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An integrated technology for quantitative
wide mutational scanning of human
antibody Fab libraries

Brian M. Petersen1,3, Monica B. Kirby1,3, Karson M. Chrispens1, Olivia M. Irvin1,
Isabell K. Strawn1, Cyrus M. Haas 1, Alexis M. Walker1, Zachary T. Baumer1,
Sophia A. Ulmer1, Edgardo Ayala2, Emily R. Rhodes1, Jenna J. Guthmiller 2,
Paul J. Steiner1 & Timothy A. Whitehead 1

Antibodies are engineerable quantities in medicine. Learning antibody mole-
cular recognition would enable the in silico design of high affinity binders
against nearly any proteinaceous surface. Yet, publicly available experiment
antibody sequence-binding datasets may not contain the mutagenic, anti-
genic, or antibody sequence diversity necessary for deep learning approaches
to capture molecular recognition. In part, this is because limited experimental
platforms exist for assessing quantitative and simultaneous sequence-function
relationships for multiple antibodies. Here we present MAGMA-seq, an inte-
grated technology that combines multiple antigens and multiple antibodies
and determines quantitative biophysical parameters using deep sequencing.
We demonstrate MAGMA-seq on two pooled libraries comprising mutants of
nine different human antibodies spanning light chain gene usage, CDR H3
length, and antigenic targets. We demonstrate the comprehensivemapping of
potential antibodydevelopment pathways, sequence-binding relationships for
multiple antibodies simultaneously, and identification of paratope sequence
determinants for binding recognition for broadly neutralizing antibodies
(bnAbs). MAGMA-seq enables rapid and scalable antibody engineering of
multiple lead candidates because it can measure binding for mutants of many
given parental antibodies in a single experiment.

The success of AlphaFold21 for predicting structure from sequence has
spurred intense interest in deep learning approaches for protein
functional prediction. Arguably the largest open prize in protein bio-
technology is learning antibody molecular recognition, as this would
enable the in silico design of developable, high affinity binders against
any antigenic surface. Deep learning has been utilized to advance
antibody design approaches for overall structure prediction2,3, para-
tope and epitope identification4, affinity maturation5,6 and antibody
sequence humanization7. These examples highlight the promise of

deep learning approaches but also their limitations. Put simply,
unbiased experimental antibody binding datasets do not exist at the
scale required for extant deep learning algorithms to capture antibody
molecular recognition8,9.

Researchers recently assessed the scale of experimental data
required for accurate prediction of antibody binding effects upon
mutation9. Through simulated data, they found that a training dataset
comprising hundreds of thousands of unbiased antibody-antigen
binding measurements across thousands of diverse antibody-antigen

Received: 29 September 2023

Accepted: 19 April 2024

Check for updates

1Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA. 2Department of Immunology and Microbiology,
University of Colorado Anschutz Medical Campus, Aurora, CO, USA. 3These authors contributed equally: Brian M. Petersen, Monica B. Kirby.

e-mail: timothy.whitehead@colorado.edu

Nature Communications |         (2024) 15:3974 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-2204-9847
http://orcid.org/0000-0002-2204-9847
http://orcid.org/0000-0002-2204-9847
http://orcid.org/0000-0002-2204-9847
http://orcid.org/0000-0002-2204-9847
http://orcid.org/0000-0001-7566-3536
http://orcid.org/0000-0001-7566-3536
http://orcid.org/0000-0001-7566-3536
http://orcid.org/0000-0001-7566-3536
http://orcid.org/0000-0001-7566-3536
http://orcid.org/0000-0003-3177-1361
http://orcid.org/0000-0003-3177-1361
http://orcid.org/0000-0003-3177-1361
http://orcid.org/0000-0003-3177-1361
http://orcid.org/0000-0003-3177-1361
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-48072-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-48072-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-48072-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-48072-z&domain=pdf
mailto:timothy.whitehead@colorado.edu


complexes would be sufficient to learn the effect of mutation on
binding energetics. The structure of this data—on the order of a few
hundredmutational data points per antibody spread across thousands
of antibodies targeting diverse antigenic surfaces—suggests a different
paradigm than deep mutational scanning approaches10, which assess
tens of thousands of mutations for individual proteins. Requirements
for this ‘wide mutational scanning’ paradigm include the ability to (i)
determine quantitative monovalent binding energetics, with mea-
surement uncertainty, for multiple antibodies against different anti-
gens and over a wide dynamic range, (ii) recapitulate the native pairing
of variable heavy and light chains which can be achieved using antigen
binding fragments (Fabs), (iii) track multiple mutations per antibody
on either or both chains simultaneously, and (iv) include internal
controls for quality control and validation. This technology could also
be deployed immediately for current antibody engineering applica-
tions, including the reconstruction of multiple probable antibody
development pathways11, rapid affinity maturation campaigns for
multiple leads simultaneously, fine specificity profiling for antibody
paratopes, and antibody repertoire profiling against different
immunogens.

Current antibody engineering techniques exist but have not
demonstrated the ability to generate the depth of data required for
learning antibody molecular recognition. Antibody deep mutational
scanning using various display techniques has been demonstrated for
different task-specific applications but does not provide quantitative
binding information. Deep mutational scanning has been used to
determine quantitative changes in binding affinity for protein binders
but only for a narrow dynamic range12,13. TiteSeq14 utilizes yeast surface
display and next generation sequencing to ascertain quantitative affi-
nities, but has only been demonstrated for a library from one parental
antibody single chain variable fragment (scFv)15, which can alter the
paratope through the constrained folding of heavy and light chains
imposed by an inserted linker16. Another high-throughput technique
demonstrated for one antibody included high-throughputmammalian

display17. Additional demonstrations18,19 exist that have evaluated
multiple antibodies and antigens simultaneously but are not high-
throughput.

We introduceMAGMA-seq, a technology that combinesmultiple
antigens and multiple antibodies and determines quantitative bio-
physical parameters using deep sequencing to enable widemutational
scanning of antibody Fab libraries. We demonstrate the ability of
MAGMA-seq to quantitatively measure binding affinities, with asso-
ciated confidence intervals, formultiple antibody libraries.We validate
the results ofMAGMA-seqwith isogenic antibody variant titrations (i.e.
labeling isogenic yeast displaying Fabs at various concentrations of
antigen and fitting fluorescence measurements to a binding isotherm
to extract KD). We further demonstrate the utility of MAGMA-seq on a
mixed pool of antibody libraries with two distinct antigens, SARS-CoV-
2 spike (S1) and influenza hemagglutinin (HA), and recover the
sequence-binding profiles for six antibodies across four distinct pro-
tein surfaces. MAGMA-seq facilitates the engineering of antibodies for
different applications in parallel: we demonstrate the mapping of
potential antibody development pathways, antibody responses to
multiple epitopes simultaneously, and identification of paratope
sequence determinants for binding recognition for broadly neutraliz-
ing antibodies (bnAbs). MAGMA-seq enables rapid and scalable anti-
body engineering.

Results
The protocol for MAGMA-seq (Fig. 1a) starts by generating mutagenic
libraries for all antibodies of interest in a Fab format. Fab libraries are
subcloned into yeast display vectors each containing a 20 ntmolecular
barcode; the Fab variant and barcode are paired by sequencing. The
library is transformed into yeast, and yeast is grown and induced to
surface display the Fabs. The yeast library is sorted atmultiple labeling
concentrations of antigen(s) by collecting a fixed percentage of yeast
cells. After sorting, the collected yeast plasmids are extracted, and the
barcode region is sequenced using short-read sequencing. The

Fig. 1 | MAGMA-seq is an integrated technology for antibody wide mutational
scanning. a Protocol schematic. b Yeast surface titrations of 4A8 and CC12.1
Fabs against Fc-conjugated S1 in the established (light) and updated (dark) yeast
surface display vectors. Cytograms from indicated data points are shown for
updated yeast surface backbones. Inset describes experimentally determined

KD values (n = 2). c Antibodies assessed using updated yeast surface display
vectors. RBD Receptor Binding Domain Wuhan Hu-1, NTD N Terminal Domain
Wuhan Hu-1, NA influenza neuraminidase N2 A/Brisbane/10/2007, HA influenza
hemagglutinin A/Brisbane/02/2018 H1. Source data are provided as a Source
Data file.
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sequenced data and sorting parameters are then input into a compu-
tational maximum likelihood estimation (MLE) pipeline to infer most
likely biophysical parameters, and associated confidence intervals, for
each antibody variant.

There have been several yeast display Fabplasmids described20–26;
ours most closely relates to a Golden Gate compatible plasmid from
Rosowski et al.20 Common to many plasmids, including Rosowski
et al.20, is the light chain and heavy chain (VH and CH1) expressed using
a Gal1/Gal10 galactose-inducible bidirectional promoter (BDP). We use
Golden Gate27 to assemble small shuttle vectors containing the VH, VL,
and BDP, as well as regions of homology to the CH1 and light chain
sequence. After mutagenesis, the Fab yeast surface display library is
generated by Gibson assembly28 using the regions of homology on the
shuttle vector and empty yeast surface display vector containing the
barcode. Beyond these innovations, wemade several useful changes to
the Rosowski plasmid (Supplementary Fig. 1), including (i) construct-
ing plasmids for both kappa and lambda light chains; (ii) encoding a V5
C-terminal epitope tag on the light chain to assess light chain expres-
sion; and (iii) making a conservative coding mutant in CH1 and several
silent mutations on the yeast vector for compatibility with short-read
sequencing.

To test whether our updated plasmids interfered with Fab bind-
ing, we performed yeast surface titrations of SARS-CoV-2 antibodies
4A829 and CC12.130 against Wuhan Hu-1 S1 in the established and
updated yeast surface display vectors (Fig. 1b) and fit the mean fluor-
escence data (F) to a saturable binding isotherm:

F = Fmax � Fmin

� � ½S1�o
KD + ½S1�o

+ Fmin ð1Þ

Here Fmax is the maximum average cell fluorescence at binding
saturation, [S1]o is the ligand concentration, Fmin is the cell auto-
fluorescence, and KD is the monovalent binding dissociation constant.
The confidence intervals for KD overlapped for both antibodies
(Fig. 1b), suggesting that the combined changes were not deleterious
for binding. For further validation, we performed additional yeast
surface titrationswith a representative set of antibodies encompassing
diverse Complementarity-determining region (CDR) H3 lengths
(lengths 11–23), immunoglobulin heavy chain variable region (IGHV)
gene families, and either lambda or kappa light chains (Fig. 1c; Sup-
plementary Fig. 2). In all cases, interpretable binding isotherms were
observed. Thus, our yeast display plasmids can measure binding for a
range of human Fabs.

To demonstrate the capability of MAGMA-seq to track potential
development trajectories of multiple antibodies simultaneously, we
selected three anti-S1 antibodies29–31 that target Wuhan Hu-1 S1 at two
distinct domains, the RBD and the NTD (Fig. 2a). For each of these
antibodies, mutagenic libraries theoretically comprising all possible
sets of mutations between themature and inferred universal common
ancestor (UCA) were constructed using combinatorial nicking
mutagenesis32,33 and the libraries were pooled in approximately equi-
molar ratios and assembled into the yeast surface vector with a target
of multiple barcodes per antibody variant (Fig. 2a).

Several deep mutational scanning protocols pair a barcode to an
encoded protein variant using long-read sequencing10,34–37. MAGMA-
seq is compatible with both long-read sequencing and short-read
sequencing. For short-read sequencing, the barcode is separately
paired with the VH and VL using independent Golden Gate intramole-
cular ligation reactions38, which places the barcode adjacent to either
the CDR H3 or the CDR L3 (Fig. 2b). The reaction products are sepa-
rated on an agarose gel to remove concatemers and isolate the correct
intramolecular ligation product (Supplementary Fig. 3), and amplicons
are prepared for paired end short-read sequencing. PCR-based
amplicon preparation of mixed populations is known to result in chi-
mera formation between closely related nucleic acid sequences35,39.We

evaluated several different amplicon preparation protocols by asses-
sing chimera formation between three isogenic plasmids containing
distinct mutations and unique barcodes. Using this approach, we
identified a protocol resulting in low amounts of overall chimera for-
mation (Supplementary Fig. 4).

To evaluate the fidelity of our protocol, we sequenced 20 isogenic
clones using Oxford Nanopore sequencing. The pooled, mutagenic
antibody library was prepared in replicates for Illumina short-read
sequencing following our optimized protocol for both VH and VL

pairings. 95% (19/20; replicate 1) and 85% (17/20; replicate 2) of
barcode-antibody pairing was identical between nanopore and short-
read sequencing (Fig. 2c), and no incorrect calls were made in either
replicate. In total, we paired 1059 barcodes and recovered 64/64
CC12.1 variants (100% library coverage), 48/64 COV2-2489 variants
(75% library coverage) after an alternative filtering step (Supplemen-
tary Fig. 5), and 56/64 4A8 variants (87.5% library coverage) with a
mean of 4.8 barcodes per variant (Fig. 2d).

The library was transformed into yeast, passaged, and induced by
galactose. We sorted the library at 10 different S1 labeling concentra-
tions by sorting yeast cells into two bins by fluorescence using the
channel corresponding to binding S1 (Figs. 1a and 2e, Supplementary
Fig. 6). We sequenced and counted the number of barcodes collected
from each of the bins at every sampled concentration as well as a
reference population of Fab displaying cells. The count data were
aggregated with fluorescence bin limits, sorted cell counts, and pre-
determined parameters describing the expected fluorescence dis-
tributions, and then analyzed by a customMLE algorithm to generate
monovalent binding dissociation constants (KD) and max mean fluor-
escence at saturation (Fmax) estimates for each variant. Our MLE
algorithm performs minimization of the difference between observed
and expected sequencing counts given an underlying system of
equations describing the theoretical distributions and anticipated
measurement error (for full details, see Supplementary Note 1, Sup-
plementary Figs. 11-13, Supplementary Table 1). Importantly, the
algorithm can quantify KD estimate uncertainty (Fig. 2f). Distributions
of KD estimates were observed to be consistent across barcodes of the
same variant, with high overlap between confidence intervals (Fig. 2g
and Supplementary Fig. 7). Our MLE algorithm uses two fixed global
parameters relating to the estimated error rate in FACS and the
fluorescence probability distribution of the expressed constructs. We
evaluated the sensitivity of the output on these parameters, finding
that the mean absolute error in logKD ratio ranged from 0.016 - 0.039
log10(KD/KD,wt), showing little effect overall on our parameter choices
(Supplementary Fig. 8).

To addresswhether parameter estimates fromMLE are consistent
with isogenic titrations, we used combinatorial nicking mutagenesis32

to prepare biological replicates for 61 separate 4A8 variants. For each
variant, we performed four isogenic titrations (n = 4; 2 technical
replicates and 2 biological replicates of each, see Supplementary
Data 2) and determined the change of dissociation constant relative to
the mature 4A8 Fab (log10(KD/KD,wt)). While we observed a single
outlier, likely because of low sequencing coverage (average counts per
bin = 7, Fig. 2h), themean absolute error ofMLE generated KDs relative
to the isogenic titrations fell at or below the level of precision of the
isogenic titrations for almost all variants tested (isogenic titration
experimental limit = 0.21 logKD/logKD,ref, Fig. 2h). Additionally, the
MLE algorithm captured the statistically significant differences in Fmax

that are known to exist between 4A8 and CC12.1 Fabs from isogenic
titrations (Fig. 2i). Thus, MAGMA-seq can recover biophysically
meaningful parameters that are consistent with isogenic titrations.

We performed regression analyses on the MAGMA-seq output to
gain insight into the impact of individual mutations as well as to
determine epistatic effects of mutations on the overall development
trajectory for the 4A8, CC12.1, andCOV2-2489 antibodies. As expected,
due to the high KD and low Fmax observed for COV2-2489 WT (see
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Fig. 1c), we noticed that few barcodes from any variants of this anti-
body appeared in any of the sorted bins at substantial quantities and
similar analysis was not completed. For 4A8 and CC12.1, we performed
one-hot encoding of the programmed mutations and then analyzed
each antibody separately using different regression techniques
(Ordinary Least Squares (OLS), Least Absolute Shrinkage and Selection
Operator (LASSO)40, and Ridge Regression41 (Supplementary Data 3).
While agreement was observed amongst all regression methods, we
selected the LASSO due to the parameterminimization inherent to the
method.

LASSO regression for the 4A8 isogenic clone logKD ratio titration
data and a 2nd order model fit the data with MAE =0.099 log10(KD/
KD,wt). All 2

nd order coefficient weights fell below 0.07 log10(KD/KD,wt)
(less than 17% absolute difference in binding affinities), supporting a
sparse development pathway (Fig. 3a). An identical analysis performed
on the 4A8 MLE dataset reproduced the same sparse pathway results
(Fig. 3a;MAE =0.063 log10(KD/KD,wt)). Surprisingly, only the light chain
mutationM94T had any appreciable effect on binding. The coefficient

weights for the 4A8 titrations and MLE proved consistent with a cor-
relation coefficient of 0.94 for all first order weights (Fig. 3b). The
correlation coefficient for all first and second order weights is lower at
0.70 due to the noise present in the titration data collection (Fig. 3b).
MAGMA-seq also allowed us to perform regression analysis on Fmax, a
proxy for the total amountof active Fabon the yeast surface. For 4A8, a
2nd ordermodel showed Fmax is influencedbymultiplemutations. I59M
decreases Fmax by 10%, and K120Q improves Fmax values by 9% com-
pared to mature 4A8 (Fig. 3c).

Analogous regression for antibody CC12.1 was performed using
theMLE data for ΔΔGbinding and Fmax. A second order model described
the data with MAE =0.07 log10(KD/KD,wt) and 3923 RFU for ΔΔGbinding

and Fmax, respectively. Consistent with 4A8, we found a sparse muta-
tional landscape with CC12.1 and S1 where only two mutations, F27L
and Y58F, are required for enhanced affinity (Fig. 3d).M104L improves
Fmax values by approx. 16% in the presence of F27L and Y58F (Fig. 3e).

4A8 binding to S1 ismediated predominantly by the VH chain with
important contacts to theNTD inCDRH1 andCDRH329. VLM94T is the

Fig. 2 | Validation of barcode pairing and parameter estimation for MAGMA-
seq. aMutagenic library contains 192 variants of 4A8, COV2-2489 (NTD targeting),
and CC12.1 (RBD targeting) Fabs. b Molecular barcode in yeast display plasmid
backbone allows for barcode pairing by intramolecular ligation followed by short-
read sequencing. c Barcode pairing method achieves correct variant calls con-
firmed byONT sequencing.dBarcode and variant coverage of haplotyped libraries.
e Examples of gating thresholds for FACS sorting of library for 4/10 of the sampled
antigen concentrations. Top 25%bin shown in pink and next 25% bin shown in blue.
f MLE quantifies KD uncertainty via confidence interval calculation. g MLE KD esti-
mates for all barcodes haplotyped as 4A8 WT (top) with 95% confidence intervals

for each barcode (blue X, n = 26) and grouped barcodes (orange X) (bottom).
hMean absolute error for MLE KD estimates for counts collapsed by variant versus
isogenic titration values (4A8only). iMaximummeanfluorescence values (Fmax) for
4A8 and CC12.1 antibodies calculated via MLE in absolute terms (top; 4A8: n = 70,
CC12.1: n = 83) and isogenic titration as a percentage normalized by the CC12.1
average (bottom; 4A8: n = 8, CC12.1: n = 4). Quartiles are shown for all data except
outliers defined as outside 1.5*IQR, p-values calculated by two-sided Welch’s t-test
(***: 1e-4 < p <= 1e-3, ****:p <= 1e-4, MLE: p = 1.7E-8, Isogenic: p = 4.9E-4). Source data
are provided as a Source Data file.
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only oneof sixmutations fromgermline that improves binding affinity.
A structural hypothesis for this mutation is that it repositions the
CDR H3 in a more productive conformation for NTD recognition
(Fig. 3f). CC12.1 uses both VH and VL to contact S RBD42 (Fig. 3d). Y58F
directly contacts the RBD surface for improved binding, while F27L
may subtly reposition the CDR H1 for improved recognition. M104L
decreases binding affinity in the context of F27L and Y58F but
improves functional expression, and it may participate in subtle
antibody-antigen rearrangements which could cause theminor 2-body
effects seen (Fig. 3d, g). MAGMA-seq alone as well as in combination
with known structures can aid in the structural and genetic under-
standing of antibody development trajectories.

To determine whether MAGMA-seq can evaluate multiple anti-
bodies sorted againstmultiple antigens simultaneously, we prepared a
library containing mutants of eight distinct antibodies29,43–46 (1G01,
1G04, 319-345, 222-1C06, CR6261, 2-7, UCA_2-17, and 4A8) containing
varying light chain gene usage andCDRH3 length. 1G01 and 1G04 bind
at the active site on NA influenza neuraminidase N2 A/Brisbane/10/
200743. CR6261 is a bnAb binding to group I HAs45. 319-345 and 222-
1C06 are nAbs which recognize the anchor epitope on H1 HA44. 2-7,
UCA_2-17, and 4A8 recognize SARS-CoV-2 spike Wuhan Hu-129,46

(Figs. 1c, 4a). We sorted replicates of this library of 4,105 matched
barcoded antibodies against 11 varying combined concentrations of
HA and S1. The 11 sorts were structured such that, at all labeling

Fig. 3 | Antibody development landscapes for 4A8 and CC12.1 are sparse.
a Comparison of 4A8 one body and two body parameter binding affinity weights
inferred from (left) isogenic titrations and (right)MAGMA-seq. Binding affinities are
represented as logKD ratios relative to themature antibody sequence.bCorrelation
between isogenic titrations andMAGMA-seqparameterweights. Blue closed circles
are one-body weights, and open circles are two-body weights. c Parameter weights

for 4A8 Fmax percentage differences relative to the mature antibody. d, e CC12.1
MLE parameter weights for d logKD ratios and e Fmax as inferred fromMAGMA-seq.
f, g Structural complexes of SARS-CoV-2 Wuhan Hu-1 S antibodies f 4A8 bound to
NTD (PDB ID: 7C2L), and gCC12.1 bound to RBD (PDB ID: 6XC3). Positionsmutated
from the inferred UCA sequence are shown as purple (VH) or gray (VL) spheres.
Source data are provided as a Source Data file.
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concentrations, the average population had an appreciable binding
signal (Supplementary Fig. 9). One labeling concentration contained
only HA or S1, respectively. Additionally, the library contained internal
controls for evaluating the sorting error and for assessing the fidelity
of affinity reconstruction. The complete dataset for all antibody var-
iants is listed in Supplementary Data 4. As expected, none of the NA-
specific 1G01 or 1G04 antibody variants had inferred dissociation

constants below 1μM for either the HA or S1 antigen. HA-specific and
S1-specific antibodies mapped neatly to one of the two antigens using
the antigen-only sort (Fig. 4b). The 4A8 variants, included as internal
controls, were consistent with the parameter weights from the pre-
vious sort (logKD ratio of T94M relative to the S7T variant: 1.33).
Additionally, the estimated KD values from MLE are reasonably con-
sistent between replicate sorts. After removing variants containing

Fig. 4 | MAGMA-seq infers biophysical properties in mixed antibody, mixed
antigen sorts. a Antigen-specific antibody sub-libraries and antigens used in the
sorting experiments. Non-binders 1G01 and 1G04 were also included. b Probability
of an antibody variant sorted into an antigen-specific bin when only 2000 nM of S1
(Y-axis) or H1HA (X-axis) was incubated with yeast. For HA, only the top sorting bin
was included in the analysis. c R2 of MLE KD estimates from sort replicates for HA
targeting antibodies 222-1C06, 319–345 (anchor epitope), and CR6261 (stem

epitope). d Structure (PDB ID: 3GBN) of CR6261 bound to H1 HA. Purple sticks are
HA-contacting positions that are encoded from the inferred UCA sequence. The
side chains of residues mutated in the mature antibody relative to the UCA are
shown as gold sticks and lines. e, f LASSO regression of e logKD ratios and f Fmax

percentage differences one body and two body weights for CR6261. Weights are
shown relative to the mature antibody. Source data are provided as a Source
Data file.
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stop codons and non-converged values, we observe an R2 of 0.71 and
MAE of 0.32 log10(KD/KD,wt) for antibodies 222-1C06, 319–345 (anchor
epitope), and CR6261 (stem epitope) (Fig. 4c). Relative to replicate 1,
replicate 2 underpredicts some of the intermediate affinity antibodies.
We attribute this discrepancy to the absenceof the 100 nM labelingbin
for the second replicate.

Two antibodies in the library containedmutations allowing for the
reconstruction of potential development trajectories from their
inferred UCA sequence. 2–7 is a Wuhan Hu-1 S1-specific nAb46. 2–7
contains five mutations from its inferred germline, all in the VL (A5G,
A31G, D52E, K55N, T95S). The inferred development (Supplementary
Fig. 10) was superficially like the sparse development pathways
observed for 4A8 and CC12.1, with four 1st order couplings predicting
the dissociation constants of the potential pathway variants, as sup-
ported from LASSO regression.

CR6261 is an influenza bnAb targeting the HA stem epitope ori-
ginally described by Throsby et al.45. It is an unusual antibody in two
ways. First, its development trajectory is dissimilar to other VH1-69
anti-HA antibodies previously characterized47. Second, it confers
molecular recognition only through its VH, mainly by positioning
apolar residues at framework 3 (FR3) (F74, V78), in CDRH1 (F29), and in
CDR H2 (F54) in a hydrophobic groove48,49 (Fig. 4d). Both CDR residues
are encoded in germline VH1-69 sequence in allelic humanpopulations,
but the inferred UCA sequence does not appreciably recognize the H1
HA stem epitope50. The potential first steps of its trajectory from its
inferred UCA sequence have been developed by Lingwood et al.50,
supporting a first committed step of some combination of H1 muta-
tions T28P and S30Rnecessary for orientation of F29, and at least some
subset of the framework 3 (FR3) mutations (E73D/T75A/S76G/A78V)
necessary for F74 insertion (Fig. 4d). We sampled 2.9% (470/16,384
possible variants) of the potential sequences between the UCA and
mature CR6261. MAGMA-seq recovered a KD of 12 nM for mature
CR6261, consistent with isogenic titration of 9.4 nM and with previous
literature reports45. LASSO regression supported a 2nd order epistatic
model (Supplementary Data 3), with a total of 5 1st order and 15 2nd

order weights above an absolute 0.18 log10(KD/KD,wt) energetic
threshold. Consistent with the studies from Lingwood and Pappas, the
strongest 1st order weights contributing to binding affinity are T28P,
S30R, and FR3mutation A80V (Fig. 4e), and the two strongest 2nd order
weights are the epistatic couplings between T28P/S30R (0.65 log10(KD/
KD,wt)) and S74F/A80V (0.57 log10(KD/KD,wt)). The known epistasis in
the T28P/S30R mutations can be rationalized as altering the orienta-
tion of the CDR H1 loop such that F29, usually buried, largely becomes
solvent exposed in the unbound structure. Consistent with this
hypothesis, the surface expression of Fabs containing T28P/S30R
mutations decreased by approximately 10% (Fig. 4f), as expected for
mutations which increase the apolar solvent accessible surface area.
The other epistatic relationship observed of S74F/A78V can relate to
the positioning of hydrophobic residues, where the 78V is needed to
constrain the correct F74 rotamer for precise shape complementarity
in the stem groove. In sum, the sparse sampling of bnAbmutants allow
for the reconstruction of the development pathways that are in con-
cordance with the existing body of structural, genetic, and immuno-
logical evidence for this antibody. Thus, MAGMA-seq can reconstruct
the likely development pathways for multiple human antibodies
against different antigens in the same experiment.

The libraries described thus far are all retrospective analyses of
antibody development trajectories, where libraries encoded chimeras
of the mature and UCA sequences. To further investigate the utility of
this method, our second demonstration of MAGMA-seq included a
prospective antibodydevelopment library and a fewCDR targeted site-
saturationmutagenesis libraries. We generated each of these antibody
libraries in parallel reactions and subsequently pooled and barcoded
the variants. We bottlenecked the library, which selected individual
variants randomly, and assessed it with MAGMA-seq.

To test whether MAGMA-seq could map prospective antibody
development trajectories, the mixed library contained a subset of a
larger library of the UCA sequence of the anti-S NTD 2-17 (UCA_2–17)46.
This larger library theoretically contained all single nucleotide sub-
stitutions at the CDRs and framework positions. Its UCAwas predicted
to bind at a Kd of 2050 nM (range 400–3200nM; 0.23 log10(KD/KD,wt)
s.d.; 58 barcoded UCA sequences) and a mean Fmax = 890, consistent
with measurements of the isogenic control (Fig. 1c). We were able to
recover 318 uniquely barcoded variants. Many of these mutants, like
VH:Y91DHN or VH:C92GFY near the CDR H3, are expected to structu-
rally destabilize the protein, resulting in non-specific binders. Still,
several mutants had lower inferred dissociation constants or higher
Fmax values than theUCA, including VH:I51N inCDRH2 (Kd 970 nM) and
VL:N32D (Fmax 4,000) observed in the mature 2-17 sequence, VH:S75P
(Kd 400nM), and VH:A97P in CDRH3 (Kd 490nM) (Fig. 5a). Thus,
MAGMA-seq can evaluate potential forward trajectories for antibodies
that are consistent with genetic and structural data.

We also used MAGMA-seq to infer the preliminary rules of
recognition for an emerging class of influenza neutralizing antibodies.
Antibodies 319–345 and 222–1C06 target a distinct anchor stem epi-
topeofH1HA44. AnchorbnAbs appear to begermline restricted to light
chains VK3–11 or VK3–15, with heavy chains from germlines VH3-23,
VH3-30/VH3-30-3, andVH3-48. Allmature anchor bnAbs encode aCDR
H3 of diverse amino acid sequences, with a glycine either at the
beginning or end of the CDRH3 and two to four hydrophobic residues
at the middle of the sequence. The cryo-EM structure of 222-1C06
bound to H1 HA shows the structural basis of recognition. The inter-
action at the anchor epitope is dominated by multiple hydrophobic
interactions across the heavy and light chains. The germline-encoded
and invariant CDR KL3 ‘NWPP’motif from positions 93–95A are at the
center of the binding interface. CDRH2 (Leu55) and CDRH3 (Trp99,
Pro100, Thr100a) all contribute hydrophobic contacts at the binding
interface (Fig. 5b, c).

We recovered 183 and 390 single non-synonymous mutants of
222-1C06 and 319–345, respectively (1429uniquely barcoded variants).
The observed KD for mature antibodies were low nM (319–345: 16 nM;
222–1C06: 27 nM) and highly reproducible between independent
barcodes (319–345: 0.092 log10(KD/KD,wt) s.d., n = 171; 222-1C06: 0.07
log10(KD/KD,wt) s.d., n = 92). CDR loops L1, L2, and H1 make peripheral
contacts at the interface. Consistent with this, only 3.8% of single
mutants (2/118 and 11/161 for 222–1C06 and 319–345, respectively) at
CDR L1, L2, and H1 positions disrupted binding affinity by greater than
0.7 log10(KD/KD,wt) (Supporting Data 4). This contrasts with CDR H2,
where 40% (20 of 51) of single and double mutants disrupted binding
greater than 0.7 log10(KD/KD,wt), supporting the importance of H2 in
recognition of the anchor epitope (Fig. 5c). While the library under
sampled CDRH3, mutations at Trp99 for 222–1C06 (W99E log(KD,i/
KD,WT) 1.9) and Gly100d for 319–345 (G100dL/I > 2.1 log10(KD/KD,wt))
were deleterious, consistent with the precise positioning of the loop
needed for binding. In the KL3 ‘NWPP motif’, observed mutations at
N93 seem to have little effect on binding affinity, while mutations at
W94, P95, and P95a seem to drastically disrupt binding in 222-1C06
(Fig. 5c). Intriguingly,mutations at these same positions in 319–345 are
only mildly deleterious (Fig. 5c), suggesting that the antibody para-
topes are positioned slightly differently against HA.

To identify candidate mutants with lower binding affinities
than the mature antibodies, we identified all variants with
log(KDi/KD,wt) values falling at least two standard deviations below
zero. No 319-345mutantsmet this cutoff, while four 222–1C06 variants
did (VH:E100bG, VH:S54G, VH:D101G, and VH:D101S; Fig. 5c). E100b is
adjacent to an acidic patch on HA in the structural complex (Fig. 5c),
and so mutation to glycine likely improves binding by eliminating this
unfavorable electrostatic contact. The mechanistic basis of the D101
mutations remains unclear, as mutation likely disrupts a salt bridge
with CDRH3 R94. Likewise, the effect of S54G is obscure, although we
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note that thismutationoccurs in several 319–345 clonotypes44 isolated
from patients.

Discussion
In this paper we present MAGMA-seq, an integrated technology for
quantitative wide mutational scanning of human antibody Fab librar-
ies. We demonstrate MAGMA-seq on two pooled libraries comprising
mutants of ten different human antibodies spanning light chain gene
usage, CDR H3 length, and antigenic targets. Analysis of MAGMA-seq
outputs allows for the simultaneous mapping of retrospective and
prospective potential antibody development pathways, paratope affi-
nitymaturation, and the sequence dependence on binding for broadly
neutralizing antibodies.MAGMA-seq canbedeployed immediately not
only in these areas but for affinity maturation campaigns, specificity
mapping campaigns, and for fine paratope mapping. A compelling
advantage of MAGMA-seq is its ability to measure binding for mutants
of many given parental antibodies in a single experiment. Since mod-
ern biotech campaigns typically use dozens of candidates in initial
testing, MAGMA-seq enables the streamlining of such measurements.

We used MAGMA-seq to reconstruct potential development
pathways for anti-influenza (CR6261) and anti-SARS-CoV-2 (4A8,
CC12.1, 2-7) nAbs. We found that these development pathways can be
reconstructed by considering binding contributions from only a
handful of themutations. This is supportedby a body of evidence from
other protein families51,52 showing the sparseness of functional protein
landscapes53. We also found that these sequence-binding fitness
landscapes were most consistent with one-body or at most two-body
interactions, consistent with recent protein engineering literature54–56.
The resulting implication is that sampling of a small percentage of
potential variants is sufficient for reconstruction of fitness landscapes.
Indeed, for the CR6261 experiments we sampled 470 out of 16,384
possible variants and were still able to reconstruct a development
trajectory supported by existing evidence. Likely many such antibody
trajectories can be inferred from relatively few experiments.

We also evaluated the sequence dependence of two recently
described nAbs targeting the anchor epitope on influenza HA. Our
broad findings established the importance of several key mutations at
the antibody side of the interface, identified electrostatic com-
plementarity as a mechanism for improving nAb recognition to the
anchor epitope, and highlighted the importance of shape com-
plementarity for the diverse CDR H3 sequences found to fit in the

interface. We anticipate that MAGMA-seq will be used to enumerate
the sequence determinants for entire sets of antibodies targeting key
neutralizing or other important antigenic epitopes.

There are some limitations with the current demonstration of this
technology. First, we assess binding using yeast surface display, lim-
iting the practical dynamic range of binding affinities to 0.5 nM–2μM.
At high affinities, the labeling time to reach equilibrium reaches >10 h,
and at low affinities the antigen can dissociate off the yeast surface
during sorting57. Many therapeutic antibodies with low picomolar
monovalent binding affinities would be impracticable to assess accu-
rately. Second, we have measured order of magnitude differences in
Fmax values between different mature Fabs (see Fig. 1c). Evidence
suggests some correlation between functional expression on the yeast
surface and stability of variants deriving from the same parental
sequence6,58, but a complete understanding of what drives differential
Fab expression between parental Fabs is not yet known. The low Fmax

values of some antibodies can hinder MLE performance solely due to
the variant having low probability of being sorted into a bin, whichwas
exemplified by the low counts of antibody COV2-2489 variants col-
lected in our first demonstration. Third, the MLE algorithm uses one
global parameter that cannot be measured during the experiment.
Despite this limiting assumption, the inferredmonovalent dissociation
constants match published results where known. Fourth, no explicit
removal of non-specific binders, like that seen for the anti-S NTD 2-17
sorts, were performed here. A parallel sort with polyspecificity reagent
could improve discrimination of bona fide binders. Fifth, we note that,
due to the implementation of FACS with yeast display, accuracy of
MAGMA-seq estimated binding affinities may not precisely match
gold-standard in vitromeasurements like SPR, where antibody/antigen
interactions are more directly quantified. Additional encumbrances to
the method presented include the formation of antibody sequence
chimeras during intramolecular ligation that reduce the number of
identified barcodes and the use of TruSeq small RNA single 6-nt index
adapters that allow for more index hopping during Illumina sequen-
cing. Technical improvements would remain compatible with the rest
of the MAGMA-seq workflow. Long-read sequencing is becoming
increasingly inexpensive and more accurate, and as it improves it
removes the necessity of PCR amplification.

We demonstrated this technology on libraries of fewer than
10,000 variants, although the functional limit on the library size is
much larger. The potential complexity bottlenecks for library size are

Fig. 5 | MAGMA-seq samples the function sequence-binding landscape for
neutralizing antibodies. a Forward trajectories of the UCA of anti-S1 nAb 2-17. The
sampled library is a subset of all potential singlenucleotide substitutions in bothVH
and VL. All sampled positions are shown with CA atoms shown as lime spheres.
Larger cyan spheres encode gain of function antibody variants. b Previously solved
structure of 222-1C06 bound to H1 HA (PDB ID 7T3D). c 222-1C06 paratope and

mutational profiles for certain residues in the CDR H3 and KL3. CDRs L1-L3 and H1-
H3 are shown as larger width ribbons than the rest of themain chain. Residues with
a CB within 5Å of HA are shown as colored sticks. The panel inset for the E100bG
mutation shows the electrostatic potential surface of H1 HA. Source data are pro-
vided as a Source Data file.
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through generation of individualmutagenic libraries, Gibson assembly
into barcoded yeast display plasmids, transformation into yeast,
sorting in yeast, and sequencing. An additional complexity bottleneck
arises through the linking VH and VL genotypes via barcodes. The
major bottleneck at the current stage of development is through cell
sorting. For sorting speeds of commercially available cell sorters, the
protocol leads to approx. 1000 cells collected per sorting bin (10,000
events per second × 40%Fabdisplaying cells per event × 25% collection
of the Fab displayed cells). Since we sample at least 150-fold above the
theoretical size of the library, this means that a library size of 10,000
would take 25minutes per labeling concentration. Sorting the full suite
of 10–12 labeling concentrations would then take a full working day,
including start-up and shutdown. Significantly larger libraries would
require multiple days of sorting or multiple cell sorters running in
parallel.

Massively parallel measurements of protein binding affinities can
be used to train deep learning models to capture antibody molecular
recognition. We have demonstrated that this MAGMA-seq technology
can perform wide mutational scanning for multiple antibodies against
different antigens over a wide dynamic range of binding affinities.
These measurements are made in a natural human Fab background
and have multiple internal controls needed for quality control and
validation. The next steps are an integrated computational and
experimental appraisal of the quality and quantity of data needed for
such purposes.

Methods
Materials
Allmedia componentswere purchased fromThermoFisher or VWR.All
enzymes were purchased from New England Biolabs unless otherwise
specified. The recombinant SARS-CoV-2 Spike S1-hFc-His tagged pro-
tein used for titrations and sorting was purchased from ThermoFisher
(RP-876-79). The recombinant neuraminidase (NA) for titrations was
obtained through BEI Resources, NIAID, NIH: N2 Neuraminidase (NA)
Protein with N-Terminal Histidine Tag from Influenza Virus, A/Bris-
bane/10/2007 (H3N2), Recombinant from Baculovirus, NR-43784. The
ectodomain of A/Brisbane/02/2018 H1 HA with a foldon trimerization
domain was expressed in HEK293T cells (ATCC, female, #CRL-11268)
and purified using Ni-NTA affinity chromatography. Recombinant
neuraminidase and recombinant hemagglutinin were biotinylated in a
20:1 molar ratio of biotin to antigen with EZ-Link NHS-Biotin (Ther-
moFisher, 20217) following the manufacturer’s instructions.

Plasmids
All plasmids were constructed using either NEBuilder HiFi DNA
Assembly MasterMix (New England Biolabs) for Gibson assembly28, by
Golden Gate assembly27,59, using a Q5 Site-Directed Mutagenesis Kit
(New England Biolabs), or by nicking mutagenesis32,60. Synthetic DNA
was ordered either as gBlocks or eBlocks (IDT). A complete list of
plasmids, libraries, gene blocks, and primers are located in Supple-
mentary Data 1.

pMBK046, the old 4A8 Fab YSD vector, was constructed by
Golden Gate assembly with plasmids pMBK008 and pMBK027 and
gene blocks 7 & 8. pMBK047-pMBK228, the 4A8 Fab YSD library
plasmids, were generated by combinatorial nickingmutagenesis32 with
pMBK046 as the template andprimers 142 and 328-339 and isolated by
Sanger sequencing (Genewiz) of individual colonies.

The mini-mutagenesis shuttle vectors for the 4A8/CC12.1/COV2-
2489 library: pMBK231, pMBK233, pMBK234, pMBK235, pMBK236,
pMBK237, pMBK248 were generated by golden gate assembly of the
antibodies corresponding VH and VL gene fragments with pBMP103-
UMI and pBDP and were sequence confirmed by Oxford nanopore
sequencing (Plasmidsaurus).

The isogenicyeast display Fabplasmidswereconstructedbyyeast
homologous recombination. The sequence verified shuttle vector(s)

(pMBK231–pMBK248, pMBK317–pMBK318, pMBK341–pMBK342) and
the yeast display plasmids pBMP103 for kappa antibodies and
pMBK275 for lambda antibodieswere separatelydigestedwithNotI-HF
and bands corresponding to the antibody Fab or yeast vector back-
bone were fractionated on an agarose gel and extracted using
Macherey-Nagel NucleoSpin® Gel and PCR Clean-up kit (740609.50).
The purified DNA was mixed in a 2:1 molar ratio of Fab insert to yeast
display backbone and co-transformed into chemically competent
EBY100 (ATCC MYA-4941).

The Fab shuttle vectors with kanamycin (pBMP101 and pMBK272)
and chloramphenicol (pMMP_kappa and pMMP_lambda) antibiotic
resistance genes were constructed using either gBlocks or eBlocks
(IDT) and Gibson Assembly using NEBuilder HiFi DNA Assembly
Master Mix.

The lambda mRFP yeast surface display plasmid, pYSD_lamb-
da_mRFP, was constructed by first digesting pYSD_kappa_mRFP with
PacI andNotI-HF to remove the kappa light chain segment andnext the
lambda light chain e-block was cloned in by Gibson Assembly using
NEBuilder HiFi DNA Assembly Master Mix.

Construction of Fab libraries
Fabs were diversified either by complete combinatorial mutagenesis32,
site-saturation mutagenesis61, or oligo pool nicking mutagenesis62.
Complete combinatorial libraries of Fabs were prepared from mature
human antibodies and their inferred universal common ancestor
(UCA). UCA sequences were inferred using IgBLAST63. In total, 10
mutagenic libraries were prepared (all library details are in Supple-
mentary Data 1).

To generate libraries L001, L002, L003, L024, and L029, combi-
natorial mutagenesis was performed exactly as previously described32

using the mini-mutagenesis plasmids pMBK234, pMBK235, pMBK236,
pMBK237, pMBK233, pMBK248, pMBK317, and pMBK318, as the par-
ental plasmid DNA templates and the mutagenic oligos 137, 139, 142,
145, 146, 153, 332–339, 347–356, 375–376, and 456–459, (IDT) con-
taining degenerate codons that encode either for themature antibody
residue or the UCA residue.

Briefly, a plasmid strand is selectively nicked and degraded leav-
ing circular single-stranded parental template DNA strands.Mutagenic
oligos containing degenerate codons cananneal to the single-stranded
parental templates and the rest of the strand is synthesized and ligated
via polymerase and ligase resulting in heteroduplex plasmids. Next,
the alternate plasmid strand is selectively nicked and degraded and
subsequently anoligonucleotide cananneal to a non-mutagenic region
and the complete plasmid can be synthesized with polymerase and
ligase.

To construct libraries OMIL004, OMIL006, OMIL011, and
OMIL0012 for 319-345, 222-1C06, 1G01, and 1G04, targeted site-
saturation mutagenesis was performed by the method of Bloom61.
Template linear PCR products were made using primers OMI1009 and
OMI1011 which amplify the VH-BDP-VL region of plasmids OMI0014,
OMI0016, OMI0020, and OMI0021. 25μL of 2× Q5 Master Mix, 2.5μL
of 10μM OMI1009, 2.5μL of 10μM OMI1011, 1.2μL of 5 ng/μL of the
template plasmid were combined with 18.8μL of water. Each of the
PCR reactions were run on a thermocycler at the following settings:

1. 98 °C for 30 s.
2. 98 °C for 10 s.
3. 72 °C for 56 s.
4. Repeat steps 2 and 3 for 24 additional cycles.
PCR products were then purified over agarose gels using a

NucleoSpin® Gel and PCR Clean-up kit (Macherey-Nagel, 740609.50).
These products were used as templates for the forward and reverse
fragmenting reactions prepared as described61 with the following
modifications: 2× Q5 Master Mix was substituted for 2× KOD Hot Start
Master Mix, OMI1009 was used as the outer forward primer, OMI0011
was used as the outer reverse primer, and mutagenic oligos tiling the
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VH and VL CDRs were used for the forward and reverse pools. Each
fragmenting PCR reaction results in many different length products
containing zero, one, or multiple codon changes. The reactions were
run for 10 cycles of the above thermal cycler program. The products
from this reaction were used as templates for the joining reaction. The
joining reaction was prepared as described in Bloom with the same
modifications from the fragmenting reactions to synthesize the full
length dsDNA mutagenic genes. Additionally, the joining reaction
volume was scaled from 30μL to 50μL to increase product yield. The
joining reaction was cycled using the above program for 20 total
cycles. The products from this reaction were gel purified over agarose
gels using a NucleoSpin® Gel and PCR Clean-up kit (Macherey-Nagel,
740609.50).

L030, the UCA_2-17 forward trajectory library was generated fol-
lowing oligopoolmutagenesis62 with a fast anneal stepperformedwith
the oligo pool listed in Supporting File 1. The molar ratio of template
DNA to oligonucleotides was adjusted to 10:1. This procedure is
identical described above for the combinatorial nicking mutagenesis
except instead of having excess primers that anneal to each prepared
single-stranded DNA parental template, the ratio of templates to pri-
mers is modified to promote an average of only one primer annealing
per template to result in libraries containing variants with an average
of one mutation.

A total of 1 µg of plasmid libraries in a reaction volume of 20 µL in
rCutSmart buffer were separately digested with 20 units of NotI-HF
(NEB) for 1 h at 37 °C. In parallel, 2–5 µg of pBMP103-UMI or pMBK275-
UMI library in a reaction volume of 20 µL in rCutSmart buffer was also
digestedwith 20units ofNotI-HF for 1 h at 37 °C. ThedigestedDNAwas
fractionatedon a 1 (w/v)% agarose gel. Bands corresponding to theVH-
BDP-VL region of the antibodies (1.8 kB) and the yeast surface display
vector backbone for the UMI library (6.4 kB) were extracted using
Macherey-Nagel’s NucleoSpin® Gel and PCR Clean-up kit (Macherey-
Nagel, 740609.50).

The yeast surface display and barcoded mutagenic antibody
library (L006 4A8/CC12.1/COV2-2489) was generated using Gibson
Assembly with the gel extracted components in a 2:1 molar ratio of
antibody library insert to pBMP103-UMI yeast surface display vector.
Each of the antibody combinatorial libraries contained 64 variants and
were mixed in an equimolar amount for the Gibson Assembly
reaction28 using the NEBuilder HiFi DNA Assembly master mix follow-
ing the manufacturer’s protocol. A column clean-up was performed to
remove residual buffer and enzymes and approx. 25% of the cleaned
reaction product was transformed into homemade chemically com-
petent E. coli Mach1. The next day, 11,000 transformants were
observed from the transformation dilution plate and the entire library
was harvested and miniprepped.

The barcoded yeast surface display libraries for the S1/HA mixed
antigen sort were generated by Gibson assembly of the gel extracted
components in a 2:1 molar ratio of antibody library insert to yeast
surface display vector for the kappa and lambda antibody libraries
separately. L024 and L029were assembledwith L018 library and L030,
OMIL004, OMIL006, OMIL011, and OMIL0012 were assembled with
pBMP103-UMI library in a total reaction volume of 20 µL. Both Gibson
Assembly reactions were incubated for 4 hours at 50 °C and the reac-
tion products were cleaned and concentrated to 6 µL with a Monarch
DNA & PCR Cleanup Kit (NEB). The entire 6 µL product was trans-
formed via electroporation into TransforMAX cells (Lucigen,
EC300110) and incubated at 37 °C overnight. A dilution plate was used
to assess the transformation efficiencies and the transformants were
bottlenecked to 2000 lambda variants and approximately 8000 kappa
variants. The bottlenecked libraries were grown up in 50mL SOB +
kanamycin overnight at 37 °C. The next day the libraries were mini-
prepped and pooled together and 6 different 4A8 barcoded plasmids
were also spiked into the library pool. 5 µg of plasmid DNA was
transformed into chemically competent Saccharomyces cerevisiae

(EBY100, ATCC MYA-4941) in parallel reactions for the biological
replicate libraries and stored as yeast glycerol stocks in -80 °C
according to Medina-Cucurella & Whitehead64.

Barcode-variant pairing
Barcodes were paired with VH and VL variants through Oxford nano-
pore sequencing or by short-read sequencing of amplicons prepared
by intramolecular ligation of barcode in proximity to the CDR3 of
either the VH or VL using Golden Gate27. Oxford nanopore sequencing
(Plasmidsaurus) was performed on individual plasmids. Short-read
amplicons were sequenced on an Illumina MiSeq with 2×250 paired
end reads (Rush University Sequencing Core). For intramolecular
ligation, two replicates were performed independently.

The optimized intramolecular ligation procedures were per-
formed in a reaction volumeof 100μLwith 1μg of plasmid library, 400
U of T4 DNA ligase (1μL of 400 U/μL), and 1X T4 DNA ligase buffer
(NEB; catalog # B0202S). Also added to the reaction were either 30 U
of BbsI (3μL of 10 U/μL) (NEB; catalog # R0539L) - for the intramole-
cular ligation of barcode to VL - or 30 U of PaqCI (3μL of 10 U/μL) plus
3μL PaqCI activator (diluted from 20μM stock 1:4 in 1X T4 DNA ligase
buffer) (NEB; catalog # R0745L) - for ligation of barcode to VH. The
reaction was subjected to 60 cycles of 37 °C for one minute followed
by 16 °C for one minute, and then a final incubation of 37 °C for
5minutes. Exonuclease III was added to each reaction (1μL of a 1:10
dilution made in 1X rCutSmart buffer from 100 U/μL stock) (NEB;
catalog #M0206L) followed by incubation at 37 °C for 30minutes. We
performed electrophoresis on the reactions on 1% (w/v) agarose gels in
1X TAE and gel extracted (Macherey-Nagel, catalog # 740609.50) the
bands corresponding to intramolecular ligated products for the VH-
barcode and VL-barcode pairing.

Ampliconswere prepared by first performing a PCR using primers
428 - 431 to amplify the barcode and gene sequence (UMI-VL: 428 &
430; UMI-VH: 429 & 431) and append Illumina TruSeq small RNA
compatible sequences. 10 ng of gel extracted input DNAwas amplified
in a 25μL total reaction with Phusion High-Fidelity Polymerase with
reaction components following the manufacturers recommended
protocol. The PCR thermocycler program progressed for 12 cycles.
After the first PCR was completed, a shrimp alkaline phosphatase
(rSAP) clean-up step was performed according to the manufacturer’s
instructions on 10μL of PCR product. 1μL of rSAP cleaned DNA was
used as the input for the seconod PCR, which amplifies the amplicon
further and appends unique 6-bp TruSeq small RNA barcodes and
Illumina sequencing adapters. The second PCR was performed using
PhusionHigh-Fidelity Polymerasewith reaction components following
the manufacturers recommended protocol for 14 cycles with a 25μL
total reaction volume. After the second PCR, the amplicons were
cleaned with Ampure XP beads (Beckman Coulter, A63880) following
the manufacturer’s instructions. Each dsDNA PCR product was quan-
tified using Quant-IT PicoGreen (Invitrogen, P11495) and pooled for
deep sequencing.

For optimization of the protocol above, three individual plasmids
were sequencedbyOxfordnanopore. Theseplasmidswere thenmixed
in pre-defined ratios and different amplicon prep conditions were
applied. These differences include: the polymerase used, the number
of PCR cycles, and the type of PCR clean-up between the first and
second PCRs. The three polymerases used were Phusion High-Fidelity
DNA polymerase (NEB, M0530), Q5 polymerase in a 2X Master Mix
(NEB, M0492), and KAPA polymerase (Roche, 7958927001) and each
PCR reaction components and thermocycler programwere performed
according to the manufacturer’s instruction.

Yeast Cell Surface Titrations
To determine the binding affinity of individual variants, isogenic
titrations were performed according to Chao et al.65. A population of
yeast displaying a single Fab variant are induced to display copies of
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the Fab on the surface and different concentrations of antigen are
added in separate reactions. Fluorescence tags as a readout for antigen
binding are analyzed using flow cytometry and fractional saturation
curves of the titrated antigen concentration compared to fluorescence
intensity allow for determination of the variant monovalent binding
affinity to the antigen. 4A8 variants were made by the method of
combinatorial nicking mutagenesis32. Each variant was tested in
duplicate on two separate days (n = 4 total replicates) and compared
with a titration of mature 4A8 Fab to determine the log KD ratio
(log10(KD/KD,wt)). The isogenic titrations reported in Fig. 1 were
reported in at least duplicate (n≥ 2).

Sorting of Fab libraries
For sorting the mixed 4A8/COV2-2489/CC12.1 library, 1e7 (ten million)
yeast library cells from glycerol stocks were shaken at 230 rpm and
grown in 250mL flasks at 30 °C overnight in 50mL SDCAA + PenStrep
and kanamycin. The next day, the 1e7 yeast cells were induced in
SGDCAA + PenStrep and kanamycin at 20 °C for 48 hours in a total
reaction volume of 50mL. On the morning of sorting the cells were
concentrated to an OD600 = 5 in ice-cold PBSF. Tenmillion library cells
were then labeledwith different amounts of S1-hFc-His at the following
concentrations in nM: 0, 1, 2.5, 5, 10, 50, 100, 250, 500, 1000, 2000 for
30minutes at room temperature. After the binding reactions were
finished cells were spun down, washed with 1mL of ice-cold PBSF, and
then labeled with 6.25μL anti-V5-AlexaFluor488 (ThermoFisher, 37-
7500-A488, 1mg/mL) and 25 μL Goat anti-hFc-PE (ThermoFisher, 12-
4998-82, 0.5mg/mL) for 30minutes covered on ice. After fluorophore
labeling, the cells were pelleted andwashedwith 1mLof ice-cold PBSF,
and pellets were left covered on ice until loading onto Sony SH800 cell
sorter, at which time each pellet was resuspended in 5mL of ice-cold
PBSF. Cells were first gated for yeast cells and single cells (drawn
according to Banach et al.66 to avoid collection of clumped yeast of
irregular large yeast aggregates), and then a gate for positive Fab
expression was drawn and 200,000 cells were collected as the library
reference population (Supplementary Fig. 6). Sorting bins for the Top
25% and Next 25% of binding based on PE signal were gated from the
display positive population and 200,000 cells were collected in each
bin (Supplementary Fig. 6). Sorted cells were recovered in 1mL of
SDCAA plus antibiotics overnight at 30 °C, at which time another 1mL
of SDCAA was added. Cells were grown until they reached an OD600

greater than 2. Cell stocks were made for each sorted population at
1mL of OD600 = 1 in yeast storage buffer (20% w/v glycerol, 20mM
HEPES-NaOH, 200mM NaCl, pH = 7.5).

For sorting the S1/HA library, 1e7 (ten million) yeast library cells
from glycerol stocks were shaken at 230 rpm and grown in 250mL
flasks at 30 °C overnight in 50mL SDCAA + PenStrep and kanamycin.
The next day, the 1e7 yeast cells were induced in SGDCAA + PenStrep
and kanamycin at 20 °C for 48 hours in a total reaction volume of
50mL. On the morning of sorting the cells were concentrated to an
OD600 = 5 in ice-cold PBSF. Ten million library cells were then labeled
with different amounts of S1-hFc-His and biotinylated HA for 30min-
utes at room temperature. The 11 labeling concentrations spanned
from 2.5 nM – 2000 nM and included mixes of both S1-hFc-His and
biotinylated HA. After the binding reactions were finished cells were
spun down, washed with 1mL of ice-cold PBSF, and then labeled with
6.25μL anti-V5-AlexaFluor488 (ThermoFisher, 37-7500-A488, 1mg/
mL, Lot#:YD372483), 25μL Goat anti-hFc-PE (ThermoFisher, 12-4998-
82, 0.5mg/mL, Lot#:2626356), and 25μL SAPE (ThermoFisher, S866)
for 30minutes covered on ice. After fluorophore labeling, the cells
were pelleted and washed with 1mL of ice-cold PBSF, and pellets were
left covered on ice until loading onto Sony SH800 cell sorter. Each
pellet was resuspended in 5mL of ice-cold PBSF and loaded on to the
cell sorter. Cells were first gated for yeast cells and single cells, and
then a gate for positive Fab expression was drawn and 1,000,000 cells
were collected per bin for the first replicate and 750,000 cells per bin

were collected for the second replicate. Sorted cells were recovered in
5mL of SDCAA plus antibiotics for at least 30 hours at 30 °C and cell
stocks were made for each sorted population in yeast storage buffer.
Yeast biological replicates were performed. The plasmid encoded
master library was prepared once and separately transformed into
yeast; these libraries were sorted on separate days.

Amplicon preparation and deep sequencing
Plasmid DNA from each collected population (1e6–4e6 sorted yeast
cells) was prepared according to Medina-Cucurella & Whitehead64

using Zymoprep Yeast Plasmid Miniprep kits in either individual
Eppendorf tubes (D2004) or 96-well plate format (D2007) andplasmid
DNA was eluted in 30μL nuclease free water. 15μL of eluted plasmid
DNA was further purified with exonuclease I and lambda exonuclease.
The barcode region of the purified DNA was amplified using 25 PCR
cycles with Illumina TruSeq small RNA primers following Kowalsky
et al. ‘Method B’67 using Phusion High-Fidelity DNA polymerase in a
50μL total reaction. 5μL of the PCR product was size verified on a 1%
(w/v) agarosegel and the remaining 45μLwas cleanedwithAmpureXP
beads (Beckman Coulter, A63880) following the manufacturer’s
instructions. Each dsDNA PCR product was quantified using Quant-IT
PicoGreen (Invitrogen, P11495) and pooled in equimolar amounts for
deep sequencing. Amplicons were sequenced on either an Illumina
MiSeq (4A8/CC12.1/COV2-2489 sort) orNovaSeq6000 (S1/HA sorts) by
Rush University with single end reads.

Data processing
Sequencing files were processed using the custom Python code
accessible on GitHub (https://github.com/WhiteheadGroup/MAGMA-
seq). The code contains three primary modules used in this work
referred to as haplotyping, scanning, and parameter estimation. Hap-
lotyping takes input sequencing files from internally ligated yeast
display plasmids and creates a barcode-to-variantmap. Scanning reads
input sequencing files for sorted yeast populations for which only
barcode sequences are processed, counts, and matches the barcodes
to a variant specified in the previously generated barcode-to-variant
map, and integrates this with sorting conditions for final output.
Finally, the parameter estimation module performs maximum like-
lihood estimation (MLE) on each variant contained in the output to
generate parameter estimates for KD and Fmax with 95% confidence
intervals determined from reduced chi squared. See the “config” folder
on GitHub for exact parameters used for generating each of the
datasets used in this work.

For each of the sequencing processingmodules (haplotyping and
scanning), FASTQ files and processing parameters are entered into a
config file (see README and example config files on GitHub reposi-
tory). Necessary packages including Biopython, NumPy, and SciPy can
be easily installed into a conda virtual environment with the included
YAML file. The code is highly efficient and parallelizable (using the
multiprocessing library) and can run ondatasets containingmillions of
sequences in under an hour on our hardware (Alpine supercomputing
cluster (CU Research Computing) x86_64 AMD Milan CPU with 32MB
L3 Cache (utilizing 8 cores), 3.75 GB RAM/core).

Sequence merging and filtering
We adapted the software from Haas et al.68 for merging paired end
reads at all the pertinent amplicon lengths. Sequences are then filtered
based on the sequence agreement within overlap regions (see Haas
et al.68 for algorithm details) as well as overall minimum quality scores
across the full amplicon, gene, and barcode regions. Barcodes and
genes are extracted from these successfully merged reads assuming a
fixed location within the amplicon. Sequences are then collapsed and
counted based on unique barcode and gene combinations and gene
sequences arematched to a set of possible wild-type sequences based
on Hamming distance. Amino acid mutations are then determined
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based on the chosen wild-type sequence. Variant frequencies are cal-
culated by considering the genotypes represented in the dataset,
ignoring barcodes.

A six-letter sequencemotif (CGGCGG) occurringwithin the COV2-
2489 antibody VH gene causes a precipitous drop in quality scores of
all base calls downstream from this previously known motif69 on the
reverse read (Supplementary Fig. 5). This drop in quality score
required a different haplotyping protocol for this antibody library
where paired reads were not merged. This is justifiable as the muta-
tions encoded in our library all exist on the high quality forward read,
and the barcodes are located on the reverse read upstream of the
quality drop. We identified reads from this antibody by matching the
read to an unmutated region at the beginning of the sequence (VH
positions 1–31), filtered the individual forward reads based on quality
(dropping reads with overall minimum quality <Q10), and then paired
the associated barcode from the reverse read based on index. The
resulting data was passed into the following haplotyping step identical
to the other merged reads.

Haplotyping: pairing a barcode with Fab variant
For each barcode, we make a variant call by comparing all observed
barcode-genotype pairings. We first apply a mutation filter (variants
with more than 10 mutations from the assigned wild-type are
removed). We then apply the count filter and a frequency filter (see
config for filtering values used). Additionally, options are available for
removing all silent mutations and/or all mutations not encoded in the
mutagenic library. From the remaining possible pairings, we divide the
observed read counts by the variant frequency and select the variant
with themaximumof these values. Thismethod appropriately weights
lower observed counts of rarer variants. The raw pairing data aswell as
the processed barcode-to-variant map are output to CSV files for
analysis.

After barcode maps have been made for VH and VL segments, we
merge the two maps based on identical barcodes and output the
resulting pairings as a CSV file. A final check is performed where bar-
codes that pair to heavy and light chains from distinct antibodies are
removed from the map, resulting in a barcode-to-variant map.

Scanning
The scanning module matches sequenced barcodes from sorted
libraries to barcodes in themap produced by the haplotypingmodule.
It is designed to process single reads only (alternatively, forward reads
from paired-end sequencing runs can be used). As described pre-
viously, barcodes are identifiedbasedonfixed locationwithin the read.
As a default, barcodes are filtered based on adherence to the template
sequence of mixed bases; this option can be turned off. Each barcode
is matched to an identical barcode in the barcode-to-variant map and
the number of times each barcode is seen is summed. Information
entered by the user in “limit.csv” including high and low bin limits (Hj
and Gj, respectively), and number of cells sorted and collected in each
bin (Nk and Njk, respectively) arematched with concentration and bin
names to generate the CSV file needed for the next parameter esti-
mation step. Note that the concentration and bin names in the “lim-
it.csv” must match the identifiers from the scanning barcodes config
file. For example, a bin named “top25” at concentration “5 nM” should
be identified in the config file as “conc5nM_bintop25”.

Scan barcode outputs information for each of the concentrations
and bins analyzed as well as an overall output in two forms: (1)
“_combined.csv” records the counts by barcode and (2) “_col-
lapsed.csv” records the counts collapsed by antibody variant. Both the
combined and collapsed CSV files are ready for input into the para-
meter estimation module assuming a proper “limit.csv” was specified.
For each bin and concentration, the percentage of barcodes that
matched to a variant in the map is recorded. With our conservatively
filtered maps, these percentages tend to range between 50 and 70%

readmatching. Far lower percentages usually indicate low efficiency of
haplotyping.

Parameter Estimation
A complete description of the mathematics behind parameter esti-
mation is detailed in Supplementary Note 1 (Supplementary Figs. 11-13,
Supplementary Table 1). CustomPython softwarewas used to estimate
variant-specific monovalent binding dissociation constants (Kd,i) and
mean maximum fluorescence at saturation (Fmax,i) fit by Eq. (1). These
values were inferred using maximum likelihood estimation of the fol-
lowing expression for the log likelihood LLiðKd,i, Fmax ,iÞ:

LLiðKd,i, Fmax ,iÞ= �
X

jk

pijk �Modelijk
σijk

 !2

ð2Þ

Here, pijk is the probability of capturing variant i in bin j at labeling
concentration k and is determined from observables from the deep
sequencing experiment according to the following equation:
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+ is the total fraction of cells collected in the sorting bin relative
to the reference sample, rijk is the number of observed read counts for
variant i in bin j at labeling concentration k, rir is the number of
observed read counts for variant i in the reference population, and the
summations represent the sum of observed read counts over all
barcodes.

Modelijk is the model probability of the variant i sorting in bin j at
labeling concentration k and is defined as:
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Here, Fgjk and Fg2jk are the gating boundaries in the selected bin j,

andσ is the standarddeviationof the lognormaldistribution and set to
1.02 for all variants. Different parameter values in Eq. (1) change the
variant-specific mean fluorescence Fik at each labeling concentration
used in the experiment.

The parameter σijk representing the uncertainty in the probability
of sorting is defined as:

σijk =
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For sorts reported in Fig. 2, σijk,extrinsic was set to 0.02. For the
sorts reported in Fig. 4, this value was measured using the average
probabilities of the non-bindingmutants of antibodies 1G01 and 1G04.

Parameter estimation requires that the data be supplied in the
format of the scanning module output (see examples/scan_output.csv
for example) where each row specifies a single observation of a variant
labeled at a given concentration and collected at a given bin. Addi-
tionally, a few global parameters must be entered by the user. First,
sigma defines the width of the lognormal distribution that represents
the possible fluorescence range for a given variant.We have found that
this value is somewhat independent of the variant and label con-
centration. In our testing, these values range from 0.90 to 1.02. Sec-
ond, “B” represents the variant-independent cell autofluorescence,
which can be determined by reading fluorescence values of Fab-
expressing yeast cells without binding partner. We find that this value
should fall in the range of 290–350 RFU (in PE channel) using our
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equipment (Sony SH800, yeast cells, 488 nm laser with compensation
for PE/AlexaFluor488 fluorophores).

To achieve accurate estimates for weak binders and poorly
expressed Fabs (high KD or low Fmax) a few modifications to the MLE
algorithm were necessary. First, manual curation was used to remove
bins that had poor sequencing coverage or that had inferred prob-
abilities that were inconsistent with the other datasets. For the data
represented in Figs. 2 and 3, the two bins affected were at the 25 nM
labeling concentrations. The MLE algorithm first performs parameter
estimation using all remaining top 25% bins. The maximum likelihood
estimates were analyzed and variants with calculated KD that exceeded
1μM or Fmax that fell under 12,000 RFU were removed. For these
variants, MLE was performed again by concatenating top 25% and next
25%bins into a single top 50% bin at each concentration using the joint
probability estimate using equation (7). For the mixed antigen sorts
represented in Figs. 4 and 5, 2–7 variants were assessed by combining
both bins for 25 and 50 nM labeling concentrations. Additionally, all
anti-S1 probabilities pijk were multiplied by 0.64 to correct for cell
sorter efficiency in this experiment.

Supervised learning
Programmed mutations for reverse trajectory libraries were one-hot
encoded using the custom python notebook One-hot-encode.ipynb.
Ordinary least squares (OLS), least absolute shrinkage and selection
operator (LASSO), and ridge regression analyses were performed on
the one-hot encoded variants for log(KD,i/KD,WT) (4A8 titrations and
MLE) and Fmax (MLE) regularization using custom Python Jupyter
notebooks OLS.ipynb, LASSO.ipynb, and Ridge.ipynb. Coefficient
weights and error values for each regression technique and model
order are detailed in Supplementary Data 3.

Sequences of anchor mAbs used in this study are from Guth-
miller et al.44 Clonal analyses were performed using VGenes (https://
wilsonimmunologylab.github.io/VGenes/) using sequences from
Guthmiller et al.

Statistics & reproducibility
In all experiments in this study, no data were excluded from the ana-
lysis. Yeast libraries were prepared in independent replicates and
sequenced at high depth of coverage to confirm KD estimates. All
statistical tests were computed either using SciPy or custom code and
are included in the Python scripts freely available on GitHub.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Deep sequencing data is available on the sequencing read archive
under SRA accession PRJNA1026152, accession codes SRR26328231,
SRR26328232, and SRR26328233. The plasmids for constructing com-
patible workflow Fabs pBDP (AddGene ID: 217827), pMMP_kappa
(AddGene ID: 217828), pMMP_lambda (AddGene ID: 217829), pYSD_
kappa_mRFP (AddGene ID: 217830), and pYSD_lambda_mRFP
(AddGene ID: 217831), aswell as positive control plasmidsp4A8_S7T_BC
(AddGene ID: 217832) and p4A8_M59I_T94M_BC (AddGene ID: 217833),
are freely available from AddGene (Deposit: 84029). Source data are
provided with this paper.

Code availability
All custom scripts and code are freely available on GitHub (https://
github.com/WhiteheadGroup/MAGMA-seq).
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