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Semantic regularization of electromagnetic
inverse problems

Hongrui Zhang1,5, Yanjin Chen1,5, Zhuo Wang1, Tie Jun Cui 2,3 ,
Philipp del Hougne 4 & Lianlin Li 1,3

Solving ill-posed inverse problems typically requires regularization based on
prior knowledge. To date, only prior knowledge that is formulated mathe-
matically (e.g., sparsity of the unknown) or implicitly learned fromquantitative
data can be used for regularization. Thereby, semantically formulated prior
knowledge derived from human reasoning and recognition is excluded. Here,
we introduce and demonstrate the concept of semantic regularization based
on a pre-trained large language model to overcome this vexing limitation. We
study the approach, first, numerically in a prototypical 2D inverse scattering
problem, and, second, experimentally in 3D and 4D compressive microwave
imaging problems based on programmable metasurfaces. We highlight that
semantic regularization enables new forms of highly-sought privacy protec-
tion for applications like smart homes, touchless human-machine interaction
and security screening: selected subjects in the scene can be concealed, or
their actions and postures can be altered in the reconstruction by manip-
ulating the semantic prior with suitable language-based control commands.

Inverse problems, omnipresent in most areas of science and engi-
neering, are notoriously difficult to solve due to their ill-posed
nature1–7. Generally speaking, an inverse problem seeks to find the
“cause” that gave rise to an observed (or desired) “effect”8. For
instance, wave-based imaging seeks to reconstruct the material
properties of a scene based on observations of how the scene scatters
known impinging waves9. The ill-posedness of an inverse problem
originates from the low-dimensional and noisy nature of the available
measurements: multiple distinct causes can plausibly explain the
observed measurements. To solve the inverse problem, prior knowl-
edge about the sought-after cause must be introduced to supplement
the insufficient measurements. The construction of a modified,
approximately well-posed version of the originally ill-posed inverse
problem based on prior knowledge is known as regularization. The
regularization process can be understood in light of Bayes’
theorem10,11: our prior knowledge is updated with the new information
from the measurements. Pioneered by Tikhonov12, a wide range of

regularization techniques2,12–14 has been explored that mathematically
formulate their prior knowledge about the unknown. Examples of
prior knowledge about the unknown include the fact that it is
smooth15, piece-wise smooth16, or sparse17, or that it has a tree-like
pattern18. More recently, alternative data-driven regularization meth-
ods implicitly learned from quantitative calibration data emerged19–22.
Despite the huge success of both mathematically-formulated and
quantitative-data-driven regularizers in mitigating the ill-posedness of
inverse problems, these methods struggle or fail to handle prior
information originating fromhuman recognition or reasoning because
the latter priors are typically formulated semantically rather than
mathematically or quantitatively.

Indeed, human natural language is an indispensable means of
characterizing, understanding, and reasoning about the world around
us and the phenomenawe observe as humans. Complex reasoning can
be formulated semantically with human natural language, but it would
be difficult to convert it to mathematical language. Recent years have
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witnessed a revolution in natural language processing driven by large
language models (LLMs) trained on vast web-scale datasets. This
revolution has not only transformed natural language processing
itself23–29 but has also stimulated unprecedented interests in other
reasoning-related domains, such as robotics30–33, computer vision34–36,
code writing37,38, or material design39,40. Interestingly, modern LLMs
have powerful zero-shot generalization capabilities25–27,41–44 and can
align text with other modalities (e.g., images and voices). LLMs embed
closely related concepts near to each other, i.e., theymapdistinct texts
about the same concept to similar low-dimensional real-valued vec-
tors; for instance, the embedding of the word “peach” is closer to that
of “fruit” than to that of “knife”. Therefore, LLMswork surprisinglywell
for unseen sampleswithout any fine tuning41–44. Of course, as shown by
empirical trends, the zero-shot generalization improves with the
model scale, dataset size, and the computational resource dedicated
to training44. These capabilities of modern LLMs allow us to envision
the LLM as powerful tool for capturing and representing human
knowledge in order to serve as efficient regularization tool for ill-posed
inverse problems when priors are formulated semantically.

In this paper, we propose and demonstrate the concept of LLM-
based semantic regularization of ill-posed electromagnetic (EM)
inverse problems. We tackle the resulting multi-modal inverse pro-
blem with an encoder-decoder deep neural network architecture that
we train with the so-called contrastive language-image pre-training
method44. The encoder embeds the measurements in two outputs, of
which one is a semantic embedding that describes the scene in human
natural language and carries high-level information about the
unknown scene. Based on the two embeddings, the decoder recon-
structs the scene in remarkable detail without infringing the visual
privacy of subjects in the scene. Importantly, the semantic embedding
enables new types of security and privacy-preservation for smart home
appliances that require some degree of indoor surveillance. For
instance, suppose that encoder and decoder are integrated at the
transmitter and receiver, respectively; then, by redacting the semantic
embedding before transmission, the sensed information about the
subjects is safely encoded and can only be extracted by the intended
appliance’s receiver. Other possibilities to enhance the privacy-
preservation that we explore include the purposeful modification of
the semantic embedding with language-based control commands that
conceal or alter the appearance of subjects in the reconstruction.
Thereby, if, for instance, a smart appliance only needs to monitor an
elderly person, the privacy of other inhabitants can be fully protected
by concealing them from the reconstructions or by adjusting their
posture/action in the reconstructions into a default one that does not
reveal their true action/posture. We demonstrate the feasibility of
semantic regularization for two important ill-posed EM inverse pro-
blems. First, we numerically study a prototypical 2D inverse scattering
problem. Second, we experimentally consider compressive
programmable-metasurface-based microwave imaging in 3D and 4D
(where the fourth dimension represents time) that is envisioned tobe a
key enabler of smart home appliances. We faithfully expect that our
proposed semantic regularization method provides fundamentally
new perspectives on ill-posed inverse problems and relevant applica-
tions in communications, imaging and beyond.

Results
Problem statement
We seek to retrieve a high-dimensional unknown x 2 RN from noisy
low-dimensional measurements y 2 Rn which are related to the
unknown x through a mapping operator f, i.e., y= f xð Þ+ ϵ, where ϵ 2
Rn accounts for noise, modeling error and other possible uncertain-
ties. This inverse problem is ill-posed due to the lack of a unique
solution: an infinite number of solutions x̂ can “explain” the mea-
surements y well but most of these solutions are not meaningful.
Hence, regularization methods are necessary which modify the

problem and introduce prior knowledge to overcome the ill-
posedness. In particular, the solution space of x can be narrowed
down to an m-dimensional (m < n) manifold S via a transforming
operator d thatmaps a solution bα in the reducedm-dimensional space
to a solution x̂ in the original N-dimensional space. Moreover, we
generally have a prior α0 on x in S and hence wish to ensure that bα is
reasonably close to α0. Following the standard regularization proce-
dure, the inverse problem can then be cast into the following optimi-
zation problem:

bα = argminα2S
h

y� f d αð Þð Þ
�� ��2

2 + γ α � α0

�� ��2
2

i
: ð1Þ

Herein, the first term is the data misfit (measuring the distance
between the actual measurements y and those predicted by α2S), the
second termserves as the regularizer (measuring the distance between
α andα0), and γ is a regularization parameter controlling the influence
of the prior α0 on the solution. For simplicity, the regularizer is taken
as the square of the l2-norm, however, it could be extended to
jjα � α0jjqp (0≤p,q< /) for more general cases. We can interpret the
transforming operator d as a decoder since it decodes the solution bα
from the reduced space: x̂=dðbαÞ. In addition, we can view Eq. 1 as the
definition of an encoding function e that outputs bα given y and α0 as
inputs: bα = eðy,α0Þ. Thus, the solution of the original inverse problem
can be expressed as x̂=dðeðy,α0ÞÞ.

In practice, a critical challenge in solving the inverse problem lies
in representing the prior α0. Besides mathematical language that is
routinely used in the context of inverse problems as well as more
recently developed priors learned implicitly from quantitative cali-
bration data, human natural language is an indispensable medium for
humans to understand and reason about diverse complex phenomena.
Hence, we hypothesize that human natural language can flexibly for-
mulate priors that are difficult or impossible to be taken into account
by conventional mathematical-model-based regularization methods.
This motivates our exploration of semantic regularization in the pre-
sent paper.Within the realm of semantic regularization, we treat S and
α as the semantic manifold and the semantically encoded unknown x,
respectively. To represent the semantic priorα0, we leverage a pre-
trained LLM: α0 = LLMð‘Þ, where l denotes the semantic description of
the prior on the unknown x. Examples of semantic priors are: “it is a
piece-wise smooth object”, “it is a low-contrast digit-like object”, “the
subject is raising his arm”. As sketched in Fig. 1a,α can be decomposed
into two components in the semantic manifold S: α =α0 +Δα, where
the residual term Δα represents the deviation from the prior to match
the measurements. As a matter of fact, the semantic priorα0 can be
automatically estimated from the measurements y, which is helpful
when the prior α0 is not otherwise available. Accordingly, the defini-
tions of encoder and decoder can be modified: ðbα0,ΔbαÞ= eðyÞ and
x̂=dðbα0,ΔbαÞ, as depicted in Fig. 1b where neural networks implement
the encoder and the decoder.

We now elaborate on how to train the decoder and encoder for
semantic regularization. Our starting point is a labeled training dataset
D= fxi,yi,i; i= 1,2, . . . ,Mgwhich includes triplets ofM realizations of the
unknown x, the corresponding measurements y, and the corre-
sponding semantic priors l. We use the contrastive learningmethod to
tackle trainingwith thismulti-modality dataset given its track record in
pairing text with other modalities and its strong zero-shot reasoning
capability. We train the encoder and decoder in a supervised manner
by minimizing the following loss function:

Lðe,dÞ= 1
2

XM
i= 1

d eðyiÞ,α0,i

� �� xi

�� ��2
2 + γ α0,i � LLMð‘iÞ

�� ��2
2 + Δαi

�� ��2
2

� �
:

ð2Þ
The first term in Eq. 2 encourages the encoder-decoder network to
explain the observation yi by its ground truth xi and associated prior
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α0,i, the second term aligns the prior α0,i with its semantic embedding
‘i via the frozen pretrained LLM, and the last term seeks to ensure that
Δαi obeys the standard normal distribution as much as possible in a
probabilistic sense.

To ensure that the encoder outputs a reasonable semantic
priorα0, we interpret the encoder ðbα0,ΔbαÞ= eðyÞ as a part of generator
that maps measurements y to pairs of semantic priors bα0 and esti-
mates x̂=dðbα0,ΔbαÞ of the unknown x. Then, as detailed in Supple-
mentary Note 1, we train a dedicated discriminator that assesses
whether the pairs of bα0 and x̂ are meaningful or not. Finally, we
compose a generative adversarial network (GAN)45 of our generator
and discriminator in order to fine-tune the generator. More details
about the network are provided in Methods and Supplemen-
tary Note 1.

At this stage, it is instructive to elaborate on the relation of our
work to previously reported quantitative-data-driven regularization
techniques such as those from Refs. 19–22. Our proposed semantic
regularization is also data driven; however, it is driven by both
quantitative and semantic data. Specifically, it uses triplet training
data D= fxi,yi,‘i;i= 1,2, . . . ,Mg, where xi and ‘i are the quantitative
and semantic input data, respectively. Thanks to ‘i, our semantic
regularization learns not only the mapping from xi to yi but also
the underlying ‘semantic’. In contrast, conventional quantitative-
data-driven regularization uses doublet training data eD=
fxi,yi;i= 1,2, . . . ,Mg. Therefore, conventional quantitative-data-
driven regularization is agnostic to semantic information (e.g., ori-
ginating from human recognition and reasoning). It is apparent that
conventional quantitative-data-driven regularization is in fact a
special case of our semantic regularization: if ‘i is not included in D,
D collapses to eD and the semantic regularization specializes to the
conventional quantitative-data-driven regularization. A detailed
comparison between semantic regularization and quantitative-data-
only-driven regularization is provided in Supplementary Note 2,
where we simply switch off the semantics to consider
the quantitative-data-only-driven approach. As detailed in

Supplementary Note 2, besides the ability to effectively leverage
human reasoning and recognition for regularization, we also
observe that the semantic regularization outperforms quantitative-
data-only-driven regularization in terms of both generalization
capabilities and its robustness to noise. Seemingly, forcing the net-
work during training to represent information in high-level
abstracted semantics helps to avoid over-training and being sensi-
tive to noise.

Numerical results for 2D EM inverse scattering problem
We begin by examining the feasibility of the proposed semantic reg-
ularization for a prototypical EM inverse scattering problem1,5,46–48. The
goal of anEM inverse scattering problem is to determine the scattering
properties within a domain of interest (DoI), e.g., the permittivity
distribution, based on measurements of scattered fields originating
from known excitations. In our numerical study, we consider the 2D
setup shown in Fig. 2a. The DoI has a size of 1.28m× 1.28m and con-
tains digit-like or/and geometric-shape-like objects with permittivity
values in the range of [2, 5]. We use a full-wave solver of Maxwell’s
equations to generate the data of the scattered fields, as detailed in
Methods and Supplementary Note 3. Four transmitters and eight
receivers are uniformly placed on a circle of radius 2m that encloses
the DoI, and all 32 possible transmission measurements are deter-
mined at the operating frequency of 300MHz.

Having trained the encoder-decoder network with M = 60,000
examples (including the fine-tuning with the discriminator which was
trained with 120,000 examples), the solution of the inverse scattering
problem consists of two steps, as illustrated in Fig. 2b. First, the
encoder maps the measurements (real and imaginary parts are
stacked) to the two embeddings α0 and Δα. Then, the decoder maps
the two embeddings α0 and Δα to the reconstructed DoI. When
semantic prior information about the unknown DoI is known, α0 can
be predetermined through the pretrained frozen LLM.

Next, we analyze the impact of Δα on the reconstruction. A
t-distributed stochastic neighbor embedding (t-SNE49) visualization of

Fig. 1 | Working principle of semantic regularization based on a pre-
trained LLM. a Illustration of solving Eq. (1) with semantic regularization. The
gradient blue graph represents the solution space in the semantic manifold S.
Measurements determine thewhite isolineswhich represent the datamisfit, i.e., the
first termon the right-hand side in Eq. (1). The green graph represents the semantic
regularizer which is determined mainly by the semantic prior α0, i.e., the second
term on the right-hand side in Eq. (1). The optimal solution α is found at the
intersection of the data misfit isoline and the semantic regularizer. b “Encoder-
decoder” neural network architecture for reconstructing the unknown x with
semantic regularization. The encoder maps the measurements y to a pair ðΔα,α0Þ,
where α0 is the semantic prior and α =α0 +Δα is the semantically embedded

reconstructed unknown, as illustrated in (a). The decoder maps a pair ðΔα,α0Þ to
the reconstructed unknown in the original space. To train the encoder-decoder
network, a multi-step procedure as outlined in Supplementary Note 1 is used.
During the first step, the loss function defined in Eq. (2) that is composed of the
three terms highlighted in red isminimized. A subsequent GAN-based training step
refines the encoder to ensure that it outputs reasonable semantic priors. Once
trained, the encoder directly outputs a recommended semantic embedding for a
given measurement, which, importantly, can be manually changed into α0

0 as
required in different contexts explored in this work, before the decoder maps
ðΔα,α0

0Þ to a reconstructed unknown in the original space.
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Δα for a fixed α0 is displayed in Fig. 2c and the red cross indicates
Δα =0. The reconstructionsΔα =0 combinedwith various realizations
of αi

0 yield blurry reconstructions, as seen in the corresponding inset
in Fig. 2c. This observation makes sense because using Δα =0 is
equivalent to averaging the reconstruction for a given αi

0 over many
non-zero realizations of Δα. The remaining insets in Fig. 2c reveal that
Δαhas important effects on thefine-scaledetails of the reconstruction,
i.e., the geometrical style, the physical permittivity values, and so on.

For instance, the reconstructions with Δα1 feature round shapes, the
reconstructions with Δα3 yield notably low permittivity values,
the reconstructions with Δα2 are lathy and inclined to the right, the
reconstructionswithΔα4 have lowpermittivity values andwide square
shapes, and the reconstructions with Δα5 yield bold-font digit shapes.
We conclude that Δα governs the low-level structural details of the
reconstruction whereas the semantic embedding α0 is decisive for the
high-level features of the reconstruction.

Fig. 2 | Representative resultswith semantic regularization forprototypical EM
inverse scattering problems. a Considered configuration of an ill-posed 2D EM
inverse scattering problem. b Illustration of two-step solution to the inverse scat-
tering problem in the framework of the proposed method showing the measure-
ments, the two embeddings obtainedwith the encoder (ofwhichα0 is the semantic
embedding), and the reconstructed permittivity distributions obtained from the
embeddings with the decoder. c T-SNE visualization of different Δα for a fixed
semantic prior. The red star indicates Δα =0. The insets show example recon-
structions with different Δα for a few selected semantic priors. d Illustration of the
ability to manipulate the reconstruction with the semantic embedding in order to
conceal or change a vulnerable object. The ground-truth semantic priors for the
ground truth DoIs shown in the first row are: “high-contrast digit-3 and middle-

contrast cycle”, “low-contrast digit-0 and low-contrast triangle”, “low-contrast digit-
9 and high-contrast triangle”, “high-contrast digit-3 and middle-contrast square”.
The second row shows the reconstructions obtained with these semantic priors,
i.e., without any protection. To partially conceal the DoI in the reconstruction, the
following phrases are integrated into themodified semantic priors in the third row:
“conceal digit”, “conceal digit”, “conceal digit”, “conceal shape”. To alter the
appearance of an object, the following phrases are integrated into the modified
semantic priors in the fourth row: “change the digit as middle-contrast digit-3”,
“change the digit as low-contrast digit-8”, “change the digit as low-contrast digit-3
and change the shape as middle-contrast triangle”, “change the digit as middle-
contrast digit-2 and change the shape as low-contrast square”. Details about the
MSE evaluation can be found in Supplementary Note 13.
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The observed dependence of the reconstruction on the semantic
embeddingα0 is particularly valuable in applications with security
concerns, e.g., the need to preserve privacy. For instance, by suitably
altering the semantic embedding α0, the reconstruction can be
manipulated to conceal vulnerable objects/subjects or to change their
appearance. In such a scenario, the reconstruction is purposefully
manipulated to no longer yield the full objective “truth” about the DoI.
Indeed, the reconstruction is constrained into the semantic-defined
object space imposed during training and hence only yields (a good
approximationof) theobjective “truth” if the correct control semantic is
provided. However, it is now precisely our goal to obtain a recon-
struction in which semantically selected aspects of the DoI are purpo-
sefully misrepresented, i.e., “untrue”. Representative results are
displayed in Fig. 2d, where theDoI contains a composition of a digit-like
object and geometric-shape-like object. Compared to the second row in
Fig. 2d which shows the reconstruction with the unaltered semantic
embeddingα0, the ability of amodified semantic embedding to conceal
one of the objects or to change its appearance is apparent in the third
and fourth rows in Fig. 2d, respectively. For instance,we can conceal the
digit in the DoI by changing the semantic embedding, i.e., “It is a
composite object: digit-9 and triangle. But, conceal digit.” In addition,
we can also alter specific parts of the reconstruction by adjusting the
control language, e.g., “It is a composite object: low-contrast digit-0 and
low-contrast triangle. But, change the digit as low-contrast digit-8.” To
illustrate the benefits of semantic regularization, for a given DoI the
reconstruction results with seven increasingly detailed semantic priors
are shown in Fig. 3a. As visually apparent and quantified by the mean
square error (MSE), themoredetailed the semantic prior is, the higher is
the reconstruction quality. To study the influence of the semantic prior
on the data misfit and reconstruction quality more systematically, we
considered 10,000 pairs of measurements and semantic priors. For a
given prior, we quantify how close it is to the ground truth semantic
prior α0 by computing jjα0 � LLMð‘Þjj2=jjα0jj2. The data misfit is
quantified as jjy� fðx̂Þjj2=jjyjj2. The reconstruction quality is quantified
by theMSE comparing the ground truth x to the reconstructed x̂. Some
reconstruction examples are shown in Fig. 3c. It is apparent that the
reconstruction quality rapidly increases with increasing discrepancy
between the applied semantic prior and the ground truth semantic
prior. Only an accurate semantic prior facilitates the solution of the
inverse scattering problem. The general dependence of data misfit and
reconstruction quality on the accuracy of the semantic prior is plotted
in Fig. 3b (thedots display only 100 from the 10,000 consideredpairs of
measurements and semantic priors).

We also conducted two additional sets of important numerical
experiments regarding the immunity to noise and the generalization
capabilities of our method which are detailed in Supplementary
Notes 4–7. We found that the proposed method is remarkably robust
against unseen noise (i.e., noise that appears during testing that was
not present during training): Upon visual inspection the output
appears unperturbed for SNR = 20dB, and for SNR = 5 dB the original
basic outline and meaning can still be recognized even though the
output is degraded. Moreover, the semantic regularization displays
good generalization capabilities. We hypothesize that the semantic
regularization in the training process enables the network to more
easily grasp the semantically related information, while ignoring the
noisy misleading information in the data, resulting in the impact of
noise being reduced. In addition, we also provide in Supplementary
Note 8 more discussion about the effects of different choices of
semantic regularizer settings on the reconstruction quality, for
instance, optimizer, learning rate, network architecture, and so on.

Experimental results for 3D compressive microwave meta-
imaging
Having studied the essential properties of semantic regularizationwith
a prototypical numerical inverse scattering problem in the previous

section, we now apply semantic regularization experimentally in the
context of compressivemicrowavemeta-imaging. The goal of imaging
is to determine the scattering properties, e.g., the reflectivitymap, of a
scene based on measurements of how the scene scatters waves origi-
nating from known excitations. To alleviate the transceiver hardware
cost, over the last decade the idea of leveraging metamaterial-based
hardware for imaging, coined “meta-imaging”, has received significant
attention. Ameta-imagermultiplexes scene information acrossdiverse
measurement modes offered by the metamaterial’s degrees of free-
dom onto a single (or few) detector(s)9. Initially, spectral degrees of
freedomwere explored50 but more recently the research focus shifted
to configurational degrees of freedom in programmable
metamaterials51, especially because they enable the tailoring of the
illuminations to specific types of scenes52 and even to specific imaging
task9,53–56 and noise types57. In meta-imagers, the mapping from scene
to measurements is not a one-to-one mapping, requiring a non-trivial
computational reconstruction of the scene from the measured data.
Often, the dimensionality of the measurements can be remarkably
lower than that of the scene because the inherent multiplexing com-
presses the sparse scene information. Typical compressive imaging
problems are ill-posed due to this dimensionality mismatch and the
reconstruction relies on sparse regularization. However, in many
practical applications, the required transform to obtain a sparse scene
representation is unknown.

In this section, we demonstrate experimentally that semantic
regularization can simplify the representation of the prior without
harsh requirements on knowing the sparse transformation. Moreover,
the semantic regularizer has language-controllable properties that can
be explored to conceal or alter parts of the reconstructed images. Our
experimental measurements are based on a compressive metasurface
camera operating around 2.4GHz (see Methods and Supplementary
Note 9 for details). The underlying programmable metasurface is
depicted in Fig. 4a. Our goal is to image the posture of two human
subjects, Jack (the first author in this article) and Sam (the third
author), in our laboratory environment.We train our encoder-decoder
network with the same approach as before. Our training dataset
includes M = 25,000 examples; the ground-truth scenes are obtained
based on a stereo optical camera, as detailed in SupplementaryNote 9.
Furthermore, to train the discriminator, 50,000 training examples are
created and used. Our training and testing data are collected under the
same experimental conditions and include hence the same level of
noise. Therefore, the network can optimally adapt to the type and level
of noise57.

Optical images of five representative scenes are displayed in
the first row of Fig. 4b. The second row shows the corresponding
“protection-less” reconstructions for which the utilized semantic
embedding α0 (printed above the reconstructions) is the one auto-
matically proposed by the encoder network based on the microwave
measurements. It is apparent that the proposed method not only
reconstructs high-fidelity images from the compressive measure-
ments, but it also simultaneously outputs high-level semantic
descriptions of the scenes, e.g., “Jack iswaving his left hand, and Sam is
sitting on the chair”. Remarkably, the identities and status of the
subjects have been correctly recognized by the algorithm despite the
fact that the two subjects have very similar body profiles. Whereas it
would be almost impossible to distinguish the two subjects based on
optical binarized images or skeletons, the necessary information
appears to be encoded in the raw compressive microwave measure-
ments and our semantically regularized compressive metasurface
camera is apparently capable of extracting this information from the
raw microwave data. Therefore, the proposed method is a promising
tool to enable paradigms such as smart homes without infringing the
inhabitants’ privacy by monitoring the environment with optical
cameras. To summarize, the semantically regularized compressive
meta-imager is capable of reconstructing the scene in a privacy-
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preserving manner and simultaneously provides a semantic descrip-
tion of the scene.

Next, we explore the ability of language-controllable imaging to
conceal or alter vulnerable parts of the scene. First, we seek to image the
posture of one subject while entirely preserving the privacy of the other
subject by concealing it via a suitable manipulation of the semantic
embedding so that the concealed subject does not appear in the
reconstructed image. Corresponding results are displayed in the third
row of Fig. 4b. Irrespective of which subject we aim to conceal and what
the subjects’ postures are, a suitable control command in the manipu-
lated semantic embedding can faithfully identify the subject whose
privacywe seek to protect and conceal it, without impacting the imaging
of the posture of the subject of interest. It is also possible to manipulate
the semantic embedding with a language-based control command that
purposefully alters the reconstructed image. For instance, the examples
displayed in the fourth row of Fig. 4b show that we can change the
postures/actions of the subjects. We can also swap the positions of the
two subjects without altering their postures (second column).

Finally, we examine the zero-shot generalization capability of the
semantically regularized compressive image reconstruction. We alter
the semantic embedding with language-based control commands that

were not seen during the training of the encoder-decoder network.
The obtained results are satisfactory, as displayed in Fig. 5a. The use of
unseen semantic commands resembling the one proposed by the
encoder network (such as “put up his right hand” instead of “raise right
arm”) yields almost identical reconstructed images. We also investi-
gate the use of three similar semantic commands that are clearly dis-
tinct from the semantic embedding proposed by the encoder network,
and only the first of the three was included in the training dataset. All
three yield very similar reconstructed images in line with the seman-
tically requested modification. The relation between the ground-truth
and the unseen new semantic embeddings is visualized on a t-SNE
scatter plot in Fig. 5b. The generalization capabilities evidenced in
Fig. 5a are very important in sight of the cost of annotating microwave
measurements to create sufficient labeled training data—a task that is
extremely labor intensive and whose complexity rises significantly as
the number of labels increases.

Experimental results for 4D compressive microwave meta-
imaging
We now apply our semantic regularization strategy to a yet more
challenging 4D compressive meta-imaging problem in which we seek

Fig. 3 | Representative results specifically on the incluence of semantics for
prototypical EM inverse scattering problems. a Impact of increasingly detailed
semantic priorson the reconstruction. Eachsemanticprior is printed in thebox and
the corresponding MSE values are indicated as bar plot. b Assessment of the
dependence of data misfit (blue, left vertical axis) and reconstruction quality (red,
quantified by MSE, right vertical axis) on how similar the utilized semantic prior

LLMð‘Þ is to the ground-truth semantic prior α0 (horizontal axis). c 16 selected
examples from the analysis underlying (b) are displayed. The top row displays the
microwave measurements and the second row shows the corresponding ground-
truth permittivity distributions. The subsequent four rows display the recon-
structions with different semantic priors. The examples highlighted with red
dashed boxes correspond to the use of the ground-truth semantic prior.
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Fig. 4 | Selected experimental results of semantically regularized 3D com-
pressive microwave meta-imaging. a Front-view and back-view of the program-
mable metasurface (1.3 × 1.7m2). The insets show the programmable meta-atom
design and the FPGA-based micro control unit (MCU). b Imaging results for a
3 × 2m2 scene containing two freely moving human subjects in a laboratory
environment. Optical images of five representative scenes are shown in the first

row. The semantic embeddings proposed by the encoder network are used for the
reconstructions shown in the second row and indicated there. Different colors
represent 24 different body parts. The third and fourth rows show reconstructed
images based on altered semantic embeddings that seek to conceal one subject
(third row) or alter the subjects’ postures/actions (fourth row).
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to monitor the spatial-temporal behavior of Sam and Jack in our
laboratory environment. The two subjects act continuously and freely
in this realistic indoor environment, including actions like hugging,
shaking hands, stretching, opening and/or closing drawers, moving
objects, etc. In contrast to the 3D imaging problem considered in the
previous section, the inputs and outputs are sequences of microwave
measurements and 3D images, respectively, in the 4D case. The
semantic embedding α0 needs to be consistent with the dynamic
action. Correspondingly, the encoder-decoder network needs to be
modified such that it is suitable for dealing with these modified inputs
and outputs (see details in Supplementary Note 1). We represent the
subjectswith 19-point 3D skeletons andmodel the indoor environment
with a 3D visual-semantic map such that a given coordinate (e.g.,
(1.3m, 1.2m, 0.8m)) can be associated with a semantic coordinate
(e.g., “at the left side of the chair”)58 (see Fig. 6a and Supplementary
Note 10).

Representative results for the case of a single subject (i.e., Jack)
are provided in Supplementary Video 1. For the more complex sce-
narios involving two interacting subjects, representative results are
provided in Supplementary Video 2 and corresponding snapshots are
also displayed in the second row of Fig. 6b. We distinguish the two
subjects by displaying the skeletons in different colors. The high-
fidelity reconstruction of our proposed method is apparent and more
rigorouslyquantifiedby thehistogramof the rootmean squared errors
(RMSEs) of the reconstructed skeletons in Fig. 6c. The RMSE values do
not exceed 10 cm. Moreover, the algorithm simultaneously produces
accurate high-level semantic recognition results (see also the confu-
sion matrix of semantic recognitions in Supplementary Note 11).
Importantly, the semantic descriptions of the scene include details
about subjects’ identities, actions, and locations, for instance, “Sam
and Jack are shaking hands in front of computer”. Recall that this
detailed information was retrieved without infringing the subject’s
visual privacy in contrast to what would be possible with optical sen-
sing. Similar to the previous section, we can further protect the sub-
jects’ privacy by controlling the semantic component α0.
Corresponding reconstruction snapshots results are displayed in the
third row in Fig. 6bwhich arebasedonpurposefullymodified semantic
embeddings. In particular, for the same set of raw microwave signals,
by altering α0 we can change the action or position of any subject in

the reconstruction. The same observations and conclusions as in the
previous section follow also in this more challenging 4D imaging
context.

Discussion
To summarize, we introduced and demonstrated the semantic reg-
ularization of ill-posed EM inverse problems with the help of pre-
trained LLMs. We reported the implementation of regularization
that makes use of priors formulated in human natural language
rather than mathematical language. On the one hand, this semantic
regularization extends the scope of priors that can be considered to
those semantically formulated based on human reasoning and
recognition for which no simple mathematical formulation exists.
On the other hand, semantic regularization enables new forms of
privacy protection, for instance, for smart home appliances requir-
ing some level of indoor surveillance. We evidenced that suitable
manipulations of the semantic prior can conceal subjects from the
reconstruction or alter their appearance in the reconstruction.
These capabilities of semantic regularization enable the flexible
protection of privacy, e.g., when subjects other than that of interest
to the smart home appliance are present. We have implemented the
proposed semantic regularization with an encoder-decoder network
and applied it to a numerical prototypical 2D inverse scattering
problem as well as experimental 3D and 4D compressive imaging
problems based on microwave programmable metasurfaces. Our
experiments are of direct technological relevance to emerging
concepts for smart homes, touchless human-machine interaction,
and security screening. Moreover, our work provides new con-
ceptual perspectives on the regularization of inverse problems that
can be explored even beyond the considered EM context, as shown
in Supplementary Note 14 for an illustrative example in the area of
reservoir fluid mechanics.

Methods
Training the encoder-decoder network
The architecture of the encoder-decoder network is summarized in
Fig. 1b and further detailed in Supplementary Note 1. To train the
encoder-decoder network, we proceed in three steps. In the first
step, a large-scale labeled triplet dataset fxi,yi,‘i; i= 1,2, . . . ,Mg is

Fig. 5 | Selected experimental results specifically aimed at the zero-shot gen-
eralization capability of the semantically regularized 3D compressive micro-
wave meta-imaging. a Reconstructions based on semantic embeddings including
unseen language-based control commands to manipulate the reconstruction. ‘0

corresponds to the original semantic embedding α0
0 proposed by the encoder

network; ‘1-‘3 correspond to the changed semantic embeddings α1
0-α

3
0 which have

similar meanings as α0
0 but are not included in the training dataset; ‘4-‘6 corre-

sponds to the changed semantic embeddings α4
0-α

6
0 which are semantically similar

but different from α0
0, and only α4

0 is included in the training dataset. b T-SNE
scatter plot visualizing the resemblance of the semantic embeddings considered in
(a), i:e:,α0

0 � α6
0.
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Fig. 6 | Selected experimental results of semantically regularized 4D com-
pressive microwave meta-imaging. a 3D visual-semantic map of the indoor
environment. b Snapshots of 4D imaging results for different laboratory scenes
involving two freely acting human subjects. The corresponding optical images are
shown in the first row and the reconstructions based on the semantic embedding
proposed by the encoder network are shown in the second row. The text in

parentheses describes the body language meaning of the action. The third row
shows snapshots of semantically altered reconstructions, and the corresponding
modified semantic controls are indicated. c Histogram of the RMSE distribution
comparing the reconstructed 4D skeletons to the corresponding ground truths,
based on 10,000 samples for testing.
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collected and subsequently used to train the encoder-decoder net-
work. Considering that the ill-posed inverse problem has an infinite
number of non-meaningful solutions, i.e., the encoder most likely
yields unsuitable semantic embeddings, we integrate the encoder-
decoder network as generator together with a discriminator into a
GAN in order to fine-tune the semantic embedding produced by the
encoder. To this end, in the second step, we collect on-line a large
sample of semantic embeddings generated by the encoder network
and manually evaluate their meaningfulness, assigning “1” and “0”
for correct and incorrect labels, respectively. Then, in the second
step, we leverage this new labeled dataset to train the GAN’s dis-
criminator that serves as a rewardmodel: it is responsible for scoring
the similarity between the semantic embedding output from the
GAN’s generator (i.e., the encoder-decoder network) and the inten-
ded semantics. In the third step, inspired by reinforcement learning53

or embodied intelligence23–26, we continuously fine-tune the GAN’
generator and discriminator.

Inverse scattering modeling
We consider a prototypical 2D inverse scattering problem with TM-
polarized monochromatic illumination Ein. As displayed in Fig. 2a, a
nonmagnetic scattering object with relative permittivity distribution
εrðrÞ lies inside the DoI, whileNin transmitters and Ns receivers are
uniformly distributed along the circle Γ surrounding the DoI. The
object is successively illuminated by Nin transmitters, and the scat-
tered fields Es are acquired by Ns receivers for each illumination. The
relevant equations read2,3,38:

Es rð Þ= jωε0
Z

DoI
gðr,r0Þχðr0ÞEt r0ð Þdr0,r 2 Γ : ð3Þ

Et rð Þ= Ein rð Þ+ jωε0
Z

DoI
gðr,r0Þχðr0ÞEt r0ð Þdr0,r 2 DoI: ð4Þ

Herein, g r,r0ð Þ= � ωμ0
4 H 2ð Þ

0 ðk0 r� r0j jÞ is the 2D Green’s function in free
space, H 2ð Þ

0 is the second-kind zeroth-order Hankel function,
χðr0Þ= εrðr0Þ � 1, and ω is the angular frequency. The primary purpose
of the inverse scattering problem is to reconstruct the distribution of χ
within the DoI from the measurements Es along with the correspond-
ing illumination information Ein. For our numerical implementation,
the DoI is evenly divided into a Nx ×Ny square grid. Further details are
provided in Supplementary Note 3. Besides, we here would like to
highlight that the proposed semantic regularization strategy could be
readily integrated into conventional iterative inverse scattering
approaches to remarkably improve the latter’s performance. For
instance, we developed the semantic-integrated Born iterativemethod
(BIM) to improve theBIM’s performance in termsof the reconstruction
quality and the convergence behavior, as shown in Supplementary
Note 12.

Compressive metasurface camera
The compressive metasurface camera is a software-defined system
enabling high-frame-rate EM sensing. It consists of a programmable
metasurface, a low-cost commercial software-defined radio device
(Ettus USRP X310), a transmitting antenna, a three-antenna receiver
and a host computer. Both the USRP and metasurface communicate
with the host computer via an Ethernet connectionwith a transmission
control protocol (TCP); meanwhile, the USRP communicates with the
metasurface via I/O series communication. The host computer is
responsible for selecting the control patterns and communicates them
to the metasurface through the FPGA module; at the same time, it
sends a command signal to the USRP in order to synchronize its
transmitting and receiving channels.

The programmable metasurface is an ultrathin 2D array com-
posed of meta-atoms with individually controllable reflection

properties. In our implementation, the programmable metasurface is
composed of 3 × 3 identical metasurface panels, and each panel con-
sists of 8 × 8 meta-atoms. The size of the designed programmable
meta-atom is 54 × 54mm2. Each meta-atom contains one PIN diode
which enables the meta-atom to switch between two distinct EM
response states. Specifically, the reflection phase response changes by
roughly 180° around 2.4 GHzwhen the PIN diode is switched fromOFF
(ON) to ON (OFF), while the reflection amplitude remains almost
unaltered. The bias voltages of the PIN diodes are controlled by a
FPGA-based micro-control-unit with clock of 50MHz. More details are
provided in Supplementary Note 9.

Data availability
The data that support the findings of this study are available within the
supplementary files.

Code availability
Code that supports the findings of this study is available within the
supplementary files.
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