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Fromcreep toflow:Granularmaterials under
cyclic shear

Ye Yuan 1, Zhikun Zeng 1, Yi Xing1, Houfei Yuan1, Shuyang Zhang1,
Walter Kob 2,3 & Yujie Wang 1,2,4

When unperturbed, granular materials form stable structures that resemble
the ones of other amorphous solids like metallic or colloidal glasses. Whether
or not granular materials under shear have an elastic response is not known,
and also the influence of particle surface roughness on the yielding transition
has so far remained elusive. Here we use X-ray tomography to determine the
three-dimensional microscopic dynamics of two granular systems that have
different roughness and that are driven by cyclic shear. Both systems, and for
all shear amplitudes Γ considered, show a cross-over from creep to diffusive
dynamics, indicating that rough granular materials have no elastic response
and always yield, in stark contrast to simple glasses. For the system with small
roughness, we observe a clear dynamic change at Γ ≈0.1, accompanied by a
pronounced slowing down and dynamical heterogeneity. For the large
roughness system, the dynamics evolves instead continuously as a function of
Γ. We rationalize this roughness dependence using the potential energy
landscape of the systems: The roughness induces to this landscape a micro-
corrugation with a new length scale, whose ratio over the particle size is the
relevant parameter. Our results reveal the unexpected richness in relaxation
mechanisms for real granular materials.

Yielding of amorphousmaterials is ubiquitous1,2, governing awide range
of phenomena like mechanical failure of metallic glasses3, complex
rheologies of soft glasses4,5, or geophysical catastrophes6,7. A typical
amorphous solid under quasistatic simple shear will deform elastically
at a small strain and flow plastically beyond the yielding strain.
Depending on whether thematerial is brittle or ductile, the stress-strain
curve shows a drop or a smooth cross-over to a plateau, respectively.
On the particle level, yielding is a cooperative phenomenon of local
plastic events8,9, and computer simulations hint that this phenomenon
sharesmany aspects with a first-order phase transition10–12. However, for
real systems, the precise nature of this transition has not yet been
clarified since such experiments are very challenging.

In contrast to standard glasses, for granular systems, there is at
present no satisfactory understanding of yielding on the level of the

particles. Theoretical arguments suggest that sheared granular solids
are marginally stable, i.e., contacts between particles will change irre-
versibly even under a tiny applied strain, which implies that such sys-
tems have no elastic regime13. This view is at odds with experimental
results which found that the stress-strain curve of granular solids
under simple shear does in fact resemble the one of a glass14. One
possibility to resolve this discrepancy is to consider a different type of
driving, i.e., cyclic shear, since it allows to probe directly the reversi-
bility of the particle trajectories and hence the presence of elasticity in
the system. A number of computational studies have in fact used this
setup to investigate the particle dynamics in soft-sphere jammed
states and model glasses15–26. These works, as well as related experi-
ments on soft glasses27–30, have indeed revealed a transition at which
the motion changes from reversible (or caged) to diffusive when the
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cyclic shear amplitude Γ is increased, thus supporting the existence of
an elastic behavior if Γ≲0.1. However, these findings are in contrast
with several experimental results for cyclically sheared granular
materials, which display robust sub-diffusive dynamics instead of a
caged regime for the values of Γ considered, i.e., 0.07 ≤ Γ ≤ 0.2631–33.
Reversible trajectories are only found for sufficiently small Γ≪0.134.
The inconsistency between these studies as well as the complex
dependence on the shear protocol34,35 have not been elucidated.

We note that only few of the related simulations have included
friction16,35, an essential component of granular materials. Also, the
connection between surface roughness and friction of granular parti-
cles has been investigated only recently36–38, but their influence on the
particle-level relaxation dynamics remains unknown, especially con-
sidering the experimental challenges in a three-dimensional granular
system39–41. Advancing on these points is important not only for
understanding the plasticity of amorphous materials but also for
developing reliable granular constitution laws42.

In the present work, we experimentally probe the microscopic
dynamics of cyclically sheared granular materials in three dimensions.
The two granular systems, with different particle surface roughness,
show for all Γ a crossover from creep (subdiffusive) to diffusive
dynamics, in stark contrast to simple glasses. A dynamic change at
Γ ≈0.1 is clearly observed for the systemwith small roughness, but not
for the onewith large roughness. This suggests that roughness induces
a micro-corrugation to the potential energy landscape that allows the
activation of a novel relaxation mechanisms for granular materials.

Results
Cyclic shear experiment
We investigate experimentally a cyclically sheared granular system
using anX-ray tomography technique32,33,43,44 (seeMethods for details).
As shown in the schematic of Fig. 1a, particles are placed in a shear cell
and cyclically sheared with an amplitude Γ32,45. This design allows to
accommodate the granular compaction/dilation during shear. We
utilize two types of spherical beads to check the influence of surface
roughness: One is acrylonitrile butadiene styrene plastic (ABS) and the
other is 3D-printed (ProJetMJP 2500 Plus, 0.032mm resolution) with a
bumpy surface (BUMP), see Fig. 1b. For both cases, the system con-
tains ≈ 14,000 50: 50 bidisperse beads of diameters 5 mm and 6 mm,
and no crystallization was detected. The size of the shear cell at shear
γ =0 is 24d × 24d × 24d, where d is the diameter of the small beads, and
which will be taken as the unit length. The strain rate is small so we are
in quasistatic conditions with an inertia number less than 10−3 46.

Beads are initially placed in the cell, forming reproducible loose
packings, and then compacted by cyclic shear until the steady state is
reached (see Supplementary Fig. 1). Thus none of the presented results
are affected by transient effects. Since the beads are very rigid, the
obtained packings always maintain mechanical stability under gravity
and slow external driving. X-ray tomography scans are taken at γ = 0
(periodicity between 1 and 10 cycles) from which we extract the
microscopic structure of the system and the dynamics of the particles.
The resolution in particle position is around 10−3d. For the ABS system
the reported results have been obtained by averaging for each Γ over
3 − 5 independent realizations, while only one realization is used for
the BUMP system. To mitigate finite size effects we exclude for the
analyses the particles located closer than 4d from the boundaries.

Steady-state dynamics
The dynamics of the particles are basically isotropic, although con-
vection (see Supplementary Fig. 2) and height dependence (see Sup-
plementary Fig. 3) emerge verymildly due to gravity for large Γ. Hence
we focus here on the dynamics in the (horizontal) x-and y-directions.
Figure 2a and b present, respectively, the mean squared displacement
(MSD), 〈δx2(Δn)〉, for the ABS and BUMP particles as a function of the
number of cycles Δn, where δx is the average displacement in the x-or

y-direction, and 〈 . 〉 denotes the average over different particles,
starting configurations, and realizations. For both systems and all Γ, we
find diffusive growth at large Δn and subdiffusion at small Δn. Note
that for each system the subdiffusion exponent is independent of Γ,
i.e., 0.65 for ABS and 0.8 for BUMP. Such a universal creep dynamics at
smallΔndemonstrates that our systemhas no caging or elastic regime,
in agreement with earlier findings31–33. This is also confirmed by the
absence of a two-step relaxation in the self-intermediate scattering
function (see Supplementary Fig. 4).

In the following, we report the dynamics as a function of the
accumulated strain, i.e.,Δγ=4ΔnΓ, which takes into account one part of
the expected Γ-dependence of the dynamics. Figure 2c shows that the Γ-
dependence of the diffusion coefficient D, obtained from the Einstein
relation 〈δx2〉= 2DΔγ, depends on the system considered: For the ABS
system, D is basically constant for Γ≲0.1 and starts to grow sharply
beyond this threshold; for the BUMP system, D is instead simply an
increasing function of Γ. Also, particles in the BUMP system diffuse
faster than the ones in the ABS system for large and intermediate values
of Γ, but slower at the lowest accessible strain amplitudes.

The subdiffusive dynamicshavebeen connectedwith thememory
in particle motions for different glassy systems31,32,47,48. We probe the
existence of such memory by considering the correlation in particle
displacements at consecutive intervals of length Δγ, defined as

MðΔγÞ= � h½xið2ΔγÞ � xiðΔγÞ� � ½xiðΔγÞ � xið0Þ�i
h½xiðΔγÞ � xið0Þ�2i

, ð1Þ

where the denominator is for normalization. This function is thus +1 if
the motion is completely reversible, and zero if there is no memory.
Figure 2d and e demonstrate thatM is significantly positive at small Δγ,
i.e., the displacements are anti-correlated, has at small Δγ a value that is
smaller for the BUMP system than for the ABS system, and decayswith a
Γ-dependent rate. One can expect that the crossover in the MSD is
related to the vanishing memory, i.e., that the dynamics becomes
Markovian. To test this idea we determine both the crossover from sub-
diffusive to diffusive regime (see Supplementary Fig. 5), which defines
the yielding strain Δγc, and the minimal strain ΔγM at whichM(ΔγM) = 0.
As shown in Fig. 2f, Δγc displays a maximum at Γ =0.1 for the ABS
system, but decays monotonically with increasing Γ for the BUMP
system, compatible with the trends of D(Γ) in Fig. 2c. Moreover, ΔγM(Γ)
tracks Δγc(Γ) very well. Hence one concludes that the creep dynamics is
accompanied by significant memory and once the initial memory has
been halved the system yields. This yielding occurs once the MSD has
reached values 0.03−0.05d2, substantially higher than the typical cage
size of hard-sphere-like systems (0.01d2 for each spatial dimension2).

These findings allow us to make a first assessment regarding the
distinction in dynamics between previous simulations and our
experiment, as well as the influence of granular roughness. Previous
simulations of model glasses22 or soft-sphere jammed states16–18,20

under cyclic shear, found a pronounced caging regime for Γ≲0.1 and
no caging for Γ ≳0.1. Depending on whether the jammed system is
close to the hard-particle limit15,16,18 or highly compressed17,18,20, caging
at small Γ can originate from either the confining effect due to the
nearest neighbors, similar to the case of a dense hard-sphere packing,
or the persistent contact network. The latter case, sometimes specified
as reversibility20, is however not necessary for caging. In contrast to
these simulations, we find persistent sub-diffusive dynamics for all Γ at
small Δγ. Our results are also different from a hard-sphere marginal
glass which does show a logarithmic growth in the MSD25,49. Thus we
conclude that the presence of roughness alters radically the dynamics
of granular systems in that sub-diffusion is always present. Further-
more, using two different systems, we discover that if the roughness is
weak the mechanical response shows a singular point at Γ ≈0.1 while
for pronounced roughness this singularity disappears and the
dynamics shows just a monotnous dependence on Γ.
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Furthermore, we recall that the dynamics of granular systems
depend significantly on the details of the driving protocol. For exam-
ple, simulations using a fixed-volume condition have given evidence
that jammed and unjammed states can coexist, resulting in a complex
response as a function of both packing fraction and Γ20,35. In addition, it
was found that the preparation history of a jammed state in an
experimental soft particle system can alter the range of Γ in which the
dynamics is reversible34. However, sinceour systemcorresponds to the
hard-particle limit at a constant pressure, we expect that these earlier
findings are not relevant to the interpretation of our results.

Dynamical heterogeneity
In order to obtain a deeper understanding of the relaxation of the
system, we investigate the single particle-level dynamics. Figure 3

shows the distributions of the particle displacements in x-or y-direc-
tion, i.e., the self-part of the Van Hove function Gs(δx, Δγ)2, for
both ABS and BUMP systems at three different Δγ. In each system,
plotting Gs for different Γ as a function of the rescaled distance
dx = jδxj=

ffiffiffiffiffiffiffiffiffiffiffiffi
hδx2i

p
roughly results in a master curve. In contrast to

thermal systems50, the shape of this curve is clearly non-Gaussian even
for small Δγ (panels (a) and (d); dotted lines), and there is no clear
distinction between immobile and mobile particles. So the reversible
particlemotion is irrelevant, which is consistent with the absence of an
elastic regime as mentioned above.

As found and rationalized in ref. 32, for granular systems the Van
Hove function can be described well by a Gumbel law that is related to
extreme value statistics,

Gg ðdxÞ=AðλÞ exp �dx

λ
� exp �dx

λ

� �� �
, ð2Þ

where λ determines the shape of the distribution and A(λ) is a nor-
malization factor. Figure 3 shows that this law does indeed describe
well the data at small and intermediate dx, i.e., dx≲ 2 (or dx≲ 3) for ABS
(or BUMP). We find that λ = 0.57, A(λ) = 2.72 for ABS, and λ =0.59,
A(λ) = 2.64 for BUMP, i.e., the shape parameter depends onlymildly on
the system considered. (In ref. 32 the reported value was also close to
these numbers: λ =0.605.)

At larger dx,Gs displays a significant excess tail with respect to the
Gumbel law, whose amplitude depends on Δγ and becomes weak at
Δγ = 3Δγc for the BUMP system. The presence of such an excess shows
that, in contrast to ref. 32, for the present systems theGumbel lawdoes
not give a perfect description of the data at large dx. However, this
distribution can still serve as a valuable reference to discuss the shape
of the real data. To quantify the strength of this excess tail over the
Gumbel law, we present in Fig. 4a and b the average of the ratioGs(dx)/
Gg(dx) in the range dx∈ [3.5, 4.5] as a function ofΔγ/Δγc. In general, this
excess is more pronounced in the ABS system, and it decays with

Fig. 1 | Setup of cyclic shear experiment. a Particles are placed into the shear cell,
formed by a bottom plate attached to a stepper motor, two side plates in shear
direction articulated to the bottom, and another twoperpendicular side plates (not
shown here). These two side plates are connected to the perpendicular plates by
four pivots (two of them are shown) to maintain the shear geometry. The system is
slowly sheared by driving the bottomplate by themotor.We define L = 24d and the
deformation γL. X-ray tomography scans are performed at γ =0when themotion is
stopped. b Visualization of a 3D-printed particle with a bumpy surface (BUMP).

Fig. 2 | Dynamics of cyclic shear demonstrates the absence of caging but pro-
nouncedmemory effect. a, bMean squared displacement in horizontal directions
vs. shear cycle number Δn for the ABS and BUMP systems, respectively. Errors are
smaller than the size of the symbols. A universal crossover from sub-diffusion
(dashed lines) to normal diffusion is observed and occurs at the Γ-dependent
yielding strain Δγc. Panel b also includes two trajectories, Γ =0.05 and 0.1, using a
higher sampling rate (factor of 5 and 10/3 respectively), to validate our measure-
ments with a lower sampling rate. c Γ-dependent diffusion coefficient D for the
two systems. A crossover at Γ ≈0.1 is found for the ABS system, but not for the

BUMP system. d and e Memory effect (M is defined in Eq. (1)) as a function of Δγ
for both systems from which we define the strain ΔγM (triangles) corresponding
to the vanishing of M. Color codes are the same as in panels a and b and errors
are estimated to be 0.02. In certain cases, ΔγM is estimated from a linear extra-
polation of M(Δγ). f For both systems Δγc(Γ) tracks ΔγM(Γ) and one observes for
the ABS system again a crossover at Γ ≈0.1. The data of Γ =0.03 for the BUMP
systems are not shown due to the poor statistics. Error bars represent the
standard deviations from different realizations for ABS and fitting uncertainty
for BUMP.
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increasing strain for both systems. We recall that a similar trend is
observed for thememory, Fig. 2d, e, which is in linewith the theoretical
arguments that non-Markovian processes with a significant memory
give rise to a pronounced tail in the Van Hove function51. Gs(dx)/Gg(dx)
shows a clear maximum at Δγ ≈Δγc for the ABS system, while it decays
basically in a continuous manner with increasing strain for the BUMP
system. Also, Gs(dx)/Gg(dx) decays much faster for the BUMP system
and even becomes smaller than 1, i.e., the Gaussian limit is approached
faster than for the ABS system. Thus these results indicate that the ABS

system with the weak surface roughness has more pronounced dyna-
mical heterogeneities than the BUMP system.

As a direct probe of dynamical heterogeneity, we determine the
spatial arrangement of the fastest particles (top 10%) and calculate the
number of particles belonging to the largest connected cluster
(defined via a nearest neighbor criterion). Figure 4c and d present this
number f, after normalization by the total number of fast particles. One
notices immediately that for both systems the Δγ-dependence of f
resembles that of Gs/Gg. This observation indicates that yielding is
accompanied bymaximal cooperativity for the ABS system,while such
an enhanced collective phenomenon is absent for the BUMP system.
For the latter, the value of f is relatively high for Δγ≲Δγc, i.e., during
the sub-diffusive regime the dynamics are strongly cooperative. We
note that a random choice of 10% of the particles in the sample gives a
f ≈0.04, well below the values we find here, demonstrating that the
observed clustering is indeed significant. (See Supplementary Fig. 6 for
the cluster size distribution.)

We quantify the evolution of the shape of Gs via the non-Gaussian
parameter α2ðΔγÞ= hd4

xi=ð3hd2
xi

2Þ � 1, shown in Fig. 5a and b47. Again,
we find that for both systems α2 shows very similar trends as the ones
presented in Fig. 4. From the Gumbel law one obtains α2 ≈0.5, which is
substantially smaller than the observed α2 at small Δγ, which indicates
that the exponential tail found inGs (Fig. 3) contributes considerably to
α2. The Δγ-dependence of α2 can be described well by the functional
form α2ðΔγÞ=BðΓÞ exp½�ðΔγ=Δγg ðΓÞÞθ

�
� (solid curves in Fig. 5a and b),

whereΔγg is the strain scale for the recovery ofGaussian dynamics and
B is an amplitude, which is displayed in Fig. 5c and d. Specifically, α2
decays exponentially (θ = 1) at Δγ ≳Δγc (i.e., after yielding) for the ABS
system, while for the BUMP system, it shows a stretched exponential
(θ = 0.5) behavior almost from the very beginning. For both systems
Δγg closely tracks the Γ-dependence ofΔγc, similar toΔγM in Fig. 2f, i.e.,
a clear peak at Γ = 0.1 is observed for the ABS system. The insets pre-
sent B(Γ) and further support that dynamical heterogeneity is maximal
at Γ = 0.1 for ABS, while this non-monotonicity is absent for BUMP.

Our analyses of the particle-level dynamics demonstrate that par-
ticle roughness renders the granular systems significantly different from
simple glass-formers in that the dynamical heterogeneities (DH) are

Fig. 3 | Self-part of Van Hove function is a superposition of Gumbel law and
excess exponential tail. Panels a–c and d–f refer to ABS and BUMP systems,
respectively, with the same color codes as in Fig. 2a and b, respectively. The
particle displacement is expressed in terms of the normalized distance
dx = jδxj=

ffiffiffiffiffiffiffiffiffiffiffiffi
hδx2i

p
. For each system the data is presented for Δγ =0.25Δγc(Γ),

Δγc(Γ), and 3Δγc(Γ). Solid and dotted curves are, respectively, the Gumbel

[Gg, Eq. (2)] and Gaussian distributions, showing that Gs is non-Gaussian even at
small Δγ. For both systems the shape parameter λ of the Gumbel distribution is
independent of Δγ and Γ, and it depends only weakly on the system (see main
text). Insets show the ratioGs/G

g and one concludes that the excess exponential tail
with respect to the Gumbel law becomes notable if dx ≳ 2 for ABS and dx ≳ 3
for BUMP.

  

Fig. 4 | Dynamical heterogeneity shows apeak/crossoverwith increasing strain
for theABS/BUMPsystem. a,bMagnitudeof the excess tail as a functionofΔγ/Δγc
obtained by averaging Gs/Gg in the interval dx∈ [3.5, 4.5] for the ABS and BUMP
systems, respectively. For the ABS system the average is larger than for the BUMP
system at Δγ ≈Δγc, showing that Gs has a more pronounced tail at Δγ ≈Δγc.
c,d Fraction of particles involved in the largest connected cluster (twoparticles are
defined as connected if the center distance is smaller than 1.2 times their average
diameter), among the top 10%mobile particles as a functionofΔγ/Δγc. Note that for
the BUMP system we have set Δγc(Γ =0.03) = 1500. The color codes in a/c and
b/d are the same as in Fig. 2a and b, respectively.
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already considerable even if the strain is small. Also, the Γ-dependence
of the DH differs for the two systems: For weak roughness the strength
of the DH peaks at Δγc, and this effect becomes most pronounced at
Γ≈0.1, while for strong roughness no such extrema is observed.

Yielding as a phase transition
The non-monotonic Γ-dependence of the yielding dynamics for the ABS
system invites us to probe the details of these dynamics. Previous stu-
dies of simple sheared systems have given evidence that yielding can be
interpreted as a point at which the system undergoes a dynamic phase
transition10,12. While in a simple shear experiment strain completely
governs the yielding dynamics, our cyclic shear setup allows to probe
this phenomenon as a function of two parameters, Γ and Δγ, thus

allowing us to reach a better understanding of this feature. For this, we
consider as an order parameter the so-called overlap Q(Δγ)∈ [0, 1],
which measures the similarity of two configurations separated by Δγ
(see Methods)10. One expects that 〈Q〉 decreases with increasing Δγ and
that the shape of the distribution P(Q) allows to identify the nature of
the phase transition. (Note that Q is a system averaged quantity, thus
obtaining P(Q) with good precision is a substantial experimental effort
and hence we did not produce this data for the BUMP system.)
Figure 6a–c shows that for the ABS system P(Q) peaks close to Q= 1 if
Δγ/Δγc is small, i.e., most particles have not yet moved significantly.
With increasing Δγ/Δγc, the peak in P(Q) shifts to smaller Q’s before
converging to the random distribution. For all Δγ considered, the width
of P(Q) is significantly larger for Γ ≤0.1 than for Γ =0.2. This is quantified
in Fig. 6d by plotting P(Q) at Δγ=Δγc for different Γ, resulting in two
master curves: A wide one for Γ≲0.1 and a narrow one for Γ≳0.1. The
inset of Fig. 6d confirms that the standard deviation of P(Q) strongly
drops at Γ≈0.1. This result supplements thus the information on the Γ-
dependence in Figs. 4 and 5, and demonstrates that the dynamics at
yielding is more cooperative if Γ≲0.1. In Fig. 6e, the Δγ-dependence of
the order parameter, 〈Q〉(Δγ), shows a non-monotonic dependence on
Γ, in agreement with the trend in Δγc(Γ). This non-monotonic behavior
can be appreciated in the dynamic phase diagram Fig. 7a where we
present Δγc as a function of Γ, and also compare it with the case for the
BUMP system (panel (b)). The reasons for these dependencies on Γ and
the roughness will be discussed in the following.

The simulation study of ref. 10 showed that for a simple glass-
former P(Q) displays at yielding a pronounced double peak structure.
This feature can be rationalized by the elasto-plastic behavior of such
systems, in agreementwith the caging-dynamics found if such a glass is
cyclically sheared22. Since in our systemselasticity/caging is absent, the
distribution P(Q) displays a single peak, whose width however strongly
depends on Γ. Whether or not this behavior can be related to an
underlying dynamic phase transition cannot be decided with the pre-
sent quality of the data and hence this question should be addressed in
future studies.

The potential energy landscape of granular systems
The above-presented observations on the dynamics can be rationa-
lized qualitatively within the framework of the potential energy land-
scape (PEL) of the system, a view that has been very fruitful in the

   

 

 

Fig. 6 | Overlap function for the ABS system reveals the change in microscopic
dynamics at yielding. a–c Overlap function distribution P(Q) as a function of
Δγ/Δγc for Γ =0.05, 0.1, and 0.2. P(Q) shifts to smaller values as Δγ/Δγc grows (see
legends). d P(Q) at the yielding point Δγ =Δγc shows the presence of two master

curves. Inset: The standard deviation of P(Q) versus Γ has a sharp transition at
Γ ≈0.1. e 〈Q〉 as a function of Δγ −Δγc. The decay is slowest for Γ ≈0.1 indicating the
presence of a critical slowing down close to a critical point. Inset: Also 〈Q〉 versusΔγ
shows a slowing downat Γ ≈0.1. Ind and e the color codes are the same as in Fig. 2a.

Fig. 5 | Non-Gaussianparameter displays qualitativelydifferent Γ −dependence
for the two systems. a, b Non-Gaussian parameter α2 as a function of Δγ for the
ABS and BUMP systems, respectively (with the same color codes as in Fig. 2a and b).
Solid curves show afitα2ðΔγÞ=B � exp½�ðΔγ=Δγg Þθ�, withθ = 1 (exponential) and0.5
(stretched exponential) for ABS and BUMP, respectively. c, d Associated fit para-
meters as a function of Γ, demonstrating that Δγc(Γ) and Δγg(Γ) are proportional to
each other. Insets: Γ-dependence of B(Γ). Error bars represent the standard devia-
tions from different realizations for ABS, and fitting uncertainty for BUMP.

Article https://doi.org/10.1038/s41467-024-48176-6

Nature Communications |         (2024) 15:3866 5



context of standard glass-forming systems52. For such systems the PEL
has an exponential number of local minima separated by a distance of
the order of the particle diameter d and by barriers with a height
comparable with the activation energy for flow. Particle motion cor-
responds to the exploration of this complex landscape that can be
decomposed via the barriers into basins. As shown in Fig. 8, the
roughness of the particles modifies this PEL by decorating it with a
multitude of additional minima and peaks, thus creating micro-basins,
since roughness allows to stabilize a larger number of packings44. The
distance between thesemicro-basins is not fixed but distributedwith a
characteristic size ξ which increases with roughness.

The presence of the micro-corrugation in the PEL allows the sys-
tem tomove even if Γ is small since Γ ⋅ dwill always exceed the distance
between some of the micro-basins, and hence caging is avoided. The
system yields once the particle-scale PEL barriers (green curves in
Fig. 8) have been crossed. Before this yielding, the system mainly
explores the random micro-corrugation within one (particle-size)
basin, thus giving rise to the subdiffusive dynamics, clearly visible in all
cases when the MSD is small, Fig. 2a and b. That the dynamics of the
two systems shows a very different Γ-dependence, can be rationalized
by the reasonable assumption that for the ABS system the corrugation
scale ξ is much smaller than d, Fig. 8a, while this is not the case for the
BUMP system, Fig. 8b. Hence, for the former system, we observe two
different regimes of dynamics which are separated at Γ ≈0.1, i.e., the
typical basin size52, while for the BUMP system the dynamics simply
evolves smoothly as a function of Γ since the difference between ξ and
d is much less pronounced. This also explains why the subdiffusive

exponent for the BUMP system, 0.8, ismuch closer to 1.0 than the 0.65
found for the ABS system.

The existence of the micro-corrugation is also the reason why we
observe for both systems heterogeneous dynamics at small Δγ, Fig. 5a
and b: Before yielding the system is not rattling inside a basin like a
simple glass-former but instead explores the disordered micro-
corrugation. For the ABS system one can distinguish two cases
before yielding: For Γ≲0.1, the system has to overcome amultitude of
barriers that separate the micro-basins before it yields (after many
cycles), resulting in a wide distribution P(Q), Fig. 6a and b. In contrast
to this, the dynamics for Γ ≳0.1 aremuch less affected by the presence
of thesemicro-basins since at each cycle the systemwill cross many of
them, leading to a more narrow distribution P(Q), Fig. 6c. Such a Γ-
dependence can be expected to be absent for the BUMP system
because the condition ξ≪ d no longer holds. For the same reason, we
observe peak heterogeneity at yielding for the ABS system (Figs. 4a/c
and 5), but not for the BUMP system.

Discussion
Under simple shear conditions, yielding is associated with a drop or
crossover in the stress-strain curve, signaling the transition from
elastic to plastic behavior. For this type of driving, the mechanical
response of granular materials can be expected to be very similar to
one of the thermal glass-formers since the PEL’s micro-corrugation is
basically irrelevant1. In contrast to this, the cyclic shear considered
here permits to investigate the highly non-trivial dynamic con-
sequences of this micro-corrugation, such as the identified creep
behavior (i.e., a pronounced sub-diffusion for all Γ) in a steady state.
This creep motion can hence be considered to be a hallmark of gran-
ular materials. However, earlier simulations of smooth particles, e.g.16,
did not observe the sub-diffusive dynamics. Therefore we argue that
this type of dynamics is due to the PEL’s micro-corrugation which
originates from the surface roughness of particles, intrinsic for real
granularmaterials. A comparison between the ABS and BUMP systems
demonstrates the significant influence of roughness on the dynamics
as well as the underlying PEL, i.e., the surface roughness serves as a
control parameter of the topography of the PEL and thus the nature of
yielding. Further studies, in which roughness is systematically varied,
will be helpful to elucidate the details of the observed creep dynamics.

In linewith the creepmotion, the evolutionof thepacking fraction
during a single shear cycle displays persistent hysteresis for different Γ,
see Supplementary Fig. 7, similar to the shear stress45. This is in con-
trast to the energy and stress of glasses which show clear reversibility
for small Γ24, thus supporting the view that granular systems and
glasses are different.

Our results are relevant for a multitude of situations in
geoscience7, such as landslide processes which are preceded by com-
plex external disturbances, or small tremors that will affect the long-
time stability of civil engineering structures such as dams. Interest-
ingly, a recent experiment reported the persistent creep of a sandpile
without an apparent external disturbance53, which indicates that the
particle-level relaxation can be triggered by multiple microscopic
processes. This finding is thus in line with our results, in that we reveal
the absence of caging even if Γ is very small. Hence granular materials
have no well-defined stability threshold, in stark contrast to other
amorphous solids.

We also mention that for simple shear it is custom to classify the
yielding as either ductile or brittle. Our results show that for granular
materials the nature of yielding depends strongly on the driving pro-
tocol, i.e., simple shear vs. cyclic shear, and also on the shear amplitude
Γ. This dependence, which is absent in more standard disordered
materials, suggests that for granular materials such a classification
might not be possible. Moreover, the impact of other parameters, e.g.,
particle shape, on the granular dynamics is at present not known.
Advancing on these points will lead to a fundamental understanding of

Fig. 8 | Schematics of how a granular system explores its potential energy
landscape.Due to the particle surface roughness, the PEL has not only a structure
on the particle scale d (green line), but also a micro-corrugation with a character-
istic size ξ. Starting in the leftmetabasin (MB)of the PEL, the double arrows indicate
the back and forth motion of the system during a shear cycle. a The dynamics for
small roughness (ξ≪ d) shows two regimes depending on whether the system
leaves the MB during a cycle (blue arrow) or not (red arrow). b The dynamics for
large roughness evolve smoothly with Γ since ξ becomes comparable to d.

Fig. 7 | Dynamic phase diagram of granular systems with roughness.
a, b Correspond to the ABS and BUMP systems, respectively. For all Γ, the system
evolves with increasing Δγ from sub-diffusive dynamics (yellow area) to diffusive
dynamics (blue area), with the yielding point at Δγ =Δγc (symbols). For small par-
ticle roughness (ABS) (a) this yielding resembles a dynamic phase transition for
Γ≲0.1 (green solid line), while for larger Γ as well as large particle roughness
(BUMP) (b) one has only a continuous crossover.
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granular rheology and thuspermit to develop a newholistic viewof the
failure of complex materials.

Methods
Experiment
We consider two types of spherical granular beads: (1) Acrylonitrile
butadiene styrene plastic (ABS) and (2) 3D-printed (ProJet MJP 2500
Plus, 0.032 mm resolution) with a bumpy surface (BUMP). Both sys-
tems are bidisperse (50:50 composition) with diameters 5 mm and 6
mm. The unit length is d = 5 mm. A BUMP particle is created by uni-
formly decorating the surfaceof a central spherewith 400half-spheres
of diameter ≈ 5%d44, shown in Fig. 1b. The corresponding random loose
packing fractions are ϕRLP≈0.61 for ABS and ϕRLP ≈0.58 for BUMP,
which confirms that the BUMP particles are indeed rougher than the
ABS beads.

The set-up of the cyclic shear cell is presented in Fig. 1 and
described in the caption. Shear is induced by a stepper motor and the
strain rate is _γ ≈0:13/s, giving a dimensionless inertia number
I = _γd

ffiffiffiffiffiffiffiffiffi
ρ=P

p
≈6× 10�4, where we estimate the pressure to be given by

P ≈ ρgL and L ≈ 24d. (Here ρ is the mass density of the particles.) This
value corresponds to a quasistatic shear condition46. The considered
range of cyclic shear amplitudes is Γ = 0.03 −0.25.

After the beads have been deposited in the cell (i.e., having
reproducibleϕRLP), we start to shear the systemwith a given Γ, and the
packing displays a transient compaction process, see Extended Data
Fig. 1. Despite the different roughness and ϕRLP for the ABS and BUMP
systems, their steady-state packing fractions are approximately the
same. After a sufficient number of shear cycles, depending on Γ typi-
cally 1000−5000,we start to collectdata for the steady state dynamics.
These are the results presented in the main text.

X-ray tomography scans (UEGMedical Group Ltd., 0.2 mm spatial
resolution) are performed periodically when the cyclic shear is com-
pleted (shearing motion is stopped). For each scan, the acquired data
are analyzed using custom-made image processing codes that allow
locating the center of a particle center to within 0.001d, thus con-
structing the 3D packing. Depending on Γ, the sampling period is
between 1 and 40 cycles, ensuring unambiguous particle tracking. For
a given Γ, we perform a sequence of 150−200 scans, forming a single
trajectory. Each individual particle is tracked by requiring that its dis-
placement between two consecutive scans is smaller than 0.5d. (We
find that nearly all the particles can be tracked unambiguously, except
for the very few near the boundary which had a slightly faster motion
and errors in image processing.) We analyze the dynamics after
excluding the particles within 4d from the boundary, which leaves us
with 3500–4000 particles.

Overlap function
For a systemwithNparticles the overlap function, which quantifies the
similarity of two configurations (here separated by a strain Δγ), is
defined as

QðΔγÞ= 1
N

XN

i = 1

Θðc� jδxiðΔγÞjÞ, ð3Þ

where δxi is the particle displacement, Θ(⋅) is the Heaviside step
function, and c is a preset threshold10. By definition, 0 ≤ Q ≤ 1, and Q
decreases as the system moves away from its initial configuration. In
practice, we divide the cubic probe space into 2 × 2 × 2 non-
overlapping subsystems, each having N ≈ 500, to increase the number
of measurements of Q. Then, for given Γ and Δγ, Q is sampled from
different subsystems, starting configurations, x-and y-directions, as
well as 3−5 independent realizations. To calculate Q we choose
c= 1:15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hδx2ðΔγcÞi

p
, which makes that 〈Q(Δγc)〉 =0.5. This threshold

must be chosen to depend on Γ, since the MSD in the subdiffusive
regime changes strongly with Γ, see Fig. 2a.

Data availability
Thedata that support thefindings of this study are available fromhttps://
zenodo.org/records/10963940or from the corresponding authors.
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