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Mammographic density mediates the
protective effect of early-life body size on
breast cancer risk

Marina Vabistsevits 1,2 , George Davey Smith 1,2, Tom G. Richardson 1,2,
Rebecca C. Richmond 1,2, Weiva Sieh 3,4, Joseph H. Rothstein3,4,
Laurel A. Habel5, Stacey E. Alexeeff5, Bethan Lloyd-Lewis 6,7 &
Eleanor Sanderson 1,2,7

The unexplained protective effect of childhood adiposity on breast cancer risk
may be mediated via mammographic density (MD). Here, we investigate a
complex relationship between adiposity in childhood and adulthood, puberty
onset, MD phenotypes (dense area (DA), non-dense area (NDA), percent
density (PD)), and their effects on breast cancer. We use Mendelian rando-
mization (MR) and multivariable MR to estimate the total and direct effects of
adiposity and age at menarche on MD phenotypes. Childhood adiposity has a
decreasing effect on DA, while adulthood adiposity increases NDA. Later
menarche increases DA/PD, but when accounting for childhood adiposity, this
effect is attenuated. Next, we examine the effect of MD on breast cancer risk.
DA/PD have a risk-increasing effect on breast cancer across all subtypes. The
MD SNPs estimates are heterogeneous, and additional analyses suggest that
different mechanisms may be linking MD and breast cancer. Finally, we eval-
uate the role of MD in the protective effect of childhood adiposity on breast
cancer. Mediation MR analysis shows that 56% (95% CIs [32%–79%]) of this
effect ismediated via DA.Our finding suggests that higher childhood adiposity
decreases mammographic DA, subsequently reducing breast cancer risk.
Understanding this mechanism is important for identifying potential inter-
vention targets.

Breast cancer is the most common cancer in women worldwide1.
Incidence rates continue to rise globally2, and thus there is an urgent
need to identify new andmodifiable breast cancer risk factors. It is also
critical to investigate the links between protective traits and breast
cancer as thosemay reveal newmechanisms for targeted intervention.
Observational andMendelian randomization (MR) studies have shown
that adiposity in childhoodmay reduce the riskof breast cancer in later

life3–7, and that this effect is direct and independent of adult body size.
MR is an approach to causal inference that uses genetic variants as
instrumental variables (IVs) to infer whether a modifiable health
exposure influences a disease outcome8,9. In previous work10, we used
an MR framework to investigate the biological mechanism underlying
the protective effect of childhood adiposity by reviewing several
potentialmediators, including hormonal, reproductive, and glycaemic
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traits. However, none of the investigated mediators sufficiently
explained the protective effect of childhood adiposity on breast can-
cer risk. A mediator that has not yet been thoroughly investigated is
mammographic density (MD), an established risk factor for breast
cancer11,12.

MD refers to the radiological appearance of fibroglandular vs
adipose tissue in the breast and is frequently quantified in three phe-
notypes: dense area (fibroglandular tissue, DA), non-dense area (adi-
pose tissue, NDA) and percent density (dense area as a proportion of
total breast area, PD). DA and PD are associated with an increased risk
of breast cancer, whereas NDA is independently associated with a
decreased risk13. A high DA and PD elevate breast cancer risk as
tumours aremore likely to arise in fibrous tissue, as well as beingmore
difficult to detect in dense areas on a mammography exam14. MD is
highly heritable15 and the risk of developing cancer is 4-6 fold higher in
women with extremely dense vs fatty breasts14, but MD appears to be
similarly associated with all breast cancer molecular subtypes16,17.
Although the association between MD and breast cancer is well-
established, the molecular and cellular events that lead to the devel-
opment of MD and why it is associated with increased cancer risk are
not well understood18.

Growing evidence points to associations between childhood
adiposity, puberty onset, and adult mammographic density (reviewed
in ref. 18). Puberty is a critical time for breast development, during
which the breast epithelial and stromal compartments undergo
extensive growth and tissue remodelling19. Later age at menarche has
been shown to positively associate with higher MD20,21, despite being
associated with a decreased risk of breast cancer22,23. Adiposity at dif-
ferent developmental stages also affects MD, as increased body size in
adolescence is associated with a higher abundance of adipose non-
dense tissue and lower dense area and percent density in
adulthood18,20,24,25. Childhood adiposity also has a well-established
effect of decreasing age at menarche26, which in turn leads to higher
adult adiposity27. Taken together, these traits appear to have a com-
plex and interlinked relationship that impacts breast development and
growth, and, ultimatelybreast cancer risk. Several recent observational
studies have suggested that childhood adipositymay confer long-term
protection against breast cancer via its effect on mammographic
breast density28–31. The effect of MD on breast cancer has also been
analysed using different MR methods10,32,33. While the overall picture
reported from these studies supported observationally known asso-
ciations, there were some differences depending on the MR method
employed, suggesting sensitivity to the underlying assumptions.

Here, we explore the mediating role of mammographic density in
the protective effect of high childhood adiposity on breast cancer risk,
using data from genome-wide association study (GWAS) studies of

childhood body size, adult body size, age at menarche, mammo-
graphic density, and breast cancer within a Mendelian randomization
framework.

Results
Study overview
In this study, we aimed to investigate the mediating role of mammo-
graphic density in the protective effect of childhood adiposity on
breast cancer risk. Figure 1 presents a flowdiagramof the relationships
between the investigated traits. The summary of all analyses con-
ducted is presented in Table 1. First, we examined the effect of body
size (childhood and adulthood) on mammographic density (dense
area, non-dense area, percent density) using univariable MR and mul-
tivariableMR (MVMR)25. We then reviewed the role of age atmenarche
in the childhood body size effect onMD phenotypes. Next, using data
from the Breast Cancer Association Consortium (BCAC)34,35 (Supple-
mentary Table 1), we assessed the effect of MD phenotypes on breast
cancer risk. We further investigated pleiotropy among the genetic
instruments for the MD phenotypes using a variety of advanced sen-
sitivity analysis methods36–38, PheWAS39, and pathway analysis, to dis-
sect their heterogeneous effect and improve the understanding of the
MD effect on breast cancer. Finally, we performedMVMRof childhood
body size and MD phenotypes with breast cancer risk and mediation
analysis to assess the direct and indirect effects of both traits and
evaluate the role of MD in the poorly understood protective effect of
childhood body size on breast cancer.

This study is reported as per the guidelines for strengthening the
reporting of Mendelian randomization studies (STROBE-MR)40,41.

Body size effect on mammographic density
We used univariable MR to evaluate the total effect of childhood and
adult body sizes on each MD phenotype (analysis #1 in Table 1 and
Fig. 1). This analysis was performed using MD GWAS data unadjusted
for adult BMI to avoid double adjustment for BMI in MVMR analyses;
the details of this and subsequent analyses using MD GWAS data
adjusted for adultBMI (i.e. the data from theoriginal publicationofMD
GWAS32) are available in Supplementary Note 1.

We found evidence that larger body size, both during childhood
and as an adult, reduces dense area (effect size −0.63 [95% CI −0.76:
−0.49] and −0.51 [95% CI −0.63: −0.38], respectively) and percent
density (−0.88 [95% CI −1.01: −0.74] and −0.95 [95% CI −1.06: −0.83]),
but increases non-dense area (0.81 [95%CI 0.67: 0.96] and 1.08 [95%CI
0.97: 1.19]) (Fig. 2a, Supplementary Data 1). The estimates from these
analyses reflect the standard deviation (SD) change in MD phenotype
for each change in childhood and adult body size category.

We also performedmultivariableMRof childhood and adult body
size to estimate the direct effects of body size at each age on MD
conditional on the other age (Fig. 2b, Supplementary Data 3). In this
analysis, a direct effect was demonstrated for both traits, however,
larger childhood body size had a stronger effect on decreasing dense
area (−0.53 [−0.70: −0.37] vs -0.21 [−0.37: −0.05]), while larger adult
body size had a stronger effect on increasing non-dense area (adipose
tissue area of the breast) (0.28 [0.12: 0.44] vs 0.93 [0.77: 1.08]). The
direct effect on percent density was greater from adult body size, but
its magnitude was considerably reduced in MVMR for both measures
(−0.49 [−0.66: −0.34] and −0.66 [−0.83: −0.52]).

Age at menarche effect on mammographic density
In this MR analysis, we sought to analyse childhood body size and age
at menarche together to evaluate their total and direct effects on MD
phenotypes (analysis #2 in Table 1 and Fig. 1). In univariable MR
(Fig. 2a, Supplementary Data 5), childhood body size and age at
menarche had strong opposing effects on MD (age at menarche effect
on DA, effect size 0.15 [95% CIs 0.05: 0.26], and PD 0.24 [0.13: 0.35]),
which is in agreement with published studies20,21,25. In MVMR (Fig. 2c,

Fig. 1 | Flow diagramof relationships between traits investigated in this study.
Blue arrows indicate a negative (decreasing/protective) effect and pink arrows
show apositive (increasing/causal) effect relationship, as previously reported in the
literature. The numbers signpost the analysis sections, which are mentioned
throughout the text and correspond to the numbers in the analysis summary in
Table 1.
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Supplementary Data 7), the direct effect of body size on DA condi-
tional on age at menarche is similar to the total effect (−0.66 [−0.82:
−0.51]), while the effect of age at menarche on DA is attenuated to
overlap the null (−0.06 [−0.18: 0.05]). Adiposity in childhood reduces
MD and lowers the age atmenarche (as shown in10), while younger age
at menarche has a negative effect onMD (i.e. the inverse of higher age
at menarche increasing MD in Fig. 2a). The attenuation of age at
menarche effect can be explained in the following way: (1) the direct
effect of childhood adiposity ismaintained inMVMRwhen accounting
for age at menarche, suggesting that adiposity affects MD indepen-
dently of startingpuberty earlier, (2) themenarche effect in univariable
results is not present in MVMR results suggesting that it is largely due
to unaccounted increased childhood adiposity (and its effect on the
initiation of puberty). Collectively, our results show that the density-

decreasing effect of larger childhood body size is not acting via low-
ering the age at menarche, and that childhood body size and age at
menarche may have entirely different mechanisms linking them to
breast cancer.

Mammographic density effect on breast cancer
Next, we evaluated the effect of BMI-unadjusted MD phenotypes on
breast cancer (analysis #3 in Table 1 and Fig. 1) using IVW MR estima-
tion. The total effect of MD phenotypes on breast cancer subtypes is
presented in Fig. 3a (Supplementary Data 9). Overall, we found a
consistent trend in the direction of effect across all breast cancer
subtypes for each MD exposure trait: dense area and percent density
increased the risk, while non-dense area decreased the risk, which is in
line with the observational data. Despite being consistent, many

Table 1 | Summary of analyses conducted

Analysis type Exposure trait(s) represented as genetic
instruments

Phenotypic outcome traits(s) (when
applicable)

Results available in

Analysis #1

MR Childhood body size Mammographic density (DA, NDA, PD) Fig. 2a,
Supplementary Data 1

MR Adult body size Mammographic density (DA, NDA, PD) Fig. 2a,
Supplementary Data 1

MVMR Childhood body size, Adult body size Mammographic density (DA, NDA, PD) Fig. 2b,
Supplementary Data 3

Analysis #2

MR Age at menarche Mammographic density (DA, NDA, PD) Fig. 2a,
Supplementary Data 5

MVMR Childhood body size, age at menarche Mammographic density (DA, NDA, PD) Fig. 2c,
Supplementary Data 7

Analysis #3

MR Dense area (DA) Breast cancer (overall and subtypes) Fig. 3a,
Supplementary Data 9

MR Non-dense area (NDA) Breast cancer (overall and subtypes) Fig. 3a,
Supplementary Data 9

MR Percent density (PD) Breast cancer (overall and subtypes) Fig. 3a,
Supplementary Data 9

Analysis #4

MVMR Childhood body size, Dense area (DA) Breast cancer (overall and subtypes) Fig. 3b,
Supplementary Data 11

MVMR Childhood body size, Non-dense area (NDA) Breast cancer (overall and subtypes) Fig. 3b,
Supplementary Data 11

MVMR Childhood body size, Percent density (PD) Breast cancer (overall and subtypes) Fig. 3b,
Supplementary Data 11

Analysis #5

MR-PRESSO Mammographic density
(DA, NDA, PD)

Breast cancer overall sample Fig. 4a, Supplementary Figs. 4a, 6a,
Supplementary Data 14

Radial-MR Mammographic density
(DA, NDA, PD)

Breast cancer overall sample Fig. 4b, Supplementary Figs. 4b, 6b,
Supplementary Data 15

MR-Clust Mammographic density
(DA, NDA, PD)

Breast cancer overall sample Fig. 4c, d, Supplementary Figs. 4c, d, 6c, d,
Supplementary Data 16

Analysis #6

PheWAS Mammographic density
(DA, NDA, PD)

N/A Fig. 5, Supplementary Figs. 5, 7
Supplementary Data 17–19

Analysis #7

Pathway analysis Mammographic density
(DA, NDA, PD)

N/A Supplementary Data 20–25

Analysis #8

Mediation analysis Childhood body size, Dense area (DA) (as a
mediator)

Breast cancer overall sample Supplementary Note 2

The table is split into analysis sections (#) for convenient reference throughout the text. Mammographic density (MD) is available as three phenotypes: Dense area (DA), non-dense area (NDA), and
percent density (PD); data source: Sieh et al.32 Breast cancer outcomes includedata fromBCAC2017and 2020 (overall samples, ER + /ER- samples andfivemolecular subtypes: Luminal A, Luminal B1
(HER2 + ), Luminal B2 (HER2-), HER2-enriched, and triple-negative; summarised in Supplementary Table 1; data sources34,35:). Childhood/adult size body and age at menarche data are UK Biobank
phenotypes from Richardson et al.4 (female-only data, including for instrument extraction). In the table, when several exposures/outcomes are listed (e.g. MD phenotypes or cancer subtypes), this
indicates that MR analysis was done separately for each, unless there are two exposures in MVMR.MR Mendelian randomization, MVMR Multivariable MR, BCAC Breast Cancer Association
Consortium.
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estimates were imprecise, however, there was stronger evidence for a
positive effect of dense area on overall breast cancer (OR 1.38 [95% CI
1.002: 1.90]), ER+ breast cancer, and several subtypes. The individual
SNP-specific effects within all MD phenotypes’ total estimates were
heterogeneous (detailed below under Sensitivity analysis), and
therefore, in the Mammographic density genetic instruments
investigation section we explore those effects using various sensi-
tivity and outlier detection methods. The direct effects from the
MVMR analysis in Fig. 3b are discussed in a later section.

Sensitivity analysis
To investigate potential violations of theMR assumptions and validate
the robustness of the two-sample IVW MR results, we performed
additional MR analyses using MR-Egger42 and weighted median43

approaches, both of which provide sensitivity analyses that are more
robust to particular forms of horizontal pleiotropy. The Egger inter-
cept was used to explore the potential for the presence of directional
horizontal pleiotropy, and Cochran’s Q statistic44 was calculated to
quantify the extent of heterogeneity among SNPs, which is indicative
of potential pleiotropy. For MVMR, we tested instrument strength,
using a conditional F-statistic45 and examined heterogeneity using an
adapted version of the Q-statistic (QA).

The estimated total effects of childhood and adult body
size measures on MD phenotypes were consistent across MR sensi-
tivity analyses with Egger intercept 0.01 or lower. The F-statistics were
> 10 and Q-statistics did not indicate excessive heterogeneity (Sup-
plementary Data 2). In MVMR, the conditional F-statistics were also
above 10, indicating that weak instrument bias is unlikely to be
present45. The presence of directional pleiotropy was assessed by
estimating QA statistics, which also were not notably large (Supple-
mentary Data 4).

The direction of effect was consistent among the MR methods
when assessing age at menarche effect on MD phenotypes, but there
was less robust evidence of effect in the weighted median result. The
F-statistic for age at menarche was above 10; the Egger intercept was
substantially close to zero (~0.002), indicating little evidence of
directional pleiotropy46. The Cochran’s Q value was large with p-values
< 2 x 10−10, indicating high heterogeneity (Supplementary Data 6). In
MVMR of age at menarche and childhood body size, the F-statistics

were above 10, and QA was similar to the Q value in the univariable
analysis (Supplementary Data 8).

In the main IVW analysis of MD phenotypes' effect on breast
cancer outcomes, the evidence was present only in selected exposure-
outcome pairs, as described in the previous section. Applying sensi-
tivity methods to those results showed some inconsistency, with MR-
Egger producing imprecise results. The weighted median approach,
which relies on at least 50% of the variants’ total weight being from
valid instruments43, provided evidence for an effect in substantially
more analyses than IVW, which relies on 100% of variants being valid
instruments, indicating that some variants may be outliers (Supple-
mentaryData 9). The Egger intercept in the analyses of non-dense area
and percent density with subtype outcomes suggested the likely pre-
sence of horizontal pleiotropy. The intercept in analyses of dense area,
where evidence of effect was present in IVW, was smaller, indicating
that dense area phenotype is less subject to pleiotropy. The MD phe-
notypes’ instrument strength was good (F-statistics > 10), suggesting
that weak instruments are unlikely to be a source of serious bias in the
univariable analysis. Steiger filtering did not indicate that MD pheno-
types’ instruments explainedmorevariance (R2) in breast cancer rather
than in MD phenotypes, and therefore, were not excluded from the
analysis. Interestingly, we identified substantial heterogeneity for all
MD phenotypes, suggested by very high Q-values with small p-values.
High heterogeneitymaybe indicative of one ormore variant outliers in
the analysis, which was explored with additional sensitivity in the next
section. The sensitivity analysis details are available in Supplementary
Data 10.

Mammographic density genetic instruments investigation
To explore the high heterogeneity in the genetic instruments for the
MD phenotypes, we applied several methods that aim to dissect het-
erogeneity and assess potential horizontal pleiotropy through outlier
detection (analysis #5 in Table 1). In this investigation, we focused on
the overall breast cancer sample outcome as the main analysis, but
additional results for breast cancer subtypes are available in Supple-
mentary Note 3 (Supplementary Fig. 10a–i).

We used MR-PRESSO36 and Radial-MR38 (seeMethods) to identify
the variant outliers (Supplementary Data 14, 15). For dense area, both
methods determined the same set of SNPs as outliers (Fig. 4a, b). The

Fig. 2 | The effect of childhood body size, adult body size, and age atmenarche
on MD phenotypes (dense area, non-dense area, percent density; unadjusted
for BMI at GWAS level). a Total effect of each exposure trait on MD out-
comes (univariable MR). b Direct effects of childhood and adult body sizes on MD
outcomes (MVMR). cDirect effects of childhood body size and age at menarche on
MD outcomes (MVMR). The effect is reported as the standard deviation (SD)
change in MD phenotype per body size category or age at menarche SD change.

The error bars indicate 95% confidence intervals around the point estimate (beta
coefficient) from IVW MR and IVW-MVMR analyses. The empty circle data points
highlight the results where confidence intervals overlap the null. MR Mendelian
randomization,MVMRmultivariableMR.GWASsample sizes: childhood/adultbody
size: n = 246,511; age at menarche: n = 143,819; MD phenotypes: n = 24,158. Source
data are provided as a Source Data file.
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outlier-corrected total IVW estimates are presented below the single
SNP forest plots (outlier SNPs are highlighted), alongside the results of
otherMRmethods.With outliers removed, the point estimate (OR 1.40
[1.26: 1.56]) is similar to the original IVW result (OR 1.38 [1.002: 1.90]),
but the confidence intervals are more precise. Consequently, the
outlier-corrected IVW estimates of dense area had stronger evidence
of effect on breast cancer, and were similar to weighted median
method results (OR 1.25 [1.12: 1.39]).

Next, we used MR-Clust37 to investigate the presence of clustered
heterogeneity among the genetic variants. MR-Clust groups genetic
variants into clusters with similar estimates for the causal effect of the
exposure on the outcome (i.e. based on their direction, magnitude,
and precision). A cluster may represent a distinct pathway through
which exposure is related to the outcome, and investigating hetero-
geneous estimates in this waymay reveal additional information about
the exposure-outcome relationship (see Methods for further details).

MR-Clust detected three distinct clusters (‘cluster_1’, ‘cluster_2’, ‘clus-
ter_3’), a ‘null’ cluster, and two ‘junk’ SNPs thatwere not assigned to any
of the clusters (Fig. 4c, Supplementary Data 16). We see that the het-
erogeneity outliers flagged by MR-PRESSO and Radial-MR (Fig. 4a, b)
represent separate clusters in MR-Clust (Fig. 4d). ‘Cluster_2’ (blue) is
equivalent to the outlier-corrected estimate from those earlier ana-
lyses and the variants in this cluster are positively associated with an
increase in both dense area and breast cancer risk. ‘Cluster_3’ (orange)
and a positive ‘junk’ SNP are associated with breast cancer to a higher
magnitude (Fig. 4c) and therefore form a separate cluster. Interest-
ingly, the SNPs in ‘cluster_1’ are protective of breast cancer despite
being associated with increased density. It is important to note that
both the inverse association (‘cluster_1’) and the same direction but
higher magnitude association (‘cluster_3’) clusters add to the overall
heterogeneity of the total estimate.

The results for non-dense area and percent density phenotypes
are presented in Supplementary Figs. 4 and 6. We similarly found
outliers and clusters in those traits’ instruments. However, due to the
lower number of instruments available for these traits, the results from
MR-PRESSO andRadial-MR should not be overinterpreted. The outlier-
corrected IVW estimates (non-dense area – OR 0.75 [0.65: 0.86] and
percent density – OR 1.29 [1.16: 1.44]) were similar to the weighted
median method results (OR 0.74 [0.63: 0.87] and OR 1.32 [1.14: 1.53],
respectively) (Supplementary Data 14 and 15). In MR-Clust, for non-
dense area and percent density, there were also variants that asso-
ciated with breast cancer in the opposite direction to the overall and
expected effect from the exposure (e.g. negatively associated with
breast cancer risk but positively associated with a factor causal for
breast cancer, or vice versa) – two ‘negative effect’ outliers for percent
density and one ‘positive effect’ outlier for non-dense area).

PheWAS analysis
We carried out a phenome-wide association study (PheWAS) analysis39

on the genetic instruments for the MD phenotypes to examine their
associations with other traits (analysis #6 in Table 1). We aimed to
review the differences between associations by clusters identified with
MR-Clust andevaluatewhetheroutlier SNPsmaybe strongly associated
with other phenotypes, which may explain the horizontal pleiotropic
effect and hint at alternative causal pathways for those outliers.

The PheWAS results for the dense area phenotype are plotted in
Fig. 5. The SNPs thatwere identified as outliers inprevious analyses and
that formed distinct clusters from the main effect clusters, have a
higher number of associations with other traits, highlighting their
pleiotropic effect. In the plot, we use the diamond shape to indicate
dense area SNPs that associate strongly (p-value < 5 x 10−8) with breast
cancer. Those SNPs correspond to ‘cluster_3’, ‘cluster_1’, and ‘junk’
cluster SNPs in the MR-Clust results, here similarly flagging their
association with breast cancer risk, which may be happening via a
different pathway other than through dense area.

PheWAS plots for non-dense area and percent density are avail-
able in Supplementary Figs. 5 and 7. For those phenotypes, similarly,
we foundassociationswithbreast cancer for theoutlier SNPs. All found
associations are available in Supplementary Data 17–19.

Gene and pathway overview
To gain some biological context for the identified outlier SNPs and
distinct clusters among the MD instruments, we mapped the variants
used in MR analyses to genes (Supplementary Data 20–22; see gene-
labelled forest plots in Supplementary Fig. 8) and identified pathways
that those genes are involved in (analysis #7 in Table 1). Performing a
formal gene-set enrichment analysis was not possible here due to the
limited number of SNPs available for each phenotype/cluster. There-
fore, instead, we created a simple overview of pathway sets that came
up for genes in positive and negative effect clusters (Supplementary
Data 23–25, Supplementary Fig. 9).

Fig. 3 | The effect of MD phenotypes (dense area, non-dense area, percent
density; unadjusted for BMI at GWAS level) on breast cancer (overall sample
fromBCAC 2017 and subtype samples). a The total effect (univariableMR). b The
direct effect (accounted for childhood body size, MVMR). The plots show the odds
of breast cancer per SD increment in MD phenotype. The error bars indicate 95%
confidence intervals around the point estimate (odd ratio) from IVWMR and IVW-
MVMR analyses. The empty circle data points highlight the results where con-
fidence intervals overlap the null. GWAS sample sizes: MD phenotypes: n = 24,158;
breast cancer overall sample: n = 247,173 (133,384 cases and 113,789 controls);
breast cancer subtypes sample sizes and details are provided in Supplementary
Table 1. Source data are provided as a Source data file.
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For dense area, we found a number of unique pathways that only
appeared in genes/SNPs with a negative effect. Among those genes,
mostwere described in the functional analyses of previously published
MD GWAS32,47,48, such as MKL1/MRTFA (rs73169097 – negative ‘null’
cluster SNP) and MTMR11 (rs11205303), both of which have dense
phenotype-increasing effect but are protective against breast cancer.
The potential tumour-inhibiting and tumour-promoting role of MKL1
was previously acknowledged in ref. 47. MTMR11 is negatively asso-
ciated with both dense area and percent density (but as a result of LD

clumping it is an instrument only for dense area). It appears
to be involved in phosphoinositides/phosphatidylinositol metabolism
pathways, which are also implicated in cancer. For percent density,
the genes in negative clusters were also previously described in pub-
lished functional analyses—OTUD7B (rs12048493) and ZNF703
(rs4286946)48,49. Interestingly, the positive outlier in non-dense area
instruments is also mapped to ZNF703 (rs75772194), which is also
associated with breast size49. The complete overview of cluster/genes/
pathways is available in Supplementary Data 23–25.
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Fig. 4 | Exploring the heterogeneity of genetic instruments of dense area
phenotype on overall breast cancer (BCAC 2017). a Single SNP forest plot (Wald
Ratio estimates), with SNPs identified as outliers by MR-PRESSOmarked bold and
coloured blue. The outlier corrected estimate is presented along with the stan-
dard MR methods estimates. b Single SNP forest plot with SNPs identified as
outliers by Radial-MR marked bold and coloured yellow. The outlier corrected
estimate is presented along with the standard MRmethods estimates. cMR-Clust
scatter plot showing genetic association with dense area and breast cancer per SD
change in dense area. Each genetic variant is represented by a point. Colours
represent the clusters, and dotted lines represent the cluster means, the point
size denotes cluster inclusion probability. The “null” cluster, coloured pink,
relates to variants with null effect, whilst the black “junk” cluster are variants that

were not assigned to any cluster. d Single SNP forest plot with SNPs coloured by
the cluster membership assigned by MR-Clust (using the same colours as in the
scatter plot). The IVW MR estimates for each cluster are presented below single
SNP estimates. In panel c, the error bars denote 95% confidence intervals for the
genetic associations for each variant. In panels a, b, d, the error bars are 95%
confidence intervals of the Wald Ratio point estimate (beta coeficient) for each
variant. The effect estimates are reported per SD change in dense area pheno-
type. IVW inverse-variance weighted; MRE multiplicative random effects; GWAS
sample sizes: Dense area: n = 24,158; breast cancer overall sample: n = 247,173
(133,384 cases and 113,789 controls). Source data are provided as a Source
Data file.
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Direct effects of mammographic density and childhood
body size
In the earlier sections, we reviewed the total effect of MD phenotypes
on breast cancer risk (Fig. 3a) and explored it using various sensitivity
analyses. In this section, we dissect the direct effects of childhood
body size and MD phenotypes on breast cancer risk using MVMR
(analysis #4 in Table 1 and Fig. 1). In Fig. 3b (SupplementaryData 11), we
see the direct effect of MD on breast cancer accounting for childhood
body size, presented alongside the total effect for comparison.
There is evidence of a positive direct effect from the dense area on
all breast cancer subtypes. The point estimates are similar to those
of the total effect, but with more precise confidence intervals. There is
evidence of a negative effect from non-dense area on Luminal B1
and triple-negative subtypes, while the effects on other samples have
been further attenuated towards the null. For percent density, the
magnitude of effect and the uncertainty around the point estimate is
reduced inMVMRanalysis, with little evidence for an effect of PDon all
breast cancer subtypes when accounting for childhood body size. It
should be noted that IVW MVMR estimates may also be potentially
biased by pleiotropy in the same way as total effect estimates in
univariable MR.

From the same MVMR analysis as the results in Fig. 3b, we have
also estimated the direct effect of childhood body size on breast
cancer accounted for MD phenotypes. Figure 6 presents the total
effect of childhood body size on breast cancer (overall and subtypes)
(Supplementary Data 13) along with the direct effect accounted for
each MD phenotype (Supplementary Data 11). The total effect is
strongly protective against all outcomes. In previous work, this pro-
tective effect was not disrupted by accounting for any hypothesised
mediators10. In this analysis, we see that accounting forMDphenotypes
attenuates the protective effect making the confidence intervals
overlap the null, suggesting that MD may have a role in partially
explaining it. When accounting for the dense area, the effect
attenuation is seen for all outcomes except the ER- sample. For percent
density, the effect on breast subtypes is attenuated but to a lesser
extent, which may suggest that dense area phenotype has a stronger
mediating role than percent density. For non-dense area, the effect is
attenuated also on a subset of breast cancer subtypes. Interestingly,

the effect on ER- subtype is the least affected, suggesting there might
be some difference in how MD affects ER- breast cancer risk.

It is important to note that the number of MD instruments in this
MVMR analysis was limited (Supplementary Table 2). These MVMR
results are also affected by weak instrument bias, as F-statistics are low
in these analyses: childhood body size and dense area (F-stat, 17 and 7,
respectively) non-dense area (6 and 3), percent density (7 and 4),
respectively (Supplementary Data 12).

Mediation analysis
We performed mediation analysis using MR and MVMR results to
assess the role of mammographic density (specifically, dense area) in
the relationship between childhood body size and breast cancer. This
investigation was also done focusing only on the overall breast cancer
sample (analysis #8 in Table 1).

We estimated the indirect effect via MD, using both Product and
Difference methods for mediation analysis (see Methods). Both
methods produced similar indirect point estimates in the same
direction, −0.23 [95% CIs −0.33: −0.13] and −0.22 [−0.48: 0:05],
respectively. The proportion of the mediated effect via dense area
using the Product method estimate was 0.56, indicating that dense
area may account for 56% [95% CIs 32% – 79%] of the childhood body
size protective effect on breast cancer (see Supplementary Note 2.1 for
mediation analysis calculations).

As DA instruments were found to be heterogeneous, we also
performed mediation analysis using outlier-corrected estimates to
assess the validity of the proportion-mediated effect. The
heterogeneity-corrected estimate falls into the CIs of the main results
and is more precise (see Supplementary Note 2.2).

Discussion
The protective effect of higher childhood adiposity on breast cancer
risk has been reported in both observational and MR studies3–7. How-
ever, the mechanism behind this effect has been challenging to deci-
pher, even after reviewing nearly 20 potential mediators10. A few
observational studies have suggested that mammographic density may
have a role in this relationship28–31. In this study, we explored the med-
iating role of MD in the protective effect of higher childhood adiposity
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on breast cancer risk using Mendelian randomization, examining the
complex relationships between childhood body size, adult body size,
age at menarche, mammographic density, and breast cancer risk.

Firstly, we investigated the factors thatmay affect MD – adiposity
at different life stages and age at menarche. We found that higher
childhood and higher adulthood adiposity decrease dense area and
percent density, while both increase the non-dense (adipose tissue)
area. In multivariable MR analysis, however, the independent direct
effect of childhood adiposity was stronger for decreasing dense area,
while adult adiposity was stronger for increasing non-dense area. The
inverse effect of higher body size on density is likely explained by
increasing breast adiposity, reducing the proportion of fibroglandular
components, and increasing adipocyte differentiation of stromal cells,
thus reducing collagen production50. As breast tissue undergoes sub-
stantial development during puberty, it is reasonable that childhood
rather than adult adiposity is a more important factor for dense area.

The stronger effect of adult adiposity on the non-dense area is likewise
logical, as the change in MD with age is reflected in glandular tissue
reduction and an increase in fat51. We also showed that adjustment for
BMI in GWAS may lead to an unexpected and misleading result in MR
analysis (Supplementary Note 1), if BMI (i.e., heritable covariate) also
has a role in the studied relationship52,53.

The previously observed association of age at menarche with
breast density20 was replicated in ourMR analysis, with later menarche
increasing dense area and percent density and decreasing non-dense
area. In MVMRwith childhood body size, however, the effect of age at
menarche on MD phenotypes was attenuated. Greater adiposity in
childhood reduces dense area and percent density and lowers the age
at menarche10, while earlier menarche decreases dense area and per-
cent density. Therefore, the attenuation of its effect inMVMR indicates
that the menarche effect observed in the univariable analysis may be
due in part to increased adiposity (and its effect on the initiation of
puberty), as earlier suggested54. Overall, our results suggest that the
density-decreasing effect of childhood body size is not acting pre-
dominantly via lowering the age at menarche.

This finding draws attention to prior MR studies showing little
evidence of effect of age at menarche on breast cancer risk10,55. Inter-
estingly, in MVMR analyses when accounting for BMI, there is a shift
from the neutral effect to a causal effect with earlier age at menarche
increasing the risk. It is likely that the total effect of age atmenarche is
driven (and disguised) by childhood BMI SNPs in the age at menarche
GWAS instruments, and accounting for BMI in MVMR separates the
independent effects of childhood BMI and age at menarche on breast
cancer risk. Taken together with our finding thatMD is not affected by
age atmenarche when accounting for body size, this suggests that the
mechanisms linking childhood adiposity and age at menarche to
breast cancer could be entirely different and operate in opposite
directions. Uncovering the mechanistic links in both relationships (as
partly done in this work with respect to childhood body size) will
identify different pathways that could be modifiable and, together,
could contribute a very substantial component of modifiable breast
cancer risk. Another important consideration relating to mechanistic
links is the distinction between mutagenesis and promoters in breast
cancer causation56, which may also contribute to the differential
effects of childhood adiposity and age at menarche on breast
cancer risk.

The central relationship explored in our study is that of MD and
breast cancer, andwhetherMDhelps explain the inverse associationof
childhood adiposity and breast cancer risk. When examining the total
effect of MD phenotypes on breast cancer risk (overall and subtypes),
we observed consistent trends in the direction of effects, with dense
area and percent density increasing the risk and non-dense area
decreasing the risk, in line with observational results11,13. We found
evidence of a positive effect from the dense area on breast cancer risk
overall and for certain subtypes, but for other MD exposure/breast
cancer outcome pairs the evidence was insufficient. The results pro-
duced by the IVW method may potentially be biased by pleiotropy,
therefore the detected high levels of heterogeneity were further
explored in our analysis and will be discussed below. It is also worth
mentioning that our results may slightly differ from the previously
published MR results using related data10,32,33, which could be
explained by the differences in the MR methods employed, the
approach to instrument selection, and the fact that the MD GWAS was
unadjusted for BMI in this study.

While the total effect of MD on breast cancer was imprecisely
estimated, IVW-MVMR of MD phenotypes with childhood body size
showed strong evidence of a risk-increasing direct effect from the
dense area on all breast cancer subtypes, with less evidence for a
negative effect of non-dense area and a lackof evidence for aneffect of
percent density. This highlighted the possibility that dense area is the
more important risk factor for breast cancer, however in observational

Fig. 6 | The total effect of childhoodbody size and thedirect effect of childhood
body size accounted for MD phenotypes (dense area, non-dense area, percent
density; unadjusted for BMI at GWAS level) on breast cancer (overall sample
fromBCAC 2017 and subtype samples). The plots show the odds of breast cancer
per body size category change. The error bars indicate 95% confidence intervals
around the point estimate (odds ratio) from IVWMR and IVW-MVMR analyses. The
empty circle data points highlight the results where confidence intervals overlap
the null. GWAS sample sizes: MD phenotypes: n = 24,158; breast cancer overall
sample: n = 247,173 (133,384 cases and 113,789 controls); breast cancer subtypes
samples sizes and details are provided in Supplementary Table 1. Source data are
provided as a Source Data file.
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studies11, percent density has been found to have a stronger associa-
tion because it combines the effects of both dense area and non-dense
area which have distinct genetic aetiologies32. The direct effect of
childhood body size on breast cancer was attenuated in this MVMR
analysis, suggesting a potential mediating role of mammographic
density in the relationship between them. We have not observed such
attenuation of the effect of childhood body size in our previous work,
where many potential mediations were assessed, with the body size
effect remaining unaffected10. Interestingly, this attenuation of effect
was not present in analyses of ER-negative breast cancer, suggesting
that there might be some differences in how MD affects this disease
subtype.Weconsidered including adultbody size and age atmenarche
as covariates in MVMR, however, we opted not to pursue this analysis
due to concerns about the statistical power.

In addition to the effect changes observed in MVMR, we con-
ducted a formal mediation analysis with the dense area phenotype.
Both mediation methods we applied produced very similar indirect
effect estimates (−0.23 and −0.22, Product and Difference methods,
respectively). Such agreement of estimates was not the case for other
mediators we reviewed in our previous work10. The confidence inter-
vals around these estimatesweremore precise for the Productmethod
−0.23 [−0.33: −0.13]). The calculated proportion mediated via dense
area suggested that 56% [32% – 79%] of childhood adiposity’s protec-
tive effect could be due to it decreasing the dense area in childhood,
which leads to reduced breast cancer risk in adulthood.

The above finding is promising, however, the relationship of MD
phenotypes with breast cancer is complex and, as shown in our sen-
sitivity analyses, the genetic variants used in the analysis have het-
erogeneous estimates and are potentially highly pleiotropic. We
thoroughly evaluated the dense area, non-dense area, and percent
density genetic instruments using several robust MR outlier detection
methods and the MR clustering method, MR-Clust, to decompose
heterogeneity in the results. For dense area and percent density, we
found a set of outlier SNPs that together formed ‘negative effect’
clusters, which mapped to genes that were associated with higher
dense area/percent density, but a decreased cancer risk. This has been
previously reported for the same identified genes, e.g.MLK1 in ref. 47
andMTMR11 in ref. 48. Similarly, for the non-dense area, we found one
SNP with the opposite effect on breast cancer to the overall effect
direction. The PheWAS analysis highlighted the fact that outlier SNPs,
which also form separate clusters of MD effect on breast cancer, were
highlypleiotropic,with themajority alsoassociatedwithbreast cancer.
Several methods for outlier correction showed that removing those
SNPs results in stronger andmoreconsistent effects ofMDphenotypes
on breast cancer risk.

The discovery of multiple MD variants that are also breast cancer
susceptibility loci, highlights their shared genetic component and the
critical role MD plays as an intermediate phenotype for the disease.
The inconsistency in the direction of associations between some MD-
associated SNPs and breast cancer risk is perplexing, and is the reason
for the observed heterogeneity in MR estimates. One potential expla-
nation for discrepancies in these variants may be that multiple alter-
native pathways are involved, and are acting across different life
stages, which differentially affect breast development and the risk of
breast cancer. There is also a strongpossibility that not all contributors
to MD influence breast cancer risk. Understanding, and correctly
classifying the driving components of MD (reviewed in ref. 57) into
those that influence breast cancer risk, and using those for future
studies could increase results precision and the degree of mediation
detected. Motivated by a recent study that explored a similarly het-
erogenous effect of IGF-1 on type 2 diabetes using MR-Clust and
pathway analysis58, in our work, we attempted to characterise path-
ways thatmaybe underlying the identified positive and negative effect
clusters. In our case, however, due to the limited number of instru-
ments, pathway gene-set enrichment analysis was not feasible. An

extensive pathway analysis based on the MD GWAS used in our work
was reported in the original publication32.

The limitations of our study, including the precision of estimates
and pathway analysis, can be attributed to the small sample size of the
currently available MD GWAS data and the consequent low number of
robustly associated genetic instruments. Despite using one of the lar-
gest MD GWAS cohorts to date (N = 24,192)32, the number of instru-
ments was still relatively small (albeit higher than in earlier studies,
such as47,59). A summary table of all published MD GWAS studies is
provided in a recent review60. A similarly sized MD GWAS conducted
on data from the BCAC cohort (N = 24,579–27,900)61 has recently been
released, but due to the unavailability of effect sizes, it is not possible
to validate our findings using this resource. Once larger MD GWAS
studies become available, and more SNPs with robust associations are
identified, our results could be replicated. A larger sample size may
also allow for a menopause-status stratified analysis, as MD declines
with age62, and the association between density and breast cancer risk
is stronger pre-menopause63. A higher number of MD instruments
would also enable more informative clustering and pathway analyses,
despite the likely maintained heterogeneity amongst individual esti-
mates. Furthermore, the estimation of childhood body size indirect
effect via MD would also likely be more precise.

It is important to highlight a few recent developments in studying
the genetics of mammographic density. Firstly, the first-ever GWAS of
breast tissue structure patterns (also referred to as texture features) has
recently been published64, which is an emerging independent breast
cancer risk factor65. Texture variation can differ substantially between
women, despite having the same percent density. Including this trait in
the MD phenotype analyses (including MR) can produce additional
insights into the development of breast cancer. Secondly, as exploring
proximal molecular mediators is becoming more widespread, the ana-
lysis of MD phenotypes in the BCAC cohort61 also included a
transcriptome-wide association study (TWAS). The study revealed
additional novel associations between imputed breast tissue expression
level and MD phenotypes. Some of the identified genes were located in
proximity to GWAS loci, suggesting the observed genotype–phenotype
association for MDmay bemediated through gene expression. Further,
a recent transcriptomic study66 evaluating differentially expressed
pathways in breast tissue samples from obese vs normal-weight ado-
lescents, identified inflammation-related genes as among the most
highly activated upstream regulators in the obese breast tissue samples.

Our study thoroughly explores the links between adiposity, pub-
erty timing, andmammographic density, and breast cancer. Themajor
finding of this study is that mammographic density, specifically dense
area, potentially accounts for 56% of the protective effect of childhood
adiposity on breast cancer. Understanding this mediating pathway is
crucial since simply advocating for weight gain in childhood is clearly
not a desirable goal. This finding is exciting because showing that adult
MD ismodifiable during the pubertal growthperiodmeans there could
be opportunities to intervene during adolescence to reduce lifetime
MD and associated breast cancer risk18. An important point to raise is
that identifying amediator of a causal relationship is just an initial step
in dissecting it. MD is a relatively high-level concept, while the biolo-
gical mechanistic pathways implicated in the overall process are still
unknown. Therefore, an iterative approach to mediation studies may
be appropriate, i.e., the next steps would be to focus on understating
the causal pathway between MD and breast cancer and also between
adiposity and MD. Further understanding of the underlying mechan-
ism and biological pathways is required to explore potential avenues
for intervention. In the study, we also showed that the density-
increasing effect of later menarche may be due to lower adiposity in
adolescence, which is associated with later puberty rather than an
effect of age at menarche directly. The mechanisms linking childhood
body size and age at menarche to breast cancer risk could, therefore,
be entirely different and acting in opposing directions. Lastly, we
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found that genetic instruments for MD are heterogeneous and pleio-
tropic, and there are likely several pathways underlying the role of
mammographic density in influencing breast cancer risk. AsMDGWAS
sample sizes increase, this relationship can be further investigated,
enhancing our understanding of the genetic basis ofMD and its role in
the aetiology of breast cancer.

Methods
Data sources
The mammographic density GWAS data used in this study is a meta-
analysis of two studies (Hologic study, N = 20,311 and GE study,
N = 3881; in total N = 24,192) of non-Hispanic white women aged
between 40 and 74 years (~80% post-menopausal) from a larger
population-based study, RPGEH (Research Program on Genes, Envir-
onment and Health), administered by Kaiser Permanente Northern
California (KPNC) Division of Research67,68. Written informed consent
was obtained from all participants. Institutional Review Board
approvals for this study were obtained from KPNC, Stanford Uni-
versity, and the Icahn School of Medicine at Mount Sinai. The cohort
details and study design are available in the original publication of
mammographic density GWAS data32. Genotypes were re-imputed
with an expanded reference panel, including the Haplotype Reference
Consortium in addition to the 1000 Genomes Project Phase III data, to
improve accuracy for less common variants. The GWAS analyses were
adjusted for age at mammogram, BMI, genotype reagent kit, and the
first ten principal components of ancestry32. Three mammographic
density phenotypes were analysed: dense area (DA), non-dense area
(NDA), and percent density (PD). The original MD GWAS published by
Sieh et al. in 202032 was adjusted for BMI. For this study, the GWASwas
rerun without this adjustment (“unadjusted GWAS”) on a slightly
smaller subset of 24,158 women from the original cohort.

Childhood body size, adult body size, and age at menarche data
used in this study were obtained from UK Biobank69. All individual
participant data used from the UK Biobank study had ethical approval
from the Research Ethics Committee (REC; approval number: 11/NW/
0382) and informed consent from all enrolled participants. UK Bio-
bank is a population-based health research resource consisting of
approximately 500,000 people, aged between 40 and 69 years, who
were recruited between 2006 and 2010 from across the UK. The study
design, participants and quality control (QC) methods have been
described in detail previously69. The GWAS of childhood body size and
adult body size used in this studywereperformedby Richardson et al.4

on UK Biobank data (N = 246,511; female-only data). Childhood body
size is a categorical trait describing body size at age 10, with three
categories (‘thinner than average’, ‘about average’, ‘plumper than
average’), from a questionnaire completed by adult participants of UK
Biobank. Adult body size measure was converted from continuous
adult BMI inUKbiobank into three groups based on the proportions of
childhood body size data to ensure that the GWAS results of both
measures are comparable4. The genetic scores for childhood and adult
body size were independently validated in three separate cohorts (the
HUNT study (Norway)70, Young Finns Study71, and ALSPAC (UK)4),
which confirmed that the genetic instruments extractedbyRichardson
et al.4 can reliably separate childhood and adult body size as distinct
exposures, in addition to being robust to differential measurement
error in simulations performed in the original study. Age at menarche
GWAS summary data (N =143,819) was accessed through OpenGWAS72

(gwas.mrcieu.ac.uk) under ID ukb-b-3768.
The breast cancer data used in the study is from the Breast Cancer

Association Consortium (BCAC) cohort of 2017 (N = 228,951; overall
sample and ER+/ER- samples, assessed fromOpenGWAS under IDs: ieu-
a-1126, ieu-a-1127, ieu-a-1128)34 and the latest release of BCAC in 2020
(N = 247,173; overall sample and five molecular subtypes: Luminal A,
Luminal B1 (HER+), Luminal B2 (HER-), HER2-enriched, and triple-
negative breast cancer)35 (details in Supplementary Table 1). The cohort

design and genotyping protocol details are described elsewhere
(bcac.ccge.medschl.cam.ac.uk/bcac-groups/study-groups/, bcac.ccge.-
medschl.cam.ac.uk/bcacdata/). The study groups in the BCAC cohort
do not include UK Biobank or MD GWAS cohorts. The overall sample
results presented throughout the paper are for BCAC 2017 data. The
results for BCAC 2020 overall sample are available in all relevant Sup-
plementary tables, and are not shown here due to their similarity.

Mendelian randomization
Mendelian randomization (MR) is an application of instrumental vari-
able analysis where genetic variants are used as instruments to esti-
mate the causal relationship between a modifiable health exposure
and a disease outcome8,9. There are three core assumptions that
genetic variants need to satisfy to qualify as valid instruments for the
causal inference: (1) variants have to be reliably associated with
exposure of interest, (2) there cannot be any confounders of the
instrument and theoutcome, and (3) variants cannot be independently
associated with the outcome, via pathway other than through the
exposure (i.e. horizontal pleiotropy)73.

The analyses in this work were performed using the two-sample
(univariable) MR approach, which relies on using GWAS summary
statistics of twonon-overlapping samples for exposure andoutcome74.
Two-sample MR analyses were performed using the inverse-variance
weighted (IVW) method75. Alongside IVW, other complementary MR
methods were applied to assess the robustness of the causal estimates
and to overcome any potential violations of the MR assumptions (e.g.
horizontal pleiotropy) (see Sensitivity analysis for further details).

We used the two-step MR framework to assess whether an inter-
mediate trait acts as a causal mediator between the exposure and the
outcomeof interest76,77.MultivariableMendelian randomization (MVMR)
was used to estimate the independent direct effects of two traits toge-
ther on the outcome78,79. The genetic variants included inMVMR analysis
have to be reliably associated with one or both exposures but not
completely overlap (i.e. no perfect collinearity), and have to satisfy the
MVMR-extended second and third assumptions of the standard MR
analysis45. Diagnostic methods and sensitivity tests for the robustness of
MVMR estimates45,80 are described under Sensitivity analysis.

All analyses were conducted using R (v4.2.1). Univariable MR
analyses and sensitivity tests were performed using the TwoSampleMR
R package (v0.5.6)81, which was also used for accessing GWAS sum-
mary data deposited in OpenGWAS72 (gwas.mrcieu.ac.uk). Multi-
variable MR was carried out using the MVMR R package (v0.2)78.

For all exposure traits, the instrumentswere extracted by selecting
SNPs with p-value under the 5 x 10−8 threshold and clumping the
resulting set of variants with r2 =0.001 using the default LD (linkage
disequilibrium) reference panel in TwoSampleMR (1000 Genomes
Project, European data only). When extracting instruments from the
outcome (breast cancer) GWAS summary statistics, unavailable SNPs
were substituted by proxieswith aminimumLD r2 =0.8. The rest of the
settings were kept to defaults as per the package version number. The
number of instruments used in the analysis for all exposures: childhood
body size (n = 115), adult body size (n = 173), age at menarche (n = 190),
dense area (n = 21), non-dense area (n = 8), percent density (n = 11).

Sensitivity analysis
In addition to the standardMR analysis (IVW), we usedMR-Egger42 and
weightedmedian43MRmethods to evaluate the validity of the analysed
genetic instruments and to overcome and accommodate potential
violations of the core MR assumptions. These complementary meth-
ods help to support the causal effects found with IVW, as a single
method cannot account for all biological and statistical properties that
may impact MR estimates. Also a variety of specialised tests were
applied, as recommended in ref. 81.

To assess overall horizontal pleiotropy (violation of assumption 3),
the intercept in the MR-Egger regression42 was evaluated, and the
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heterogeneity among the genetic variants was quantified using
Cochran’s Q-statistic44. The intercept term in MR-Egger regression is a
useful indication of whether directional horizontal pleiotropy is driving
the results of anMR analysis, under the assumption that any pleiotropic
effects are uncorrelated with the magnitude of the SNP exposure
association.When the Egger intercept is close to zero (e.g. < 0.002) and
the P-value is large, this can be interpreted as no evidence of a sub-
stantial directional (horizontal) pleiotropic effect.

When the Q-statistic for heterogeneity (difference in individual
ratio estimates) is high and the corresponding p-value is small, this
suggests evidence for heterogeneity and possibly horizontal pleio-
tropy. A highQ-statistic can alsobe used as an indicator of one ormore
variant outliers in the analysis, which may also violate the MR
assumptions. In univariable MR, heterogeneity may be indicative of
horizontal pleiotropy that does not act through one of the exposures.
In MVMR, heterogeneity is quantified by QA-statistic (also a further
modification of Cochran’s Q), and small QA indicates a lack of het-
erogeneity in the per-SNP effects45.

We derived F-statistics in both univariable and MVMR to evaluate
the instrument strength45,82, with F > 10 indicating sufficient strength
forminimalweak instrument bias in the analysis.We also evaluated the
possibility of reverse causation via Steiger filtering and assessed
whether each instrument explains more variance (R2) in the exposure
rather than in the outcome83.

Additional sensitivity and outlier analyses
To explore the excessive heterogeneity and potential pleiotropy
identified in the effect ofMDonbreast cancer,weexplored the genetic
instruments using several outlier detection methods.

First, we applied MR-PRESSO36, a method that detects overall
pleiotropic bias through outlier detection by assessing each genetic
variant’s contribution to the overall heterogeneity. This method dis-
cards influential outliers from the IVW method and uses a distortion
test to evaluate the significance of the distortion between the causal
estimate before and after the removal of the outlier variants, providing
an outlier-corrected pleiotropy-robust causal estimate as a result. The
analysis was run using the MR-PRESSO R package (v1.0), using the
default parameters.

We also used the approach implemented in Radial-MR38 (R pack-
age v1.0) to identify outliers with the most weight in the MR analysis
and the largest contribution to Cochran’s Q statistic for heterogeneity.
The analysis was conducted with a p-value threshold (alpha para-
meter) set to Bonferroni corrected for the number of SNPs tested in
the analysis (p <0.05/number of instruments in the exposure) and
using modified second-order weights (weight parameter).

Finally, to investigate the presence of clustered heterogeneity and
assess the possibility of there being several distinct causal mechanisms
by whichMDmay influence breast cancer risk, we performed clustered
Mendelian randomizationusingMR-Clust37 (R package v0.1.0).MR-Clust
is a heterogeneity-based clustering algorithm that extends the typical
MR assumption that a risk factor can influence an outcome via a single
causal mechanism84 to a framework that allows one or more mechan-
isms to be detected. The heterogeneity and outliers in the main MR
result may indicate that different genetic variants influence the risk
factor in distinct ways, e.g., via distinct biological mechanisms.

MR-Clust assigns variants to K clusters, where all variants have
similar causal ratio estimates, a “null” cluster (variants with a null
effect), and a “junk” cluster (non-null variants that do not fit into any of
theK clusters). Inour analysis, the clusterswere formedof variants that
had a great conditional probability of assignment (score > 0.9), keep-
ing the results conservative. Due to the limited number of instruments
in MD exposure, we kept all clusters regardless of their size (visualised
using the MR-Clust package built-in scatter plot).

The outliers identified by MR-PRESSO and Radial-MR analyses, as
well as clusters of SNPs detected by MR-Clust, were displayed using

single-SNP forest plots to explore individual SNPs heterogeneity. The
single-SNP forestplots show the effect of the exposure on theoutcome
for each SNP separately (i.e. Wald ratio). The plots also included the
IVW MR estimate with the identified outliers excluded, and the indi-
vidual estimates for identified clusters.

PheWAS
To further examine the genetic instruments of theMDphenotypes and
better understand the potential sources of effect heterogeneity, we
performed a phenome-wide association study (PheWAS) analysis39. We
used PhenoScanner V2 (phenoscanner R package v1.0)85,86 and Open-
GWAS database (gwas.mrcieu.ac.uk/phewas/, accessed via ieugwasr R
package v0.1.5)72 to query publicly available GWAS data for associa-
tions with the SNPs from theMDphenotypes. The query was restricted
to European ancestry datasets, retrieving SNP-trait associations of
p-value < 5 x 10−8 and adjusting for FDR.

We presented PheWAS results for each MD SNP grouped by
clusters determined by the MR-Clust algorithm. This helped us to
review the association differences between clusters of SNPs with the
traits identified in GWAS databases, which might explain some of the
observed heterogeneity in the MR results.

Gene and pathway exploration
To explore the functional relevance of the identified clusters of MD
instruments, we mapped instrument SNPs of each MD phenotype to
genes and identified the pathways they are involved in. For gene
mapping, we used the SNP2Gene function on the FUMA (the Func-
tional Mapping and Annotation of GWAS) platform87, applying posi-
tional mapping (500 kb) and eQTL-based mapping (including only
GTEx v8 breast or adipose tissue datasets). All default settings were
applied, including the eQTL p-value threshold for significant snp-gene
pairs (FDR <0.05), to find genes whose expressionwas associatedwith
the locus of instrument SNPs. The pathways were extracted using the
enrichR R package (v3.1)88 (including pathway definitions from Reac-
tome, KEGG, GO terms, andWikiPathway databases). We also used the
ReactomeContentService4R R package (v1.4.0)89 to obtain more recent
Reactome data (data accessible from enrichR is pre-2016). The path-
waydata was collected for a broader context only, and no formal gene-
set overrepresentation analysis was performed.

Mediation analysis
Mediation analysis is used to quantify the effects of an exposure on an
outcome, which act directly or indirectly via an intermediate variable
(i.e.,mediator)90. Identifyingmediators of the relationshipbetween the
exposure and the outcome enables intervention on thosemediators to
mitigate or strengthen the effects of the exposure91.

The total effect of exposure on outcome includes both a direct
effect and any indirect effects via one or more mediators. The total
effect is captured by a standard univariable MR analysis. To decom-
pose direct and indirect effects, we used the results from two-step MR
andMVMR in twomediation analysismethods: Differencemethod and
Product method.

For the Difference method, to estimate the indirect effect, we
subtracted the direct effect of exposure on the outcome from MVMR
(in analysis with themediator) from the total effect of exposure on the
outcome (univariable MR)55. In Product method (also known as ‘pro-
duct of coefficients’), the results from two steps of two-step MR ana-
lysis (i.e., the effect of exposure on the mediator and the effect of the
mediator on the outcome) are multiplied to get the indirect effect76,92.
Here, we used the direct effect of the mediator on the outcome from
MVMR as the second term in the calculation90. To estimate the stan-
dard error (SE) and later confidence intervals (CIs) of the indirect
effect, we used ‘Propagation of errors’ approach for the Difference
method estimate (as outlined in ref. 55) and Deltamethod (also known
as Sobel test93) for the Product method estimate. Further details on
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performing mediation analysis are available in the Supplementary
materials of our previous work10). The mediation analysis calculations
are presented in Supplementary Note 2.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TheGWASdata for BCAC2017breast cancer (IDs: ieu-a-1126, ieu-a-1127,
ieu-a-1128), age at menarche (ukb-b-3768), and childhood body size
(ieu-b-510), can be accessed from OpenGWAS72 (https://gwas.mrcieu.
ac.uk). The BCAC 2020 molecular subtype data was published by
Zhang et al.35, and is available at https://bcac.ccge.medschl.cam.ac.uk/
bcacdata/. Childhood and adult body sizeGWASdatawas publishedby
Richardson et al.4. This study uses data from a GWAS of mammo-
graphic density (published by Sieh et al.32) The RPGEH genotype data
are available upon application to the KP Research Bank (https://
researchbank.kaiserpermanente.org/). Additional relevant informa-
tion (e.g. genetic association data) is available from Sieh et al.32 or the
authors upon request. Source data for all figures are providedwith this
paper. Source data are provided with this paper.

Code availability
All analyses in this study are available at: https://github.com/mvab/
mammographic_density_mr, https://doi.org/10.5281/zenodo.10724802.

References
1. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates

of incidence and mortality worldwide for 36 cancers in 185 coun-
tries. CA Cancer J. Clin. 0, 1–41 (2021).

2. Britt, K. L., Cuzick, J., Phillips, K. A. Key steps for effective breast
cancer prevention, Nat. Rev. Cancer. 20, no. 8. Nature Publishing
Group, pp. 417–436. 2020. https://doi.org/10.1038/s41568-020-
0266-x.

3. Furer, A. et al. Adolescent obesity and midlife cancer risk: a
population-based cohort study of 2·3 million adolescents in Israel.
Lancet Diabetes Endocrinol. 8, 216–225 (2020).

4. Richardson, T. G., Sanderson, E., Elsworth, B., Tilling, K., Davey
Smith, G. Use of genetic variation to separate the effects of early
and later life adiposity on disease risk: Mendelian randomisation
study. The BMJ. 369, 2020, https://doi.org/10.1136/bmj.m1203.

5. Jensen, B. W. et al. Childhood body mass index trajectories, adult-
onset type 2 diabetes, and obesity-related cancers. J. Natl. Cancer
Inst. 115, 43–51 (2023).

6. Hao, Y. et al. Reassessing the causal role of obesity in breast cancer
susceptibility – a comprehensive multivariable Mendelian rando-
mization investigating the distribution and timing of exposure. Int J.
Epidemiol. 52, 58 (2022).

7. Baer, H. J., Tworoger, S. S., Hankinson, S. E. & Willett, W. C. Body
fatness at young ages and risk of breast cancer throughout life. Am.
J. Epidemiol. 171, 1183–1194 (2010).

8. Ebrahim, S., Davey Smith, G., Mendelian randomization: Can
genetic epidemiology help redress the failures of observational
epidemiology? Int. J. Epidemiol. 32, no. 1, 1–22, 2003, https://doi.
org/10.1007/s00439-007-0448-6.

9. Sanderson, E. et al. Mendelian randomization. Nat. Rev. Methods
Primers. 2, 6 https://doi.org/10.1038/s43586-021-00092-5 (2022).

10. Vabistsevits, M. et al. Deciphering how early life adiposity influ-
ences breast cancer risk usingMendelian randomization,Commun.
Biol. 5, no. 1, 2022, https://doi.org/10.1038/s42003-022-03272-5.

11. Pettersson, A. et al. Mammographic density phenotypes and risk of
breast cancer: a meta-analysis. J. Natl. Cancer Inst. 106, dju078
https://doi.org/10.1093/JNCI/DJU078 (2014).

12. Boyd, N. F. et al. Mammographic breast density as an intermediate
phenotype for breast cancer, 6, no. October, pp. 798–808, 2005,
[Online]. Available: https://pubmed.ncbi.nlm.nih.gov/16198986/.

13. Bertrand, K. A. et al. Dense and nondense Mammographic area and
risk of breast cancer by age and tumor characteristics. Cancer
Epidemiol. Biomark. Prev. 24, 798–809 (2015).

14. McCormack, V. A. & Dos Santos Silva, I. Breast density and par-
enchymal patterns as markers of breast cancer risk: A meta-
analysis. Cancer Epidemiol. Biomark. Prev. 15, 1159–1169 (2006).

15. Stone, J. et al. The heritability of mammographically dense and
nondense breast tissue. Cancer Epidemiol. Biomark. Prev. 15,
612–617 (2006).

16. Kleinstern, G. et al. Association ofmammographic densitymeasures
and breast cancer ‘intrinsic’ molecular subtypes, 187, pp. 215–224,
2021, https://doi.org/10.1007/s10549-020-06049-8.

17. Shawky, M. S. et al. A review of the influence of mammographic
density on breast cancer clinical and pathological phenotype.
Breast Cancer Res. Treat. 177, 251–276 (2019).

18. Ghadge, A. G. et al. Pubertal mammary gland development is a key
determinant of adult mammographic density. Semin Cell Dev. Biol.
114, 143–158 (2021).

19. Sun, S. X. et al. Breast physiology: Normal and abnormal develop-
ment and function, in The Breast: Comprehensive Management of
Benign and Malignant Diseases, Elsevier, 2017, pp. 37–56.e6.
https://doi.org/10.1016/B978-0-323-35955-9.00003-9.

20. Alexeeff, S. E. et al. Age at menarche and late adolescent adiposity
associated with mammographic density on processed digital
mammograms in 24,840 women. Cancer Epidemiol. Biomark. Prev.
26, 1450–1458 (2017).

21. Ward, S. V. et al. The association of age at menarche and adult
height withmammographic density in the International Consortium
of Mammographic Density. Breast Cancer Res. 24, 1–16 (2022).

22. Collaborative Group on Hormonal Factors in Breast Cancer,
Menarche, menopause, and breast cancer risk: Individual partici-
pant meta-analysis, including 118 964 women with breast cancer
from 117 epidemiological studies, Lancet Oncol. 13, no. 11, pp.
1141–1151, 2012, https://doi.org/10.1016/S1470-2045(12)70425-4.

23. Dall, G. V., Britt, K. L. Estrogen Effects on the Mammary Gland in
Early and Late Life and Breast Cancer Risk. Front. Oncol. 7, no. MAY,
p. 1, 2017, https://doi.org/10.3389/FONC.2017.00110.

24. Brown, N. et al. The relationship between breast size and anthro-
pometric characteristics. Am. J. Hum. Biol. 24, 158–164 (2012).

25. Terry, M. B. et al. Do Birth Weight and Weight Gain during Infancy
and Early Childhood Explain Variation in Mammographic Density in
Women inMidlife? Results fromCohort and Sibling Analyses.Am. J.
Epidemiol. 188, 294–304 (2019).

26. Juul, F., Chang, V. W., Brar, P. & Parekh, N. Birth weight, early life
weight gain and age at menarche: a systematic review of long-
itudinal studies. Obes. Rev. 18, 1272–1288 (2017).

27. Prince, C., Howe, L. D., Sharp, G. C., Fraser, A. & Richmond, R. C.
Establishing the relationships between adiposity and reproductive
factors: a multivariable Mendelian randomization analysis. BMC
Med. 21, 1–13 (2023).

28. Andersen, Z. J. et al. Birth weight, childhood body mass index, and
height in relation to mammographic density and breast cancer: A
register-based cohort study. Breast Cancer Res. 16, 1–11 (2014).

29. Hopper, J. L. et al. Childhood body mass index and adult mam-
mographic density measures that predict breast cancer risk. Breast
Cancer Res. Treat. 156, 163–170 (2016).

30. Han, Y. et al. Adiposity Change Over the Life Course and Mammo-
graphic Breast Density in Postmenopausal Women. Cancer Prev.
Res. 13, 475–482 (2020).

31. Rice, M. S. et al. Mammographic density and breast cancer risk: A
mediation analysis. Breast Cancer Res. 18, 94 (2016).

Article https://doi.org/10.1038/s41467-024-48105-7

Nature Communications |         (2024) 15:4021 12

https://gwas.mrcieu.ac.uk
https://gwas.mrcieu.ac.uk
https://bcac.ccge.medschl.cam.ac.uk/bcacdata/
https://bcac.ccge.medschl.cam.ac.uk/bcacdata/
https://researchbank.kaiserpermanente.org/
https://researchbank.kaiserpermanente.org/
https://github.com/mvab/mammographic_density_mr
https://github.com/mvab/mammographic_density_mr
https://doi.org/10.5281/zenodo.10724802
https://doi.org/10.1038/s41568-020-0266-x
https://doi.org/10.1038/s41568-020-0266-x
https://doi.org/10.1136/bmj.m1203
https://doi.org/10.1007/s00439-007-0448-6
https://doi.org/10.1007/s00439-007-0448-6
https://doi.org/10.1038/s43586-021-00092-5
https://doi.org/10.1038/s42003-022-03272-5
https://doi.org/10.1093/JNCI/DJU078
https://pubmed.ncbi.nlm.nih.gov/16198986/
https://doi.org/10.1007/s10549-020-06049-8
https://doi.org/10.1016/B978-0-323-35955-9.00003-9
https://doi.org/10.1016/S1470-2045(12)70425-4
https://doi.org/10.3389/FONC.2017.00110


32. Sieh, W. et al. Identification of 31 loci for mammographic density
phenotypes and their associations with breast cancer risk, Nat.
Commun. 11, no. 1, 2020, https://doi.org/10.1038/s41467-020-
18883-x.

33. Chen, F. et al. Mendelian randomization analyses of 23 known and
suspected risk factors and biomarkers for breast cancer overall and
by molecular subtypes, Int. J. Cancer 2022, https://doi.org/10.
1002/IJC.34026.

34. Michailidou, M. et al. Association analysis identifies 65 new breast
cancer risk loci, 2017, https://doi.org/10.1038/nature24284.

35. Zhang, H. et al. Genome-wide association study identifies 32 novel
breast cancer susceptibility loci from overall and subtype-specific
analyses. Nat. Genet. 52, 572–581 (2020).

36. Verbanck, M., Chen, C. Y., Neale, B. & Do, R. Detection of wide-
spread horizontal pleiotropy in causal relationships inferred from
Mendelian randomization between complex traits and diseases.
Nat. Genet. 50, 693–698 (2018).

37. Foley, C. N., Mason, A. M., Kirk, P. D. W. & Burgess, S. MR-Clust:
Clustering of genetic variants in Mendelian randomization with
similar causal estimates. Bioinformatics 37, 531–541 (2021).

38. Bowden, J. et al. Improving the visualization, interpretation and
analysis of two-sample summary data Mendelian randomization via
the Radial plot and Radial regression, Int. J. Epidemiol. 47, no. 4,
1264–1278, 2018, https://doi.org/10.1093/IJE/DYY101.

39. Millard, L. A. C. et al. MR-PheWAS: Hypothesis prioritization among
potential causal effects of body mass index on many outcomes,
using Mendelian randomization. Sci. Rep. 5, 1–17 (2015).

40. Skrivankova, V. W. et al. Strengthening the reporting of observa-
tional studies in epidemiology using mendelian randomisation
(STROBE-MR): explanation and elaboration, BMJ, 375, 2021, https://
doi.org/10.1136/BMJ.N2233.

41. Skrivankova, V. W. et al. Strengthening the Reporting of Observa-
tional Studies in Epidemiology Using Mendelian Randomization:
The STROBE-MR Statement. JAMA 326, 1614–1621 (2021).

42. Bowden, J., Davey Smith, G. & Burgess, S.Mendelian randomization
with invalid instruments: Effect estimation and bias detection
through Egger regression. Int J. Epidemiol. 44, 512–525 (2015).

43. Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Con-
sistent Estimation in Mendelian Randomization with Some Invalid
Instruments Using aWeighted Median Estimator.Genet. Epidemiol.
40, 304–314 (2016).

44. Bowden, J. et al. Improving the accuracy of two-sample summary-
data Mendelian randomization: Moving beyond the NOME
assumption. Int J. Epidemiol. 48, 728–742 (2019).

45. Sanderson, E., Spiller, W. & Bowden, J. Testing and correcting for
weak and pleiotropic instruments in two-sample multivariable
Mendelian randomization. Stat. Med. 40, 5434–5452 (2021).

46. Yarmolinsky, J. et al. Causal inference in cancer epidemiology:
What is the role of mendelian randomization?, Cancer Epidemiol.
Biomarkers Prev. 27, no. 9. American Association for Cancer
Research Inc., 995–1010, 2018. https://doi.org/10.1158/1055-9965.
EPI-17-1177.

47. Lindström, S. et al. Genome-wide association study identifies mul-
tiple loci associated with both mammographic density and breast
cancer risk, Nat. Commun. 5, p. 5303, 2014, https://doi.org/10.
1038/ncomms6303.

48. Fernandez-Navarro, P. et al. Genome wide association study iden-
tifies a novel putative mammographic density locus at 1q12-q21. Int
J. Cancer 136, 2427–2436 (2015).

49. Eriksson, N. et al. Genetic variants associated with breast size also
influence breast cancer risk, BMC Med Genet. 13, 2012, https://doi.
org/10.1186/1471-2350-13-53.

50. M. J. Sherratt,McConnell, J. C., Streuli, C.H. Raisedmammographic
density: Causative mechanisms and biological consequences,

Breast Cancer Res. vol. 18, no. 1, 1–9, 2016, https://doi.org/10.1186/
S13058-016-0701-9.

51. Boyd, N. F., Martin, L. J., Yaffe, M. J., Minkin, S. Mammographic
density and breast cancer risk: current understanding and future
prospects,Breast Cancer Res. vol. 13, no. 6, 2011, https://doi.org/10.
1186/BCR2942.

52. Hartwig, F. P., Tilling, K., Davey Smith, G., Lawlor, D. A. & Borges, M.
C. Bias in two-sample Mendelian randomization when using heri-
table covariable-adjusted summary associations,. Int J. Epidemiol.
50, 1639–1650 (2021).

53. Gilbody, J., Borges, M. C., Davey Smith, G., Sanderson, E. Multi-
variable MR can mitigate bias in two-sample MR using covariable-
adjusted summary associations,medRxiv, p. 2022.07.19.22277803,
2022, https://doi.org/10.1101/2022.07.19.22277803.

54. Schoemaker, M. J. et al. Childhood body size and pubertal timing in
relation to adult mammographic density phenotype, Breast Cancer
Res. 19, no. 1, 2017, https://doi.org/10.1186/S13058-017-0804-Y.

55. Burgess, S. et al. Dissecting causal pathways using mendelian
randomization with summarized genetic data: Application to age at
menarche and risk of breast cancer. Genetics 207, 481–487 (2017).

56. Balmain, A. Peto’s paradox revisited: black box vs mechanistic
approaches to understanding the roles ofmutations and promoting
factors in cancer. Eur. J. Epidemiol. 1, 1–8 (2022).

57. Archer, M., Dasari, P., Evdokiou, A. & Ingman, W. V. Biological
mechanisms and therapeutic opportunities in mammographic
density and breast cancer risk. Cancers (Basel) 13, 1–21 (2021).

58. Wang, W. et al. Clustered Mendelian randomization analyses iden-
tify distinct and opposing pathways in the association between
genetically influenced insulin-like growth factor-1 and type 2 dia-
betes mellitus. Int J. Epidemiol. 51, 1874–1885 (2022).

59. Brand, J. S. et al. Common genetic variation and novel loci asso-
ciated with volumetric mammographic density, Breast Cancer Res.
20, no. 1, 2018, https://doi.org/10.1186/s13058-018-0954-6.

60. KhorshidShamshiri, A., Alidoust,M.,HemmatiNokandei,M., Pasdar,
A., Afzaljavan, F. Genetic architecture of mammographic density as
a risk factor for breast cancer: a systematic review, Clin. Transl.
Oncol. 1–19, 2023, https://doi.org/10.1007/S12094-022-03071-8.

61. Chen, H. et al. Genome-wide and transcriptome-wide association
studies of mammographic density phenotypes reveal novel loci.
Daniel S. McConnell 21, 27 (2022).

62. Burton, A. et al. Mammographic density and ageing: A collaborative
pooled analysis of cross-sectional data from 22 countries world-
wide. PLoS Med 14, e1002335 (2017).

63. Yaghjyan, L., Colditz, G. A., Rosner, B. & Tamimi, R. M. Mammo-
graphicbreast density andbreast cancer risk bymenopausal status,
postmenopausal hormoneuse anda family history of breast cancer.
Cancer Causes Control 23, 785–790 (2012).

64. Liu, Y. et al. A genome-wide association study of mammographic
texture variation. Breast Cancer Res. 24, 1–15 (2022).

65. Warner, E. T. et al. Automated percent mammographic density,
mammographic texture variation, and risk of breast cancer: a nes-
ted case-control study. NPJ Breast Cancer, 7, 2021, https://doi.org/
10.1038/S41523-021-00272-2.

66. Burkholder, A. et al. Investigation of the adolescent female breast
transcriptome and the impact of obesity. Breast Cancer Res. 22,
1–14 (2020).

67. Banda, Y. et al. Characterizing race/ethnicity and genetic ancestry
for 100,000 subjects in the genetic epidemiology research on adult
health and aging (GERA) cohort. Genetics 200, 1285–1295 (2015).

68. Kvale, M. N. et al. Genotyping informatics and quality control for
100,000 subjects in the genetic epidemiology research on adult
health and aging (GERA) cohort. Genetics 200, 1051–1060 (2015).

69. Sudlow, C. et al. UK Biobank: An Open Access Resource for Iden-
tifying the Causes of a Wide Range of Complex Diseases of Middle

Article https://doi.org/10.1038/s41467-024-48105-7

Nature Communications |         (2024) 15:4021 13

https://doi.org/10.1038/s41467-020-18883-x
https://doi.org/10.1038/s41467-020-18883-x
https://doi.org/10.1002/IJC.34026
https://doi.org/10.1002/IJC.34026
https://doi.org/10.1038/nature24284
https://doi.org/10.1093/IJE/DYY101
https://doi.org/10.1136/BMJ.N2233
https://doi.org/10.1136/BMJ.N2233
https://doi.org/10.1158/1055-9965.EPI-17-1177
https://doi.org/10.1158/1055-9965.EPI-17-1177
https://doi.org/10.1038/ncomms6303
https://doi.org/10.1038/ncomms6303
https://doi.org/10.1186/1471-2350-13-53
https://doi.org/10.1186/1471-2350-13-53
https://doi.org/10.1186/S13058-016-0701-9
https://doi.org/10.1186/S13058-016-0701-9
https://doi.org/10.1186/BCR2942
https://doi.org/10.1186/BCR2942
https://doi.org/10.1101/2022.07.19.22277803
https://doi.org/10.1186/S13058-017-0804-Y
https://doi.org/10.1186/s13058-018-0954-6
https://doi.org/10.1007/S12094-022-03071-8
https://doi.org/10.1038/S41523-021-00272-2
https://doi.org/10.1038/S41523-021-00272-2


and Old Age, PLoS Med. 12, no. 3, 2015, https://doi.org/10.1371/
journal.pmed.1001779.

70. Brandkvist, M. et al. Separating the genetics of childhood and adult
obesity: a validation study of genetic scores for body mass index in
adolescence and adulthood in the HUNT Study. Hum. Mol. Genet
29, 3966–3973 (2020).

71. Richardson, T. G. et al. Evaluating the direct effects of childhood
adiposity on adult systemic metabolism: a multivariable Mendelian
randomization analysis, Int J Epidemiol, 2021, https://doi.org/10.
1093/ije/dyab051.

72. Elsworth, B. et al. TheMRC IEUOpenGWASdata infrastructure. 2020,
p. 2020.08.10.244293. https://doi.org/10.1101/2020.08.10.244293.

73. Lawlor, D. A., Harbord, R. M., Sterne, J. A. C., Timpson, N. & Davey
Smith, G.Mendelian randomization: Using genes as instruments for
making causal inferences in epidemiology. Stat. Med. 27,
1133–1163 (2008).

74. Burgess, S., Scott, R. A., Timpson, N. J., Davey Smith, G. & Thomp-
son, S. G. Using published data in Mendelian randomization: A
blueprint for efficient identification of causal risk factors. Eur. J.
Epidemiol. 30, 543–552 (2015).

75. Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian rando-
mization analysis with multiple genetic variants using summarized
data. Genet Epidemiol. 37, 658–665 (2013).

76. Relton, C. L. & Smith, G. Davey Two-step epigenetic mendelian
randomization: A strategy for establishing the causal role of epi-
genetic processes in pathways to disease. Int J. Epidemiol. 41,
161–176 (2012).

77. Zheng, J. et al. Recent Developments in Mendelian Randomization
Studies. Curr. Epidemiol. Rep. 4, 330–345 (2017).

78. Sanderson, E., Davey Smith, G., Windmeijer, F. & Bowden, J. An
examination of multivariable Mendelian randomization in the
single-sample and two-sample summary data settings. Int J. Epi-
demiol. 48, 713–727 (2019).

79. Burgess, S. & Thompson, S. G. Multivariable Mendelian randomi-
zation: The use of pleiotropic genetic variants to estimate causal
effects. Am. J. Epidemiol. 181, 251–260 (2015).

80. Rees, J. M. B., Wood, A. M. & Burgess, S. Extending the MR-Egger
method for multivariable Mendelian randomization to correct for
both measured and unmeasured pleiotropy,. Stat. Med 36,
4705–4718 (2017).

81. Hemani, G. et al. The MR-base platform supports systematic causal
inference across the human phenome. Elife, 7, 2018, https://doi.
org/10.7554/eLife.34408.

82. Burgess, S. & Thompson, S. G. Avoidingbias fromweak instruments
in Mendelian randomization studies. Int J. Epidemiol. 40,
755–764 (2011).

83. Hemani, G., Tilling, K. & Davey Smith, G. Orienting the causal rela-
tionship between imprecisely measured traits using GWAS sum-
mary data. PLoS Genet 13, 1–22 (2017).

84. Burgess, S., Foley, C. N. & Zuber, V. Inferring causal relationships
between risk factors and outcomes using genetic variation.Handb.
Stat. Genomics 1, 651–677 (2019).

85. Kamat, M. A. et al. PhenoScanner V2: an expanded tool for
searching humangenotype-phenotype associations.Bioinformatics
35, 4851–4853 (2019).

86. Staley, J. R. et al. PhenoScanner: a database of human genotype-
phenotype associations. Bioinformatics 32, 3207–3209 (2016).

87. Watanabe, K., Taskesen, E., Van Bochoven, and D. Posthuma,
Functional mapping and annotation of genetic associations with
FUMA,NatCommun, 8, no. 1, 2017, https://doi.org/10.1038/S41467-
017-01261-5.

88. Kuleshov,M. V. et al. Enrichr: a comprehensive gene set enrichment
analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97
(2016).

89. Poon, C. L. ReactomeContentService4R: Interface for the Reactome
Content Service [R package]. 2022.

90. Carter, A. R. et al. Mendelian randomisation for mediation analysis:
Current methods and challenges for implementation, Eur. J. Epi-
demiol. 2021. https://doi.org/10.1101/835819.

91. Sanderson, E. Multivariable Mendelian Randomization and Media-
tion, Cold Spring Harb. Perspect. Med. 2020, https://doi.org/10.
1101/cshperspect.a038984.

92. Burgess, S., Daniel, R. M., Butterworth, A. S. & Thompson, S. G.
Network Mendelian randomization: Using genetic variants as
instrumental variables to investigate mediation in causal pathways.
Int J. Epidemiol. 44, 484–495 (2015).

93. Sobel, M. E. Asymptotic Confidence Intervals for Indirect Effects
in Structural Equation Models. Socio. Methodol. 13, 290–312
(1982).

Acknowledgements
M.V. is supported by the University of Bristol Alumni Fund (Professor Sir
Eric Thomas Scholarship). B.L.L. is supported by the University of Bristol
Vice-Chancellor’s fellowship, Academy of Medical Sciences, Elizabeth
Blackwell Institute for Health Research (University of Bristol) and the
Wellcome Trust Institutional Strategic Support Fund (ISSF3 (204813/Z/
16/Z) and AMS (SBF003/1170)). M.V., G.D.S., E.S., T.G.R., R.C.R. work in
the UK Medical Research Council Integrative Epidemiology Unit at the
University of Bristol supported by Medical Research Council
(MC_UU_00032/01, MC_UU_00032/03, MC_UU_00032/04). This work is
also supported by a Cancer Research UK programme grant (the Inte-
grative Cancer Epidemiology Programme) (C18281/A29019). W.S.,
L.A.H., J.H.R., S.E.A. are supported by the U.S. National Institutes of
Health (R01CA237541, R01CA264987, R01CA166827).Wewould also like
to acknowledge Tom Gaunt and Tim Robinson for thoughtful project
discussions.

Author contributions
M.V., B.L.L., R.C.R., G.D.S., T.G.R., E.S. conceived and designed the
study. M.V. performed the analyses, interpreted the results, and wrote
the initial draft of the manuscript as well as subsequent drafts with cri-
tical input on results interpretation and manuscript revisions from E.S.,
B.L.L., T.G.R., G.D.S., R.C.R., W.S., L.A.H., J.H.R., S.E.A. Access to mam-
mographic density data was provided by W.S., L.A.H., J.H.R., S.E.A.;
J.H.R. performed genome-wide association studies of mammographic
density phenotypes unadjusted for BMI.

Competing interests
T.G.R. is employed by GSK outside of this work, for unrelated research.
All other authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-48105-7.

Correspondence and requests for materials should be addressed to
Marina Vabistsevits.

Peer review informationNatureCommunications thanksXingyiGuoand
the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Article https://doi.org/10.1038/s41467-024-48105-7

Nature Communications |         (2024) 15:4021 14

https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1093/ije/dyab051
https://doi.org/10.1093/ije/dyab051
https://doi.org/10.1101/2020.08.10.244293
https://doi.org/10.7554/eLife.34408
https://doi.org/10.7554/eLife.34408
https://doi.org/10.1038/S41467-017-01261-5
https://doi.org/10.1038/S41467-017-01261-5
https://doi.org/10.1101/835819
https://doi.org/10.1101/cshperspect.a038984
https://doi.org/10.1101/cshperspect.a038984
https://doi.org/10.1038/s41467-024-48105-7
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-48105-7

Nature Communications |         (2024) 15:4021 15

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Mammographic density mediates the protective effect of early-life body size on breast cancer�risk
	Results
	Study overview
	Body size effect on mammographic density
	Age at menarche effect on mammographic density
	Mammographic density effect on breast�cancer
	Sensitivity analysis
	Mammographic density genetic instruments investigation
	PheWAS analysis
	Gene and pathway overview
	Direct effects of mammographic density and childhood body�size
	Mediation analysis

	Discussion
	Methods
	Data sources
	Mendelian randomization
	Sensitivity analysis
	Additional sensitivity and outlier analyses
	PheWAS
	Gene and pathway exploration
	Mediation analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




