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Integrating single cell expression
quantitative trait loci summary statistics to
understand complex trait risk genes

Lida Wang 1,8, Chachrit Khunsriraksakul 2,3,8, Havell Markus2,3, Dieyi Chen1,
Fan Zhang 2, Fang Chen1, Xiaowei Zhan4,5,6, Laura Carrel 7 ,
Dajiang. J. Liu 1,2,4 & Bibo Jiang 1

Transcriptome-wide association study (TWAS) is a popular approach todissect
the functional consequence of disease associated non-coding variants. Most
existing TWAS use bulk tissues and may not have the resolution to reveal cell-
type specific target genes. Single-cell expression quantitative trait loci (sc-
eQTL) datasets are emerging. The largest bulk- and sc-eQTL datasets are most
conveniently available as summary statistics, but have not been broadly uti-
lized in TWAS. Here, we present a new method EXPRESSO (EXpression PRE-
diction with Summary Statistics Only), to analyze sc-eQTL summary statistics,
which also integrates 3D genomic data and epigenomic annotation to prior-
itize causal variants. EXPRESSO substantially improves existing methods. We
apply EXPRESSO to analyze multi-ancestry GWAS datasets for 14 autoimmune
diseases. EXPRESSO uniquely identifies 958 novel gene x trait associations,
which is 26%more than the second-bestmethod. Among them, 492 are unique
to cell type level analysis and missed by TWAS using whole blood. We also
develop a cell type aware drug repurposing pipeline, which leverages
EXPRESSO results to identify drug compounds that can reverse disease gene
expressions in relevant cell types. Our results point to multiple drugs with
therapeutic potentials, including metformin for type 1 diabetes, and vitamin K
for ulcerative colitis.

Genome-wide association studies have revealed numerous var-
iants associated with many human diseases and traits1. Most
identified associations are non-coding and influence disease risk
via their regulatory effects on gene expression, which can be
tissue and cell-type specific2,3. Interpreting the functional con-
sequence of non-coding variants is challenging and requires

integrating functional genomic data from disease-relevant cell
types and tissues.

Recently, transcriptome-wide association study (TWAS) has
become a popular gene-based association analysis method for
understanding non-coding variants. Many studies have applied TWAS
to identify risk genes for complex human diseases4–7. Briefly, TWAS
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first derives gene expression prediction models from datasets with
matched genotypes and gene expression data. These models are uti-
lized to impute gene expression levels into GWAS datasets, which are
tested for associations with complex traits to identify significant gene-
trait associations (GTAs).

Gene regulatory mechanisms can be cell-type specific, and causal
variants may function and influence disease outcomes only in certain
cell types. To date, most TWAS methods use RNASeq data from bulk
tissues, including multiple cell types in different proportions. As a
result, measured gene expression levels reflect weighted averages
across different cell types. Therefore, eQTL and TWAS analysis based
on bulk tissues only provide limited granularity and may fail to reveal
causal effects present only in a subset of cell types, particularly if that
cell type is rare. Thanks to the decreasing costs of data generation,
larger sc-RNASeq datasets are emerging. Consortia efforts are also
underway to aggregatemultiple datasets across studies and release sc-
eQTL summary statistics. Most current studies seek to integrate sc-
eQTL data with GWAS using colocalization8–10. No studies, to our
knowledge, have sought to integrate sc-eQTL via TWAS. In contrast to
colocalization, TWAS seeks to understand causal pathways from
genetic variants ! predicted gene expression ! phenotype. This
allows us to estimate the effects of predicted gene expression on
phenotypes and characterize how gene expression mediates the
effects of regulatory variants. In addition, TWAS, as an association
method, can identify novel gene-level associations and reveal risk
genes, which is something that colocalization does not do. Extending
TWAS methods to exploit large sc-eQTL datasets will further allow us
to characterize the effect size heterogeneity of predicted gene
expression in different cell types11,12, an important but unanswered
question, and identify novel loci to gain biological and clinical insights.

In this work, we present a new TWAS method EXPRESSO
(EXpression PREdiction with Summary Statistics Only). Unlike most
existing TWAS methods that require individual-level genotype and
expression information3–6,13,14, EXPRESSOcaneffectively use the largest
datasets of sc- or bulk-RNASeq summary statistics, e.g., the ones from
eQTLGen15 or sc-eQTLGen16. It also utilizes epigenomic and 3D geno-
mic information to prioritize putative functional cis-regulatory var-
iants and improve power. We compared EXPRESSO against existing
TWAS methods that rely on individual-level genotype and phenotype
data and against polygenic risk score methods adapted to analyze
eQTL datasets. We demonstrate substantial improvement in TWAS’s
power in simulation and applied data analysis. We apply the methods
to eQTLGen and sc-eQTLGen summary statistics and 14 autoimmune
diseaseswith amaximumsample size of 728,548 to discover novel cell-
type specific gene-level associations and identify drugs that we may
repurpose to treat these disorders. We also develop a novel hetero-
geneity statistic to rigorously assess how the effects of genetically
predicted gene expressions vary between cell types.

Results
EXPRESSO method overview
In this section, we first describe how EXPRESSObuilds gene expression
predictionmodels using an eQTL dataset that includes both genotype
and gene expression levels. We then describe how to analyze datasets
with only eQTL summary statistics.

In EXPRESSO, we use epigenomic and 3D genomic information to
prioritize genomic regions containing causal eQTL variants, which
improves prediction accuracy compared to methods that only con-
sider variants within a contiguous window surrounding each gene. We
define essential variants as the ones that overlap at least one of four
epigenomic annotation tracks, H3K27ac, H3K4me3, DNase hypersen-
sitivity, or CTCF binding from the ENCODE database. These categories
are chosen because of their relevance in gene expression regulation
and their broad availability across different tissues and cell types. We
denote genotypes of essential variants as Xe. We denote variants that

do not overlap the above epigenomic annotation as non-essential
variants, i.e., Xne. Collectively, we define the genotype matrix as

X = ½Xe,Xne� ð1Þ

and the corresponding effects as

β =
βe

βne

� �
ð2Þ

Gene expression prediction is based on a linear model,

y=Xβ+ ϵ=Xeβe +Xneβne + ϵ ð3Þ

We fit the model with a hybrid of L1 and L2 penalties, i.e.,

Lðβ; λ,ϕ,wÞ= jjy� Xeβe +Xneβnejj22 +
1
2
×
λ
2

ϕjjβejj22 + jjβnejj22
� �

+
λ

2
ϕjjβejj11 + jjβnejj11

� �
=yTy +βTXTXβ � 2βTXTy

+
1
2
×
λ

2
ϕjjβejj22 + jjβnejj22

� �
+
λ

2
ϕjjβejj11 + jjβnejj11

� �
ð4Þ

where || ||1 and || ||2 denote the L1 and L2 norms. λ is the shrinkage
parameter, which controls for L1 and L2 penalty. ϕ is the mitigation
parameter that reduces the shrinkage for essential predictors, so that
they are more likely to be retained in the model. We also consider
different choices for regions that harbor cis-regulatory variants as
another tuning parameter (denoted as w), including linear windows
surrounding gene start and end sites or regions informed by 3D
genome (i.e., loop, TAD, domains, and promoter capture Hi-C (pcHi-C)
regions).

It is easy to see that we can calculate the objective function
Lðβ; λ,ϕ,wÞ with only summary association statistics. For example, we
can estimate XTX from the LD matrix using a reference panel of mat-
ched ancestries and XTy is proportional to the marginal eQTL effect
size estimates17. One challenge in fitting the EXPRESSOmodel without
individual-level data is to estimate tuning parameters. A standard way
to estimate tuning parameters is to use cross-validation (CV): in each
step, for each set of tuning parameters, a portion of the sample is used
to train the model, and the remaining dataset is reserved to validate
the accuracy. Overall accuracy is estimated by averaging across all CV
folds. The set of tuning parameters that yield the smallest errors is
selected. Traditional CV requires individual-level data, but recently, CV
methods have been extended to use summary statistics as input18.
Since CV has to split samples for training and validation, it reduces
training sample sizes and hence the accuracy of tuning parameter
selection. Here, we also develop a novel approach pseudo-variable
selection (PVS) based on simulating unassociated “pseudo-variables”
with identical LD structures as measured predictors. We choose the
shrinkage parameters that select the largest numbers of measured
predictors but none of the pseudo-variables. For further information,
please refer to the METHODS and Supplementary Methods sections.

We also implemented another parameter selection strategy that is
based on summary statistics-based CV and usesminimal squared error
(MSE) as the metric to select tuning parameters (EXPRESSO-MSE). We
show in later sections of RESULTS that EXPRESSO-PVS often yields
better prediction performance than PUMICE and EXPRESSO-MSE,
which optimize the same loss functions.

We conduct extensive simulations to evaluate the proposed
methods and compare them with alternative approaches including
TWAS methods that use individual-level genotype and expression
information, i.e., PUMICE13, PrediXcan5, FUSION4, TIGAR14, EpiXcan3,
MOSTWAS (DePMA and MeTWAS)19 and multi-tissue method
UTMOST6, summary statistics based polygenic risk score (PRS) meth-
ods PUMAS18, LDpred220, SDPR21, PRScs22, LASSOSUM23, pruning and
thresholding (P + T)24, and two summary statistics based TWAS
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methods SUMMIT25 and OTTERS26, which adapt four summary statis-
tics based PRS methods, including SDPR, PRScs, LASSOSUM, and P +
T.21–24.Weprovidemoredetailed descriptions in SupplementaryNotes,
Supplementary Data 1–6, and Supplementary Fig. 1. All p-values in the
results are two-sided unless otherwise stated.

EXPRESSO-PVS substantially improves prediction accuracy
when trained using eQTLGen summary statistics
Wenext evaluatewhether large eQTL summary statistics datasets (e.g.,
eQTLGen) improve prediction accuracy. We use the whole blood
dataset from the genotype tissue expression project (GTEx27 version 7
European sample; n = 303) as the training dataset and use Depression
Gene Network (DGN28 European sample; n = 873) as testing dataset to
assess the prediction accuracy of trained models for all methods. We

noted that eQTLGen includes GTEx whole blood tissue and DGN in the
meta-analysis. To ensure the independence between training and test
data, we “subtract” the eQTL effects in GTEx and DGN data from
eQTLGen according to the formula of inverse variance weighted fixed-
effect meta-analysis. We generated one new set of summary statistics,
including cohorts other than GTEx and DGN, which we denote as
eQTLGen/GTEx/DGN, and used them as training data for methods
based on summary-level data (Fig. 1, Supplementary Data 7).

Depending on the training dataset, we compared the prediction
accuracy in DGN using four different methods x training dataset
combinations, including:
(1) summary statistics-based methods trained on eQTLGen/GTEx/

DGN: EXPRESSO-PVS, EXPRESSO-MSE, SUMMIT, OTTERS (which
includes pruning and thresholding with p-value cutoffs of 0.001
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Fig. 1 | Comparison of gene expression prediction accuracy using DGN as a test
dataset. Panels A, B compare TWAS methods for (A) the median of Pearson’s
correlation and (B) the proportion of significant models. In each comparison, we
stratify the methods into three different groups: left columns are methods trained

one QTLGen/GTEx/DGN summary statistics; middle columns are results for meth-
ods trained on GTEx summary statistics; right columns are methods trained on
individual-level data from GTEx. UTMOST is trained using all 48 tissues, while the
other methods are trained using whole blood only.
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and 0.05 (P + 0.01 and P + 0.05), SDPR, PRScs, LASSOSUM),
PUMAS and LDpred2;

(2) summary statistics-based methods trained on GTEx whole blood
summary statistics: EXPRESSO-PVS, EXPRESSO-MSE, SUMMIT,
OTTERS (P + 0.001, P + 0.05, SDPR, PRScs, LASSOSUM), PUMAS
and LDpred2;

(3) individual-level data-based single-tissuemethods trained onGTEx
whole blood tissue data: PUMICE, PrediXcan, FUSION, TIGAR,
EpiXcan, DePMA and MeTWAS19);

(4) individual-level data-based multi-tissue method trained on GTEx
data of 48 tissues: UTMOST6.

EXPRESSO-PVS trained on eQTLGen/GTEx/DGN yields sub-
stantially increased numbers of significant models and prediction
accuracy, as it analyzesmuch larger sample sizes than single-tissue and
multi-tissue methods that rely on individual-level data. When com-
pared to PUMICE, PrediXcan, FUSION, TIGAR, EpiXcan, DePMA and
MeTWAS trained on GTEx whole blood tissue, EXPRESSO-PVS trained
on eQTLGen/GTEx/DGN leads to an average increase of 58.17%, 81.41%,
57.37%, 58.54%, 72.65%, 71.09% and 77.44% for the number of sig-
nificant prediction models (Fig. 1) and also leads to 129.92%, 359.06%,
133.90%, 139.00%, 278.13%, 229.32% and 330.00% increase in the
median of Pearson’s correlation. Moreover, compared to UTMOST
trained on all 48 tissues in GTEx, EXPRESSO-PVS leads to a 59.58%
increase in the number of significant models and a 126.33% increase in
Pearson’s correlation. EXPRESSO-PVS also outperforms the summary
statistics-based PRS methods when they are all trained on eQTLGen/
GTEx/DGN summary statistics. Compared to EXPRESSO-MSE, SUM-
MIT, P + 0.001, P + 0.05, SDPR, PRScs, LASSOSUM, PUMAS, and
LDpred2, EXPRESSO-PVS increases the Pearson correlation by 12.05%,
57.21%, 21.06%, 22.91%, 20.80%, 9.83%, 20.20%, 46.20%, and 101.84%
and increases the number of significant models by 6.66%, 34.04%,
11.52%, 10.33%, 7.57%, 6.45%, 9.01%, 17.97% and 51.98%.

EXPRESSO substantially improves the prediction accuracy of
gene expression at the cell type level
To better understand how the effects of predicted expression vary
within and across cell types, we analyze the sc-eQTLGen consortium
datasets based on 104 individuals. To utilize these datasets for TWAS,
we trained our summary statistics TWAS model on sc-eQTLGen data
and used the Database of Immune Cell Expression (DICE29, n = 91) to
evaluate prediction performance. We focus on seven overlapping cell
types between sc-eQTLGen and DICE, including unstimulated B cells,
unstimulated CD4 T cells, stimulated CD4 T cells, unstimulated
monocytes, unstimulated NK cells, unstimulated CD8 T cells, and sti-
mulated CD8 T cells.

EXPRESSO utilizes annotated epigenomic and 3D genomic data to
prioritize causal variants. Yet, there is no 3D genomic or epigenomic
data for unstimulated NK cells, unstimulated CD8 T cells, and stimu-
lated CD8 T cells. To identify a proxy, we cluster cell types based on
expression profiles and eQTL effect sizes (Supplementary Fig. 2). We
use 3D genomic data from the nearest neighboring cell types in the
clustering analysis as a proxy, as tissues with similar global gene
expression profiles tend to have similar 3D genome structures30. Based
on this analysis, we identify unstimulated B cells, unstimulated CD4
T cells, and stimulatedCD4T cells as proxies forNK cells, unstimulated
CD8 T cells, and stimulated CD8 T cells, respectively, and incorporate
3D genomic and epigenomic data from these proxy cell types in the
analysis.

We apply EXPRESSO-PVS and other summary statistics-based
methods for individual cell types. EXPRESSO has better performance
than all other summary statistics-based PRS methods (Supplementary
Data 8). EXPRESSO-PVS and EXPRESSO-MSE have comparable perfor-
mance due to the limited sample size of sc-eQTLGen, which is con-
sistent with simulation results. Compared to the second-best method

PRScs, EXPRESSO-PVS increases average prediction accuracy by 14.71%
and the proportion of significant models by 10.48%. Interestingly, for
the four cell types with corresponding epigenomic and 3D genomic
data, we observe a much bigger increase in prediction accuracy (i.e.,
18.45%) with EXPRESSO-PVS compared to PRScs. The average
improvement is only 11.34% for cell types that lack matched 3D
genomic or epigenomic data and have to rely on annotation infor-
mation from proxy cell types. Our results demonstrate the utility of
annotation information for improving prediction accuracy. They
underscore the importance of incorporating matched biological
information for predicting gene expression levels and the necessity of
generating 3D genomic and epigenomic data from diverse cell types.

To further investigate how different annotation tracks influence
prediction accuracy, we examine the choice of different window
sizes (w) and mitigation factors ðϕÞ among generated EXPRESSO-PVE
prediction models (Supplementary Fig. 3). Interestingly, 3D genome-
informed regions (loop, TAD, domain, pcHi-C) are chosen 47.27% of
the time. On the other hand, the 1 million basepair window, the
default window size for many different methods, is only chosen
31.28% of the time. The most frequent choice for mitigation para-
meter is ϕ = 1/6 (31.01%), which prioritizes essential predictors by
assigning much smaller L1 and L2 penalties. These results demon-
strate the utility of using 3D genomic and epigenomic annotations to
prioritize causal eQTL variants and improve gene expression pre-
diction accuracy.

TWAS analysis of 14 autoimmune diseases identifies disease-
relevant cell types
WeperformTWASusing the gene expression predictionmodels above
trained on whole blood tissue. We integrate the prediction models
withmulti-ancestry GWAS summary statistics using TESLA31, a method
wedeveloped tooptimally integrate eQTLdatasetswithmulti-ancestry
GWAS. We analyze 14 autoimmune diseases, including systemic lupus
erythematosus (SLE), Crohn’s disease (CD), primary biliary cirrhosis
(PBC), rheumatoid arthritis (RA), ulcerative colitis (UC), vitiligo (VIT),
ankylosing spondylitis (AS), autoimmune thyroid disease (Grave’s
disease and Hashimoto thyroiditis) (ATD), celiac disease (CELIAC),
multiple sclerosis (MS), psoriatic arthritis (PSOA), Sjogren’s syndrome
(SJO) and type 1 diabetes (T1D), with maximum sample size being
728,548 (Supplementary Data 9 & Supplementary Fig. 4).

EXPRESSO-PVS outperforms the other TWASmethods in terms of
the total number of loci, novel loci, and known loci identified com-
pared to the GWAS catalog (Supplementary Data 10&11 and Fig. 2) and
yields biggermean chi-square association statistics at known loci, all of
which have been used as metrics to compare different methods. We
follow an iterative procedure to define locus: we rank significant genes
by TWAS p-values, where smaller p-values are ranked higher. For the
top gene, we define a locus as a 1million basepair window surrounding
it. To define the next locus, we follow the same procedure by focusing
only on significant genes that are not included in the previously
defined loci. We repeat this process until we exhaust the list of sig-
nificant genes. All methods have well-calibrated genomic control
values (Supplementary Data 12). If we assume a majority of the
reported loci are genuine, the number of known loci identified and the
mean chi-square test statistic (which estimates the non-centrality
parameter) at known loci by different methods can be used for
empirical power comparison. EXPRESSO-PVS increases the total
number of loci by 31.14%, 26.59%, 212.86%, 236.92%, 38.61%, 36.88%,
96.41%, 253.23% and 305.56% compared to other summary statistics-
based methods EXPRESSO-MSE, SUMMIT, P + 0.001, P + 0.05, SDPR,
PRScs, LASSOSUM, PUMAS and LDpred2 (trained on eQTLGen/GTEx/
DGN). It should be noted that OTTERS use Cauchy combination
method to combine the p-values of different TWAS methods which
yields further improvement of TWAS. EXPRESSO outperformed each
method that OTTERS combines. Importantly, adding EXPRESSO to the
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set of methods that is combined, we can identify many more loci (686
vs 488), more known loci (259 vs 221) and yield higher mean χ2 sta-
tistics at known loci (36.14 vs 35.84), which all demonstrate the value of
EXPRESSO.

When comparing to individual-level data methods PUMICE, Pre-
diXcan, FUSION, TIGAR, EpiXcan, DePMA, and MeTWAS trained on
DGN, EXPRESSO-PVS increases total number of loci by 68.46%,
124.62%, 73.81%, 109.57%, 84.03%, 116.83% and 136.76%. EXPRESSO-PVS
also found58.70%more loci thanUTMOST trainedonGTEx. Finally, we
compare the power of different methods using the mean value of chi-
square statistic at known loci as a metric, which estimates the non-
centrality parameter of chi-square test statistic32. EXPRESSO-PVE

consistently yields bigger values of median Z-scores compared to
other methods (Supplementary Data 10).

To identify disease-relevant cell types, we performed enrichment
analysis to examine cell-type-specific TWAS hits (Supplementary
Fig. 5). We identified many disease-relevant cell types with strong
biological support. For example, TWAS hits for CD are enriched in
classical monocytes and B-cells, both of which are critical in CD etiol-
ogy. Specifically, IL-23 induces the secretion of IL-17 by non-T-cells in
an inflammatory environment, and both T cells and monocytes serve
as sources of increased expression of IL-23 in the mucosa of IBD
patients33. Moreover, previous study shows that patients with CD have
chronic, aberrant B-cell response. As another example, enrichment
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Fig. 2 | EXPRESSO identifies the largest number of loci in TWAS. Panels
A–C compare differentmethods for (A) the total number of loci, (B) the number of
novel loci that do not overlap GWAS catalog and (C) the number of known loci that
overlap GWAS catalog. We define a locus as novel (or known) if the sentinel variant
of the locus is greater than (orwithin) 1millionbasepairs away from reportedhits in
GWAS catalog. In each comparison, we stratify the methods into three different

groups. In the left panels, we show results for methods trained using eQTLGen/
GTEx/DGN summary statistics; in the middle panels, we show results for methods
trained using individual-level data from DGN (the largest individual RNASeq data
we can access); in the right panels, we show results for methods trained using
individual-level data from multiple tissues in GTEx.
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analysis identifies B cells as the most relevant cell type for SLE. SLE is
characterized by B cell dysfunction that results in the production of
pathogenic autoantibodies. SLE B cells also possess altered antigen
presentation and cytokine secretion compared to that in normal
individuals34,35. To validate the enrichment analysis, we also used
neuronal cell types as a negative control, as most of the diseases
(except for multiple sclerosis) are not related to brain cell types. As
expected, nearly all brain cell types are not enrichedwith TWAS signals
fromwhole blood and immune cell types. These results using negative
controls yield expected false positive rates and help establish the
validity of our cell-type enrichment analysis (Supplementary Data 13).

Cell type level TWAS identifies and fine maps novel loci in
disease-relevant cell types
To identify cell-type specific target genes, we perform TWAS using
models based on EXPRESSO-PVS and other summary statistics-based
methods on seven cell types included in sc-eQTLGen. We also per-
formed fine-mapping to identify causal genes in each cell type.

All methods for cell type level TWAS have well-controlled type I
errors (Supplementary Data 12). We define known loci as the 1 million

base pair window surrounding the reported signals in the GWAS cat-
alog. EXPRESSO-PVS increases the total number of loci by 13.36%,
53.26%, 157.99%, 52.41%, 35.81%, 27.01%, 62.97%, 74.36% and 80.09%,
increases the number of significant associations by 11.01%, 52.31%,
182.60%, 50.39%, 46.26%, 52.31%, 69.86%, 79.07% and 95.51%, and
increases the mean χ2 statistics at known loci by 17.66%, 36.04%,
132.11%, 15.68%, 29.38%, 29.28%, 27.53%, 24.46% and 30.61% when
compared to EXPRESSO-MSE, SUMMIT, P + 0.001, P + 0.05, SDPR,
PRScs, LASSOSUM, PUMAS and LDpred2 (Fig. 3, Supplementary
Data 14).

Cell-type level TWAS uniquely identifies many GTAs that are
missed in whole blood. To understand what drives these cell type only
GTAs, we first define “cell type-specific genes” as the ones with
expression levels [measured in transcript per million (TPM)] in a given
cell type being 1 standard deviation above the mean expression level
across all cell types, following the procedure of Boyle et al36. We note
that cell type only GTAs are more likely driven by cell type specific
genes with high expression in that cell type. Rare cell types tend to
have larger fractions of cell type specific genes, with a Pearson corre-
lation of −0.75 between cell type proportion and the fraction of cell
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Fig. 3 | Cell type level TWAS identifies novel loci.We show the number of loci in
seven cell types, including unstimulated B cells (UT_B), unstimulated NK cells
(UT_NK), unstimulated CD4 T cells (UT_CD4T), unstimulated CD8 T cells
(UT_CD8T), unstimulated natural killer cells (UT_NK), CD4 T cells after 24 hour
in vitro stimulation with M. tuberculosis (24hMTB_CD4T) and CD8 T cells after
24 hour in vitro stimulation with C. albicans (24hCA_CD8T), identified using gene
expression prediction models from EXPRESSO. In Panel A, we show the number of
loci identified in whole blood and the number of loci identified only by cell type

level TWAS (i.e., cell type only loci). In panel B, we show the number of novel loci
identified in each cell type by cell type level TWAS. We consider a locus as novel if
the sentinel variant is greater than 1million basepair away from reported hits of the
same trait in GWAS catalog. We stratify the number of loci by whether they are
novel or not. It is clear that cell type level TWAS uniquely identifies many (novel)
loci that are missed in whole blood, demonstrating the power of cell type
level TWAS.
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type specific genes (Supplementary Fig. 6). Additionally, rare cell types
tend to harbor more cell type only GTAs that are missed by whole
blood TWAS (Supplementary Fig. 6), with a Pearson correlation of
−0.42 between cell type proportion and the proportion of cell type
only GTAs. We also find that the gene prediction models of cell type
only GTAs tend to include a larger number of cell type-specific
essential variants than that of whole blood GTAs (Supplementary
Data 15). These results together suggest cell type only GTAs are more
likely driven by cell type specific risk genes and essential regulatory
variants.

Using TESLA, we further fine mapped loci identified by whole
blood tissue and seven cell types for 14 autoimmune related traits
(Supplementary Data 16). Althoughwhole blood TWAS identifiesmore
loci (438) than the average of each individual cell type (118), we can
fine map cell type level TWAS loci with higher resolution. Specifically,
wefinemap84.61%of loci in cell type level TWAS to a single gene in the
90%-credible set, but can only do so for 57.75% of whole blood TWAS
loci. When we limit our comparison to the loci identified by both cell
type level and whole blood TWAS, we still observe improved fine-
mapping resolution using cell type level TWAS results (i.e., 89.87% of
loci to single gene resolution using cell type level TWAS against 74.42%
usingwhole bloodTWAS results). The heterogeneity of predicted gene
expression effects across cell types potentially reduces the fine-
mapping resolution when whole blood TWAS results are used.

We are able to identify and fine map a number of novel genes
which lie > 1 megabase from reported GWAS hits. Many of those novel
putatively causal genes have strong biological relevance (Supple-
mentaryData 17) and areuniquely identified in cell type level TWASbut
missed in whole blood. One gene identified for rheumatoid arthritis is
C-CMotif Chemokine Receptor 1 (CCR1) (p-value = 1:42× 10�11,PIP = 1) in
unstimulatedNKcells. TheCCR1 expressionpredictionmodel contains
3 variants, all of which are NK cell-specific essential variants. CCR1 is
involved in the cellular response to cytokine stimulus (GO:0071345),
Nociception Expression Targets Signaling, and Interleukin-2 signaling
pathway in unstimulated NK cells. Inhibition of CCR1 improves the
symptoms in a mouse model of arthritis37, which suggests CCR1 is a
potential target for rheumatoid arthritis treatment38,39.

Interestingly, for SLE, we identify Platelet Derived Growth Factor
Receptor Beta (PDGFRB) (p-value = 2:89× 10�6,PIP = 1) in naïve B cells.
The PDGFRB expression prediction model contains 10 causal variants,
eight of which are essential variants specific to B cells. PDGF-B resides
in cytokine-cytokine receptor interaction pathways in naïve B cells. A
previous study found the PDGF-B pathway to be excessively activated
in SLE patients40. The PDGFRA receptor has been associated with SLE41

and our study now links PDGFRB to SLE as well.
Perez et al.10 also conducted cell type-specific TWAS using CON-

TENT, which decomposes eQTL effects into shared and cell type-
specific components. The study pinpointed risk genes associated with
SLE and other autoimmune-related conditions, including CD and RA.
To compare with their results, we focus on novel loci in five cell types
that are commonly measured between the two studies, i.e., B cells,
classical monocytes, natural killer cells, CD4 T cells, and CD8 T cells.
Our study uniquely identified 98 genes that are not in Perez et al.,
including 60 novel genes beyond the 1 million base pair window of
GWAS catalog-identified loci. We also identified 54 novel genes for RA
and 97 novel genes associated with CD.

Characterizing gene expression effect heterogeneity across
cell types
We first examined overlaps between TWAS signals identified in whole
blood andby cell type level analysis. Among the 1222GTAs identified in
either whole blood or in individual cell types, ~50% (626) are only
identified at cell-type level analysis. The overlap between whole blood
and cell type level TWAS hits is ~10% (115). The low overlap between
whole blood and cell type level TWAS may reflect phenotypic effect

heterogeneity between cell types or may arise simply because of lim-
ited power for detecting associations in whole blood or individual
cell types.

To assess the heterogeneity of TWAS effect sizesmore rigorously,
we develop a new statistical method to compare TWAS effect sizes
across cell types (METHODS). Among the 1222 genes that are sig-
nificant in either whole blood or cell type level TWAS analysis, 31.2% of
tested genes show statistically significant differences in TWAS effects
between cell types (p <0.05/1222 = 4:1 × 10�5). The fraction of genes
with significant TWAS effect heterogeneity increases to 37.06% if we
restrict the analysis to the genes identified only in cell type level TWAS.

We further visually examine effect heterogeneity across cell types.
We plot effects across different cell types and whole blood for genes
with significant p-values in at least one cell type (Fig. 4, Supplementary
Fig. 7, and Supplementary Data 18). As shown, for many genes that are
identified only in cell type level TWAS, the TWAS effect size hetero-
geneity is often large. On the other hand, when TWAS effect sizes are
homogeneous between cell types, whole-blood TWAS statistics often
have more significant p-values due to the large sample sizes of the
whole-blood eQTL dataset.

Our results corroborate previous studies on cell type specificity of
eQTL effects8 and further characterize how the phenotypic effects of
predicted gene expression vary between cell types. TWAS analysis
using bulk RNASeqdatasetsmay frequentlymiss geneswith significant
heterogeneity across cell types, thus underscoring the importance of
conducting functional genomic analysis at the cell type level.

Cell type aware computational drug repurposing using TWAS
based on sc-RNASeq data
We developed a Cell type Aware Drug REpurposing pipeline (CADRE)
to perform computational drug repurposing using TWAS results from
both single-cell and bulk-RNASeq data. We use enrichment analysis to
pinpoint disease-relevant cell types and identify cell lines that closely
mimic the transcriptomic profile of disease-relevant cell types (Sup-
plementary Fig. 3 and Supplementary Data 13&19). We then use the
CMap database42 and TWAS results based on sc-RNASeq to identify
small bioactive molecules capable of reversing the expression profile
of clinically relevant trait-associatedgenes,which could be repurposed
to treat autoimmune diseases. To link disease to drug-induced states,
CMap computes a τ score using the cell line that closely resembles
disease-relevant cell types (Supplementary Fig. 8) to evaluate both
query features and references. A negative τ score indicates that the
molecule will normalize the gene expression profile associated with
the trait and can potentially be repurposed to treat disease.

We compare results from our cell-type CADRE pipeline to those
based on the whole blood RNASeq dataset (Fig. 5 and Supplementary
Data 20). Drugs implicated by our CADRE analyses yield much lower
average τ scores (−5.49) than those obtained using whole blood TWAS
results (−2.64), indicating that CADRE can identify drugs that more
consistently reverse disease gene expression levels compared to drug
repurposing analysis conducted using whole blood samples.

We also seek to demonstrate the utility of cell type specific TWAS
results in drug repurposing using an orthogonal approach based on
drug target gene enrichment analysis. We first generate gene sets for
drug targeted pathways for each drug using DrugBank43, a database
that documents the mechanism of action for all approved drugs. We
then perform drug target enrichment analysis based on TWAS results.
We compare the enrichment p-value between repurposing analysis
using TWAS results from disease relevant cell types and that using
whole blood. Among the drugs either approved for treatment or for
clinical trial, 12 show nominally significant enrichment with cell type
specific TWAS hits from disease relevant cell types, and only 2 show
enrichment with TWAS hits from whole blood, demonstrating sig-
nificant differences (with two-sided Fisher’s exact p-value 0.008)
(Supplementary Data 20). Besides, 88.9% of the drugs are more
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strongly enriched with cell type specific TWAS hits from disease rele-
vant cell types than whole blood. These multiple lines of evidence
further establish the advantage of our cell type aware drug repurpos-
ing pipeline.

CADRE analyses identify a larger number of drug classes that show
promise in the clinic than using whole blood data alone, and those
drugs were usually closely related to the enriched cell types. We
identified cyclooxygenase 2 (COX-2) inhibitors, dihydrofolate reduc-
tase inhibitors, and glucocorticoid receptor agonists for RA, for which
B cells and NK cells are themost enriched cell types with TWAS hits. Of
note, these drugs have already been used to treat RA in the clinic44–46.
The effects of these drugs in B and NK cells are well established, which
helps confirm the validity of this approach44,45 and explain cell type

enrichment effects. Specifically, methotrexate, a dihydrofolate
reductase inhibitor, decreases the number of transitional B cells and
serum immunoglobulin levels in arthritis patients47. We also identify a
glucocorticoid receptor agonist, prednisone, which has been used for
treating RA46. Prednisone in low doses can suppress the inflammation
associated with RA48, restrict B lymphocyte differentiation into plasma
cells49, and suppress the cytolytic activity of NK cells50.

CADRE also identifies novel drug classes with biological and
medical relevance, including metformin for T1D and vitamin K for UC.
Metformin, an insulin sensitizer, has been widely used in conjunction
with diet and exercise for glycemic control in type 2 diabetes mellitus
patients. Recent studies suggest that adding metformin to pharma-
cologic insulin dosing in type 1 diabetics may be effective, as
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Fig. 5 | Distribution of τ scores from computational drug repurposing. In
CADRE, we pinpoint disease relevant cell types using enrichment analysis. We then
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types andwholeblood tissue.Wedenote significantly enriched cell typewith * (two-
sided p <0.05/15, which is the Bonferroni threshold for testing 15 cell types).
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Fig. 4 | Phenotypic effects of predicted gene expression across cell types
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(Red dashed line represent significant threshold cutoff under two-sided p-value =
0.05, red solid line line represent significant threshold cutoff under Bonferroni
correction with two-sided p-value = 0.05/number of genes (1500)). The results
show that genes with heterogeneity effects across cell types are often missed in
whole bloodTWAS. The phenotypic effects of predictedgene expressions for other
autoimmune traits are included in Supplementary Fig. 7.
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metformin candecrease glucose concentrations and reducemetabolic
syndrome51. Additionally, menadione, also known as vitamin K3, was
identified for UC, where CD4 T and CD8 T cells are the two cell types
most enriched with TWAS signals. The role of vitamin K on intestinal
health has drawn growing interest in recent years. Studies have shown
that vitamin K presents a beneficial effect on intestinal health52, which
can affect immune and inflammatory responses mediated by T cells53.
Our study now further supports vitamin K for UC.

Computational efficiency
We provide a documented and open-source implementation of
EXPRESSO (see Code Availability). The software is efficient and takes
<24 hours to analyze the whole genome on a standard server with
Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz, 32 GB RAM, and a
7200 rpm hard drive.

Discussion
In this article, we present a new method EXPRESSO (Supplementary
Fig. 9) to integrate eQTL summary statistics from sc-RNASeq and bulk-
RNASeq to identify target genes associated with complex traits/
diseases. Importantly, EXPRESSO incorporates a novel method
pseudo-variable selection tomore effectively select tuning parameters
without external validation data, addressing an important challenge of
analyzing eQTL summary statistics. As the largest eQTL datasets are
often available or most conveniently accessible as summary statistics,
EXPRESSO allows the analysis ofmuch larger eQTL datasets. It can also
integrate 3D genomic and epigenomic information to prioritize causal
eQTLs and further improve gene expression accuracy. EXPRESSO
outperforms all existing TWAS methods that rely on individual level
data. It also substantially outperforms other summary statistics-based
prediction methods adapted to predict gene expression.

We apply EXPRESSO to analyze large multi-ancestry GWAS data-
sets of 14 autoimmune diseases. We identified causal genes that are
specific to certain cell types. Using a novel heterogeneity test statistic,
we rigorously characterize how the mediating effects of genetically
regulated gene expression vary across cell types. It differs from earlier
attempts that seek to overlap eQTLs from different cell types, which
tend to underestimate the extent of shared effects. Our results show
that ~31% of genes show significant differences in TWAS effects
between cell types. This is in stark contrast to the overlap analysis
showing only 10% of the genes are identified in both whole blood and
cell type level TWAS, which is likely an underestimate.

As the effects of predicted expression levels for many genes can
be quite different across cell types, these genes are likely missed in
TWAS analysis ofwhole blood. On the other hand, EXPRESSObased on
sc-eQTL data reveals numerous causal genes that are cell type
dependent. Our drug repurposing pipeline CADRE based on cell type
level TWAS identifies drugs that can more consistently reverse gene
expression in disease relevant cell types. The drug target pathways of
approved drugs are more strongly enriched with TWAS hits from dis-
ease relevant cell types than TWAS hits from bulk tissue. Many of the
identified new drugs also have support from clinical trials or animal
studies and show promise for treating autoimmune diseases, further
supporting this strategy.

EXPRESSO relies on 3D genomic and epigenomic data from mat-
ched cell types to prioritize causal variants and improve prediction
accuracy. For cell types without these data, we cluster transcriptomic
profiles fromdifferent cell types, identify nearest neighbors asproxies,
and use the 3D genomic and epigenomic data from proxy cell types to
fit the model. Although we still observe improved prediction accuracy
for cell types using proxy annotation information, the improvement is
smaller, likely suggesting that some cell type differences are not fully
captured with this approach. As single cell RNASeq datasets continue
to grow larger, itwill be important to generate companion 3Dgenomic
and epigenomic datasets for relevant cell types to better annotate

functional variants,whichwill alsohelp improve EXPRESSO and similar
methods thereof for integrative analysis.

EXPRESSO trains gene expression prediction models for each
tissue separately. A fewmulti-tissue TWASmethods exist that leverage
shared regulatory variants acrossmultiple tissues to improveTWAS for
tissue types with smaller sample sizes54,55. Yet, existing multi-tissue
TWAS methods tend to prioritize the selection of causal variants
shared between tissues. They often do not performwell for genes with
tissue specific eQTLs. We can explore similar ideas for cell type level
TWAS. Given the extensive heterogeneity of regulatory variant effects
between cell types, it remains unclear if multi-cell type extensions of
TWAS methods can work well.

EXPRESSO only considers cis-eQTL effects and does not model
trans-eQTL effects. Detecting andmodeling trans-eQTL effects require
larger sample sizes, which are currently not available. Indeed, studies
investigating trans-eQTL effects using sc-RNASeq data reveal very
sparse signals. Yet, other studies have shown that for bulk tissueTWAS,
modeling trans-eQTL effectsmay further improveprediction accuracy.
Given the advantage of EXPRESSO for modeling expression levels
using cis-eQTLs, it is reasonable to expect that extending EXPRESSO to
incorporate trans-eQTLs may further improve prediction accuracy.

In conclusion, we present an integrative framework to perform
gene-based association analysis. EXPRESSO is built on publicly avail-
able eQTL summary data of single cell and bulk-RNASeq, allowing the
framework to generate prediction models with higher imputation
accuracy and discover cell type-specific risk genes. As the research
community continues to generate and assemble large sc-eQTL data-
sets, EXPRESSO and its future extensions will be valuable for inte-
grative analysis and play an important role for understanding the
phenotypic impact of regulatory variants.

Methods
Estimate shrinkage tuning parameters using pseudo variable
selection (PVS)
To predict gene expression levels, EXPRESSOmodel seeks tominimize
the following loss function, i.e.,

Lðβ; λ1,λ2Þ= jjY� Xneβne � Xeβejj22 +
1
2
×
λ
2

ϕjjβejj22 + jjβnejj22
� �

+
λ
2

ϕjjβejj11 + jjβnejj11
� � ð5Þ

The tuning parameters include the mitigation factor ϕ and the
shrinkage parameter λ. While not explicit in the formula, we consider
thewindowsizes (denotedbyw) as a tuning parameter, which includes
linear distance-based windows and 3D genome-based windows. For a
given set of tuning parameters, we can estimate the regression para-
meters of the predictionmodel, i.e.,βne and βe using amodified cyclic
coordinate descent algorithm (Supplementary Text).

Among the tuning parameters, the shrinkage parameter λ is most
critical for prediction accuracy.Here,weproposea newmethodPVS to
select the shrinkage parametermore effectively. PVS generates a set of
pseudo variables Xπ that have the same covariance structure as the
observed set of predictors but are not associated with the phenotypes
of interest. Specifically, we introduce an auxiliary loss function that
includes both themeasured predictors aswell as pseudo variables, i.e.,

L* β,βπ; λ,w,ϕ
� �

= jjY� Xβ� Xπβπjj22 + +
1
2
×
λ
2

ϕjjβejj22 + jjβnejj22 + jjβπjj22
� �

+
λ
2

ϕjjβejj11 + jjβnejj11 +
����βπ

����1
1

� �

ð6Þ
Bigger values of λ impose stronger penalty on the parameters β

and βπ which usually eliminates more variables. Since the pseudo
values are not associated with the outcomes, we seek to choose a
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shrinkage parameter λ to ensure that the model eliminates all pseudo
variables and at the same time, retains as many measured variables as
possible. Based on this intuition, for each pair of window size and
mitigation factor values, we gradually increase the tuning parameter λ
until all coefficients of the pseudo variables become zero and we
denote the resulting tuning parameter as λ̂ðw,ϕÞ, i.e.,

λ̂ w,ϕð Þ= min λ : β̂π λ,w,ϕð Þ=0
n o

ð7Þ

β̂π λ,w,ϕð Þ is the solution that minimizes the loss function with
tuning parameters λ,w, and ϕ, i.e.,

β̂ λ,w,ϕð Þ,β̂π λ,w,ϕð Þ= argminβ,βπ
L* β,βπ; λ,w,ϕ
� � ð8Þ

When individual data is available, the most straightforward
approach to generate pseudo variable is permutation. In the absence
of individual level data, we devise a new approach to generate sum-
mary association statistics of pseudo variables using Monte Carlo
simulation.Wenote that the covariancebetweenmeasuredpredictors,
pseudo variables, and gene expression satisfies

XT
πXπ =XTX ð9Þ

E X,Xπ

	 
T X,Xπ

	 

=

Σ 0

0 Σ

� �
ð10Þ

E XT
πY

� �
=0 ð11Þ

where Σ=XTX and can be estimated from a reference panel of mat-
ched ancestry.

We can simulate the summary statistics for pseudo variables as

XT
πY∼Nð0,var Yð Þ×ΣÞ ð12Þ

In our implementation, we simulate ten sets of pseudo variables.
For each set, we estimate tuning parameters λ ϕ,wð Þ, which wewill then
average across ten simulated datasets to get final estimates to improve
the stability of results.

To select mitigation and window size tuning parameters, we
perform cross validation by modifying a recently proposed summary
statistics-based CV18. We can view the summary statistics in the loss
function, i.e., XTy, as the sum of genotype-expression covariances
from individual study participants, i.e.,

XTy=
X

i
Xi�yi ð13Þ

WhereXi = Xi1, . . . ,Xip

� �
.Xi�yi = Xi1yi, . . . ,Xipyi

� �
follows amultivariate

normal distribution, i.e.,

Xi�yi ∼N XTy=N,Σ
� �

ð14Þ

Σ is the estimated variancematrix between genetic variants froma
reference panel.

To perform CV, we will simulate X1y1, . . . ,XN�1,yN�1 according to
the above distribution, and calculate XNyN =XTy�PN�1

i = 1 Xiyi. To
mimic 5-fold CV,wepartition the indices of sample individuals into five
folds. In each iteration of the CV, we calculate summary statistics for 4/
5 of the data to train themodel and retain the remaining 1/5 of the data
for validation.

For each pair of parameter values of ϕ and w and the estimated
shrinkage parameter λ̂ ϕ,wð Þ, we evaluate the loss function
L*ðβ̂ðλ̂ðw,ϕÞ,w,ϕÞ,β̂πðλ̂ðw,ϕÞ,w,ϕÞ; λ̂ðw,ϕÞ,w,ϕÞ. The tuning parameter

values that yield the minimal loss will be selected and resulting esti-
mates of β̂ will be used to predict gene expression levels.

Testing the heterogeneity of TWAS statistics across cell types
In a TWAS, we regress phenotype (residuals) over predicted
expression levels of a given gene. We call the regression slope the
effect of predicted gene expressions, or simply TWAS effects. We
propose a new statistic to rigorously assess the heterogeneity of
TWAS effects across cell types. Specifically, we first define the vector
of TWAS effects of gene m in different cell types as Um. To simplify
notations, we assume a total of P SNPs were used in the prediction of
expression in at least one cell type.We encode the predictionweights
for each cell type as a vector of length P:Some elements in the vector
can be zero if the corresponding SNP is not used in the prediction
model. We define the LD matrix between the P SNPs as Σ. For two
tissue types k1 and k2, we denote the weights as β̂k1

and β̂k2
. The

effect estimates of predicted gene expressions across different cell
types are correlated. The covariance between two TWAS effect esti-
mates is equal to.

ϕt1t2
= β̂

T

k1
Σβ̂k2

ð15Þ

Wedenote the covariancematrix forUm asΦ. Our null hypothesis
is

H0 : E U1m

� �
= E U2i

� �
= . . . = E UKm

� �
= E �Um

� � ð16Þ

where �Um = 1
K

PK
k = 1Ukm. We could calculate the heterogeneity statis-

tics for gene m as follows:

Hm =
XK

k = 1
Ukm � �Um

� �2
=UT

mCUm ð17Þ

Where C is the centering matrix, i.e., C = I� 1
M 11T . It is easy to show

that the mean centered TWAS effects satisfy:

Um � �Um ∼MVN 0,CΦC0� � ð18Þ

The heterogeneity statistic Hm is a quadratic function of multi-
variate normal random variables Um. Hm follows a weighted sum of
chi-square distributions, i.e.,~Tm � �Tm ∼

PK
k = 1λkχ

2
df = 1, withweights λk ’s

being the eigenvalues for the matrix CΦC0.

Gene x trait association analysis with TESLA
The EXPRESSO prediction model is based on samples of European
ancestry. Yet, the GWAS datasets of autoimmune diseases are multi-
ancestral.We apply TESLA31 (Trans-Ancestry Integrative Study using an
optimal Linear combination of Association statistics) to conduct
TWAS, integrating the European eQTL dataset with GWAS datasets
from multiple ancestries. By exploiting shared phenotypic effects
between ancestries and accommodating potential effect hetero-
geneities, TESLA improves power over the TWAS methods using
ancestry-matched GWAS and eQTL data and the TWASmethods based
on fixed-effect meta-analysis results.

Cell type enrichment analysis
We retrieved cell type expression from the Database of Immune Cell
Expression (DICE). DICE profiled transcriptomic data of 15 immune cell
types (2 of which are activated cell types) and included genotype data
from 106 samples. We processed the dataset following the pipeline
outlined in our previous study13. First, we quantify the expression level
of each gene using TPM. Next, we compute the average expression for
each gene in each cell type. We remove genes not expressed across all
cell types. We then rescale gene expression to 1 million TPM for each
cell type, to minimize the impact of library size. For each gene, we
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define the “gene expression specificity score” by dividing the expres-
sion of each gene in a given cell type by the total expression of the
samegene across all cell types.Wedefine the cell type-specific genes as
the ones with gene expression specificity score in the top 10th per-
centile in each cell type. We then follow a previously established
weighted regression framework to assess if the cell type-specific genes
are enriched with significant TWAS hits. We also use neuronal cell
types as a negative control, as none of the diseases, with the exception
of multiple sclerosis, are related to brain cell types. We performed the
same procedures using brain cell type expression data56. As expected,
nearly all brain cell types are not enriched with TWAS signals from
the brain.

Cell type aware computational drug repurposing pipeline and
enrichment analysis
We develop a cell type aware drug repurposing pipeline (CADRE).
CADRE first leverages cell type enrichment analysis to identify disease-
relevant cell types. We then cluster the cell lines used in the CMap
database and identify cell lines whose transcriptome profiles most
closely resemble disease-relevant cell types.

CADRE compares TWAS signatures with the drug perturbation
results in CMap database to identify drugs that wemay repurpose for
treating the disease of interest. Specifically, to identify TWAS sig-
natures, we only choose genes with significant TESLA p-values after
the correction of testing multiple genes using the Bonferroni
threshold. We restrict our drug repurposing analysis to six traits with
known drug indications and having at least 10 positively and 10
negatively associated genes as recommended. We compared TWAS
signatures with gene expression changes caused by perturbations in
the CMap database (from L1000). We focus only on CMap Touch-
stone dataset, which contains gene expression patterns from nine
cell lines treated with ~3000 well-annotated small-molecule drugs.
To link disease to drug-induced states, CMap computes a τ score
using the cell line that closely resembles disease-relevant cell types to
evaluate both query features and references. A more negative τ score
indicates that themoleculewill more consistently normalize the gene
expression profile associated with the trait and can be repurposed to
treat disease.

We also perform drug target enrichment analysis as a com-
plementary approach for drug repurposing analysis. For drugs that
may be repurposed for treating a disorder, their drug target pathways
may be enriched with TWAS signals. By examining the significance of
enrichment, we can identify putative drugs. This approach is ortho-
gonal to CADRE. By comparing CADRE results with drug target
enrichment results, we can validate identified putative drugs. An
improved pipeline would be expected to yield stronger enrichment
results. To perform drug target enrichment analysis, we first generate
gene sets for drug-targeted pathways for each drug using DrugBank, a
database that documents the mechanism of action for all approved
drugs.We thenperformdrug target enrichment analysis using eTESLA,
a published multiple regression-based method based on TESLA
p-values31.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The pre-trained eQTLGen and sc-eQTLGen gene expression pre-
diction models (hg19 reference genome) generated in this study
can be found at https://github.com/LidaWangPSU/EXPRESSO/
tree/main/trained_model. The eQTLGen summary statistics are
publicly available from https://eqtlgen.org/cis-eqtls.html. The sc-
eQTLGen summary statistics are available from https://eqtlgen.
org/sc/datasets/1m-scbloodnl-eqtls.html. GTEx V7 data can be

obtained from dbGaP study accession phs000424.v7.p2. DGN
data can be requested at https://www.nimhgenetics.org/request-
access/how-to-request-access under “Depression Genes and Net-
works study (D. Levinson, PI)”. DICE dataset can be requested
through dbGaP accession number phs001703.v1.p1. Epigenomic
data were obtained from http://screen.encodeproject.org. 3D
genomic data were obtained from http://3dgenome.org. Cell type
aware computational drug repurposing analysis was conducted
on CLUE Drug Repurposing Hub, which can be accessed at
https://clue.io/repurposing-app. GWAS summary statistics files
are publicly available, and PubMed ID for each study is provided
in Supplementary Data 9. All data supporting the findings
described in this manuscript are available in the article and its
Supplementary Information files.

Code availability
Software implementing the EXPRESSO model is available at https://
github.com/LidaWangPSU/EXPRESSO.
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