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Computational reconstruction of mental
representations using human behavior

Laurent Caplette 1 & Nicholas B. Turk-Browne 1,2

Revealing how the mind represents information is a longstanding goal of
cognitive science. However, there is currently no framework for reconstruct-
ing the broad range of mental representations that humans possess. Here, we
ask participants to indicate what they perceive in images made of random
visual features in a deep neural network. We then infer associations between
the semantic features of their responses and the visual features of the images.
This allows us to reconstruct the mental representations of multiple visual
concepts, both those supplied by participants and other concepts extra-
polated from the same semantic space. We validate these reconstructions in
separate participants and further generalize our approach to predict behavior
for new stimuli and in a new task. Finally, we reconstruct the mental repre-
sentations of individual observers and of a neural network. This framework
enables a large-scale investigation of conceptual representations.

Revealing the information contents ofmemory is central to elucidating
the mechanisms underlying cognition. For example, categorization
requires the match of stimulus features to a memorized representa-
tion, prediction relies on the transfer of memorized information to
sensory areas, and learning updates memorized representations to
incorporate new information. Knowing what information is repre-
sented is a necessary part of understanding at an algorithmic level how
the brain performs a particular task: one cannot know how the mind
works without relating specific behaviors to specific stimuli1–3. Acces-
sing the content of mental representations is necessary to understand
the human mind because it allows us to link sensory features to
behaviors. Such knowledge can in turn inform models of human
behavior that make specific predictions. For example, understanding
which features are part of someone’s mental representation of the
concept “trustworthy” helps us to predict how they will act in social
interactions with different individuals. Characterizing mental repre-
sentations is not easy, however, as they are not directly observable.

One way to understand the behavior of a black box like this is by
probing it with noise4. This idea is the basis of the reverse correlation
paradigm5–7. In the purest form of this paradigm, participants are
shown randomnoise (e.g., pixel noise) on every trial but told that there
is a hidden signal on half of the trials (e.g., the letter s) and that they
must respond when they think the signal was shown8. Averaging the

stimuli associated with these “superstitious” detections reveals the
mental representation of that signal, unbiased by external input. This
approach has been used to recover representations of letters, facial
expressions, and 3D patterns8–11. Findings from these and related
methods informed and validated models and theories of letter iden-
tification, universality of facial expressions, and trustworthiness judg-
ments, among other aspects of cognition10–13. One prominent
disadvantage of this method however is that it typically requires
thousands of trials per observer and is limited to artificial or simple
target signals that always have the same pixel representation.

Natural visual categories aredefinedby abstract features invariant
undermany linear and nonlinear image transformations, rendering the
traditional pixel-based reverse correlation approach inappropriate for
capturing their representations. Instead, random sampling of features
learned by intermediate layers of convolutional neural networks
(CNNs) – CNN features, for short –might be more appropriate for this
goal. CNNs are deep neural networks that can be trained on thousands
ormillions of natural images to learn abstract features that allow them,
among other tasks, to categorize objects with a high accuracy14. Fea-
tures from intermediate layers can correspond to object parts or
complex textures that map to multiple representations in pixel space
(e.g.,multiplepotential colors, shapes, andorientations)15,16.Moreover,
these features have been found to predict the brain activity ofmid- and
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high-level areas of visual cortex in response to natural images better
than previous models17–19. Recent neuroimaging experiments have
exploited this finding to recover mental representations of natural
images20–24 or to construct superstimuli thatmaximize the activity of a
given brain region25,26. By relating CNN features and brain responses,
new brain responses can be translated into vectors of CNN feature
values (representing how much each CNN feature is associated with
these brain responses), which can in turn be used to reconstruct
images corresponding to the visual contents of the brain. Existing
studies have followed this approach to reconstruct mental repre-
sentations of stimuli currently available from the external environ-
ment. However, recovering internally generated representations has
proven more challenging (e.g., with imagined stimuli24,27.

Of course, CNN features have reduced expressiveness compared
to pixels: whereas sampling pixels can allow the reconstruction of any
image, sampling CNN features limits the space of possible recon-
structions. At the same time, CNN features may be closer to the fea-
tures represented in the humanbrain thanpixel RGB values (e.g., visual
areas are known to be sensitive to combinations of pixels invariant to
several transformations rather than individual pixels), and so the
subspace of images that canbe reconstructedmay bemore relevant to
capturing representations of natural categories. CNN featuresmay not
be the most appropriate features, however. Although CNNs can pre-
dict human behavior and brain activity well in some tasks with natural
images, they struggle when stimuli are altered by experimenters28–30.
Parameters of 3D generative models may be more appropriate
features28,31. However, such models are currently restrained to pre-
defined categories (e.g., faces32–34). An alternative is the use of adver-
sarially robust CNNs: although imperfect, these networks are more
robust to manipulations by experimenters than traditional CNNs and
their features seem closer to the ones represented by humans35,36.

An additional drawback of reverse correlation studies is that they
focus on reconstructing a limited number of predefined stimuli8–11. A
more general, ambitious, and potentially fruitful approachwould be to
recover a functionmapping the labels of all natural visual categories to
visual features (see also refs. 37,38). Because both category labels and
visual representations can be conceptualized as being positioned in
continuous multidimensional spaces, such a mapping might be com-
putable. Moreover, it might be feasible to recover it, or a good
approximation, with a reasonable amount of data. Indeed, because
multiple labels are semantically related or interchangeable, the
semantic space of relevant category labels is relatively low-
dimensional39–41. Similarly, because multiple images depict the same
category, the space of relevant visual representations is also relatively
low-dimensional42–45.

In this study, we aimed to recover and visualize the representa-
tions of an arbitrarily large number of complex natural concepts. We
focussed on natural concepts because, to have a model of human
behavior in the realworld, oneneeds to uncover the representations of
useful real-world categories. Most importantly, we aimed to uncover a
powerful method that would allow us to reconstruct many repre-
sentations because this is a step toward a general model of human
behavior. Focussing on the representation of a single category would
allow us to understand and predict behavior pertaining to that cate-
gory but may not inform us about other categories. Accessing many
representations could allow us to study qualitatively different and
more general questions, such as the optimality of representations
overall, their dimensionality, and how they cluster together, for
example. Finally, we aimed to reconstruct representations in single
individuals. A method that achieves this aim would allow us to study
inter-individual differences in representations and their origins, for
example by relating these differences to distinct developmental,
social, or cultural factors.

We developed a method that generalizes reverse correlation in
terms of both sensory inputs (stimuli) and behavioral outputs (labels).

First, instead of sampling pixels, we pseudo-randomly sampled the
features of an adversarially robust CNN, i.e., the abstract features to
which the channels of this CNN respond. The result is a vector of CNN
feature values, i.e., a vector of values associated with each feature.
These serve as our target feature values for the creation of a stimulus:
on each trial, we iteratively optimized an image so that its CNN feature
values corresponded to these target feature values. (Note that we refer
to this process as sampling CNN features for simplicity, even though
we cannot directly sample them and must resort to an iterative opti-
mization procedure; see Methods: CNN-noise stimuli.) The final opti-
mized image is a mix of random CNN features in which no object is
clearly visible (CNN-noise stimulus; Fig. 1a). Then, rather than focuss-
ing on one or a small set of predefined categories, we asked observers
to write any category (between one and three) they perceived in the
stimuli, andwe transformed their responses to semantic feature values
using a pretrained word embedding (Fig. 1b). Such an embedding
maps words to features in a continuous multidimensional space
according to their semantic content. This experimental paradigm
allowed us to relate the entire semantic space of category labels to the
visual space of CNN intermediate layer features, and thus to retrieve
the visual features associated with any label, even ones that were not
supplied during the experiment. From the translated feature values for
a given label, we could then synthesize an image approximating the
concept’s mental representation using a procedure like that used to
synthesize stimuli. Our aim for these reconstructions was not to per-
fectly capture all features of a mental representation but rather to
create visualizations that were distinguishable from each other and
that were generalizable to other tasks.

We show that our reconstructed mental representations capture
meaningful aspects of visual concepts: separate participants recog-
nized what was depicted in the reconstructions and we could predict
behavior in a new task and for new stimuli using the representations.
Furthermore, these reconstructions differed from those of the neural
network used to synthesize the stimuli, showing that simply using the
network’s representations as a proxy for human representations is not
advisable. Finally, we observed idiosyncrasies in the reconstructions
across people, which could enable future investigations of individual-
level experiences and differences. In sum, we developed an approach
that allows conceptual representations in the human mind to be
visualized and interrogated.

Results
Relating visual and semantic features
Participants provided an average of 2.17 labels per stimulus. After
corrections and removal of invalid responses (single characters,
numbers, stop words as defined by the NLTK Python library46, and
words unrecognized by the word embedding), this corresponded to
2578 unique words, of which 369 were provided at least 10 times each
(Fig. 2a; Fig. S5; Table S1). The most frequent words were grass (607
responses), sky (592), tree (450), dog (355) and bird (355). Although
most responses were objects or concrete things, there were some
more abstract concepts. Looking at the 350 validated labels (labels
named 10 times or more and labels from the Visual Genome database;
see below), four labels (1.1%) were not nouns (green, white, black, and
dark) and an additional eight (2.3%) were clearly not basic-level (ani-
mal, building, clothes, furniture, fabric, buildings, container, and
vehicle). All words were included in the analyses.

We transformed each word into semantic feature values using a
pretrained word embedding, averaged these vectors of feature values
into a single one per stimulus, and reduced the dimensionality of these
average semantic feature values using principal components analysis
(PCA). The resulting principal components (PCs) are reduced repre-
sentations of the semantic content of the stimuli as perceived by the
observers. We also used PCA to reduce the dimensionality of the
vectors of CNN feature values associated with the stimuli. Finally, we
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inferred the linear associations between the semantic PCs and theCNN
PCs (Fig. 1c). The result is a visual-semantic matrix indicating how
much eachCNN PC is related to each semantic PC (Fig. 2b). There were
67 significant associations (Z < −4.76 or Z > 4.75; p <0.05, two-tailed,
FWER-corrected): 21 unique CNN PCs were positively and negatively
associated to 14 unique semantic PCs. The most important semantic
andCNNPCs, alongwith their associations, are visualized in Fig. 2c. For
example, a semantic PC associated with nature concepts (PC #2) is
strongly correlated with CNN PCs that partly code for grass-like and
water-like textures (PCs #1, #4 and #7). Similarly, a semantic PC asso-
ciated with humans/animals (PC #3) is related to CNN PCs seemingly
representing skin textures, fur textures, and animal faces (PCs #2, #4
and #5). Our visual-semantic matrix further allows us to uncover and
visualize the words most associated with a given CNN PC, improving
the interpretation of features (Fig. 2d). This specific visualization
method could be applied to units of different neural networks to aid
explainability47 and reduce observer bias.

Reconstructing mental representations of visual concepts
Using the visual-semantic matrix we inferred, we can now retrieve the
CNN feature values associated with any concept. Specifically, we first
retrieve the semantic feature values associated with a specific concept
label using thewordembedding andweuse our visual-semanticmatrix
to retrieve the associated CNN feature values. Importantly, these
values can then be supplied for reconstruction, with the resulting
imagebeing an approximate visualizationof themental representation
of the concept (successful reconstructions and failure cases are seen
on Figs. 3a, b, respectively).

We validated the reconstructed representations of 350 words in
an additional behavioral experiment: the 250wordsmost-named in the

experiment plus the top 100 most frequent words from the Visual
Genomedatabase48 labeled less than 10 times byparticipants (and thus
not part of the 250 most-named). On each trial, 50 participants were
showna reconstruction andhad to choosebetween two labels: the true
label and an incorrect label randomly chosen among the labels of the
other reconstructions24. Note that because the non-matching label was
chosen randomly and that there were few non-basic-level category
labels, nearly all comparisons were between two basic-level category
labels. The reconstructions for the 250 most-named words were
recognizedwell on average, with amean accuracy of 88% (significantly
above chance, p <0.001, one-tailed). For the 100 additional frequent
concepts from the Visual Genome database, the mean accuracy was
74% (p < 0.001, one-tailed).When considering all validated labels in the
Visual Genome database, irrespective of whether they were named
more or less than 10 times during the experiment (209 concepts), the
mean accuracy was 84% (p <0.001, one-tailed). Overall, 270 concepts
(out of the 350 that were validated) were individually recognized sig-
nificantly above chance (accuracy >75%; p <0.05, one-tailed; Fig. 3c).
This proportion of significant concepts was higher than would be
expected by chance (random resampling of participants to create an
empirical null distribution, p <0.05, one-tailed, FWER-corrected).
Within the 100 concepts named less than 10 times by participants, 47
were individually significant. Among best recognized concepts were
bird, building, and people, with accuracies of 100%. Worst recognized
were jeans, white, and feet (38%, 30%, and 25%, respectively).

We also performed an additional, more stringent, validation task
in which a new set of 50 participants spontaneously labeled 100
reconstructions. Specifically, each participant was shown the recon-
structions of the 100 most-named concepts and had to provide 3
potential labels for each reconstruction. For each reconstruction,
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Fig. 1 | Experimental methods and analyses. a Illustration of the stimulus
synthesis procedure. Random samples are drawn from uncorrelated distributions.
A coloring (inverse whitening) transform is applied to cast these samples to the
original CNN feature space (these are the target CNN feature values). An image is
iteratively optimized from noise so that its actual CNN feature values are similar to
these target CNN feature values. The result is referred to as a “CNN-noise” stimulus
(i.e., a stimulus whose CNN feature values are pseudo-random) and will be used in
the experiment. Some stimulus examples are shown at the bottom of the panel.
M.S.E. = Mean squared error. b Experimental paradigm. On each trial, a CNN-noise
stimulus is shown to a participant for 5 s. The participant then writes 1–3 labels
indicating what was perceived in the stimulus. These labels are transformed into a

vector of semantic feature values summarizing the semantic content of the sti-
mulus as perceived by the observer. c Overview of the analyses. Visual repre-
sentations and CNN-noise stimuli lie in a high-dimensional space of CNN features
(visual space). Label responses lie in a high-dimensional space of semantic features
(semantic space). We can infer a mapping between these spaces by taking the
matrix product of the v (CNN visual features) × t (trials)matrix of stimuli and the t ×
s (semantic features)matrix of responses. The result is a v × s visual-semanticmatrix
indicating how each CNN feature is related to each semantic feature. Gray shaded
areas indicate an example CNN feature and its values across trials (left), an example
semantic feature and its values across trials (middle), and their association inferred
by the visual-semantic matrix (right).
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participants wrote many different labels. On average, there were 68.9
unique labels per concept (standard deviation across concepts = 16.3).
Despite the greater difficulty of this task, several concepts were
recognizedwith high accuracy: themost commonwritten labelwas the
correct label for 37 of these concepts (significantly above the 1.1 con-
cepts that would be labeled correctly on average by chance; tested
with random permutations of participant responses across recon-
structions, p <0.001, one-tailed; 95% C.I. = 28–47). Results were con-
sistentwith thefirst validation study: all 37 conceptswere among those
successfully recognized in that study. The most successful concepts
included bird, tree, and people (correctly answered by 49, 47, and 46
participants, respectively). This test relies on writing the exact correct
label, however. To account for participants writing inexact but closely
related labels, we analyzed the semantic features of the responses and
how similar they were to those of the true labels. Strikingly, we found
that responses that were close to the true label in semantic space were
more frequent than responses thatwere far in semantic space for 85 of
the 100 validated concepts (inverse linear relationship between
response semantic distance and frequency, significance tests of the
slope coefficients, all t(150) < –3.68, dz > 0.30, p <0.05, one-tailed,
normality assumed, FWER-corrected).

It was possible to reconstruct many closely related concepts. A
visual inspection shows that subtle differences in visual features
between these can apparently still be revealed, although additional
validations would be necessary to conclude this with certainty (Fig. 4).
This also seems to be true for singular and plural forms of the same
concept, with more smaller repetitions of the concept across the
image when the plural form of a given word was input (Fig. 4f). Note
that 270 does not seem to be the upper bound of the number of

concepts that can be reconstructed: other words can be input that
result in seemingly successful reconstructions (e.g., pond, bushes and
shark on Fig. 4) although, again, we cannot know for sure without
validating them too.

We conducted several control analyses. First, to verify that there
was no bias toward the reconstructed concepts inherent in our
reconstruction method, we reconstructed concepts after randomly
permuting the vectors of semantic features across trials (disrupting
visual-semantic associations). As expected, the reconstructions were
greatly altered by this shuffling and they varied widely depending on
the specific permutation, showing that our results are not an artifact of
themethod (Fig. 5a). To quantify this and further validate ourmethod,
we recruited another group of 25 participants to label some of these
null reconstructions, in addition to real ones. Specifically, four images
were chosen for each concept: the real reconstruction and three ran-
dom null reconstructions associated with the same concept. Because
of the larger total number of stimuli for this experiment, 45 concepts
were randomly chosen among the 100 most-named concepts and
participants could provide one label for each image. The correct label
was given to the real reconstructionmore often than to any associated
null reconstruction for 78% of concepts (35/45 concepts; significantly
above chance, p <0.001, one-tailed; 95% C.I. = 29–40).When analyzing
responses as vectors in a continuous semantic space (to account for
the fact that some responses are more similar than others), the
responses given to real reconstructionswere semantically closer to the
correct label than the responses given to associated null reconstruc-
tions for 98% of concepts (44/45 concepts; significantly above chance,
p <0.001, one-tailed; 95% C.I. = 42–45). In addition, responses were
more consistent (i.e., lower entropy of the response probability

C
N

N
 P

C
s

Semantic PCs

1

1

11

21

31

41

51

6 11 16 21 26

Z

Semantic #1 Semantic #2 Semantic #3 Semantic #4 Semantic #5

CNN #1 CNN #3 CNN #4 CNN #5

a

b

c Semantic #6

CNN #2 CNN #6 CNN #7 CNN #8

CNN #1 CNN #2 CNN #3d CNN #4 CNN #5 CNN #6 CNN #7 CNN #8

20

10

0

–10

–20

–30

30

Fig. 2 | Relating visual and semantic features. aThe 100most common responses
provided by participants. The size of the word is approximately proportional to its
frequency. b Illustration of the significant associations between the first 60 CNN
principal components (PCs) and the first 30 semantic PCs (p <0.05, randomization
test, two-tailed, FWER-corrected). c Detail of the significant associations between
the first 6 semantic PCs and the first 8 CNN PCs. The color of the curves represents
the strength and polarity of the association (see scale in (b)), and the thickness is
proportional to its absolute value. Semantic PCs are summarized by the 5 words
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proportional to closeness). CNN PCs are summarized by both a synthesized image
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ciated with each CNN PC are shown (word size approximately proportional to
closeness).
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distribution) for real reconstructions than any associated null recon-
struction for 80% of concepts (36/45 concepts; significantly above
chance, p <0.001, one-tailed; 95% C.I. = 31–41), and their variability in
semantic space (i.e., the trace of the covariancematrix) was smaller for
real reconstructions thanany associated null reconstruction for 89%of
concepts (40/45 concepts; significantly above chance, p <0.001, one-
tailed; 95% C.I. = 35–44), suggesting that real reconstructions con-
tained more readily perceived meaning.

We then reconstructed images from the same CNN feature values
using different seeds, to visualize the impact of the random seed used
for reconstruction. Although slight differences can be observed, these
concern mostly the location of the features across the image (Fig. 5b).
Following this, we visualized the uncertainty associated with the CNN
feature values. To do so, we obtained the lower and upper bounds of
95% confidence intervals around the CNN feature values and recon-
structed images from these. The true reconstruction is likely to fall
between these bounds and so these images give more information
about the true representation than the reconstruction from the
observed feature values alone (Fig. 5c).

Finally, we analyzed the impact of the semantic embedding on
reconstructions. We first assessed whether we could reconstruct the
representation of a concept without using the concept’s name, by
relying on other words to learn the visual-semantic matrix. For each
reconstruction,we removed all responses that contained the concept’s
name and re-ran all analyses. The resulting reconstructions were quite
similar to the originals (Fig. 5d), even for the 10 most-named words
(correlations of 0.63–0.92 between the CNN features from both ana-
lyses for the top 10 words; Z = 3.29–4.16; all p <0.001, one-tailed,
FWER-corrected; mean r = 0.85, 95% C.I. = 0.840–0.852). This perfor-
mance is notable given that we expected these most-named concepts
to be most affected by this analysis (because many of the original
responses that contributed to their reconstructions were removed), in
contrast to less-named concepts for which fewer responses were
removed by definition. We then repeated the analyses without using a
semantic embedding at all (Fig. 5e). Specifically, for each

representation to reconstruct,we repeated the analysiswhile replacing
the semantic feature values of a stimulus with a 0 or 1 indicating
whether the concept was labeled on that trial (see Methods: Investi-
gation of the effect of the semantic embedding). This analysis was
feasible only for words that were named frequently. We postulated
that, for these frequent words, the representation uncovered by this
analysis would closely approximate the true representation. The
representations uncovered by our main analysis thus need to be close
to these representations. Indeed, reconstructions were similar and
CNN feature values for the 10 most-named concepts were strongly
correlated with those obtained for these concepts in the main analysis
(correlations of 0.91–0.99; Z = 3.75–5.16; all p < 0.001, one-tailed,
FWER-corrected; mean r = 0.96, 95% C.I. = 0.961–0.964; Fig. 5e). Cor-
relations declined as label frequency decreased (Log frequency
explains 64% of the variance in Fisher-transformed correlation over all
words named 10 times ormore; 95%C.I. = 0.633–0.652; p <0.001, one-
tailed).One advantage of the semantic embedding is to extend beyond
these frequent cases to reconstruct representations of less common
labels, or even labels not generated in the experiment.

Predicting semantic content and similarity judgments
We then tested whether our visual-semantic matrix could predict
behavior incontexts other thanour experiment. Such analyses allowus
to infer whether the matrix is general, i.e., representative of the
population and applicable to other situations.We first verifiedwhether
it could predict the semantic content of new stimuli. To do so, we
computed the semantic feature values associatedwith the five practice
stimuli that all observers saw (and thus for which the semantic content
could be estimated reliably) and that were not used to create the
matrix. We then tried to predict these feature values based only on the
visual content of the images, using our visual-semanticmatrix (Fig. 6a).
We obtained an average cosine similarity of 0.30 (95% C.I. = 0.17–0.41;
Z = 20.13; p <0.001, one-tailed; individual cosine similarities ranged
from 0.09 to 0.49) between the predicted and true semantic feature
values, indicating that our matrix can generalize to new stimuli.
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We also assessed whether we could predict the stimuli that have
been classifiedbyparticipants as depicting a specific concept. To avoid
circularity49, we used the set of stimuli and responses from the indi-
vidual representations experiment (see below). For each concept, we
predicted the stimuli most likely to have been classified as containing
the concept and compared these predictions to ground truth (Fig. 6b).
When doing this with the 10 most-named concepts, our predictions
were better than chance for 9 of 10 concepts (all except eyes; Dice
coefficients = 0.19–0.64; Z = 2.16–11.39; p ranged from <0.001 to 0.15,
one-tailed, FWER-corrected). Even stimuli predicted as containing a
concept but for which the concept was not labeled seemed to include
it in many cases (e.g., see incorrect predictions for grass, sky, tree, and
water in Fig. 6b). This suggests that some of the prediction errors

reflect amisestimation of the semantic content of the stimuli (because
of too few participants/responses) rather than an inaccurate visual-
semantic matrix. Overall, this result indicates that our visual-semantic
matrix can be used to infer the semantic content perceived in new
images.

Finally, we wanted to explore whether our matrix could predict
human behavior in other tasks. To do so, we verified whether the
similarity structure of the visual representations uncovered with our
visual-semantic matrix predicts how independent observers judge
similarity between concepts (Fig. 6c). Participants placedwritten visual
concepts on a 2D plane according to their semantic similarity (data
from ref. 50). Even though participants were instructed to use
semantic information tomake their judgments, we predicted that they
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would still use visual information and that we might capture a unique
part of the total variance. Indeed, the visual representations RDM
correlated strongly with the similarity judgments RDM (ρ = 0.56; 95%
C.I. = 0.458–0.647; Z = 20.04; p <0.001, one-tailed) and this correla-
tion was stronger than with the RDM based on semantic representa-
tions (ρ =0.48; 95% C.I. = 0.357–0.591; significantly weaker, Z = 2.41;
p =0.024, two-tailed), indicating that visual similarities better explain
semantic similarity judgments than semantic embeddings trained on
word co-occurrences. Together, these results suggest that repre-
sentations uncovered with our visual-semantic matrix generalize
beyond our observers, task, and stimuli.

Investigating the representations of the deep neural network
We then aimed to determine whether human representations were
different from the representations of the neural network used for
image synthesis. This is important for several reasons. First, uncover-
ing differences between the representations of humans and of a deep
neural network (DNN) would show the added value of ourmethod and
that using a DNN’s representations as a proxy for human representa-
tions is insufficient. Moreover, it would reveal that our method is a
useful tool to analyze representations of artificial neural networks, in
addition to human representations, and potentially to compare
representations of different DNNs to each other (to identify the ones
that capture behavior better). To achieve this, we repeated the
experiment but used as the responses for each stimulus the labels of
the three classes (out of the 1000 ImageNet classes) that the network
estimated had the highest probability of being depicted in that

stimulus. We reconstructed the network’s representations in the same
way as we did for the human representations. Resulting reconstruc-
tions often look superficially similar to reconstructions of human
representations but with the concept made less clear or even uni-
dentifiable (Fig. 7a). We then analyzed whether representations were
significantly different between groups (humans vs. DNN) while
accounting for different noise levels. Specifically, we projected the
visual-semantic matrices of both humans (Fig. 7b) and the network
(Fig. 7c) to a common semantic space, divided the data in halves, and
compared the features of representations within and across groups.
Visual features were more correlated within group (rwithin, DNN = 0.85;
rwithin, human = 0.56; rbetween = 0.49 and 0.46; rwithin, mean = 0.70 vs
rbetween, mean = 0.48; 95% C.I. = 0.701–0.705 vs 0.477–0.483; Z = 8.73;
p <0.002, two-tailed), suggesting limits in the correspondence
between DNNs and humans (see also, e.g., ref. 51).

Revealing representations of single individuals
Interindividual differences in mental representations have been
documented in several cases11,52,53. Being able to reveal suchdifferences
is a strength of methods using human data (behavioral, as in reverse
correlation experiments, or neural, as in brain reconstruction para-
digms). Using a neural network or other model as a direct way to
generate images, despite having tremendous value, will never capture
such representational idiosyncrasies. Indeed, a single model cannot
capture the subtle biases and particularities of the representations of
specific individuals. To assess whether our method can reveal how
conceptual representations vary across individuals, we asked 8
observers to each perform750 trials of the experiment over the course
of several days (all observers saw the same stimuli). We reconstructed
representations as before but now for each individual. For the most
frequently labeled concepts, reconstructions largely succeeded
despite visibly higher levels of noise (Fig. 8a). When visualizing an
approximation of the structure of all representations on a 2D plane,
representations of a given concept for different participants were
clustered (Fig. 8b). Nevertheless, there were differences, as repre-
sentations for some concepts were more scattered than others (e.g.,
water,field, and sky in Fig. 8b). To assesswhether representationswere
truly individually unique and stable, we performed an analysis like the
one performed to compare human and CNN representations, com-
paring within-individual to between-individual correlations of CNN
feature values. CNN feature values weremore similar within individual
(r = 0.22 vs 0.11; 95% C.I. = 0.195–0.243 vs 0.104–0.124; Z = 15.00,
p <0.002, two-tailed), creating the possiblity of using this approach to
characterize individual differences in visual concepts and semantic
memory. Future research should investigate these representational
differences, their origins, and their impact on behavior (e.g., accuracy
and response times in object recognition tasks) in more detail.

Discussion
In this study, we reconstructed the contents ofmental representations
of complex natural categories from purely behavioral responses.
Specifically, we synthesized images that were random mixes of
abstract visual features, mapped these features to visual categories,
and visualizedmental representations of these categories.Ourmethod
allowed us to successfully reconstruct the representations of several
concepts. Seventy percent (270/350) were recognized above chance
against other reconstructions in a 2AFC task and 37% (37/100) were
accurately labeled in an open-ended labeling task. When analyzing the
semantic content of labels, 85% (85/100) were well recognized, with
semantically related responses beingmore frequent than semantically
distant responses. We were able to recover the representations of
diverse concepts, spanning multiple domains such as animals, vege-
tation, buildings, colors, materials, and objects. Importantly, it might
be possible to successfully reconstruct additional concepts; we could
only validate a finite subset of all possible representations.
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Fig. 5 | Control reconstructions and analyses, for 3 of the 10 most-named
concepts. a Reconstructions using visual-semantic matrices from a null distribu-
tion. b Reconstructions from two different random seeds. c Reconstructions from
the lower and upper bounds of 95% confidence intervals (C.I.) around the observed
CNN feature vectors. d Reconstructions using visual-semantic matrices created
without the reconstructed concept’s labels. Correlations between the feature vec-
tors from this analysis and the main analysis for the three depicted concepts are
0.85, 0.87, and0.92, respectively. eReconstructions using no semantic embedding.
Correlations between the feature vectors from this analysis and the main analysis
for the three depicted concepts are 0.99, 0.97, and 0.97, respectively.
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In addition, we were also successful in predicting the semantic
content of held-out stimuli and behavioral similarity judgments from
separate observers. These results suggest that our visual-semantic
matrix generalizes beyond the confines of our experimental data to
new stimuli, observers and tasks. Furthermore, we could recover
representations of the neural network used in this study and of indi-
vidual observers. We observed that the representations of the CNN
were significantly different from those of human observers. This sug-
gests that simply using the CNN’s representations as a direct proxy for
human representations is not sufficient. In addition to modeling the
human representations more accurately, our method could also be
used to quantify the differences in conceptual representations
between different neural networks or other models. We also showed
that our method can be used to assess representational differences
across individuals, something that a single general model cannot do.
Future studies should characterize these representational differences
more fully and assess their impact on behavior, for example, whether
these idiosyncrasies affect accuracy or response time in categorization
or discrimination tasks. The developmental and sociocultural origins
of these idiosyncrasies would also be interesting to investigate.

It required an average of 37 trials (or 80 responses) to reconstruct
the representation of a concept so that it can be recognized above
chance when pitted against other reconstructions. This is a major
improvement over the 20,000 trials required to retrieve the mental
representation of a static letter s using pixel noise8. Recovering so
many representationswith so few trialswaspossiblebecause of several
methodological choices. First, allowing participants to give multiple
responses on each trial resulted in multiple data points per stimulus.
The cost in time for this increased information was smaller than

increasing the number of stimuli similarly (especially given automatic
suggestions of word completions that may have accelerated response
entry for slow typers). Second, using CNN features instead of pixels as
features dramatically constrained the search space of our experiment.
Not only is this feature space lower-dimensional than the images (1024
channels vs. 50,176 pixels), but it is more proximal to the concepts we
sought to reconstruct. The features represent object parts or complex
textures that are closer to the natural visual categories than individual
pixels. Of course, the ultimate goal is then to recreate a pixel image
from these CNN features, but this synthesis process is completely
separate from the behavioral experiment itself and it does not rely on
any human data. As a corollary, the representations of different con-
cepts are likely more separable in that space54,55. Third, treating each
responseword as part of a continuousmultidimensional space allowed
us to exploit relationships between words without needing additional
trials to retrieve the representation of each word. Indeed, in our ana-
lyses, visual features were associated with dimensions of the multi-
dimensional semantic space (i.e., semantic features) rather than
specific words. Thus, to reconstruct the representation of one con-
cept, we benefitted not only from trials in which that concept’s name
was reported, but from all trials. Fourth, we further reduced the
dimensionality of both the sampled visual space and the semantic
response space by performing principal component analyses.

Our paradigm is based on the idea of reverse correlation5,6 in
which some features are randomly sampled on every trial. This allows
us to uncover the features associated with a target concept in an
unbiasedway. Ifwewere to shownatural images of concepts insteadof
random features, our reconstructed representations would be biased
by this set of natural images. There are internal biases in our
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Fig. 6 | Prediction analyses. a Prediction of the semantic content of held-out
stimuli. Each predicted stimulus is illustrated (left) with associated responses
(middle) and the cosine similarity between the true and predicted semantic feature
values (right). The average cosine similarity is 0.30 (95% C.I. = 0.17–0.41; Z = 20.13;
p <0.001, randomization test, one-tailed) and individual cosine similarities ranged
from0.09 to 0.49. Error bars reflect standard errors of bootstrap distributions (not
of samples of individual participants). b Prediction of stimuli associated with the 10
most-named concepts. For each concept, stimuli correctly (green frame, left) and
incorrectly (red frame, right) predicted as illustrating the concept are depicted. In
each case, the depicted stimulus is the one predicted as most likely to include the
concept (i.e., whose CNN feature values are most correlated to the CNN feature
values of the concept; this correlation is indicated below each stimulus). For each
concept, the Dice coefficient, representing the accuracy of the prediction for that

concept overall, is below the name of the concept. All Dice coefficients are sig-
nificant except for “eyes” (0.19–0.64; Z = 2.16–11.39; p ranged from <0.001 to 0.15,
randomization tests, one-tailed, FWER-corrected). c Prediction of similarity judg-
ments. The rank-transformed distances between the concepts according to their
CNN feature values derived with our visual-semantic matrix (left), to behavioral
similarity judgments (middle), and to their semantic feature values derivedwith the
semantic embedding (right). Second-order correlations between the behavioral
judgments distancematrix and the other similarity matrices are indicated between
the matrices. The visual representations RDM correlated strongly with the simi-
larity judgments RDM (ρ =0.56; 95% C.I. = 0.458–0.647; Z = 20.04; p <0.001, ran-
domization test, one-tailed) and this correlation was stronger than with the RDM
based on semantic representations (ρ =0.48; 95% C.I. = 0.357–0.591; significantly
weaker, Z = 2.41; p =0.024, randomization test, two-tailed).
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representations that are not present in natural images: we typically
focus on (and therefore remember) some features more than others
(e.g., ref. 56). Using natural images would also prevent us from unco-
vering interindividual differences in representations, because most
natural images would be labeled the same way by all observers.
Interindividual differences may be mostly visible in the distinct
weighting of specific features, and they would likely not be uncovered
if the images shown comprised all relevant features. Our CNN-noise
stimuli force the participants to rely on subtle features that may be
perceived differently across observers and allow us to uncover the
edges of the representations that better reveal individual variation (in
contrast to their centers, likely to be agreeduponby everyone). Finally,
such an approach would not allow us to recover representations of
conceptswith noassociatednatural images, such asdragonor ghostor
strange. In sum, using random features allowed us to recover good
reconstructions of multiple concepts because we could sample the
relevant feature space in an exhaustive and unbiased way.

We must note however that our method is distinct from reverse
correlation in some ways. Most importantly, participants do not have
to hold a specific representation in their working memory while
viewing the stimuli, before decidingwhether the stimulus corresponds
to their representation or not. This would be more difficult for parti-
cipants to achieve with complex non-pictorial representations such as
the ones we are targeting. Rather, we ask that they label each stimulus

according to what they perceive most prominently in them. We
assume that participants have abstract representations of multiple
concepts encoded in their mind and that, to label the stimulus with a
certain concept’s label, they have perceived in it features that corre-
spond (at least partially) to their representation of that concept.
However, because of this, the features that we then retrieve with our
analyses might be incomplete or indirect reflections of the mental
representation.

Note also that conceptual representations live in a more abstract
space than the image space, with multiple images linked to a given
concept. Thus, our reconstructions are approximate visualizations—
i.e., projections onto the image plane—of mental representations.
Specifically, our reconstructed image for a concept visualizes the CNN
features most strongly associated with that concept. Indeed, the
reconstruction is optimized from the recovered feature values of the
category, indicating howmuch eachCNN feature is associatedwith the
concept. If, for example, leaves are strongly associated to the concept
tree but less so to pinecones, the reconstruction will depict a decid-
uous tree rather than a conifer, although both are part of the concept
tree in the minds of the observers.

Despite its success and potential, there are some limits to our
method. Notably, whereas sampling pixels involves directly varying
the value of the elements that constitute the image, sampling abstract
CNN features requires choices about how to design the features that
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Procrustes transformation. Overall, CNN feature values were more correlated
within group than between groups (humans vs CNN; r = 0.70 vs 0.48; 95% C.I. =
0.701–0.705 vs 0.477–0.483; Z = 8.73; p <0.002, randomization test, two-tailed),
indicating that representations were different.
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may not be optimal. Although pixels can allow the recovery of any
image, using more complex features reduces the space of possible
images and introduces some biases. These apparent drawbacks are
balanced by other, more positive consequences. First, the greater
expressiveness ofpixels is only theoretical: in practice, it would require
an unreasonable number of trials to recover representations of com-
plex targets. Second, we are not simply seeking to reconstruct existing
2D images. As noted above, representations of high-level concepts live
in a more abstract feature space, and so we are first aiming to recover
representations in that feature space, and only afterwards recreating
an image from that representation. This last step could bemodified to
recreate different—or even multiple—images, without altering the
reverse correlation aspect of the paradigm that operates in the
abstract feature space. Finally, CNN features are likely more appro-
priate features to sample than pixels if our goal is to retrieve repre-
sentations of natural concepts. In computer vision, CNNs are typically
trained to categorize objects usingmillions of image-label pairs. In this
process, the different layers of the networks learn increasingly abstract
features that ultimately map combinations of raw pixels to one of
multiple categories. These networks perform this task with near-
human or superhuman accuracy57–59, suggesting that the features they
learn are a good representation of natural images. Moreover, CNN

features of natural images predict the brain activity of participants
viewing these images with good accuracy17–19,42,60, suggesting some
correspondence between them and the features represented by the
brain (although see ref. 28,31). However, the layermust be chosenwith
care: it must not be too close to whole objects, to allow for the dis-
covery of minimally biased representations, and not too close to raw
pixels, to bemore evocative of categories and allow for amore efficient
search for representations. In future iterations of this paradigm, other
layers could be chosen, or different layers could be combined across
trials or even within trial.

Layers of other CNNs trained for object categorization (e.g., the
more recent FixEfficientNet61 or Vision Transformer62,63) or of deep
neural networks trained for other objectives, such as generative
adversarial networks (GANs)24,64, could also be used as the feature
space. In addition, using a network trained for scene categorization
might allow us to sample more complex multi-object features if we use
a relatively high layer. Training the networks on datasets that more
closely resemble the distribution of natural categories relevant to
humansmight further improve the results65. Neural networks trained on
biased datasets such as ImageNet (with an overrepresentation of dogs
and other categories) are likely to bias the features that are sampled, in
turn influencing the categories answered in an open labeling task such
as ours. Although this does not alter the set of categories that can be
reconstructed with our method (since any concept label recognized by
the word embedding can be input), categories labeled more frequently
might be reconstructed more successfully. In general, the specific
architecture, training task, training stimuli, and learning rule are all
factors that may alter the features sampled and influence our results.

Some authors have questioned the idea that any deep neural
network trained on 2D images can be a good model of human per-
ception: although suchmodels can predict human categorizations and
brain activity with some sets of images, they appear to do so using
features different from those humans use and they cannot reproduce
key findings from psychological research28,31. It is likely that 3D gen-
erative models of the physical world are necessary to accurately pre-
dict and explain human perception. For example, human-engineered
computer graphics models better explain visual perception and their
parameters (features) can be easily controlled31–34. One trade-off,
however, is that their features are restricted to the imagination of
human engineers. In the future, intermediate layers of such generative
models could be used as a feature space.

Using a word embedding in the analysis also entails caveats. As
with the choice of a visual feature space, a semantic space that is not a
good fit to how human representations are structured might hinder
the recovery of accurate representations for some categories. For
example, if the categories forest and tree are not close in the semantic
space but forest and house happen to be, the representation of the
concept forest might be biased toward the representation of the
concept house” especially if the word forest itself has not been
responded much. These word embeddings are trained on billions of
words, and they excel at performing various types of natural language
processing tasks66,67, indicating that they capture real and useful
semantic relationships between thewords.Moreover, they cancapture
at least some aspects of semantic representations in the human
brain18,50,68–70. Most importantly, our analyses suggest that the word
embedding modeled the human representational space reasonably
well: the representationsweuncoveredwere similar to representations
uncovered without using an embedding, and the embedding allowed
us to recover representations of concepts even without using the
concept’s name in the analysis (Fig. 5). It is possible however that
embeddings trained on different data (e.g., visual co-occurrences,
visual similarities or human similarity judgments)43,71–73 would model
the structure of the representations even better. Although it would
likely require more data, a nonlinear regression could also provide a
better mapping between visual and semantic features. The method
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Fig. 8 | Reconstructing individual representations. a Reconstructions of selec-
ted concepts for five participants. Shape symbols and word colors refer to panel
(b) b t-SNE plot summarizing the representational structure of the 10 most-
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Overall, CNN feature values were more similar within individual than between
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p < 0.002, randomization test, two-tailed), indicating that representations were
individually unique.
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could also be extended to phrases or sentences by asking participants
to respond with these and by using a sentence embedding (e.g.,
refs. 74,75) in the analyses. Currently, our use of a word embedding
limits us to concepts that can be defined with one-word labels. This
extension might require other improvements to the paradigm, but if
successful,would opennewpossibilities. Notably, we could investigate
whether we can generate representations corresponding to novel
combinations of objects and how these are related to the representa-
tions of the individual objects. Various compositions of individual
concepts (e.g., “hat on a dog” from “hat”, “on” and “dog”) could be
reconstructed, even if these simpler concepts have only been written
in response to distinct stimuli.

A key advance of this work is the ability to investigate conceptual
representations in their totality (modulo the caveats above), rather
than focussing on a few specific concepts. Characterizing whole
representational spaces is a central theme of cognitive computational
neuroscience76. Unlike representational similarity analysis (RSA)77, our
method not only characterizes the internal structure of these spaces
(i.e., the representational geometry), but also the exactpositions of the
representations within them (i.e., the representational content, or the
feature values associated with each concept). Note that such positions
cannot be derived from representational distances; there are in fact an
infinity of representational spaces resulting in the same representa-
tional geometry. This additional information is necessary to recon-
struct and predict representations. In that sense, our method is more
akin to encoding models used with neural data78,79. However, it is
unclear whether encoding models fit exclusively on brain activity
could retrieve unbiased mental representations of visual categories.
Our work is also related to other studies assessing the contribution of
mid-level features to the representations of high-level categories such
as real-world size and animacy80–82. However, these studies did not
attempt to relate specific featureswith categories, nordid they target a
large number of categories. This important distinction is what enables
us to analyze and reconstruct the contents of visual representations on
a large scale across conceptual space.

In addition to investigating individual differences in representa-
tional content, this approach could be used to investigate repre-
sentational differences across development, expertise levels, and
cultures. It could also provide a platform for answering questions
about mental representations more generally, such as differences
between observed and optimal representations, the relationship
between category and exemplar representations, and the influence of
different experiences on represented content. The stimulus synthesis
procedure alone could also be used in conjunction with other beha-
vioral tasks or neuroimaging experiments to answer additional ques-
tions. The objective function could be modified to edit the features of
otherwise natural images in a systematic way or to synthesize artificial
images with varying representational similarity83. Additional analyses
could also be performed on the data collected from this experiment.
Notably, even though CNN features were manipulated, we analyzed
other visual features of the reconstructions including pixels, color
channels, and the Fourier power spectrum (see Fig. S1).

In summary, we mapped visual features to semantic features to
characterize the representational space of natural categories. This
allowed us to reconstruct images to visualize representations of many
concepts in that space, even in individual participants.We also showed
that conceptual representations in humans differ from those in the
neural network used to synthesize the stimuli. Finally, the recon-
structed conceptual representations generalized to new stimuli and to
a new task. This new framework enables a global characterization of
representational content.

Methods
All studies comply with all relevant ethical regulations and were con-
ducted under a protocol approved by the Yale University Institutional

Review Board (IRB). Participants across all studies provided informed
consent before participating in the study.

Main experiment
The following experimental details were preregistered (https://
aspredicted.org/QIN_RFK; on October 12th, 2020): sample size, exclu-
sion criteria, experimental design, word embedding, CNN and layer,
regression analyses, image reconstruction procedure, and analysis of
network representations. We deviated from the preregistration in two
minorways for optimality reasons: we used a differentword embedding
and we used an external dataset (Visual Genome) instead of a cross-
validation procedure to choose concepts to reconstruct. See supple-
mental information for originally planned analyses with the word2vec
word embedding (Fig. S2). All code was written in Python, using the
NumPy (https://numpy.org)84 and PyTorch (https://pytorch.org)
libraries.

Participants. Participants (healthy adults, aged 18–35, with normal or
corrected-to-normal vision) were recruited via the Prolific platform85

(https://prolific.co) until we got a final sample size of 100 after exclu-
sions. No statisticalmethodwas used to predetermine sample size. Sex
and gender of participants were not obtained andwere not considered
to be relevant to the study. Participants that did not complete the
experiment from beginning to end or that wrote too many non-
concrete words (more than 25% of words with a concreteness rating
inferior to 4, as assessed by ref. 86) were excluded. Participants pro-
vided informed consent to a protocol approved by the Yale IRB and
were compensated 5$ for their participation.

CNN-noise stimuli. For stimulus synthesis, we used an instance of the
ResNet-50 convolutional neural network87 that was trained for object
categorization on the ImageNet Large-Scale Visual Recognition Chal-
lenge (ILSVRC) 2012 dataset58 while being robust to adversarial
examples (L2 adversarial loss, eps = 3.0; available at https://git.io/
robust-reps)88. Robust training seems to be necessary (along with the
optimization procedure described below) to synthesize clear non-
adversarial features88,89. Specifically, we chose the 37th layer of the
network (last layer of the 4th stage) as our feature space. We aimed to
choose a layer that would represent relatively high-level features (and
allow us to synthesize evocative stimuli) while not being too close to
whole objects or concepts (which would constrain our search space
too much).

The activations of the layer to all images of the ILSVRC 2012
validation set were first collected and averaged within channels
(therefore ignoring spatial location). The resulting channel activations
were standardized across images and the covariance matrix of the
channels was estimated with optimal shrinkage toward the diagonal
matrix90. A ZCA/Mahalanobis whitening transform was estimated and
applied to the standardized activations to decorrelate the features.
The distribution of activations to the validation set images was esti-
mated for each feature in this whitened space using Gaussian kernel
density. For each stimulus to synthesize, random values were drawn
from the estimated distributions for all features; these random feature
values were then colored (i.e., the inverse of the whitening transform
was applied) and unstandardized to get back to the original space of
the layer channels: these are our target CNN feature values.

We then synthesized a stimulus from these feature values using
iterative optimization. We refer to this stimulus as a CNN-noise”-
stimulus because it is associated with approximately random values in
the space of CNN features (in contrast to pixel noise which would
represent randompixel luminancevariations). Specifically, we adapted
the activation maximization algorithm from ref. 15. That is, we first set
random complex Fourier coefficients, drawing from a Gaussian dis-
tribution with a standard deviation of 0.01. Then, on each iteration of
the optimization procedure, (i) the coefficients were normalized
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according to their frequency (1/f scaling); (ii) they were inverse Fourier
transformed; (iii) the color channels of the resulting image were dec-
orrelated using theCholesky decomposition of their covariancematrix
estimated using the ILSVRC 2012 training set; (iv) the resulting image
was fed to the CNN; (v) the mean squared error between the activa-
tions of the layer of interest and the target CNN feature values was
computed; and (vi) the gradients with respect to the Fourier coeffi-
cients were estimated and applied using the Adam optimizer91,92

(weight decay = 0.1; learning rate = 0.05; β1 = 0.9; β2 = 0.999). After
1500 iterations, the final Fourier coefficients were inverse Fourier
transformed and the color channels of the resulting image were once
again decorrelated: this results in the final optimized CNN-noise sti-
mulus. The median reconstruction R2 (comparing the target CNN
feature values with the CNN feature values of the final images) was
0.93. The final CNN feature values rather than the original ones were
used in all analyses. All stimuli used in the experiment (excluding the
practice trials) were different, even across participants, to sample the
feature space exhaustively.

Experimental design. The experiment was programmed using the
PsychoPy (Python) and PsychoJS (Javascript) libraries (https://www.
psychopy.org)93, and it was carried out online on the Pavlovia website
(https://pavlovia.org). Prior to the task, participants were provided
with detailed written instructions. They were told that “dream-like
pictures” would be shown to them, that “unclear or distorted objects,
object parts and textures may be seen in the pictures” and that they
would need to indicate the “objects or concrete things” that they saw,
between 1 and 3 for each picture (to limit the duration of the experi-
ment). They were further asked to be as concise as possible and to use
only one noun per thing whenever possible. Participants were asked to
stay at one arm’s length from their screen (the experiment could not
be performed on mobile devices), and they were asked to match the
length of a segment on the screen to the length of a debit/credit card
they owned to calibrate the size of the stimuli to 6 degrees of visual
angle. Participants then needed to perform 5 practice trials (identical
across participants) before completing 100 experimental trials (dif-
ferent across participants) in blocks of 20. Between blocks, partici-
pants were reminded of the instructions; they could start the next
blockwhenever theywere ready todo so. At the endof the experiment,
a message was displayed, and participants were redirected to the
Prolific website.

On each trial, a mid-gray screen was shown for 200ms, followed
by the CNN-noise stimulus centered on amid-gray background for 5 s,
followed by a mid-gray screen. It is at that moment that participants
needed to indicate the visual concepts (min. 1) they perceived in the
previous stimulus. Participants had no time limit to enter the labels but
were told to answer quickly. To speed up the process, words were
automatically suggested based on the characters entered and partici-
pants could press a key to accept the suggestions. The words that
couldbe suggested initially consisted of thewordswith a concreteness
rating of at least 4 in the database compiled by ref. 86 and they were
suggested based on their frequency as compiled in that database. The
suggestions were then adapted to the words written by the participant
during the experiment. These automatic and adaptive word sugges-
tions were implemented using the Predictionary JavaScript library
(https://github.com/asterics/predictionary). Although participants’
responses could have been biased by the automatic suggestions on
some occasions, we think that this is unlikely to have had a significant
impact on the results for two reasons. First, participants likely per-
ceived the concept they intended to report while the stimulus was
being shown, before they couldbegin responding; to accept adifferent
suggestion would require both that it start with the same letters and
that it be a better expression of the perceived concept. Second,
autocomplete suggestions were not accepted often in practice, a
median of only 9.3% of the time across participants.

Visual-semanticmatrix. We first removed all stopwords (using the list
from the NLTK Python library46; https://www.nltk.org), all one-
character words and all numbers from the responses. Then, we used
the SymSpell library (https://github.com/wolfgarbe/symspell) to
automatically correct (using a maximum edit distance of 2) any word
that was not recognized by the word embedding used in the analyses
(see below). When there was more than one possible correction, we
prioritized suggestions that were visual words (defined as being pre-
sent in the list of labels of the Visual Genome natural image database51;
https://visualgenome.org). Words that could not be corrected or that
were still unrecognized after correction were removed. All remaining
words were then transformed to semantic feature values using a pre-
trained GloVeword embedding. This embeddingmaps a vocabulary of
400,000 words to 300-dimensional vectors based on their co-
occurrence in large text corpora; related words typically have similar
vectors and different dimensions encode different semantic aspects70.
When a label was comprised of more than one word, these were con-
sidered as a single “word” in the rare case that they were recognized as
such by the word embedding; when not recognized as a single word,
the words were split and separately transformed into semantic feature
values. For each stimulus (shown only once to one observer), the
vectors of semantic feature values of all reported words were then
averaged into one vector, to give equal weights to all trials regardless
of the number of responses and to preserve the random sampling of
visual features by not repeating the same visual features for multiple
words in the creation of our visual-semantic matrix.

Rather thanusing only the sampled CNN layer for the analyses, we
chose to use both the layer thatwas sampled and a slightly higher layer
(43rd layer), following testing on pilot data. We averaged activations
within each channel and concatenated channel activations from both
layers: these were our new CNN feature values. Principal component
analyses (PCA) with whitening were then applied to both the CNN
feature values and the semantic feature values across trials. This was
done both to decorrelate the features and to reduce the dimension-
ality of the data. In both cases, theminimumnumberof components to
explain 90% of the variance was kept (CNN: 213, semantic: 127). Linear
associations were then inferred by performing an outer product of the
two trial × principal components (PC) matrices; this is equivalent to a
multivariatemultiple linear regression given that variables are random
and uncorrelated7,8,94. The result was a CNN PC × semantic PC matrix
indicating how much each CNN PC correlates to each semantic PC
(Fig. 2b). We repeated these analyses 1000 times while randomly
permuting the vectors of semantic feature values across trials (thus
disrupting the potential associations between responses and stimuli)
to establish a null distribution of matrices. To assess the statistical
significance of the visual-semantic associations, we computed the
maxima across coefficients of the null matrices and we extracted the
percentile of the actual value in this distribution of maxima as the p
value95. Such a statistical test allows us to test the statistical sig-
nificance of all coefficients while relying on fewer assumptions than
parametric tests and correct for multiple comparisons using the
optimal maximum statistic method. To visualize semantic PCs, we
selected the words, among all words responded in the experiment,
that loaded most strongly for that PC (Fig. 2c). To visualize CNN PCs,
wemaximized the values in thedirectionof the vector of feature values
corresponding to the CNN PC (using the caricature objective function,
see Methods: Reconstruction of mental representations; Fig. 2c). The
optimization was carried out according to the procedure described in
ref. 15. Additionally, we selected the words that had the highest cosine
similarity between their semantic feature values and the semantic
feature values associated with the CNN PC (Fig. 2d).

Reconstruction of mental representations. To visualize a mental
representation of a concept, we first computed the CNN feature values
associated with this concept. To do so, we obtained the concept’s
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semantic feature values using the word embedding, transformed the
semantic feature values to semantic PCvalues using thefitted semantic
PCA, transformed the semantic PC values to visual PC values using the
visual-semantic matrix, and transformed the visual PCs to layer chan-
nels using the fitted visual PCA. Note that these CNN feature values can
be outside the distribution of values in natural images.

We then iteratively optimized an image from these target CNN
feature values using a procedure similar to the one employed to gen-
erate stimuli, except for two important things. First, wemaximized the
caricature objective function96 (Eq. (1); Cammarata, Olah & Satya-
narayan, in preparation) instead of minimizing the mean squared
error:

p* = argmaxp y,ϕðpÞ� � y,ϕðpÞ� �

jjyjjjjϕðpÞjj

� �α

ð1Þ

where y is the target vector of feature values, p are the pixel values of
an image,ϕ(p) is the feature vector associated with these pixel values,
p* are the pixel values of the reconstructed image and α is a free
parameter. To summarize, this objective function consists of the dot
product between the target CNN feature values and the CNN feature
values of the synthesized image, multiplied by the cosine similarity
between these vectors of feature values weighted by some arbitrary
exponent α. This has the effect of maximizing feature values in the
direction of the target CNN feature values in high-dimensional feature
space, instead of trying to match it exactly; the cosine similarity term
ensures that thedirection stays reasonably close to the target direction
(the strength of this constraint can be varied by adjusting the α
exponent; here,αwas set to 4, following testingonpilot data).Weused
this objective function because the magnitude of the target feature
vector is arbitrary, the optimal magnitude for reconstruction is
unknown, and maximizing feature values allows us to visualize the
important features of the representation most clearly. Images were
optimized for 2000 iterations using a learning rate of 0.05. A second
important difference is that we use transformation robustness in this
reconstruction procedure; that is, at each iteration of the optimization
process, the image is subjected to small rotations, translations and
homothecies prior to be fed to the network. This has been found to
reduce high-frequency artifacts and improve the clarity of the
optimized images15. Because of these changes, there may be small
baseline visual differences between reconstructions and stimuli.

To visualize the uncertainty intrinsic to the representations, we
synthesized images from the CNN feature values that correspond to
the lower and upper bounds of 95% confidence intervals around the
CNN feature values associated with some concepts (Fig. 5c). To do so,
we inferred new visual-semantic matrices while randomly resampling
trials (in the sameway for both semantic andCNN feature values) 1000
times with replacement. We then computed the CNN feature values
associated with a given concept using each matrix. For each CNN
feature, the lower and upper bounds of the confidence interval cor-
responded to the 2.5th and 97.5th percentiles of this bootstrap dis-
tribution. Images were then synthesized from these CNN feature
values. Null reconstructions were also synthesized in a similar way, by
using the CNN feature values associated with a given concept
according to a null visual-semantic matrix obtained by permuting the
trials (see Methods: Visual-semantic matrix).

Investigationof the effect of the semantic embedding. To assess the
effect of responses containing the concept’s name, we repeated for
each target concept the creation of a visual-semantic matrix as in the
main analysis but ignoring responses with the concept’s name. We
then computed the concept’s CNN feature values using this matrix
and reconstructed representations from these using the same pro-
cedure as was used in the main analysis (Fig. 5d). Finally, we corre-
lated the feature values with the CNN feature values associated with

the concept according to the main analysis (Fig. S3a). To assess the
statistical significance of the correlations, we computed them again
but using the null visual-semantic matrices (obtained while randomly
permuting the trials 1000 times). The null correlations obtained
using this randomization procedure were then used to z-score both
observed and null correlations. Finally, we computed the maxima
across concepts of the null values and we extracted the percentile of
the actual value in this distribution of maxima as the p value95. We
also computed the bootstrapped estimates of the standard errors of
the correlations by repeating the computation of the correlations
1000 times with the dimensions of both variables resampled with
replacement.

To assess the impact of the semantic embedding, we repeated the
main analysis but replaced the semantic embedding with a binary
embedding representing whether each word (among the 369 words
named at least 10 times) was answered or not on a given trial. This
allowed us to directly obtain the CNN feature values associated with
each of these words. We then correlated these feature values with the
CNN feature values of the concepts according to the main analysis
(Fig. S3b) and we reconstructed the representations of the 10 most-
named concepts using the same procedure as was used in the main
analysis (Fig. 5e). To assess the statistical significance and compute the
standard errors, we used similar procedures as for the previous
analysis.

Prediction of semantic content. To predict the semantic content of
new images, we obtained the CNN feature values associated with these
images by feeding them to the CNN, transformed these into visual PC
values using the fitted visual PCA, transformed the visual PC values to
semantic PC values using the visual-semantic matrix, and transformed
the semantic PC values to semantic feature values using the fitted
semantic PCA.We then compared these semantic feature values to the
actual semantic feature values from the responses associated with the
image using cosine similarity (Fig. S4a). To assess statistical sig-
nificance of the mean cosine similarity, we repeated the above pro-
cedure 1000 times while using as responses labels randomly drawn
(with replacement) from all labels associated to the tested images, and
we extracted the percentile of the actual value in this null distribution
as the p value. We also computed the bootstrapped estimates of the
standard errors by repeating the computation of the cosine similarities
1000 times with the dimensions of both vectors resampled with
replacement.

Prediction of stimuli. To predict the stimuli associated with a specific
concept, we used the visual-semantic matrix from the main experi-
ment and the set of stimuli and responses from the Individual
Representations experiment. For each of the 10 most-named con-
cepts (grass, sky, tree, dog, bird, water, animal, snake, building, eyes),
we created a Boolean vector of 0 s and 1 s indicating which stimuli
were associated with the concept at least once. Then, we created
another Boolean vector representing our predictions of which sti-
muli were associated with the concept solely based on its visual
features. To do so, we computed how much the CNN feature values
of each stimulus correlated to the CNN feature values associatedwith
the concept (as obtained with our visual-semantic matrix) and thre-
sholded this vector of correlation coefficients so that the number of
stimuli predicted as containing the concept matched the number of
stimuli containing it. We then quantified the degree of overlap
between the two Boolean vectors by computing their Dice coefficient
(Fig. S4b). To assess statistical significance, we computed null Dice
coefficients by repeating this analysis 1000 times while randomly
permuting the order of the stimuli in one variable. We then z-scored
the observed and null Dice coefficients using the mean and standard
deviation of the null Dice coefficients, computed the maxima across
concepts of the z-scored null Dice coefficients, and extracted the
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percentile of the actual value in this distribution of maxima as the p
value95.

Prediction of behavioral similarity judgments. We used the openly
available dataset (https://osf.io/um3qg/) used in ref. 50. In that study,
participants are asked to place words describing visual concepts on a
2D plane according to their semantic similarity (total of 60 words).
Subsets of words are shown on each trial in an adaptive fashion, and a
representational dissimilarity matrix (RDM) is derived from these
judgments using the inverse multidimensional scaling (MDS)
algorithm97. We rank-transformed RDMs from all participants and
averaged them: this is the behavioral judgments RDM. To derive the
visual RDM, we obtained the CNN feature values associated with each
of the 60 concepts using theword embedding and our visual-semantic
matrix (see Methods: Reconstruction of mental representations) and
we computed the correlation distances (1 – Pearson correlation)
between all vectors of feature values. We used a similar procedure to
derive the semantic RDM, using the semantic feature values associated
with each concept instead of the CNN feature values. To assess how
well the visual RDM explained the behavioral RDM (and how well the
semantic RDM explained the behavioral RDM), we computed the
Spearman correlation between the vectorized upper triangles of the
matrices. We used Spearman correlation because only the ranks of the
distances can be meaningfully compared between matrices77,98. We
performed a randomization test to assess statistical significance: the
Spearman correlation was computed 1000 times while randomly
shuffling rows and columns of the behavioral RDM77 and we extracted
the percentile of the actual value in this null distribution as the p value.
We used a nonparametric test because it relies on fewer assumptions
than parametric tests and allowed us to keep a coherent statistical
approach across analyses. To assess whether the visual RDMcorrelates
more to the behavioral judgments RDM than the semantic RDM, the
Spearman correlation was computed for the semantic RDM and the
difference between both correlations was computed; a randomization
procedure similar to the one described above was used with the cor-
relation difference to test its statistical significance.We also computed
the bootstrapped estimates of the correlations by re-calculating the
correlations 1000 times after randomly resampling the rows and col-
umns of the matrices with replacement (and eliminating the off-
diagonal zero entries).

Investigation of the representations of thedeepneural network.We
had the deep neural network perform the same experiment with the
same stimuli as the participants in the main experiment. (Note that in
this section, “deep neural network” denotes the neural network
under study, while “CNN feature values” denotes the vectors of visual
features that constitute the mental representations. Since both the
representations of humans and the network are studied, there are
CNN feature values associated with both humans and the DNN.) The
labels associated with the top 3 ImageNet classes predicted by the
network (i.e., the 3 classes with the highest probability) were taken as
its responses. When a label comprised multiple synonyms, we used
the first one, which was usually the simplest and most common.
When a response was not recognized by the word embedding, we
went up one level in the WordNet hierarchy to which ImageNet
classes are mapped (e.g., from otterhound to hound) and tried again.
We used this procedure because ImageNet classes (and therefore the
DNN’s responses) are sometimes too specific for the word embed-
ding’s vocabulary. We analyzed the data in the same way as with the
participant data (number of semantic PCs = 118) and we recon-
structed the representations of the 10 concepts most common in the
Visual Genome database. To visualize the representational spaces,
the CNN feature values associated with the 100 concepts most
common in the Visual Genome database were projected on a two-
dimensional plane using t-SNE99 with correlation distance as metric

(perplexity = 15). The 2D plot of the DNN’s representations was fur-
ther aligned as best as possible with the plot of human representa-
tions using Procrustes transformations.

To investigate differences between the groups (DNN vs. humans),
we divided the data in halves and computed the visual-semantic
matrices for each half and group.We then projected thematrices to an
independent semantic space: to do so, we computed for each half and
group the CNN feature values associated to each one of the 100 most
common concepts from the Visual Genome database (each concept
can be viewed as a dimension of a new semantic space). The set of
these CNN feature values summarizes, once flattened, the visual
representations of either DNN or humans. We computed the Pearson
correlation between the human visual representations in half 1 and the
DNN visual representations in half 2, and the correlation between the
human representations in half 2 and the DNN representations in half 1.
We then averaged these two correlation coefficients to obtain a
between-groups correlation value. We also computed a within-groups
correlation: this is the average of the correlation between the human
representations in half 1 and the human representations in half 2, and
the correlation between theDNN representations in half 1 and theDNN
representations in half 2. The difference between these two average
correlations reflects the degree to which the two sets of representa-
tions (DNN and human) are unique100. To assess statistical significance,
these analyses were repeated but using the null visual-semantic
matrices (obtained while randomly permuting the trials 1000 times)
and we extracted the percentile of the actual value in this null dis-
tribution as the p value. To quantify the uncertainty around these
correlations, we repeated the analyses by inferring new visual-
semantic matrices after randomly resampling trials 1000 times with
replacement (in the same way for both semantic and CNN feature
values).

Validation experiment #1: categorization of reconstructions
The goal of this experiment was to validate the reconstructions of
mental representations in separate participants. The experiment was
preregistered at https://aspredicted.org/SLR_KFB on June 24th, 2021.
There were no deviations to the preregistered protocol.

Participants. Fifty new participants (healthy adults, aged 18–35, with
normal or corrected-to-normal vision) were recruited via the Prolific
platform85. No statistical method was used to predetermine sample
size. Sex and gender of participants were not obtained and were not
considered to be relevant to the study. Participants provided informed
consent to a protocol approvedby the Yale IRB andwere compensated
3.25$ for their participation. Two participants were excluded and
replaced because of mean accuracies more than 3 standard deviations
away from the group mean.

Stimuli. Reconstructions validated include the reconstructions for the
250concepts thatweremost namedduring themain experiment along
with the 100 most frequent concepts in the Visual Genome database48

that were named less than 10 times in the main experiment. Recon-
structions were obtained using the procedure described above (see
Methods: Reconstruction of mental representations).

Experimental design. The experiment was carried out online on the
Pavlovia website (https://pavlovia.org). We used a similar validation
procedure as was used in ref. 24. Prior to the task, participants were
provided with detailed instructions: they were told that each depicted
conceptmay be unclear,may occupy the whole image or only a part of
it, andmaybedepictedmany times across the image. Participantswere
also told to keep inmind thedifferent potentialmeanings of each label.
On each trial, a mid-gray screen was shown for 200ms, followed by a
randomly selected reconstruction centered on a mid-gray back-
ground. After 1 s, two labels appeared at the top of the screen: the true
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label and one wrong label chosen randomly among the labels of all
other concepts validated in the experiment (different across partici-
pants). The two labels were randomly assigned to either the top left
corner or the top right corner. Participants needed to indicate at that
moment which label most likely corresponded to the image; they
could answer with two keyboard keys. There was no time limit, but
participantswere told to answer quickly. The 350 reconstructionswere
shown in 7 blocks of 50; participants could take short breaks between
blocks. The presentation order of the stimuli was randomized across
participants.

Data analysis. We computed the mean accuracies across participants
for each concept. To assess their statistical significance, we computed
them again while randomly resampling the participants with replace-
ment 50,000 times and assessed whether at least 99.993% (one-tailed
95% significance threshold with Šidák correction for multiple com-
parisons across the 350 concepts) of that distribution was above the
chance level of 50%. For concepts for which the estimated accuracy
separating the rightmost 99.993% of the distribution from the rest was
between 40% and 60%, the procedure was repeated with 500,000
iterations to improve the precision of the estimation. This statistical
procedure estimates the effect for the population of participants while
correcting for multiple comparisons across concepts101. To assess the
statistical significance of the mean accuracies for all concepts or sub-
sets of concepts, we permuted the trials randomly 1000 times to
establish null distributions. We quantified the p value as the percentile
of the observed mean accuracy in the null distribution. We also
assessed the statistical significance using a variant of the above boot-
strap procedure (but averaging across multiple objects and using a
95% threshold). Both statistical methods gave similar results (all mean
accuracies significant with p < 0.001, one-tailed).

Validation experiment #2: Labeling of reconstructions
The goal of this additional experiment was to further validate the
reconstructions. This experiment was not preregistered.

Participants. Fifty new participants (healthy adults, aged 18–35, with
normal or corrected-to-normal vision) were recruited via the Prolific
platform85. No statistical method was used to predetermine sample
size. Sex and gender of participants were not obtained and were not
considered to be relevant to the study. Participants provided informed
consent to a protocol approvedby the Yale IRB andwere compensated
7.34$ for their participation.

Stimuli. The images validated were the reconstructions for the 100
concepts that were most named during the main experiment. Recon-
structions were obtained using the procedure described above (see
Methods: Reconstruction of mental representations).

Experimental design. The experiment was carried out online on the
Pavlovia website (https://pavlovia.org). Prior to the task, participants
were given detailed instructions: They were told that each depicted
conceptmay be unclear,may occupy the whole image or only a part of
it, andmaybedepictedmany times across the image. Participantswere
also told that each image is associated to a different label, and that
synonyms and different spellings all count as different words. On each
trial, a mid-gray screen was shown for 200ms, followed by a randomly
selected reconstruction centered on a mid-gray background for 2 s,
followed by another blank screen on which participants could write
three guesses about the label of the reconstruction. There was no time
limit, but participants were told to answer as fast as possible. When
they were done entering their third guess, the next reconstruction was
shown. The 100 reconstructions were shown in 5 blocks of 20; parti-
cipants could take short breaks between blocks. The presentation
order of the stimuli was randomized across participants.

Data analysis. We first corrected spelling mistakes in the partici-
pants’ responses using the same procedure that was used for the
main experiment. We then analyzed how many concepts were
labeled correctly. We considered plural and singular forms of a
word tobe equivalent. For each reconstruction, we verifiedwhether
the correct label was the one provided most commonly by partici-
pants. This resulted in a vector of binary values (one for each con-
cept). We summed this vector to obtain the number of successful
concepts. To obtain a confidence interval around this number, we
computed it again after randomly resampling the binary vectors
1000 times with replacement. To assess whether the number of
successful concepts obtained was significant, we repeated the
above analysis 1000 times after randomly permuting participant
responses across trials (reconstructions). This resulted in a null
distributionof 1000numbersof correct concepts.Weextracted the
percentile of the actual value in this null distribution as the p value.
We then analyzed how many concepts were generally well labeled
with semantically close responses, even if these were not the con-
cept’s exact true label. To do so, for each concept, we fit a first-
degree polynomial equation between the semantic distance of each
unique response to the true label and its frequency. We then
transformed the slope coefficient into a t value and computed its
significance using the Student’s t distribution, Bonferroni-
correcting for the 100 statistical tests.

Validation experiment #3: Labeling of real and null
reconstructions
The goal of this additional experiment was to further validate the
reconstructions and compare them to null reconstructions. This
experiment was not preregistered.

Participants. Twenty-fivenewparticipants (healthy adults, aged 18–35,
with normal or corrected-to-normal vision) were recruited via the
Prolific platform85. No statistical method was used to predetermine
sample size. Sex and gender of participants were not obtained and
were not considered to be relevant to the study. Participants provided
informed consent to a protocol approved by the Yale IRB and were
compensated 6.00$ for their participation. Six participants were
excluded and replaced because they provided responses that were
more than one word for 90% of trials or more.

Stimuli. The images validated were one real reconstruction and three
randomly selected null reconstructions (reconstructions obtained
with null visual-semantic mappings) for a random subset of 45 con-
cepts among the 100 concepts that weremost named during themain
experiment (total of 180 images). Reconstructions were obtained
using the procedure described above (seeMethods: Reconstruction of
mental representations).

Experimental design. The experiment was carried out online on the
Pavlovia website (https://pavlovia.org). Prior to the task, participants
were given detailed instructions: They were told that each depicted
conceptmay be unclear,may occupy the whole image or only a part of
it, and may be depicted many times across the image. On each trial, a
mid-gray screen was shown for 200ms, followed by a randomly
selected reconstruction centered on a mid-gray background for 2 s,
followedby another blank screen onwhichparticipants could label the
reconstruction. There was no time limit, but participants were told to
answer as fast as possible and to write only one word per trial. The 180
reconstructions were shown in 5 blocks of 36; participants could take
short breaks betweenblocks. Thepresentation order of the stimuli was
randomized across participants.

Data analysis. We corrected spelling mistakes in the participants’
responses using the same procedure as the main experiment and
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considered plural and singular forms of a word to be equivalent. We
computed, for each concept, whether: (1) the correct label was pro-
vided more often for the real reconstruction than for null recon-
structions on average; (2) the semantic distance of responses to the
correct label was lower for the real reconstruction than for null
reconstructions on average; (3) the entropy of the response prob-
ability distribution was lower for the real reconstruction than for null
reconstructions on average; (4) the trace of the covariance matrix of
the semantic features of responses was smaller for the real recon-
struction than for null reconstructions on average. The resulting vec-
tors for these four metrics (one binary value per concept) were then
summed to obtain the numbers of successful concepts reported in the
main text. To get uncertainty estimates around these numbers, we
recomputed themetrics after randomly resampling the binary vectors
1000 times with replacement. Confidence intervals were obtained by
extracting the 2.5th and 97.5th percentiles of this bootstrap distribu-
tion. To test the statistical significance of the numbers of successful
concepts,we calculated anull distribution for eachmetric by randomly
permuting the 45 concepts (or in the case of analyses 3 and 4, ran-
domly permuting all 4500 responses: 25 participants × 45 concepts × 4
images) 1000 times. We extracted the percentile of the actual value in
this null distribution as the p value.

Individual representations experiment
The goal of this additional experiment was to reconstruct the mental
representations of individual observers. This experiment was not
preregistered.

Participants.We recruited eight newparticipants (healthy adults, aged
18–35, 5women and 3men,with normal or corrected-to-normal vision)
from theYaleUniversity community. No statisticalmethodwas used to
predetermine sample size. Sex and gender of participants were not
considered in the study design or analyses because this was not rele-
vant to the questions under investigation. Participants provided
informed consent to a protocol approved by the Yale IRB and they
obtained a 45$ Amazon gift card for their participation. No participant
was excluded prior to analyses.

Stimuli. Stimuli were created using the same procedure as in the main
experiment. We created 750 stimuli (in addition to 5 stimuli for prac-
tice trials) that were used for all participants. Stimuli were identical
across participants to facilitate comparisons between them.

Experimental design. The experiment was carried out online on the
Pavlovia website (https://pavlovia.org). The experimental design
was the same as in the main experiment except that each partici-
pant performed 6 sessions of the experiment, that there were
125 stimuli per session (shown in 5 blocks of 25), and that partici-
pants were not redirected to any website at the end of the
experiment. The presentation order of the stimuli was randomized
across participants.

Data analysis. For each participant, we created a visual-semantic
matrix as described above (see Main experiment: Visual-semantic
matrix; number of CNN PCs = 150; number of semantic PCs varied
between 55 and 120). We reconstructed individual visual representa-
tions using these matrices (Fig. 7; see Main experiment: Reconstruc-
tion of mental representations). To visualize similarities and
dissimilarities between these representations, they were projected on
a two-dimensional plane using t-SNE96 with correlation distance as
metric (perplexity = 15).

To assess inter-individual differences in the representations, we
used a similar procedure as for the investigation of the network’s
representations, but we projected the visual-semantic matrices to the
independent semantic space defined in the main experiment, and we

computed the uniqueness coefficients for each pair of participants and
averaged them100.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All raw and preprocessed data generated and analyzed during this
study are available at https://osf.io/mp3s6/102. The following publicly
available data were also used in the study: Behavioral dataset on
semantic word arrangement (https://osf.io/um3qg/)50; Visual Genome
dataset (https://homes.cs.washington.edu/~ranjay/visualgenome/
index.html)48; GloVe word embedding (https://nlp.stanford.edu/
projects/glove/)67; pretrained adversarially robust ResNet-50 (https://
github.com/MadryLab/robust_representations)89; and ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC) 2012 dataset
(https://www.image-net.org/challenges/LSVRC/2012/)58.

Code availability
All code is available at https://github.com/laurentcaplette/
Representation-reconstruction103.
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