the life-long
transmission at which the surveyed population of children have been
exposed in the previous years previous. This median mPfPR2–10 can
then be compared to the empirical PfPR2–10 that is estimated at the
time of surveying the malaria hospitalization incidence.

Historical malaria hospitalization incidence data and paired
community prevalence estimates
As an alternative source of data, we analyzed a historical dataset
obtained between 1992 and 1997, encompassing the relation between
severe disease incidencemeasured asmalaria hospitalization rates and
the PfPR2–10 up to 70% and published elsewhere9. Similar inclusion and
exclusion criteria had been used to obtain both datasets explicitly to
allow comparison. Thus, comparable approaches to those used in the
contemporary dataset were used to estimate malaria hospitalization
incidence at six hospital time-site locations in The Gambia (n = 3),
Kenya (n = 2), and Malawi (n = 1) and paired community prevalence
estimates7,9,11. Further details can be found in Supplementary Note 1.

Agent-based model of malaria transmission, immunity, and
disease dynamics
To recover the relationship between hospitalization rates and PfPR2–10,
weused an individual-basedmodel ofP. falciparummalaria transmission
anddiseasedynamics,OpenMalaria, previously describedandcalibrated
elsewhere12. Briefly,OpenMalaria featureswithin-hostparasitedynamics,
the progression of clinical disease, development of immunity, individual
care-seeking behavior, vector exposure, and pharmaceutical and non-
pharmaceutical antimalarial interventions at vector and human level
(https://github.com/SwissTPH/openmalaria/wiki)14,23,24. The full model is
calibrated to fit 23 parameters to 11 objectives representing different
epidemiological outcomes, including age-specific prevalence and inci-
dence patterns, age-specific mortality rates, and hospitalization rates,
using a Bayesian optimization approach12. A detailed description of the
model and references for the key technical details are provided in
Supplementary Note 2.

Model parameterization on disease management, comorbid-
ities, and health access
In order to compare model predictions to empirical data, we first
parameterized several key inputs of the individual-based model to be
consistent with both historical and contemporary datasets and the
corresponding existing clinical and epidemiological knowledge,
including different sets of variables addressing (a) the individual
probability of malaria exposure per time-step to cover a range of
PfPR2–10 up to 70%, (b) the effectiveness in malaria case management,
including the rate of access of uncomplicated and severemalaria cases
to health-care (i.e., rate of accurate diagnostic of true occurrence and
subsequent timely treatment) and the efficacy of the available malaria
drugs at each period (e.g., the efficacy of artemisinin derivatives
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combination therapies in clearing malaria), and (c) the co-occurrence
of other diseases with influence on malaria that affect the severe
progression of malaria across age-groups.

To evaluate the contemporary dataset, model parameterization
for themain analysiswas as follows: (1) PfPR2–10 estimates ranged up to
70%; (2) drug efficacy ranged between 85 and 100%25,26; (3) the rates of
individuals suffering from malaria that required hospitalization who
received diagnostic and treatment ranged from 60 to 90% while the
rate of individuals with uncomplicated malaria accessing diagnostic
and treatment ranged 20–60%27; and (4) co-occurrence of diseases
contributing to malaria hospitalization was substantially reduced by
60–80% since the 1990s28–30. For (2–4), weparameterized themodel by
randomly sampling values from a uniform distribution defined by the
respective ranges. Sensitivity analysis for these assumptions can be
found in the Supplementary Note 3. To evaluate the historical dataset,
we include the following: (1) PfPR2–10 estimates ranged up to 70% (2)
first-line drug efficacy for uncomplicated malaria was negligible31; (3)
access rates of malaria requiring hospitalization ranged from
40–60%8,32, and (4) co-occurrence of diseases contributing to malaria
hospitalization approximated a hyperbolic decay distribution over
age-groups8. Details on key model parameters and submodels are
provided in Supplementary Note 3.

Time-varying malaria exposure on severity estimates
To evaluate how time-varying malaria exposure rates influence the
ongoing PfPR2–10-hospitalization rates relationship, we produced a set
of plausible malaria-transmission scenarios consistent with time-
varying exposure as for those obtained from a Bayesian hierarchical
geostatistical framework13,15 across all our time-sites. Particularly, we
evaluated how a rapid reduction or increase of the PfPR2–10 level over
6 months (e.g., PfPR2–10 increasing from 10% to 70%) could affect the
severe malaria incidence relative to a steady-state transmission
assumption described before. This was performed by setting (1) the
initial exposure rate (i.e., the individual probability of exposure to
infectious bites pre-survey as a single rate over simulation time-steps),
independent from (2) the final exposure rate (i.e., the probability of
exposure during the survey period, also as a single rate over time
steps). For simplicity, we set constant initial and final exposure rates.
The relationship between the initial and final exposure rate was para-
meterized to reflect archetypical mPfPR2–10 patterns,—depicted in
Fig. 1b—showing (1) a substantial increase in themPfPR2–10 (e.g., Apac
A), (2) relative constant mPfPR2–10 (e.g., Busia), and (3) substantial
decrease in the PfPR2–10 (e.g., Jinja B). Thus, our definition of time-
varying (unsteady) exposure comprises both substantial increasing
and decreasing dynamics. For each time site with retrospective data
encompassing at least 7 years, we computed the average mPfPR2–10

available up to 9 years prior to the date when the hospitalization data
was available, used it as a proxy of the initial exposure rate, and
computed the fold-change PfPR2–10. We then performed a local poly-
nomial regression model to obtain predictions of the relationship
between the final exposure rate and the corresponding relative change
per time site. See fig. S5 in Supplementary depicting the relationship
between the contemporary community prevalence as ePf PR2–10, and
estimated relative change at survey computed from the median value
of mPfPR2–10 of the past 7–9 years for each time-site. We then used
these inputs of exposure to produce simulations using a combination
of initial and final exposure rates to map a range of simulation-based
PfPR2–10-hospitalization rates.

Scenario analysis to recover the empirical relationship
To evaluate under which scenarios OpenMalaria can recover the
empirical prevalence-hospitalization, we implemented an iterative
4-step procedure to explore hypotheses of the impact of the deter-
minants ondisease risk and changes in disease risk—see sections above
for details. The procedure is represented schematically in the

Supplementary (Fig. S6). For each scenario analysis, we performed
four iterative steps as follows:
1. Using a high-performance computing framework (http://scicore.

unibas.ch/) we performed 1000 population-level individual-based
model simulations of malaria transmission at a steady-state (i.e.,
same entomological inoculation rate for each simulation) over
longperiods of time (i.e., over 90yearswhich ensures that lifelong
malaria exposure has occurred all the generations evaluated
prospectively); computing hospitalization rates among children
3months- 9 years per 1000 persons-year across values of PfPR2–10

within the input range. In each of the simulations, we parameter-
ized the model, mapping the range of values set up for the major
epidemiological determinants described in the previous section,
namely diseasemanagement (which includes rates and efficacy of
diagnostic and treatment of severe and uncomplicated malaria)
and co-occurrence of comorbidities. We set the parameters
according to the empirical dataset we were evaluating (i.e.,
historical or contemporary). At the same time, we evaluated the
model outcomes simulating steady and unsteady transmission.

2. In order to assess howaccurately themodel simulations represent
the empirical data, we evaluated the performance of two regres-
sion models to recover the prevalence-hospitalization relation-
ship obtained via scenario analysis, namely a log-linearmodel and
a log-logistic model. The approach was chosen to be consistent
with the previous analysis framework of the contemporary
dataset10, which analyses severe malaria syndrome-specific cases
against prevalence. See Supplementary Note 3 for details on the
regression models, model selection criteria, and computation of
uncertainty estimates.

3. We used the best-fit regression model among the above to
evaluate how the modeling framework predicted the empirical
ePf PR2–10-hospitalization incidence relationship. Specifically, we
evaluated the accuracy of the model predictions using prediction
performance metrics16 (see Supplementary Note 3 and Table S2).

4. We updated model assumptions based on the evaluation above
and reparametrized the scenario(/s) accordingly.

Evaluation of key assumptions for scenario modeling
To evaluate the robustness of the simulation-based predictions of the
PfPR2–10-hospitalization relationship under time-varying exposure, we
performed three major sensitivity analyses: (a) how increased or
reduced rates of both uncomplicated case management and hospita-
lizations at the population level influence the severe disease incidence
and prevalence relationship; (b) how the relationship changes over
higher or lower drug efficacy estimates; (c) how changes on the inci-
dence of comorbidities influence the severe disease risk. Details of the
evaluation are provided in Supplementary Note 4 and Figs. S7 and S8.

The age structure of the severity estimates and the effect of
time-varying malaria
Last, to assess if the model framework recovers hospitalization risk
over different age groups, we compared both empirical and
simulation-based estimates disaggregated by age. We performed the
4-steps iterative analysis described above for the contemporary data-
set under the steady and time-varying transmission assumptions and
evaluated the PfPR2–10-hospitalization relationship by age. More spe-
cifically, we computed hospitalization incidence over age groups at
values of PfPR2–10 equal to those estimated in the for four repre-
sentative time sites Apac A, Busia, Mubende B, and Jinja B. Further
details on the age-structured analysis are provided in Supplemen-
tary Note 5.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
Empirical contemporary data used in this analysis have been curated
and uploaded to the Harvard Dataverse: https://dataverse.harvard.
edu/dataset.xhtml?persistentId=doi:10.7910/DVN/XGDB3K. Corre-
spondence and requests for materials should be addressed to the
KEMRI Wellcome Data Governance Committee (dgc@kemri-well-
come.org). These data are available through a formal requesting pro-
cess to the KEMRI Institutional Data Access/Ethics Committee.
Guideline details can be found on the KEMRI Wellcome website:
https://kemri-wellcome.org/about-us/#ChildVerticalTab_15.

Code availability
Model code, plotting code, and simulation data are available at https://
github.com/PDeSalazarSwissTPH/SevereMalaria.
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