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Comprehensive assessment of mRNA
isoform detection methods for long-read
sequencing data

Yaqi Su1,2,9, Zhejian Yu1,2, Siqian Jin1,2, Zhipeng Ai3, Ruihong Yuan2, Xinyi Chen1,2,
Ziwei Xue1,2, Yixin Guo1,2, Di Chen4,5, Hongqing Liang 3, Zuozhu Liu6 &
Wanlu Liu 1,2,7,8

The advancement of Long-Read Sequencing (LRS) techniques has significantly
increased the lengthof sequencing to several kilobases, thereby facilitating the
identification of alternative splicing events and isoform expressions. Recently,
numerous computational tools for isoform detection using long-read
sequencing data have been developed. Nevertheless, there remains a defi-
ciency in comparative studies that systemically evaluate the performance of
these tools, which are implemented with different algorithms, under various
simulations that encompass potential influencing factors. In this study, we
conducted a benchmark analysis of thirteen methods implemented in nine
tools capable of identifying isoform structures from long-read RNA-seq data.
We evaluated their performances using simulated data, which represented
diverse sequencing platforms generated by an in-house simulator, RNA
sequins (sequencing spike-ins) data, as well as experimental data. Our findings
demonstrate IsoQuant as a highly effective tool for isoform detection with
LRS, with Bambu and StringTie2 also exhibiting strong performance. These
results offer valuable guidance for future research on alternative splicing
analysis and the ongoing improvement of tools for isoform detection using
LRS data.

Alternative splicing (AS) is a post-transcriptional regulation mechan-
ism that splices a single kind of pre-mRNA into multiple distinct
mature mRNAs, referred to as isoforms. The vast diversity of alter-
native splicing events significantly contributes to the complexity of the

transcriptome and proteome. AS is prevalent in vertebrates, with an
estimated 90% of human genes undergoing alternative splicing1,2.
Moreover, AS has been observed in invertebrate, fungal, and plant
genomes3. Accumulated evidence suggests AS plays a crucial role in
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various biological processes, including cellular differentiation and
organismal development, while its dysregulation has been implicated
in numerous diseases, including cancer and neurological disorders4,5.

The rapid development of next-generation sequencing (NGS) has
revolutionized genome-wide investigations of alternative splicing and
isoform characterization. However, AS detection using NGS-based
RNA-seq relies on recovering splice-junction sites from short NGS
reads. Consequently, it fails to provide the global picture of full-length
transcripts, impeding the study of the functional consequences of AS.
To overcome this limitation, Long-Read sequencing (LRS) technolo-
gies, such as those developed by Pacific Biosciences (PacBio) and
Oxford Nanopore Technologies (ONT), have emerged6,7. PacBio plat-
form employs Zero-Mode Waveguide (ZMW)-based single-molecule
real-time (SMRT) technology, whereas ONT utilizes nanopores inser-
ted in an electrically resistant membrane6,7. Both platforms enable
profiling of full-length RNA transcripts through cDNA (complementary
DNA) sequencing, while ONT also allows direct sequencing of native
RNA8–12. PacBio sequencing includes two modes: (1) continuous long
read (CLR), which yields reads longer than 30 kilobases (kb) but with a
higher error rate (8~15%); (2) High-fidelity (HiFi) sequence reads data
type, a circular consensus sequencing (CCS) that generates the highly
accurate (>99%) HiFi reads with read lengths of 10 ~ 30 kb12. The pro-
gression of LRS technologies has markedly enhanced read length,
thereby enabling the accurate delineation of isoform structures. Such
technological advancements open new avenues for comprehensive
analysis of transcriptome complexity and functional
implications of AS.

As the advancement of long-read RNA-seq techniques continues,
several computational tools have been developed for AS isoform
detection. Nine cutting-edge tools, including StringTie2, FLAIR,
FLAMES, Freddie, TALON, UNAGI, TAMA, Bambu, and IsoQuant, have
been published13–21 (Table 1 and Supplementary Table 1). These algo-
rithms can be broadly classified into two categories: guided vs.
unguided, depending on whether they require a reference annotation
to guide the isoform identification. Among the nine tools, TALON and
FLAMES are guided while Freddie, TAMA, and UNAGI are not. String-
Tie2, FLAIR, IsoQuant, and Bambu incorporate both guided and
unguided modules into their algorithms. To ensure high-confidence
isoform-calling, different software implements diverse filtering stra-
tegies. For instance, StringTie2 constructs an alternative splice graph
for each gene locus and employs a maximum flow algorithm over
de novo assembled super-reads. Bambu utilizes a machine-learning
model for transcript discovery and enables context-aware quantifica-
tion. IsoQuant builds an intron graph and utilizes an inexact intron-
chainmatching algorithm to call isoforms. FLAIR (guided) and FLAMES
implement a step of re-aligning the raw reads to the initially assembled
transcriptome, derived from splice site collapse, to filter out potential
false positive events based on the abundance of support reads. TALON
first labels reads with internal priming events, classifies each read as
known and novel based on the given reference annotation, and then
filters out novel reads with an abundance below a specific threshold.
TAMA filters out the low-confidence splice junctions based on their
ranking or the amount of mapping mismatch surrounding them.
Freddie employs a split-segment-cluster strategy for the identification
of isoforms, whereas UNAGI classifies multiple transcriptional
boundaries and filters out splicing events that fall below a pre-
determined threshold of locus coverage. Additionally, the majority of
methods perform sequencing error correction before the identifica-
tion of isoforms, with the exception of FLAIR (unguided) and TALON.

With the increasing number of methods for detecting isoforms
from LRS data, conducting comprehensive benchmark experiments
is crucial to evaluate the applicability of different tools under various
conditions. However, due to the lack of a ground-truth annotation, it
is challenging to systemically analyze the accuracy of all nine methods
across different scenarios. These analyses ought to incorporate a Ta
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consideration ofmultiple standards, including sensitivity and accuracy
across datasets generated by disparate sequencing platforms, as well
as computational efficiency for datasets of varying sizes. Conse-
quently, there is a pressing need for a comprehensive assessment of
existing isoform detection methods. Such evaluation would not only
assist users in selecting the appropriate tools but also provide valuable
guidance tobioinformaticians aimed at enhancing existingmethods or
developing novel approaches for isoform detection.

RNA sequins are synthetic RNA molecules utilized as internal
controls in RNA-seq experiments22. These sequins exhibit intricate
splicing events, making them ideal for benchmarking isoform detec-
tion software. Using ONT long-read RNA-seq technology along with
synthetic, spliced, spike-in sequins RNAs22, previous studies have
compared the performance of several isoform detection software23–25.
In this study, we systematically compared nine isoform detection
tools, which correspond to a total of thirteen methods, using simu-
lated, sequins, and experimental long-read RNA-seq data. These tools
were selected based on their comprehensively detailed package doc-
umentation and the availability of publishedmanuscripts. To generate
Nanopore or PacBio long-readRNA-seqdata for analyzing the accuracy
of various methods, we have developed a long-read bulk RNA-seq
simulation framework called YASIM (Yet Another SIMulator). YASIM
operates at two levels: at the upper level, it employs statistical models
to enable the simulation of novel AS events and realistic gene
expression profiles; at the lower level, YASIM can simulate different
sequencer models by utilizing Low-Level Read generators (LLRGs),
which are DNA-seq simulators that introducemachine errors26–29. With
these features, YASIM enables the simulation of datasets with user-
defined read depths, novel AS events, sequencing error rates, read
completeness, and various profiles of sequencing error models. We
used the simulated long-read RNA-seq datasets to systematically
evaluate the performance of 13 isoform detection methods. Addi-
tionally, we assessed the software performance using sequins long-
read RNA-seq datasets, as well as experimental datasets from various
species and cell types collected from previously published data. We
also generated Nanopore long-read RNA-seq datasets from naïve and
primed human embryonic stem cells (hESCs) in this study. With this
paired naïve and primed hESCs long-read RNA-seq dataset, along with
our previously publishedNGSRNA-seqdatasets derived fromthe same
conditions, we performed comprehensive downstream differential
isoform usage (DIU) evaluation and experimentally validated one of
theDIU isoforms fromRPL39L (Ribosomal Protein L39 Like) gene using
RT-qPCR (Reverse Transcription Quantitative Real-Time PCR)30. Fur-
thermore,we assessed the computational performance of the software
by evaluating time and memory consumption using an in-house
developed profiler.

In conclusion, our results suggest that IsoQuant achieves the best
performance for AS detection in long-read RNA-seq data, excelling in
both precision and sensitivity. Additionally, Bambu and StringTie2
demonstrate commendable performance in these metrics. StringTie2,
in particular, is distinguished by its superior computational efficiency.
FLAIR, especially its guided mode, along with FLAMES, also merits
recognition for its robust performance, augmented by comprehensive
functional modules. These modules include upstream read alignment
and downstreamdifferential splicing/expression analysis within FLAIR,
as well as applications to single-cell analysis in FLAMES. Our compre-
hensive analysis demonstrates the efficacy of prevalent long-read iso-
form detection methods and guides ongoing research in the AS field.
Furthermore, it highlights the need for continuous refinement of iso-
form detection tools tailored to long-read RNA-seq datasets.

Results
An overview of the benchmark study
The overall workflow of the benchmark process is illustrated in Fig. 1.
To address the challenge of lacking a ground truth reference for

evaluating the performance of different methods using experimental
long-read RNA-seq data, we developed YASIM. YASIM facilitates the
generation of long-read RNA-seq reads with novel AS events. It was
specifically designed to support comprehensive benchmark by allow-
ing users to specify parameters, including read depth, transcriptome
complexity index representing number of isoforms per gene,
sequencing read completeness, sequencing error rates, and reference
annotation completeness. YASIM allows the generation of long-read
RNA-seq datasets on different Nanopore and PacBio platforms (Sup-
plementary Fig. 1).

In the data preparation stage, we utilized YASIM to generate
simulated long-read RNA-seq rawdata under various conditions, using
the Caenorhabditis elegans genome as a reference. This approach
allowed us to assess the precision and sensitivity of differentmethods.
Additionally, publicly available sequins and experimental long-read
RNA-seq datasets from various species were collected for validation.
To enable direct comparison in downstream analysis, long-read RNA-
seq data from naïve and primed hESCs were generated using the
Nanopore cDNA-seq strategy.

Both the simulated, sequins, and experimental data were then
aligned to the reference genome using minimap231 with platform-
specific parameters. Isoform detection was then performed using
different methods. In the comparative analysis, the results obtained
from simulated data were compared against the ground truth. Preci-
sion and sensitivity values were calculated using GffCompare32 to
quantitatively evaluate the accuracy of different methods. For sequins
and experimental data, the detected isoforms from eachmethod were
compared against the known reference annotation and classified into
different categories of isoforms using SQANTI333. Furthermore, a
similarity analysis was conducted by comparing the isoforms detected
by different methods using the Jaccard algorithm implemented in
BEDTools34.

Additionally, downstream differential isoform usage (DIU) analy-
sis was performed using both simulated and experimental data to
assess the accuracy and consistency of different methods. Finally, we
developed an in-house profiler to evaluate the computational perfor-
mance, including the time andmemory requirements, of eachmethod
across varying scales of datasets.

Generation of simulated data with YASIM
To comprehensively assess the software performance, we conducted a
benchmark analysis under various influencing factors. Specifically, we
generated five simulated scenarios, each representing different levels
of sequencing depth, transcriptome complexity, sequencing read
completeness, sequencing error rate, and reference annotation com-
pleteness. Our study encompassed six errormodels representing both
Nanopore and PacBio sequencing technologies: Nanopore R103,
reflecting the R10.3 sequencing chemistry released by Nanopore in
2020; Nanopore R94, representing the R9.4 Nanopore chemistry
developed in 2016; PacBio Sequel and PacBio RSII, capturing the error
profiles of the PacBio Sequel System released in 2015 and thePacBioRS
II System developed in 2013; and PacBio CCS and CLR, representing
the two distinct types of PacBio sequencing reads. To generate the
simulated data representing these technologies, we utilized the LLRG,
PBSIM2, and PBSIM3, driven by the YASIM framework27,28.

For the generation of simulated data used for isoform detection,
we generated three replicates of simulated datasets with the six error
models under the five different simulation scenarios. We varied the
sequencing depth for expressed isoforms, generating depths of 10X,
25X, 40X, 55X, and 70X. Quality control analysis of the sequencing
depth for simulated datasets indicates that the majority of the data
achieved the anticipated depth across all six error models (Supple-
mentary Fig. 2A). For isoform per gene, we generated simulated data
with different targeted transcriptome complexity indexes which
positively correlated with the average isoforms per gene
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(Supplementary Fig. 2B). We simulated reads with different levels of
read completeness, including full length, 10% or 20% truncation from
both 3’ and 5’ end, 20% or 40% truncation of 3’ end, and 20% or 40%
truncation from 5’ end. The read completeness distribution for the
simulated data under six error models displayed expected patterns
(Supplementary Fig. 2C). Furthermore, we generated simulated long-
readRNA-seq datasets characterized by diverse sequencing error rates
(0%, 5%, 10%, 15%, 20%), and varying degrees of reference annotation
completeness (20%, 40%, 60%, 80%), generating datasets that exhibit
the anticipated attributes (Supplementary Fig. 2D, E). The read length
within the simulated datasets exhibited consistency across various
simulation conditions, except for datasets featuring truncated read
completeness (Supplementary Fig. 3).

Analyzing isoform detection accuracy using simulated data
Webenchmarked a total of thirteenmodes from the above-mentioned
nine tools, including those guided by a reference annotation (IsoQuant
(guided), StringTie2 (guided), FLAIR (guided), FLAMES3, FLAMES10,
TALON, and Bambu (guided)) and those independent of guidance
(IsoQuant (unguided), StringTie2 (unguided), FLAIR (unguided),
TAMA, UNAGI, Bambu (unguided), and Freddie). Software perfor-
mance was assessed using default parameters to reflect typical use
cases for users without specialized training35. Since the bulk RNA-seq
module of FLAMES does not provide a default set of parameters, we
adopted the configuration file used for running a provided test dataset
andmodified the threshold of support reads from 10 to 3, which aligns

with the default threshold of a similar parameter in FLAIR. The results
obtained with the number of supporting reads set to 3 or 10were both
included in our results and were denoted as “FLAMES3” and
“FLAMES10”, respectively.

When testing the performance of the software with variations in
sequencing depth, IsoQuant (guided) and Bambu (guided) con-
sistently achieved the highest precision, while TAMA and Freddie
displayed the lowest precision across different depths (Fig. 2A and
Supplementary Fig. 4A). Certain methods, such as FLAIR (unguided),
TALON,UNAGI, andTAMA, showed adramatic decrease inprecision as
sequencing depth increased, particularly onNanopore and PacBioCLR
datasets (Fig. 2A and Supplementary Fig. 4A). For PacBioCCS datasets,
it appeared that the precision of the methods was not influenced by
the changes in read depths, except for TALON and TAMA, which
exhibited a decrease in precision as sequencing depth increased
(Fig. 2A and Supplementary Fig. 4A). Regarding sensitivity, all methods
demonstrated an overall improvement in sensitivity with increasing
read depth across different sequencing platforms (Fig. 2B and Sup-
plementary Fig. 4B). IsoQuant (guided) exhibited the highest sensi-
tivity on the Nanopore and PacBio CLR datasets, while TAMA showed
the highest sensitivity on PacBio CCS datasets (Fig. 2B and Supple-
mentary Fig. 4B). Freddie and FLAMES10 exhibited the lowest sensi-
tivity in all datasets (Fig. 2B and Supplementary Fig. 4B).

Next, we assessed the influence of variations in the number of
isoforms, represented by the transcriptome complexity index (Sup-
plementary Fig. 2B). Across all Nanopore and PacBio platforms, at

YASIM

 Experimental Data

Precision Sensitivity

Gene 1
Isoform 1
Isoform 2

Memory Run Time

1 Dataset Preparation

Process by 9 Isoform 
Detection Software2

3 Comparative Analysis

Sequencing
Depth

Transcriptome
Complexity Index

Annotation 
Completeness

n=8 n=10 n=2 n=5

Simulated Data
Aligned Reads Isoform Detection

Computational Performance4

Accuracy

Isoform
Classification Similarity DIU Analysis/

Simulation

Sequencing Reads
Completeness

Sequencing
Error Rate

X
X X

X X X

 Sequins Data

 n=16

Fig. 1 | Schematic workflow of the benchmark study (created with BioR-
ender.com). This figure illustrates the process undertaken for the benchmark
study. Simulated datasets were prepared using YASIM, which simulated long-read
RNA-seq datasets incorporating variations in sequencing depth, transcriptome
complexity index, read completeness, sequencing error rates, and the complete-
ness of reference annotation. Experimental datasets were sourced from publicly
available long-readRNA-seq datasets for four species:Homo sapiens,Musmusculus,
Drosophila melanogaster, and Caenorhabditis elegans. Sequins data were acquired

from publicly available long-read RNA-seq datasets that had been spiked with
sequins. Additionally, in-house long-read RNA-seq datasets were generated from
human embryonic stem cells under both Naïve and Primed conditions. The per-
formance of the software was evaluated from multiple perspectives, including the
accuracy of isoform identification, classification of identified isoforms, pairwise
similarity between results, and downstream analysis focusing on differential iso-
form usage (DIU). Computational resource consumption by each method was also
analyzed.
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different levels of transcriptome complexity, IsoQuant (guided) and
Bambu (guided) consistently achieved the highest precision. In con-
trast, TAMA and Freddie displayed the lowest precision. IsoQuant
(guided) also exhibited the highest level of sensitivity across all
sequencing platforms, except that TAMA showed the highest sensi-
tivity in PacBio RSII CCS data. FLAMES10 and Freddie demonstrated
the lowest sensitivity in all scenarios (Fig. 2C, D and Supplementary
Fig. 4C, D). It is noteworthy that, across themajority ofmethodologies,
an increase in the number of isoforms correlated with a likelihood of
generating false positives. Notable exceptions to this trend included
IsoQuant (guided), TAMA, and Bambu (unguided) for Nanopore

datasets, IsoQuant (guided) and TAMA for PacBio CCS datasets, and
IsoQuant (guided) for PacBioCLRdatasets (Fig. 2C and Supplementary
Fig. 4C). The sensitivity of all methods, except for FLAMES10 in PacBio
CCS datasets, experienced a significant decline as the transcriptome
complexity increased (Fig. 2D and Supplementary Fig. 4D).

We also evaluated software performance under varying degrees
of read completeness. In all Nanopore and PacBio datasets, most
methods exhibited inferior performance with less-complete sequen-
cing reads, although the precision of IsoQuant (guided) and Bambu
(guided) were only slightly impacted. In addition, IsoQuant (guided)
also consistently demonstrated the highest andmost stable sensitivity
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across different sequencing platforms (Fig. 2E, F and Supplementary
Fig. 4E, F). The precision of IsoQuant (unguided) remained stable with
20% truncation from either the 3’ or 5’ end but decreased dramatically
with 40% truncation at either end in both Nanopore and PacBio data-
sets. However, the precision level of IsoQuant (unguided) dropped
significantly with 20% truncation at the 3’ end compared to 20%
truncation at the 5’ end in Nanopore datasets (Fig. 2E and Supple-
mentary Fig. 4E). StringTie2 (in both modes) exhibited reduced pre-
cision and sensitivity as reads became incomplete fromboth the 3’ and
5’ ends in all datasets. Compared to fully complete reads, StringTie2
showed reduced precision and sensitivity with 20% truncation from
the either 3’ or 5’ end, while further truncation unexpectedly improved
it in certain models (Fig. 2E, F and Supplementary Fig. 4E, F).

Long-read RNA-seq simulated data with different sequencing
accuracy was also examined. For all datasets, most methods exhibited
higher precision as sequencing accuracy increased, except TAMA
(Fig. 2G and Supplementary Fig. 4G). IsoQuant (guided) and Bambu
(guided) consistently demonstrated high precision. Increasing read
accuracy had an overall positive impact on sensitivity, except for
FLAMES10, which displayed a declining trend after reaching an accu-
racy level above 0.9 for Nanopore data and 0.85 for PacBio CLR data
(Fig. 2H and Supplementary Fig. 4H). IsoQuant (guided) achieved
optimal sensitivity for sequencing accuracy values below 0.9, whereas
TAMA exhibited the highest sensitivity for sequencing accuracy values
above 0.9 in all datasets (Fig. 2H and Supplementary Fig. 4H). String-
Tie2 (guided) also showed superior sensitivity for sequencing accuracy
values less than0.9 in PacBio CLRdatasets (Fig. 2H and Supplementary
Fig. 4H). PacBio CCS data were not included in this analysis, as it can
only produce highly accurate reads (>99%).

Considering that the completeness of the reference annotationmay
also impact isoform detection performance, we investigated the preci-
sion and sensitivity of different methods at varying levels of annotation
completeness. We analyzed methods, including IsoQuant (guided),
Bambu (guided), StringTie2 (guided), FLAIR (guided), FLAMES3,
FLAMS10, andTALON, all of which allow the use of reference annotation.
Overall, we observed that all methods exhibited improved performance
with the increased annotation completeness (Fig. 2I, J and Supplemen-
tary Fig. 4I, J). IsoQuant (guided) consistently demonstrated the highest
precision, while TALON exhibited the lowest precision. The precision
detected by FLAIR (guided) was influenced more by the quality of the
input reference across all sequencing platforms (Fig. 2I and Supple-
mentary Fig. 4I). Regarding sensitivity, IsoQuant (guided) achieved the
highest sensitivity when completeness exceeded 40%, whereas String-
Tie2 (guided) showed the greatest sensitivity at lower completeness
levels in Nanopore datasets (Fig. 2J and Supplementary Fig. 4J). For
PacBio datasets, IsoQuant (guided), StringTie2 (guided), Bambu (gui-
ded), and TALON displayed comparable sensitivity with high annotation
completeness, while StringTie2 (guided) generally outperformed others
with lower annotation completeness (Fig. 2J and Supplementary Fig. 4J).
FLAMES10 exhibited the lowest sensitivity across different sequencing
platforms (Fig. 2J and Supplementary Fig. 4J).

Analyzing isoform detection accuracy using sequins datasets
Toconduct a comprehensive evaluation of the accuracy and efficacy of
diverse computational approaches, we collated sixteen previously
published sequins-based long-read RNA-seq datasets utilizing ONT
technology (Supplementary Data 1)23,36,37. Read length, and GC content
analysis demonstrated consistency across the samples, while samples
generated by Zhu et al. displayed slightly lower read quality (Supple-
mentary Fig. 5A–C). The majority of the datasets contained sequins
that were spiked into human samples, with a subset of four datasets
collected by Dong et al., consisting solely of sequins, resulting in the
expected mapping rate and event types (Supplementary
Fig. 5D, E)23,36,37. The sequins datasets exhibited an average coverage
ranging from 300X to 13,000X (Supplementary Fig. 5F and Supple-
mentary Data 1), with lower read completeness representing samples
with lower read quality (Supplementary Fig. 6).

Using the sixteen sequins datasets as ground truth, we assessed
the precision and sensitivity of twelve methods. Freddie was not
included due to its substantial computational demands, possibly
stemming from the extreme depths of the sequins datasets. Guided
methods, such as IsoQuant (guided), StringTie2 (guided), Bambu
(guided), FLAIR (guided), and FLAMES3 exhibited relatively high sen-
sitivity. Unguided methods like UNAGI, IsoQuant (unguided), String-
Tie2 (unguided), FLAIR (unguided), and Bambu (unguided) generally
showed lower sensitivity, with TAMA exhibiting the lowest sensitivity.
TALON, although a guided method, displayed comparatively lower
sensitivity than the others (Fig. 3A). Regarding precision, methods like
Bambu (guided), IsoQuant (guided), StringTie2 (guided), and FLAME3
consistently showed high precision. IsoQuant (unguided), Bambu
(unguided), FLAIR (guided), and StringTie2 (unguided) presented
reasonable precision, whereas UNAGI, TALON, TAMA, and FLAIR
(unguided) displayed lower precision, indicative of a significant num-
ber of false positives (Fig. 3B).

Further analysis was conducted on the types of isoforms detected
by differentmethodswithin the sequins datasets. UNAGI was excluded
from this analysis because its output lacks the strand information
required to classify isoform types. The detected isoforms were classi-
fied into five categories: full splice match (FSM), incomplete splice
match (ISM), novel in catalog (NIC), novel not in catalog (NNC), and
intergenic (Fig. 3C and Supplementary Data 2). When comparing the
size of the sectors for each method across datasets, FLAIR (unguided)
detected several thousand isoforms, while other methods typically
identified tens or hundreds, with TAMA detecting the fewest number
of isoforms (Fig. 3C and Supplementary Data 2). Reviewing the com-
position of isoform types detected by each method, guided methods
generally identified a higher number of FSM isoforms compared to
unguided methods, with IsoQuant (guided) and Bambu (guided)
detecting the largest proportion of FSM, followed by StringTie2 (gui-
ded) and FLAMES3 (Fig. 3C). FLAIR (in both modes), TALON, and
StringTie2 (unguided) reported a significant amount of NIC or NNC,
indicating a potentially high level of false positives. Bambu (unguided)
and IsoQuant (unguided) detected mostly FSMs or ISMs, suggesting

Fig. 2 | Accuracy of software performance on simulated datasets of Nanopore
R103, PacBio SEQUEL CLR, and CCS. Precision (A) and sensitivity (B) of the
testedmethods on simulated data fromNanopore R103, PacBio SEQUEL CLR, and
CCS across varying read depths (10X, 25X, 40X, 55X, 70X, with three replicates for
each sequencing platform, totaling n = 45). Precision (C) and sensitivity (D) of the
performance of tested methods obtained on simulated data of Nanopore R103,
PacBio SEQUEL CLR, and CCS across different transcriptome complexity indices
(1, 3, 5, 7, 9; values in parentheses denote the actualmean number of isoforms per
gene simulated), with three replicates per sequencing platform (n = 45 in total).
Precision (E) and sensitivity (F) of the performance of tested methods obtained
on simulated data of Nanopore R103, PacBio SEQUEL CLR, and CCS with different
read completeness (0.0_0.0: 100% complete, 0.1_0.1: 10% truncated from both
ends; 0.2_0.2: 20% truncated from both ends; 0.2_0.0: 20% truncated from 5’ end;

0.4_0.0: 40% truncated from 5’ end; 0.0_0.2: 20% truncated from 3’ end; 0.0_0.4:
40% truncated from 3’ end, three replicates for each sequencing platform, n = 63
in total). Precision (G) and sensitivity (H) of the performance of tested methods
on simulated data of Nanopore R103, PacBio SEQUEL CLR, and CCS with different
read accuracy (0.8, 0.85, 0.9, 0.95, 1, three replicates for each sequencing plat-
form, n = 30 in total). Precision (I) and sensitivity (J) of the performance of tested
methods on simulated data of Nanopore R103, PacBio SEQUEL CLR, and CCS with
different annotation completeness (20%, 40%, 60%, 80%, 100%, three replicates
for each sequencing platform, n = 45 in total). N and P represent datasets gen-
erated from the Nanopore and PacBio platforms, respectively. All reported values
are expressed as means, with Standard Deviation (SD) detailed in the Source Data
file. Source data underlying (A–J) are provided as a Source Data file.
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that these two methods may be quite conservative in calling novel
isoforms. In conclusion, the performance on the sequins dataset
indicates that guided methods generally outperform others, with Iso-
Quant (guided), Bambu (guided), and StringTie2 (guided) emerging as
the top performers. These results obtained from sequins datasets
generally agreed with results based on simulated data.

Comparative analyses with experimental datasets
While sequins datasets may partially serve as a proxy for ground truth
to a certain extent, theymay not fully capture the complexity inherent
in experimental datasets. To evaluate the software performance on
experimental data, we collected a total of twenty-five experimental
long-read RNA-seq datasets generated using Nanopore (GridION,
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MinION, and PromethION) and PacBio (CLR reads, sequenced on RS,
Sequel, and Sequel II) platforms. These datasets were obtained from
previous publications as well as datasets generated in our laboratory.
They encompassed four different species, namely Homo sapiens, Mus
musculus, Drosophila melanogaster, and Caenorhabditis elegans38–48

(see “Methods” and Supplementary Data 1).
The quality control analysis of the average Q-Score indicated a

diverse range of sequencing quality across the experimental data
(Supplementary Fig. 7A). The distribution of read lengths for experi-
mental data exhibited a wide range, spanning from several hundred
base pairs to several kilobases (Supplementary Fig. 7B). Additionally, it
is noted that the PacBio librarieswere size-selected to enrich for longer
cDNAs. This selection process results in a higher proportion of longer
reads, which likely leads to a more even read length distribution
(Supplementary Fig. 7B). Additionally, the GC content showed a gen-
erally consistent pattern across different samples (Supplementary
Fig. 7C). Mapping status for the experimental data revealed an overall
mapping rate of over 75%, although the proportion of primary and
secondary alignment events varied among different samples (Supple-
mentary Fig. 8A). Samples with lower read quality in general displayed
a lower proportion of base-level match with the reference genome
(Supplementary Fig. 8B). Depth analysis demonstrated thatmost long-
read RNA-seq experimental data had depths ranging from 10X to 70X,
consistent with the range generated by our simulated data (Supple-
mentaryFig. 8C). Read completeness analysis revealed certaindatasets
(D2, M5, M6, M7, M8, H3, and H4) exhibited poor read completeness
for transcripts longer than 5 kb (Supplementary Fig. 9).

To evaluate the software performance on experimental data, we
included IsoQuant (both modes), StringTie2 (both modes), Bambu
(both modes), FLAIR (both modes), Freddie, FLAMES, and TALON in
these analyses. UNAGI and TAMAwere not included due to their high
computational resource requirements. As the ground truth for the
experimental data are not known, we compared the results of dif-
ferent methods by aligning them side-by-side, employing the most
widely used annotation as a reference for each species (Fig. 4A, B and
Supplementary Data 3). Mono-exonic transcripts were excluded from
classification since they lack splice junctions and may introduce bias
into the results. Most methods detected a major proportion of FSM
and ISM, except for FLAIR (unguided). Consistent with the sequins
datasets, Bambu (guided) and IsoQuant (guided) reported the high-
est proportion of FSMs, while FLAIR (unguided) detected the largest
number of isoforms classified as NNC, potentially due to a high
number of false positives called (Fig. 4A, B). TALON and FLAIR
(guided) detected a large proportion of NNC and NIC in sequins
datasets, respectively. The performance of TALON on experimental
data exhibited comparable levels of FSM and ISM detection as
FLAMES3 and IsoQuant (unguided), whereas FLAIR (guided) showed
similar proportions of FSM and ISM to StringTie2 (guided)
(Fig. 4A, B). This discrepancy could potentially be explained by the
distinct magnitudes of sequencing depths for sequins and experi-
mental data, as our simulated data suggested TALON and FLAIR
(guided) may detect more false positives with increasing sequencing
depths (Fig. 2A and Supplementary Fig. 4A). Bambu (unguided) tends
to detect a large proportion of ISM in both sequins and experimental
datasets (Figs. 4A and 3C). NNC and NIC detected by Freddie remain
questionable, given its low precision on simulated data. We also

performed a comparative analysis of the results obtained from dif-
ferent methods and quantitatively assessed their similarities using
Jaccard statistics, which represent the pairwise overlapping of
detected isoforms at the base-pair resolution. StringTie2 (in both
modes) and FLAIR (guided) exhibited a notable level of concordance,
which may be partly attributed to the higher number of NIC cate-
gorizations (Fig. 4 and Supplementary Fig. 10). However, whether
these NICs are true positives remains in doubt. After further
reviewing the data using Integrative Genomics Viewer (IGV)49, it
appears Bambu (guided) and IsoQuant (guided) yield different sets
of true positive isoforms. This discrepancy likely explains their fewer
overlapping isoforms despite their commendable performance
(Supplementary Fig. 10).

In our initial analysis when including the identification of mono-
exonic transcripts, some methods exhibited a high proportion of NIC
and intergenic isoforms, especially in datasets frommouse and human
species. We hypothesized this might be attributed to the high pro-
portion of transposable elements (TE) in themammalian genome50. To
validate this hypothesis, we analyzed the Nanopore long-read RNA-seq
datasets from human naïve and primed embryonic stem cells, which
were generated as part of this study. Previous studies have indicated
that the dynamic expression of TEs could serve as a hallmark for
human naïve and primed hESC51,52, and our earlier research has high-
lighted their potential functional roles in hESC cell fate
determination30,53. Therefore, we utilized this model to analyze the
isoform types for mono-exonic transcript identification. Most ungui-
ded methods, as well as FLAIR (guided), detected a significant pro-
portion of intergenic isoforms (Supplementary Fig. 11A). Compared to
randomly shuffled genomic regions, the mono-exonic isoforms
detected by FLAIR (in both modes), Bambu (unguided), and Freddie
showed a significant enrichment for TE regions (54% to 60% vs. 47%)
(Supplementary Fig. 11B). FLAIR (guided) and Freddie seem to detect
slightly more expressed TEs. However, it should be noted that the
identification of specific TE copies may not be accurate considering
their high sequence similarity. Visualization of representative inter-
genic transcripts specific to naïve hESCs demonstrated a high degree
of overlap with previously reported functional TE loci such as LTR5Hs
and HERVH/LTR7Y, suggesting the capability of these methods to
detect TEs30,51,52 (Supplementary Fig. 11C, D).

Differentially isoform usage analyses with both simulated and
experimental datasets
Differentially isoform usage (DIU) analysis between groups facilitates
the identification of key condition-related isoforms that may possess
potential biological significance. To further investigate the impact of
different isoform detection tools on downstream analysis, we per-
formed comprehensive DIU analyses on both simulated and experi-
mental long-read RNA-seq datasets from naïve and primed hESCs
(Supplementary Fig. 12). As previously reported, there was no clear
front-runner for downstream DIU analysis24. Therefore, we adopted a
consistent downstream workflow using IsoformSwitchAnalyzeR for
DIU calling, with the isoforms detected by different methods as
input54,55. DIU analysis on the simulated naïve and primed hESCs
datasets revealed that those methods that performed best in the pre-
vious isoformconstruction analysis, namely IsoQuant (guided), Bambu
(guided), and StringTie2 (guided) also demonstrated the highest

Fig. 3 | Software performance on sequins datasets. Precision (A) and sensitivity
(B) of the performance of methods tested on previously published long-read RNA-
seq datasets spiked-inwith SequinsDNA (n = 16). Individual samples are denotedby
gray dots, with gray lines connectingpoints corresponding to the same sample. The
median is indicated by the central line, the boxes delineate the 25th (bottom) and
75th (top) percentiles, and the whiskers extend to the furthest points within 1.5
times the interquartile range from the box. C Pie charts display five different iso-
form types alongside the total counts of isoform events detected by the tested

methods across 16 previously published long-read RNA-seq datasets spiked-in with
Sequins DNA. FSM, ISM, NIC, andNNCcorrespond to Full SpliceMatch, Incomplete
Splice Match, Novel In Catalog, and Novel Not In Catalog, respectively. The size of
each circle is proportional to the logarithmof the count of isoformevents detected
by thatmethoddividedby the logarithmof the sample-levelmaximal isoformevent
count for each sample. Hierarchical clusteringwas applied to the results from these
methods. Source data underlying (A, B) are provided as a Source Data file.
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precision and sensitivity (Fig. 5A). Using previously published NGS
RNA-seq datasets as a control, we performed DIU analysis on the naïve
and primed hESCs applying a similar approach as in the DIU simula-
tion. Isoforms called by different methods were utilized for LRS data,
while the human reference genome was used for the NGS data. The
results obtained from the experimental long-read RNA-seq datasets

exhibited variations across all methods, including the number of dif-
ferentially used isoforms, the distribution of AS event type, and the
consequences of isoform switching (Fig. 5B, C). Moreover, the DIU
results from guided methods exhibited varying degrees of overlap
with each other, while unguided methods, particularly FLAIR (ungui-
ded), identified a large number of results that showed no overlap with

Isoform type
FSM

ISM

NIC

NNC

Intergenic

A

B

100%

60%

20%

Ratio of events

Iso
Quan

t

(guided
)

Iso
Quan

t

(unguided
)

FLAIR

(guided
)

FLAIR

(unguided
)

Bam
bu

(unguided
)

FLAMES3

Fred
die

TALON
Strin

gTie2

(guided
)

Strin
gTie2

(unguided
)

Bam
bu

(guided
)

C1

C2

C3

C4

C5

D1

M1

M2

M4

M3

M9

M10

H3

H4

H1

H2

M7

M8

M5

M6

D2

Naïve hESC
rep1

Naïve hESC
rep2

Primed hESC
rep1

Primed hESC
rep2

Article https://doi.org/10.1038/s41467-024-48117-3

Nature Communications |         (2024) 15:3972 9



any other method, possibly due to the higher number of false positive
isoforms they called (Fig. 5D, E). The DIU results of NGS data also
showed the highest number of unique DIUs compared to results
obtained from the LRS datasets (Fig. 5D, E).

We further performed experimental validation on RPL39L, which
is one of the DIUs identified by both Bambu (guided) and StringTie2
(guided) in naïve and primed hESCs (Fig. 5F, G). The visualization of
long-read RNA-seq tracks for RPL39L in naïve and primed hESCs sug-
gested an up-regulation of the RPL39L-Long (RPL39L-L) isoform and
the presence of a novel isoform structure of RPL39L, RPL39L-Unknown
(RPL39L-UN), in primed hESCs compared to naïve hESCs, while the
RPL39L-Short (RPL39L-S) isoformmay express at a similar level in both
conditions (Fig. 5F, G). We thus designed isoform-specific RT-qPCR
primers and validated the existence of RPL39L-UN, as well as the dif-
ferential usage of RPL39L-L isoform in naïve and primed hESCs (Fig. 5H
and Supplementary Data 4).

Computational performance analyses
Wedeveloped aprofiler to evaluate the computational efficiencyof the
benchmarked methods, focusing on two key metrics: total run time
and average memory consumption. Additionally, considering that
transcriptome sizes can vary significantly among species, we analyzed
the scalability of the tools using simulated datasets with varying sizes.
Based on the results, StringTie2 (both modes) demonstrated the
fastest speed, highest memory efficiency, and best scalability among
the tested methods. FLAMES, FLAIR, Bambu, and IsoQuant (guided)
also exhibited excellent computational performances (Fig. 6A, B).
However, it is worth noting that some tools displayed high time and
memory requirements, likely attributed to suboptimal algorithm
design and data processing approaches, especially in handling SAM/
BAM files (Fig. 6A, B).

Discussion
In this study, we conducted a comprehensive analysis of nine com-
putational tools implemented with thirteen different methods for
isoform identification in long-read RNA-seq data. We evaluated their
performances using a diverse range of simulated and experimental
datasets. We also noticed the emergence of several new isoform dis-
covery and quantification tools, such as ESPRESSO, isONform, TAGET,
and IsoTools56–59. We decided to exclude ESPRESSO from our analysis
due to its extremely high memory consumption. Additionally, it is
important to note that isONform is specifically tailored for ONT cDNA
sequencing data, while TAGET and IsoTools are designed for the ana-
lysis of full-length transcripts fromPacBio Iso-Seqdata. Sinceour study
primarily focuses on methods compatible with both PacBio and
Nanopore data, we did not include these specialized tools.

For the simulation analyses, we selected sequencing depth as a
critical factor because this is commonly considered by most tools,
especially when calculating which isoforms are likely to be false posi-
tives and which should be filtered out. Previous studies have indicated
a positive correlation between the read coverage and the number of
detected AS events, suggesting that reaching certain depths is

necessary to detectmost isoforms, particularly for those isoformswith
modest expression level60. We also considered the number of isoforms
per gene as a potential influencing factor to test the robustness of
software under different data complexities. Genes with a higher
number of splice variants pose challenges for accurate reconstruction,
as the identification of branch points and systematic analysis of AS
events become increasingly difficult as the number of isoforms per
gene increases61. Additionally, the quality of reference annotationused
by certain methods can significantly impact their performance. Inac-
curate gene annotations can lead to erroneous isoform identification,
whereas more complete annotations are likely to detect a larger pro-
portion of expressed isoforms62. To account for the influence of
incomplete reads on isoform identification, we simulated different
levels of sequencing read completeness in our analysis. Incomplete
reads introduce ambiguity in isoform assignment, posing challenges
for accurate identification and analysis63. We also included sequencing
error rate as a factor, considering that long reads, except for CCS
reads, tend to havehigher error rates (1–10%) compared to short reads.
This high error rate presents challenges for alignment and the accurate
detection of exon structures in isoforms13.

Based on the results, we observed that increasing the sequencing
depths did not evidently improve the precision of the methods. This
finding can potentially be attributed to the unique characteristics of
LRS data, such as its long read length, which allows a full span across
isoforms and relatively even coverage of inter-exonic or intra-exonic
regions12. It should also be noted that some tools exhibited an increase
in the detection of false positive isoforms as the read depth increased.
This phenomenon can be attributed to the relatively high sequencing
error rate of LRS. Specifically, tools that were notably affected by
changes in coverage (such as TALON, and FLAIR (unguided)) do not
incorporate an error correction step before isoform detections. Con-
versely, all methods displayed less sensitivity to changes in read depth
when processing highly accurate CCS reads. Furthermore, most
methods demonstrated higher precision in CCS datasets compared to
other error-prone reads, highlighting the advantage of the high accu-
racy provided by CCS reads. On the other hand, increasing the
sequencing depth positively impacted the sensitivity of the software,
enabling the identification of transcripts with relatively low expression
levels.

We discovered that as the number of isoforms per gene increased
the number of true positives detected by each method decreased.
Whilemostmethods demonstrated improved performancewith fewer
erroneous reads, the sensitivity of FLAMES exhibited a declining trend
as the sequencing accuracy increased under some circumstances. This
can be attributed to one of its key parameters “min_sup_cnt”, which
determines the minimum number of aligned reads required for a
transcript to be considered. Inour analysis,we varied this parameter as
1 (FLAMES1), 3 (FLAMES3), and 10 (FLAMES10) andevaluated its impact
on different levels of read accuracy. Increasing this parameter gen-
erally enhanced the precision under different degrees of read accuracy
(Supplementary Fig. 13A). When assessing sensitivity for FLAMES1,
FLAMES3, and FLAMES10, we observed that the decreasing trend in

Fig. 4 | Classification of isoforms detected by different methods from real
datasets. Five different isoform types and the total counts of isoform events
detected by different methods across twenty-five experimental datasets collected
using the Nanopore (A) or PacBio platform (B). FSM, ISM, NIC, and NNC represent
full splice match, incomplete splice match, novel in catalog, and novel not in cat-
alog, respectively. The size of each circle is proportional to the largest count of
isoform events detected by the eleven different methods for each dataset. The
results for different methods were hierarchically clustered. The publicly available
experimental datasets originate from the following sources: C1: L1 larval stage of
Caenorhabditis elegans, C2: mix stage of Caenorhabditis elegans, C3: young adult
stage of Caenorhabditis elegans; C4: Wildtype Caenorhabditis elegans total RNA

replicate 1, C5: Wildtype Caenorhabditis elegans total RNA replicate 2, D1: Droso-
philamelanogaster, D2:Drosophilamelanogaster testis,M1:Musmusculus activated
CD8 T cell, M2: Mus musculus naïve CD8 T cell, M3:Mus musculus retinal cells
(control), M4:Musmusculus retinal cells (glaucomatous), M5:Musmusculus CD4SP
cells, M6: Mus musculus CD8SP cells, M7: Mus musculus neural stem cells (E15.5),
M8:Mus musculus neural stem cells (P1.5), M9: Mus musculus cerebral cells, M10:
Mus musculus hippocampus cells. H1: Homo sapiens Beta cells, H2: Homo sapiens
Beta cells treated with cytokines, H3: Homo sapiens Hela cells, H4: Homo sapiens
iPSC cells. The long-read RNA-seq dataset on Naïve and Primed hESCs was gener-
ated in this study.
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sensitivity was less pronounced with a smaller “min_sup_cnt”. Notably,
when “min_sup_cnt” was set as 1, the sensitivity value increased as the
read accuracy improved. This suggests that error-prone reads, nor-
mally excluded from analysis, may be ambiguously assigned to tran-
scripts in FLAMES, leading to the identification of potentially false

positive isoforms (Supplementary Fig. 13B). Therefore, it is crucial for
users to carefully select the parameter to strike a balance between
precision and sensitivity.

The significant negative impact of read completeness on the
performance of most tools underscores the importance of generating
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Fig. 5 | DIU analyses with simulated and real data. A Bar plot showing the DIU
calling accuracy using simulated data with different methods. B Bar plot showing
alternative isoform types for up-regulated and down-regulated DIU in Primed hESC
compared with Naïve hESC detected using different methods. The analysis includes
long-read RNA-seq datasets from Naïve and Primed hESC generated in this study, as
well as NGS RNA-seq datasets from Naïve and Primed hESC. A3: alternative 3’ splice
site, A5: alternative 5’ splice site, ATSS: alternative transcript start site, ATTS: alter-
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reading frame. UpSet plot showing the number of overlapped DIU genes up-
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identified by different methods and from the NGS data. F IGV screenshot displaying

long-read RNA-seq coverages and splicing junctions of RPL39L gene isoforms in
Naïve and Primed hESC. The gene model for different transcript isoforms of RPL39L
is shown under the tracks. RPL39L-L and RPL39L-S represent isoforms on the gene
reference, and RPL39L-UN represents the novel isoform detected in this study. Red
arrows indicate primers used in RT-qPCR validation experiments. G Bar plot repre-
senting the LRS read proportions of the three isoforms of RPL39L in Naïve and
Primed hESC. H Bar plot representing the RT-qPCR results of the three different
isoforms of RPL39L. RT-qPCR experiments were conducted to evaluate the three
different isoform levels of RPL39L in primed and naïve hESC. Data were gathered
fromthree independent experiments and resultswere presented asmean ± standard
deviation of fold change, with RPL39L-S in Primed hESC serving as the control (the
raw data presented in Supplementary Data 4). Each experiment’s data was repre-
sented by dots. p values were determined using a two-sided two-sample T-test
(*p <0.05). Source data underlying (A–E, H) are provided as a Source Data file.
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more complete reads for accurate isoform identification. The distinct
trends observed in both the precision and sensitivity of StringTie2
under single-end truncated reads may be attributed to its usage of
splice graphs for isoform detection. To further investigate this, we
tested the influence of the “-R” parameter in StringTie2, which enables
read cleaning and collapsing without constructing splice graphs. The

results revealed that StringTie2 (unguided with “-R”) exhibited poor
performance on truncated reads, similar to other methods (Supple-
mentary Fig. 14A, B). Interestingly, the accuracy of StringTie2 (guided
with “-R”) during single-end truncation remained relatively unchanged,
which is likely due to how StringTie2 refers to the annotated tran-
scripts during its isoform reconstruction process (Supplementary

08 001

A

C
StringTie2 (guided)

StringTie2 (unguided)

FLAIR (guided)
FLAIR (unguided)

FLAMES

FreddieTAMAUNAGI

TALON

Bambu (guided)
Bambu (unguided)

Precision

Sensitivity

Adaptability

Speed

Memory Efficiency

Usability

Scalability

Functional Variablity

IsoQuant (guided)
IsoQuant (unguided)

Precision

Sensitivity

Adaptability

Speed

Memory Efficiency

Usability

Scalability

Functional Variablity

Precision

Sensitivity

Adaptability

Speed

Memory Efficiency

Usability

Scalability

Functional Variablity

Precision

Sensitivity

Adaptability

Speed

Memory Efficiency

Usability

Scalability

Functional Variablity

Precision

Sensitivity

Adaptability

Speed

Memory Efficiency

Usability

Scalability

Functional Variablity

Precision

Sensitivity

Adaptability

Speed

Memory Efficiency

Usability

Scalability

Functional Variablity

Precision

Sensitivity

Adaptability

Speed

Memory Efficiency

Usability

Scalability

Functional Variablity

Precision

Sensitivity

Adaptability

Speed

Memory Efficiency

Usability

Scalability

Functional Variablity

Precision

Sensitivity

Adaptability

Speed

Memory Efficiency

Usability

Scalability

Functional Variablity

Data size

M
ea

n 
re

si
de

nt
 m

em
or

y 
(G

iB
) 

To
ta

l r
un

 ti
m

e 
(h

ou
rs

) 

Data size

B

0

1

2

20 40 60 80 100

10

15

20

25

0

5

10

15

20

25

20 40 60

30

50

70

90

TAMA

UNAGI

TALON
IsoQuant (unguided)
FLAIR (unguided)
Bambu (unguided)
IsoQuant (guided)
Bambu (guided)
FLAIR (guided)
Freddie
FLAMES
StringTie2 (unguided)
StringTie2 (guided)

TAMA

UNAGI

TALON
IsoQuant (unguided)

FLAIR (unguided)

Bambu (unguided)
IsoQuant (guided)

Bambu (guided)

FLAIR (guided)

Freddie

FLAMES
StringTie2 (unguided)
StringTie2 (guided)

Fig. 6 | Computational performance analyses andperformance summary of the
benchmarked methods. Computational performance for mean resident memory
consumed (A) and total time spent (B) by each method when processing different
scales of data. The data size represents various simulated sequencing depths (20X,

40X, 60X, 80X, 100X) of the datasets used for testing. C Radar charts summarizing
our evaluations of different methods across eight aspects, including precision,
sensitivity, adaptability, speed, memory efficiency, usability, scalability, and func-
tional variability. Source data underlying (A, B) are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-48117-3

Nature Communications |         (2024) 15:3972 12



Fig. 14A, B). It is hypothesized that StringTie2 considers a transcript
present in the reference as a true positive if the reads overlap with it to
a certain percentage and if the transcription start site (TSS) or tran-
scription termination site (TTS) are matched. For StringTie2 (in both
modes) and IsoQuant (guided), our analysis revealed comparable
performance in handling either 5’ or 3’ single-end truncations, as
demonstrated using datasets produced by PBSIM3 (PacBio). However,
those methods exhibited inconsistent trends for data generated by
PBSIM2 (Nanopore). After investigating simulated reads tracks from
PBSIM2 and PBSIM3, we hypothesized this discrepancy may be
attributed to 5’ and 3’ degradation in PBSIM2-generated reads, result-
ing in unmatched TSS and TTS sites, while PBSIM3 did not exhibit this
degradation (Supplementary Fig. 14C, D). This difference in degrada-
tion could potentially influence the process of splice graph/intron
graph traversal and subsequent isoform reconstruction.

It is worth noting that all the methods that rely on a known
reference annotation demonstrated increased detection for true
positives when provided with a higher-quality reference annotation.
Specifically, methods like FLAIR and FLAMES3, which utilize the gui-
dance annotation for error correction, appeared to be more suscep-
tible to changes in the quality of reference annotation. This may be
attributed to the fact that more true positive reads could be erro-
neously “corrected” or filtered out when the provided guidance
annotation is incomplete.

Interestingly, it was observed that certain isoformdetection tools,
such as FLAIR, Bambu, and Freddie can also identify potential TE
fragments. The results revealed differences between the TE sequences
identified from LRS data and the reference TE annotation, particularly
at TE boundaries. This suggests the potential improvement of using
long-read RNA-seq data for more precise identification of TE
structures.

While we benchmarked the performance of various upstream
isoform detection tools on downstream DIU calling, Dong et al. tested
different tools specifically designed for downstream DIU calling and
noted limited consistency between methods24. The inconsistent DIU
results we observed also emphasizes the significant impact of isoform
detection on downstreamanalyses. It is worth noting that a substantial
proportion of the DIUs identified from the paired NGS data were not
detected by any other LRS methods. This could be attributed to the
fact that these DIUs were called based on the complete human refer-
ence genome annotation for the analysis of NGS datasets, which con-
tains numerous inactive transcripts that may increase ambiguity in
read assignment during isoform quantification. Moreover, the nature
of NGS data itself, characterized by short read lengths, may increase
the likelihoodof false positive results. Interestingly, themouse paralog
of the validated DIU RPL39L human gene has been proposed to be
essential in sperm formation64, raising the possibility of further
investigating whether these DIU isoforms in naïve and primed hESC
have functional implications in the transition between human naïve
and primed pluripotency.

In a recent study, Dong et al. applied sequins long-read RNA-seq
datasets to evaluate the performance of six methods and identified
Bambu and StringTie2 as the best isoform detection tools24. In our
analysis, we included additional tools such as IsoQuant, Freddie,
UNAGI, and TAMA, assessed on simulated, sequins, and experimental
data. Overall, it can be concluded that among all methods requiring
guidance, IsoQuant and Bambu achieved top performance in preci-
sion, and IsoQuant and StringTie2 exhibited the best sensitivity. In
addition, StringTie2 demonstrated the best performance in terms of
usability and computational efficiency (Fig. 6C). FLAMES and FLAIR
showed slightly lower accuracy but showcased better functional ver-
satility, such as supporting LRS reads mapping, quantification, or
single-cell long-read RNA-seq analysis (Fig. 6C). Among unguided
methods, IsoQuant and StringTie2 generally outperformed the others.
It is worth noting that StringTie2 employs a splice graph approach for

isoform identification, which represents AS events in a gene as a
directed acyclic graph. This approach ensures similar coverage of each
exon within an isoform during transcript assembly, thereby avoiding
parsimonious yet incorrect results. The splice graph also enables the
investigation of AS patterns even under incomplete reference anno-
tation, contributing to the superior performance of StringTie2 in
sensitivity and under the unguidedmode65.Moreover, the useof splice
graphs is computationally efficient by compressing transcriptomedata
into graph structures, which further contributes to the high compu-
tational performance of StringTie2. IsoQuant utilizes an intron graph
construction influenced by and adapted from the splice graph. This
approach offers several advantages, including simplified graph tra-
versal, easier detection of incorrectly spliced sites, and graph simpli-
fication. IsoQuant also incorporates a series of optimizations in its
algorithm design, contributing to its satisfying performance. These
optimizations include read assignments to known isoforms through
intron-chainmatching, consideration of potential sequencing errors in
exonic overlap detections, spliced alignment correction, and refine-
ment of terminal positions. Bambu stands out with its unique utiliza-
tion of machine learning models for transcript discovery, enabling
context-specific isoform quantification. It also introduces a precision-
focused threshold called the novel discovery rate (NDR), which is
calibrated to provide a reproducible maximum false discovery rate
across various analyses, thereby avoiding arbitrary per-sample
thresholds commonly employed by other isoform detection
methods20. Our analyses demonstrate that these algorithm designs
indeed have the potential to improve the precision of the isoform
construction without significantly sacrificing sensitivity for long-read
RNA-seq data.

It is important to acknowledge that the benchmark results
obtained from simulated data may not fully capture the complexity of
experimental data, theremay also be additional factors influencing the
performance of isoform detection tools that were not analyzed in this
study, such as GC content66. Another potential limitation of our study
is the use of a uniformmodel by YASIM to simulate read completeness.
This approach simplifies the simulation compared to the non-uniform
incompleteness observed in experimental data, where missing por-
tions are likely to be pronounced in longer transcripts. Future itera-
tions of YASIM will explore the integration of a more sophisticated
distribution model to better simulate the variation in incomplete
reads. Additionally, while default parameters were employed for all
evaluated methods in this study, it is conceivable that certain tools
may achieve improved results when fine-tunedwith settings optimized
for particular datasets. Nevertheless, this benchmark study still offers
valuable insights into the comparative effectiveness ofmost published
methods for identifying isoform structures from long-read sequencing
data. The findings can serve as a guide for the future development of
isoform detection algorithms and investigations into alternative spli-
cing events using LRS data.

Methods
Data simulation
We utilized YASIM (version 3.2.0) to simulate long-read RNA-seq reads
containing AS events, which served as the simulated data in this
benchmark study. YASIM enables the generation of realistic long-read
RNA-seq with a representative expression profile and AS events, based
on distribution models derived from empirical data. YASIM takes
reference genomeGTF (Gene Transfer Format) and reference genome
FASTA as input and generates corresponding realistic FASTQ
sequences as output, along with the ground truth annotation GTF and
ground truth expression matrix. The overall workflow of YASIM is as
follows: the simulator first selects a specific set of genes as expressed
genes and generates new AS events. The number of AS events of each
type is derived from empirical data, and the resulting information is
written into a GTF file referred to as ground truth GTF (gtGTF). The

Article https://doi.org/10.1038/s41467-024-48117-3

Nature Communications |         (2024) 15:3972 13



gtGTF is then transcribed to ground truth cDNA according to the
reference FASTA. Additionally, an expression profile consisting of
transcripts and their corresponding expression levels is generated
above the gtGTF. long-read RNA-seq reads are generated by LLRGs
according to the error profile that resembles the error profile of a
specific sequencer. In this study, we employed PBSIM3 (at commit
b6a68f2d, for PacBio Sequel CCS, Sequel CLR, RSII CCS, RSII CLR data
simulation) and PBSIM2 (at commit eeb5a194, for NanoporeR94, R103
data simulation) as LLRGs for simulating PacBio and Nanopore
data27,28. The Caenorhabditis elegans genome was chosen for simula-
tion, and the ce11 UCSC genome version was used as the reference
genome.

Isoform-, Gene- and Sample-Level Depth of simulated data is
calculated and defined as follows. To calculate depths from simu-
lated and experimental data, the reads are initially unspliced and
aligned to the reference transcriptome of corresponding species
using BWA (NGS data, defaults) or minimap2 (LRS data, defaults).
The depth of each isoform is calculated by dividing the number of
primarily aligned bases by the transcribed length of the corre-
sponding isoform. To simplify the calculation process, the depth of
each gene is determined by taking the arithmetic mean of the depths
of the expressed isoforms within the corresponding gene. Similarly,
the depth of each sample is calculated by computing the arithmetic
mean of the depths of the expressed isoforms within each sample.
The depth of simulated data is calculated using a similar approach,
with the exception that, in the simulation, all input isoforms or genes
are expressed.

To control the simulated long-read RNA-seq datasets within the
dynamic range of gene and isoformexpression similar to experimental
data, we applied the Gaussian Mixture Model (GMM) and Zipf’s dis-
tribution. This allowed us to control the overall RNA abundance,
varying it by 105- or 106-fold. In the first step, we generated the gene-
level depth of each expressed gene. Given targeted mean sequencing
depth, this step randomly drew values from a GMM estimated from
several experimental Caenorhabditis elegans long-read RNA-seq and
NGS RNA-seq datasets within a specific range (Supplementary Data 5).
By appropriately setting the higher limit, we could generate a dis-
tributionwith a gene expression variation up to 1000-fold. The second
step involved the generation of isoform-level depth within each gene.
For this, a Zipf’s distribution was assigned as an isoform-level expres-
sion to each isoform of a gene. Themean of the distribution was equal
to the pre-assigned gene-level depth, and the inequalitywas controlled
by the parameter “--alpha”. We set “--alpha” to 4, which allowed for a
1000-fold variation among most multi-isoform genes without sig-
nificantly affecting the means. By applying a similar filtering strategy,
we ensured a 1000-fold variation in isoform expression. The third step
encompassed the stranded transcription of gtGTF to FASTA, with the
isoform name serving as the sequence ID. This was achieved by
retrieving stranded exonic sequences from reference genome
sequences and concatenating them together. Additionally, this step
generated a tab-separated file that recorded statistics for each isoform
(e.g., length, GC content, etc.) and a directory where each isoform was
stored as a separate FASTA. The final step involved the generation of
raw reads. This step consisted of two substeps: the generation of reads
for each isoform (referred to as “sequencing”, performed by LLRGs)
and the assembly of all generated reads into a single file (referred to as
“assembling”, performed by an assembler). Firstly, the LLRGs adapter
received the isoform sequence, depth, and other customized argu-
ments (e.g., error rate). The adapter then invoked LLRGs, performed
cleanup, and passed the generated sequence file to the assembler. The
assembler reformatted the read ID, performed additional clipping
(either from the 5’ or 3’ end) if specified, wrote the reads into a single
file, and recorded statistics such as the actual number of reads
generated.

The detailed simulation process in this study was as follows:
firstly, YASIM and Caenorhabditis elegans references were installed.
AS events were then generated with a transcriptome complexity
index set to two as the base gtGTF for all simulations, except for
those involving different transcriptome complexity. The default
depth was set as 20, complexity as 2, and the error rate as 15% (i.e.,
0.85 accuracy) except for those involving varying levels of depths or
error rates. The default setting for read truncation was set to 0 and
the default setting for reference annotation completeness was set to
100% unless specified. “--low_cutoff” was set for 0.01 for PBSIM2
LLRG and 1 for PBSIM3 LLRG with “--high_cutoff_ratio” set as 200. To
simulate long-read RNA-seq data with different numbers of isoforms
per gene, a parameter named transcriptome complexity index
(“--complexity” parameter) was applied. To simulate long-read RNA-
seq data with varying depths, the “-mu” parameter within YASIM was
adjusted accordingly. To simulate long-read RNA-seq data with dif-
ferent read completeness, the “--truncate_ratio_5p” or “--truncate_r-
atio_3p” parameters were adjusted to clip a proportion of reads from
5’ end or 3’ end, respectively. For simulating long-read RNA-seq reads
with different error rates, the YASIM “--accuracy-mean” parameter,
which internally set the error rate parameter within PBSIM2/3, was
adjusted. To simulate reference annotation with different com-
pleteness, the “--percent” parameter was applied to randomly discard
a certain proportion of reference annotation in the “sample_tran-
script” module of labw_utils.bioutils.

All simulated sequencing data was mapped using minimap2
(version 2.17-r941)31 with “-ax splice -MD” parameters. The resulting
SAM files were sorted, converted to BAM format, and indexed using
SAMtools (version 1.15.1)67. The sorted BAM files were then processed
by StringTie2, FLAMES, FLAIR, Bambu, andFreddie, whereas the sorted
SAM files were processed by TALON and TAMA. UNAGI, on the other
hand, takes FASTQ and the reference genome as inputs, as it is
embedded with the alignment process.

For the DIU simulation part, YASIM is currently only compatible
with UCSC reference genomes. We used the UCSC release of hg38
National Center for Biotechnology Information (NCBI) RefSeq
reference annotation to obtain the count matrix for each isoform of
naive and primed hESCs long-read RNA-seq datasets. We used fea-
tureCounts to generate the count matrix (parameters “-O -L -t tran-
script -g transcript_id”) (version 2.0.0)54. Then, we directly called 96
DIU genes using IsoformSwitchAnalyzeR (version 1.8.0) based on the
count matrix obtained from featureCounts55. The corresponding
isoform annotations of these 96 genes were extracted from the
reference GTF as ground truth. Additionally, we randomly selected
another 100 genes from the reference annotation, excluding the 96
DIU genes, and mixed them into the gtGTF. We then extracted the
isoform counts from these 196 genes from the isoform count matrix
generated by featureCounts. This resulting isoform count matrix,
containing the 196 genes, served as the input for generating
expression profiles in YASIM. We generated four corresponding
simulated long-read RNA-seq datasets using the Nanopore R103
error model. The simulated reads were then aligned using minimap2
(version 2.17-r941) and processed with the nine benchmarked
methods31. The assembled transcriptome was extracted from
the hg38 reference genome by GffRead (version 0.12.7) based on
the isoform annotation provided by each method32. Quantification
was performed using Salmon (version 1.8.0) with the parameters
of “--ont -l U”, and DIU analysis was conducted using
IsoformSwitchAnalyzeR55,68. To account for any biases introduced by
Salmon, we also directly called the DIUs using Salmon directly on the
gtGTF of the 196 genes. Finally, we compared the DIUs called based
on the quantification results obtained from the transcriptome con-
structed by isoform detection methods with ground truth DIUs to
obtain the precision and sensitivity.
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Process of sequins datasets
Reference sequence and annotation of sequins artificial chromosome
were retrieved from https://github.com/novoalab/Nano3P_Seq/tree/
master/references. Raw data from previous studies23,36,37 (accession:
ERR2856516, ERR2856517, SRR13057603–SRR13057606,
ERR5762894–ERR5762903) (Supplementary Data 1) were retrieved
using prefetch and fastq-dump from sra-tools (version 3.0.9) package.
The sequences were firstly aligned to the sequins artificial chromo-
some using minimap2 (version 2.17-r941) with “-x spliced -a” para-
meters. Pre- and post-alignment quality control was performed as
described in the process of experimental datasets. Reads that are
successfully aligned were extracted and used for downstream pro-
cessing using benchmarked tools with the parameters detailed as
described below. GFFCompare (version 0.12.6) and SQANTI3 (version
4.2) were utilized to compare the precision, sensitivity, and isoform
classes.

Process of experimental datasets
Pre- and post-alignment quality control of LRS datasets were per-
formed using the following method. The GC content and read length
of each read were extracted from FASTQ using the “describe_fastq”
module of labw_utils.bio_utils. The phred score of reads was extracted
using seqkit (version 2.6.1) “fx2tab” commandexcept for datasets from
PacBio Sequel. The alignment rate including the number of secondary
and supplementary alignments was detected by the “describe_sam”

module of labw_utils.bioutils with default arguments. To calculate
base-level match/mismatch events and read completeness, LAST
(version 1449) was utilized to align raw LRS reads to reference
transcriptome69. The aligned MAFs (Multiple Alignment Format) were
used as input for the “extract_quality_from_maf” and “extra-
ct_read_length_from_maf_gp” modules from yasim_scripts to calculate
base-level match/mismatch events and read completeness. To calcu-
late the odds ratio for mono-exonic isoforms over TE regions, we
randomly permutated the original intergenic mono-exonic isoforms
identified by FLAIR, Bambu (unguided), and Freddie within the inter-
genic regions with BEDTools shuffle module34. We obtained the over-
lapping regions between test regions (mono-exonic isoforms and their
paired random shuffled regions) and TE regions using the BEDTools
intersect module34. The odd ratios and corresponding p values were
determined using the Fisher exact test embedded in R.

The Nanopore direct RNA-seq data was aligned with minimap2
(version 2.17-r941) using the parameters “-ax splice -uf -k14 --MD”31. The
Nanopore cDNA data was aligned using “-ax splice --MD” parameters
using minimap231. For the PacBio data, the alignment was performed
using “-ax splice:hq -uf --MD” parameters in minimpa2 (version 2.17-
r941)31. Quality control of NGS naïve and primed hESCs data was per-
formed using FastQC (version 0.11.8) (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). The first 10 bp of both paired-end
reads were trimmed by Cutadapt (version 2.9)70. STAR (version 2.7.1e)
wasused for the alignment ofNGSRNA-seqdatawithparameters set as
“--outFilterMultimapNmax 1000, --outFilterMismatchNmax 3, --out-
SAMmultNmax 1”71. All resulting SAM files were sorted, converted to
BAM, and indexed with SAMtools (version 1.15.1)67.

Cell culture and RT-qPCR validation
The cell lines used in this study were H1 primed hESC (Wicell Research
Institute, Cat# WA01-pcbc) and naïve hESC derived from H1 primed
hESC30. H1 primed ESCwasmaintained inmTeSR1medium (STEMCELL
Technologies, Cat#85851), on Matrigel-treated (Corning, Cat#354277)
plates and routinely passaged every 4–5 days by using Dispase I
(STEMCELL Technologies, Cat#07923), with a split ratio of 1:4 to 1:10.
Primed hESC was cultured in normal O2, 5% CO2 condition. Before
induction to the naïve stage, primed hESC was cultured on reduced
growth factor Matrigel-coated (Corning, Cat# 354230) plates for
2–3 days. When reaching around 60% confluency, culture media was

changed to naïve culture media for another 5 days in the incubator
with 5%O2 and 5%CO2 (naïve culturemedia: 24ml DMEM/f-12 (Nacalai
Tesque, Cat#08460-95) and 24ml Neurobasal (Gibco, Cat#21103049)
media, with 500μl supplement, 500μl B2 supplement, 500μl
L-Glutamine (Gibco, Cat#25030081), 500μl Non-essential amino acids
(Gibco, Cat#11140050), 0.1mM B-mercaptoethanol (Sigma,
Cat#21985023), 62.5 ng/ml BSA (Sigma, Cat#V900933), supplemented
with 0.1μM Dasatinib (Selleckchem, Cat#S1021), 0.1μM AZD5438
(TOCRIS, Cat#3968), 0.1μM SB590885, 1μM PD0325901, 10μM
Y-27632 (STEMCELL Technologies, Cat#72308), 20 ng/ml human
recombinant LIF (Peprotech, Cat#300-05-50UG), 20ng/ml Activin A
(STEMCELL Technologies, Cat#78001.1) and 8 ng/ml of bFGF (Gibco,
Cat#PHG0023))30,72. Cells were passaged every 4–5 days onto reduced
growth factor Matrigel-coated plates using Tryple Express (Gibco,
Cat#12604021). Naïve stage cell morphology could be observed after
the 2–3 passages. A low O2 incubator (5% O2) was necessary for naïve
hESC maintenance.

To perform long-read RNA-seq, total RNA was extracted, reverse
transcribed, and quality controlled. The Nanopore cDNA RNA-seq
library was constructed according to the Nanopore Ligation Sequen-
cing Kit 1D (PM) using pore type R9.4.1, and sequenced on the Pro-
methION platform by Novogene Co., Ltd. For the RT-qPCR validation
experiments, total RNAwasextractedbyTRIzol RNA isolation reagents
(Thermo, Cat#15596026). The cDNA was synthesized by reverse tran-
scription of 0.5 µg RNA using the RT-PCR kit (Vazyme, Cat#R222). RT-
qPCR analysis was performed using the RT-qPCR SYBR-green kit
(Vazyme, Cat#Q712-03) following the manufacturer’s protocol, and
each sample contained three replicates for the elimination of technical
errors. Isoform-specific primers were designed to assess the expres-
sion of different RPL39L isoforms using GAPDH as the internal control.
The primer sequences were listed in Supplementary Data 6. The RT-
qPCR experiments were performed using the LightCycler® 480 Sys-
tem (Roche).

Computational performance analyses
The computational performance analyses were conducted on a
workstation with an AMD Ryzen Threadripper 3970 × 32-Core Pro-
cessor and 256 GiB 2133MT/S DDR4 memory. The system ran Ubuntu
20.04 LTS with the latest updates and a 5.13.0-44-generic kernel.
Memory consumption for each method was measured based on the
residential set size, a metric commonly used by other profiler tools.
The run time of each software was recorded from the start to the
termination of the execution.

The profiler used in this study, proc_profiler, is a process-level
profiler that collects metrics such as CPU utilization or memory con-
sumption of processes and child processes in an asynchronous man-
ner. It is implemented in Python (version 3.8) on top of psutil library
(version 5.9). The profiler is designed to be executed on GNU/Linux
systems only. The workflow of the profiler is as follows. It starts by
targeting the command line using the subprocess module of Python
and records the process ID (PID) of the targeted process. Then, it
generates a dispatcher over this process, which further generates
several tracers. Each tracer is a single thread that asynchronously
probes various aspects of the process, including CPU usage, memory
usage, I/O operations, file descriptor, and current status, using the
psutil library. The information collected by the tracers is appended to
separate GZipped Tab-Separated Values (TSV) files using appenders
and reported to a Command-Line Interface (CLI) frontend. The dis-
patcher also monitors if the process has spawned new processes. If
new processes are detected, a new dispatcher is started to monitor
these processes. The dispatcher or tracer terminates when the process
it is monitoring terminates, and the program exits when the main
dispatcher ends. A system dispatcher, which manages tracers that
track system-level metrics, is started and terminated at the same time
as the main dispatcher. The output of the profiler consists of a folder
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containing multiple GZipped TSVs files, each capturing different
metrics on the monitored process(es).

The benchmark evaluation process
To ensure the objectivity of the benchmark study, every evaluated
method was tested with default parameters. Namely, StringTie2 (ver-
sion 2.2.1) was executed with “-L” which allows the processing of long
reads. Bambu (version 3.0.8) was executed in customwrapping scripts
“bambu_guided.R” and “bambu_unguided.R” for guided and unguided
modes respectively. FLAMES (version 1.0) was executed using its
“bulk_long_pipeline.py”. Since it does not provide a default set of
parameters for its bulk RNA-seqmodule, we used the configuration file
included in the software for running a test dataset. We modified the
threshold of support read (controlled by the “min_supp_cnt” para-
meter), from 10 to 3. Inotherwords, the softwarediscarded transcripts
with less than 3 aligned reads. This threshold is also the default
threshold used by FLAIR, indicated by the “--support” parameter. The
results obtained using FLAMES with read support equals to 10 were
included in the results and were denoted as “FLAMES10”. Freddie (at
commit 501d9f08) was executed with all default parameters with a
Groubi license to S.Y. and X.Z. TALON (version 5.0) was executed with
default parameters and additional “--ar 20” in labeling SAM files and
“--maxFracA 0.5 --minCount 5 --minDatasets 1” in filtering produced
transcripts. TAMA (version b0.0.0) was executedwith an additional “-x
no_cap” parameter. UNAGI (version 1.0.1) was executed with all default
parameters. IsoQuant was executed with an additional “--report_no-
vel_unspliced true” to allow the report ofmono-exonic transcripts. For
the unguided mode of FLAIR (version 1.5), the correction step was not
performed as it requires a reference annotation for guidance. The
collapse step was conducted directly without the input of a reference
annotation. Results of TAMA and UNAGI were also transformed into
GTF before being further analyzed. We used GffCompare (version
0.12.6) with default parameters to compare the accuracy of the results
obtained with simulated data against ground truths32. The transcript
level statistics were used as the reference metric. SQANTI3 (4.2) was
run in default mode for isoform classification on mono-exonic tran-
scripts excluded by either a custom R script “filter_mono_exon.R” or
GFFRead (version 0.12.6) with “-U --gtf” parameter. SQANTI3 was exe-
cuted with additional “--skipORF” which suppresses ORF prediction33.
For the DIU analysis on naïve and primed hESCs datasets, isoforms
detected from different samples with each software were first merged
guided by the reference annotation. The merge function in StringTie2
was used with the parameters “--merge -L -G {reference GTF}”, and
featureCounts (version 2.0.0) was then used to quantify the isoform
expression with “-O -L -t transcript -g transcript_id” parameters based
on the merged annotations54. For the NGS primed and naïve hESCs
data, featureCountswasused toquantify the isoformexpressionbased
on the GRCh38.105 reference annotation, using the parameters “-O -t
transcript -g transcript_id”. IsoformSwitchAnalyzeR (version 1.8.0)55

was used to perform the DIU analysis based on the expression matrix
provided by featureCounts. The isoform switching consequenceswere
obtained using the “extractConsequenceSummary” function, con-
sidering selected consequences such as “intron_retention”,
“NMD_status”, and “ORF_seq_similarity”. The distribution of AS events
for isoforms of differential usage was provided by the “extra-
ctSplicingSummary” function.

The method of calculating precision and sensitivity is as follows:
TP refers to “true positives”, which in this investigation refers to the
isoforms detected that match the transcript records in the corre-
sponding ground truth annotation. FN (“false negatives”) are tran-
scripts present in the ground truth but missed in the isoforms
identified by the software, while FP refers to “false positives” that are
found in the detected isoforms but not recorded by any ground truth.
Precision is calculated as TP divided by the sum of TP and FP. Sensi-
tivity is calculated as TP divided by the sumof TP and FN. An identified

isoform was considered matched with the ground truth (i.e., true
positive) if it shared all splice site boundaries exactly compared to an
annotated transcript. Regarding the classification of isoforms, FSM
refers to the query isoforms having the same number of exons and
matched internal junctions with the reference whereas the 5’ start or 3’
endof thefirst and last exoncanvary, while ISM includes isoformswith
fewer 5’ or 3’ exons but still matched internal junctions compared to
the reference. The exact 5’ start and 3’ end can differ by any amount
both for FSM and ISM. NIC includes isoforms without an FSM or ISM
match but uses a combination of known donor or acceptor sites,
whereasNNC refers to isoformswithout FSM/ISMandhave at least one
unannotated donor or acceptor site. Intergenic means the query iso-
form is in the intergenic region.

Figure 6C is a summary diagram presented to provide users with
a quick and intuitive understanding of the software’s performance.
Each method was scored based on its ranking in different evaluated
aspects, with the top-rankedmethod receiving the highest score, and
the score decreasing as the ranking drops. The score penalty is
intensified if there is a significant difference in performance between
two consecutive rankings, as observed in the case of TAMA’s memory
and speed efficiency. Precision, sensitivity, speed, memory, scal-
ability, and adaptability were all ranked based on the results of this
benchmark study. Adaptability reflects how significantly the meth-
od’s performance is influenced by changes in the five different fac-
tors investigated. Functional variability mainly demonstrates the
diversity of tasks that the software can perform, with higher scores
awarded to software with more complex functions. For example,
despite having only one additional functional module, FLAMES
received the highest score for functional variability due to the
complexity of its extra capacity, such as isoform detection from
single-cell long-read RNA-seq data. Usability is primarily assessed
based on factors such as the smoothness of software installation,
ease of usage (whether it is a one-line commander or requires addi-
tional scripting/contains multiple steps), and the frequency of
encountering bugs during data processing.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Detailed information on the experimental datasets used in this study
can be found in Supplementary Data 1. The datasets used in this study
are available in National Centre for Biotechnology Information (NCBI)
database under accession code SRR8568873, SRR8568871,
SRR13762843, and SRR1376284138,39; SRR14630760, SRR14630758,
SRR12800923, SRR12800924, SRR22522188, SRR22522033,
SRR17960971, SRR17960979, SRR19257398, and SRR1925740140–44;
ERR3588905, and SRR1349472645,46; SRR8929006, SRR8929005,
SRR8929004, SRR19055922, and SRR1905592447,48; SRR14073786,
SRR14073787, SRR14073792, and SRR1407379330. The version of
reference genomes used in this study are GRCh38.105 (Homo sapiens)
and GRCm39.105 (Mus musculus) from Ensembl, BDGP6.32.53 (Droso-
phila melanogaster), and WBcel235.55 (Caenorhabditis elegans) from
Ensembl Metazoa. The four naïve and primed hESCs long-read RNA-
seq datasets in this study have been deposited in the NCBI’s Gene
Expression Omnibus (GEO) under GEO Series accession number
GSE227911. The simulated datasets generated in this study are avail-
able upon request, as the size of these datasets (>600GB) limited
deposition in standard data-sharing platforms. Please contact the
corresponding author (wanluliu@intl.zju.edu.cn) of this paper for
access, and we will respond within a week. There are no specific
restrictions on the use of the simulated datasets. The data for gen-
erating figures in this study areprovided in the SourceData file. Source
data are provided with this paper.
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Code availability
Code for YASIM can be found on GitHub via https://github.com/
WanluLiuLab/yasim/73 or on PYPI https://pypi.org/project/yasim/.
Documentation of YASIM can be found at https://labw.org/yasim-
docs/. Code for the profiler can be accessed via https://github.com/
WanluLiuLab/labw_proc_profiler. Customized analysis code per-
formed in this study can be found on GitHub via https://github.com/
WanluLiuLab/2024_LRS_AS_Benchmark_Code74.
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