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Sex affects transcriptional associations with
schizophrenia across the dorsolateral
prefrontal cortex, hippocampus, and
caudate nucleus

Kynon J. M. Benjamin1,2,3,8 , Ria Arora1,4,8, Arthur S. Feltrin 1, Geo Pertea 1,
Hunter H. Giles 1,5, Joshua M. Stolz1, Laura D’Ignazio1,3,
Leonardo Collado-Torres1,6, Joo Heon Shin 1, William S. Ulrich1,
Thomas M. Hyde1,2,3, Joel E. Kleinman 1,2, Daniel R. Weinberger 1,2,3,5,7,
Apuã C. M. Paquola1,3 & Jennifer A. Erwin 1,3,7

Schizophrenia is a complex neuropsychiatric disorder with sexually dimorphic
features, including differential symptomatology, drug responsiveness, and
male incidence rate. Prior large-scale transcriptome analyses for sex differ-
ences in schizophrenia have focused on the prefrontal cortex. Analyzing
BrainSeq Consortium data (caudate nucleus: n = 399, dorsolateral prefrontal
cortex: n = 377, and hippocampus: n = 394), we identified 831 unique genes
that exhibit sex differences across brain regions, enriched for immune-related
pathways.We observed X-chromosome dosage reduction in the hippocampus
ofmale individualswith schizophrenia. Our sex interactionmodel revealed 148
junctions dysregulated in a sex-specific manner in schizophrenia. Sex-specific
schizophrenia analysis identified dozens of differentially expressed genes,
notably enriched in immune-related pathways. Finally, our sex-interacting
expression quantitative trait loci analysis revealed 704 unique genes, nine
associated with schizophrenia risk. These findings emphasize the importance
of sex-informed analysis of sexually dimorphic traits, inform personalized
therapeutic strategies in schizophrenia, and highlight the need for increased
female samples for schizophrenia analyses.

For more than a century, sex differences have been observed in schi-
zophrenia—a complex, chronic neuropsychiatric disorder affecting ~1%
of the adult population worldwide. These sex differences include dif-
ferences in cognitive severity and age of onset; for example, female

individuals appearing tobe less vulnerable to altered verbal processing
deficits1, and male individuals having an earlier age of disease onset2,3.
Additionally, prenatal stress may significantly increase the risk of
schizophrenia in male offspring as opposed to female offspring4,5. To
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date, only two large-scale RNA-sequencing studies have examined sex
differences in schizophrenia, and both focus exclusively on one brain
region—the prefrontal cortex6,7. Furthermore, the Genotype-Tissue
Expression (GTEx) analysis of sex differences across 45 tissues found
fewer than 100 differentially expressed genes (DEGs) in 13 of 14 brain
regions. This small number of identified DEGs might be attributed to
relatively limited sample size (114 to 209 individuals)8.

Leveraging schizophrenia genome-wide association studies
(GWAS)9–11, recent large-scale studies have used statistical association
between genotype and expression (expression quantitative trait loci
[eQTL]) to identify genomic features (gene, transcript, exon, and exon-
exon junctions) underlying schizophrenia risk12–16. However, these
studies have not explored potential sex-interacting eQTL (si-eQTL).
Furthermore, theGTEx study across 44 tissues foundonly four si-eQTL
genes with a nominally significant false discovery rate (FDR) below
0.25 in only two of the 13 brain regions examined8. Other recent si-
eQTL studies involving whole blood17,18 and lymphoblastoid cell lines19

have found fewer than 25 si-eQTL. As eQTLhave tissue specificity20, the
field of neuropsychiatric genetics needs a sizable and comprehensive
analysis of si-eQTL in the human brain.

Here, we leverage the BrainSeq Consortium RNA-sequencing and
genotypes datasets to identify genes associated with sex, with sex-
specific expression in schizophrenia, and with si-eQTL using a total of
1170 samples across 504 individuals (Table 1) for the caudate nucleus
(n = 399), dorsolateral prefrontal cortex (DLPFC; n = 377), and hippo-
campus (n = 394). Our work increases the number of annotated sex-
biased features, examines sex-chromosome dosage, identifies sex-
specific schizophrenia features, provides annotations of si-eQTL in the
human DLPFC and hippocampus, and increases si-eQTL annotations
for the caudate nucleus. Altogether, these results provide insights into
sex differences, highlighting the importance of sex-informed analysis
of sexually dimorphic traits and informing personalized therapeutic
strategies in schizophrenia.

Results
Sex-specific expression across the caudate nucleus, DLPFC, and
hippocampus
We first explored sex differences in the brains of the 480 unique
individuals (caudate nucleus [n = 393], DLPFC [n = 359], and hippo-
campus [n = 375]) by performing differential expression of sex after
adjusting for diagnosis, age, ancestry (SNP PCs 1–3), RNA quality, and
hidden variances (Eq. 1 and Table 3) using the BrainSeq Consortium
dataset12,13. We observed 831 unique DEGs (FDR <0.05; Fig. 1A)
between the sexes across the caudate nucleus (n = 689 DEGs [279
upregulated in females; 410 upregulated inmales]), DLPFC (n = 256 [99
upregulated in females; 157 upregulated in males]), and hippocampus
(n = 147 [64upregulated in females; 83 upregulated inmales]).Of these
831 unique DEGs, the sex chromosomes showed the most significant
sex-biased expression (Data S1). Interestingly, most sex-associated
DEGs for the caudate nucleus and DLPFC were autosomal (Table S2).
When we expanded our analysis to the isoform level, we identified an

additional 859 unique genes associated with a differentially expressed
transcript, exon, or exon-exon junction (Fig. S4). Furthermore, we
observed a similar pattern of majority autosomal genes; however, the
most significant differentially expressed features in this context were
located on sex chromosomes (Table S2 and Data S1).

To evaluate the function and association of the sexually
dimorphic gene expression to heritable complex traits, we performed
gene set enrichment analysis and MAGMA enrichment analysis on
DEGs separately per brain region. ForMAGMAgene set enrichment, we
did not observe any significant associations (Data S2). This may be
partly explained by the underrepresentation of allosomes in GWAS
studies21. With gene set enrichment analysis, we observed significant
enrichment (GSEA, q < 0.05) of several ontology and disease terms for
each brain region (Fig. 1B and Data S3). As expected, we found
enrichment for dosage compensation associated with female-biased
(upregulated in females)DEGs across all brain regions. Additionally,we
found significant enrichment of fibroid related disease terms (i.e.,
uterine fibroids, tubulointerstitial fibrosis, and fibroid tumor) asso-
ciated with female-biased DEGs across all brain regions. The vast
majority of enrichment terms (1477 of 1515 ontology and disease
terms) were associated with female-bias DEGs across brain regions.
The small fraction of enrichment terms associated with male-biased
DEGs included histonemodification, androgen receptor signaling, and
autistic behavior (Data S3). In contrast, female-biased DEGs were pri-
marily enriched for immune-related pathways (i.e., neutrophil migra-
tion, macrophage activation, humoral immune response, complement
activation, and astrocyte development) across the brain (Data S3). We
also found these enrichment patterns replicated in co-expression
network modules22 associated with sex (Data S4). Even so, female- and
male-constructed network modules were well preserved (Z > 10; Data
S5), similar to reports by others23. Altogether, these results imply that
networks shared between female and male individuals are well pre-
served, while significant sex-specific modules are highly enriched for
immune-related pathways.

Autosomes influence sex differences in the brain
With so many autosomal sex-biased DEGs, we asked to what degree
sex-biased autosomal genes contribute to sex differences in the brain.
We separated allosomal and autosomal DEGs and performed principal
component analysis to assess explained variance of these DEGs across
the brain. While the first principal component of all allosome DEGs
explained ~97% variance across brain regions, the autosomal DEGs also
showed significant association with sex (Fig. S6). Interestingly, we
found that explained variance drastically increased with only the 10
most significant autosomal DEGs across brain regions (90%, 87%, and
88% for the caudate nucleus, DLPFC, andhippocampus; Fig. 1C and Fig.
S6). As it appeared that a small subset of these autosomal DEGs
explained a large proportion of expression variances between the
sexes, we formally tested this using dynamic recursive feature elim-
ination (dRFE)24. To this end, we applied random forest classification
using 10-fold, sex-stratified, cross-validation with dRFE and found a

Table 1 | A sample breakdown of eQTL analysis for individuals (age > 13) postmortem caudate nucleus, DLPFC, and hippo-
campus from the BrainSeq Consortium, separated by sex

Brain Region Sex Sample Size Diagnosis Ancestry Age (mean ± sd) RIN (mean ± sd)

Caudate Nucleus F 126 76CTL/50SZ 79AA/47EA 50.2 ± 16.9 7.8 ± 0.9

M 273 169CTL/104SZ 127AA/146EA 48.6 ± 15.7 7.9 ± 0.8

DLPFC F 121 73CTL/48SZ 75AA/46EA 48.4 ± 17.1 7.4 ± 1.0

M 256 156CTL/100SZ 129AA/127EA 44.6 ± 16.1 7.8 ± 0.9

Hippocampus F 126 79CTL/47SZ 82AA/44EA 47.9 ± 16.7 7.64 ± 1.1

M 268 182CTL/86SZ 131AA/137EA 44.4 ± 16.2 7.7 ± 1.0

F female, M male, CTL neurotypical control, SZ schizophrenia, AA African American, EA European American, RIN RNA integrity number.
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Fig. 1 | Sex-biased expression across the caudate nucleus, DLPFC, and hippo-
campus. A Circos plot showing significant differentially expressed genes (DEGs)
for the caudate nucleus (blue; n = 393; 121 female and 272 male), DLPFC (dorso-
lateral prefrontal cortex; red; n = 359; 114 female and 245 male), and hippocampus
(green; n = 375; 121 female and 254 male) across all chromosomes. Female bias
(upregulated in female individuals) in red, and male bias (upregulated in male
individuals) in blue. B Gene set enrichment analysis (GSEA) of sex differential
expression analysis across brain regions, highlighting the top ten most significant
terms upregulated in females (female bias) or males (male bias). NES normalized
enrichment score, XCI X-chromosome inactivation.C Scatterplots of the estimated
proportion of expression variance explained by sex within the 100most significant
autosomal DEGs (i.e., adjusted p value) for the caudate nucleus (DEGs, n = 60),
DLPFC (DEGs, n = 25), and hippocampus (DEGs, n = 42). Plots are annotated with
parametric correlation (R2) from linear regression for PC1. D UpSet plot showing
overlap of DEGs across the caudate nucleus, DLPFC, and hippocampus. Blue is

shared across the caudate nucleus, DLPFC, and hippocampus; orange, shared
between two brain regions; and black, unique to a specific brain region. * Indicating
significant enrichment (caudate nucleus vs DLPFC: p < 2.3e–141; caudate nucleus vs
hippocampus: p < 1.1e–181; and DLPFC vs hippocampus: p < 9.3e–190) using two-
sided, Fisher’s exact test. E Scatterplot of effect size (logFC) for all genes tested
showing concordant positive directionality with significant two-sided, Spearman
correlation (R2) of all genes. A fitted trend line is presented in blue as the mean
values ± standard deviation. F Example box plots of genes showing an interaction
between sex and brain region (caudate nucleus: n = 393 [121 female and 272 male];
DLPFC: n = 359 [114 female and 245 male]; and hippocampus: n = 375 [121 female
and 254 male]). FC = fold change log2 (male/female). Female individuals in red and
male individuals in blue. Adjusted p value (P) annotation using dream67 (default of
Satterthwaite approximation) generated statistics annotation. Box plots show the
median and first and third quartiles, and whiskers extend to 1.5× the inter-
quartile range.

Article https://doi.org/10.1038/s41467-024-48048-z

Nature Communications |         (2024) 15:3980 3



median of 110 genes (77, 32.5, and 221 for caudate nucleus, DLPFC, and
hippocampus respectively) with perfect test score accuracy for sex
classification (Table S3 and Fig. S7). Interestingly, the prediction
accuracy seemed to be driven by one pseudogene (RPS10P3 [riboso-
mal protein S10 pseudogene 3]) shared across brain regions (Fig. S8).
Additionally, RPS10P3—located on chromosome 9—has previously
been reported to be associated with five different traits25–29, including
sex-interacting cleft lip29 and lateral ventricle temporal horn volume in
psychosis28. These results indicate that a small subset of autosomal
genes significantly contributes to sexually dimorphic gene expression
in the brain.

Brain region interaction with sex
To understand the regional specificity of sexDEGs,we comparedDEGs
from each brain region. We observed a significant enrichment of
shared DEGs across the three brain regions (Fisher’s exact test,
p <0.05; Fig. 1D) with the majority (60 DEGs, 62.5%) on sex chromo-
somes. For replication analysis, we compared the DEGs with previous
sex differences analysis in the brain6,30–32 and foundgreater than62%of
DEGs were significantly differentially expressed in all brain regions
except for the GTEx cerebellum and anterior cingulate cortex (Fig. S9)
with a concordant direction of effect between BrainSeq Consortium
and GTEx brain regions (Fisher’s exact test, p < 0.01). For a more in-
depth comparison, we examined the sex differences found using the
CMC DLPFC6. We also discovered a large number of DEGs on sex
chromosomes (39 of 51 [76.5%] and41 of 54 [75.9%] for theNIMHHBCC
and MSSM-Penn-Pitt cohorts, respectively) similar to our BrainSeq
Consortium analysis. Additionally, we observed significant pairwise
enrichment of these CMC DEGs with our BrainSeq Consortium DEGs
across brain regions (Fisher’s exact test, p <0.01; Fig. S10). Altogether,
this suggests that X- and Y-linked genes drive brain-wide sex expres-
sion differences and autosomal genes drive brain region-specific dif-
ferences. Additionally, autosomal DEGs were less likely to replicate in
different datasets.

Interestingly, we found that all genes, regardless of significant
association with sex, showed a significant positive correlation for the
direction of effect between pairwise comparisons of the three brain
regions (Spearman, rho >0.69, p < 1.4e-108; Fig. 1E). At significant
levels (DEGs, adjusted p <0.05), these pairwise correlations dramati-
cally increased (Spearman, rho >0.99, p < 4e–104; Fig. S11A) with sig-
nificant concordant direction of effect (RRHO; Fig. S12). Expanded
analysis of transcripts, exons, and exon-exon junctions displayed a
similar pattern with all shared, differentially expressed (DE) features
(adjusted p <0.05) having significant concordant direction and sig-
nificant positive correlation among brain regions (Spearman, rho >
0.97, p≅0; Fig. S11B–D). Moreover, at significant levels (adjusted
p <0.05), all directions agreed between the CMC DLPFC and the
BrainSeq Consortium brain regions with a significant positive corre-
lation (Spearman; rho >0.97 for all pairwise comparisons; p < 1.1e–44;
Fig. S13). In summary, the direction of change for sexually dimorphic
genes is generally shared across multiple brain regions and indepen-
dent datasets.

We next evaluated the degree of sex bias among brain regions
formally with an interaction model for sex and brain region. Here, we
found extensive interactions (Fig. 1F), particularly in the caudate
nucleus as compared to the DLPFC (adjusted p <0.05, DEGs = 528) and
the caudate nucleus as compared to the hippocampus (adjusted
p <0.05, DEGs = 71). In contrast, we found only five genes (ZNF736P9Y,
ENSG00000285756, TUBBP1, TBL1Y, and ENSG00000285679) with
region-specific expression for sex between the DLPFC and hippo-
campus. When we expanded our analysis to the isoform level, we
identifiedmore thandouble uniqueDEGs (1303 [775 isoformonly], 198
[127 isoform only], and 23 [18 isoform only], for caudate nucleus vs
DLPFC, caudate nucleus vs hippocampus, andDLPFC vs hippocampus,
respectively; Fig. S14, Table S4, and Data S6).

To understand the functional significance of these brain region-
specific transcriptional changes, we applied GSEA and MAGMA
enrichment for each pairwise comparison. While we did not find
enrichment for any brain or non-brain traits (MAGMA; Data S2), we did
observe significant enrichment (GSEA, q <0.05) of several ontology
terms for all pairwise comparisons (Fig. S15 andData S7). Interestingly,
we observed terms associatedwithmyelination (i.e., myelination, axon
ensheathment, and ensheathment of neurons) for comparisons
between the DLPFC and the other two brain regions. For brain region-
specific transcriptional sex differences between the caudate nucleus
and hippocampus, we also observed enrichment for cognition, neu-
rotransmission, and regulation of synaptic plasticity. For transcrip-
tional sex differences between the caudate nucleus and DLPFC, we
observed additional terms associated with gene silencing. For tran-
scriptional sex differences between the DLPFC and hippocampus, we
observed additional terms associated with receptor signaling. Alto-
gether, this analysis highlights the importance of brain region-specific
transcriptional sex differences, which are significantly enriched for
neurotransmission and myelination.

XCI and dosage compensation in the brain
As 70% of the brain-wide, sexually dimorphic genes are located on sex
chromosomes, we next evaluated the dosage of X-linked genes com-
pared to autosomes. In order to equalize the dosage of X-linked genes
between XX females and XY males, female mammals epigenetically
silence one X chromosome in a process called XCI (X-chromosome
inactivation). XCI is a chromosome-wide processwhere themajority of
X-linked genes are nearly completely silenced, and a minority of
X-linkedgenes either escapeX inaction or showvariable X inactivation.
Whenwe examined theDEGs by brain region for X-linked gene dosage,
we found the majority of DEGs were enriched for XCI escape genes
(Fig. S16, Fisher’s exact test, Bonferroni < 0.01; Fig. 2A), reflecting
dosage compensation for themajority of X-linked genes subject to XCI
as seen in previous studies33,34.

Across all three brain regions, we found XCI escape genes were
significantly enriched within the female- and male-biased DEGs (Fish-
er’s exact test, Bonferroni < 0.01; Fig. 2A). Moreover, all male-biased
escaping XCI genes were located on the PAR (pseudoautosomal
regions) of both X and Y chromosomes (AKAP17A, ASMTL, ASMTL-AS1,
CD99, CD99P1, DHRSX, GTPBP6, IL3RA, LINC00106, PLCXD1, PPP2R3B,
and ZBED1; Data S8). This finding aligns with previous reports showing
a male-biased enrichment of escaping XCI genes on PAR135,36. Addi-
tionally, we found the most male-biased XCI-annotated genes in the
caudate nucleus (n = 16, 9, and 10 DEGs for caudate nucleus, DLPFC,
and hippocampus, respectively; Fig. S17), which were mostly anno-
tated as escape XCI genes (Data S8 and Fig. S17). In contrast, we only
found enrichment of variable XCI genes in the caudate nucleus (Fish-
er’s exact test, Bonferroni < 0.01). Altogether, XCI escaping genes
demonstrated higher expression in female individuals across brain
regions, suggesting sex differences shared across brain regions are
associated with well-documented XCI escaping genes for females.

Next, we evaluated differences in chromosome-wide dosage by
comparing the relative X chromosome expression (RXE) to autosomes
(Fig. 2B and Fig. S18). Interestingly, we observed a significant decrease
of RXE in male individuals only in the DLPFC (Mann-Whitney U,
p =0.047), demonstrating region-specific dosage compensation. We
also observed a similar trend of decreased RXE in the DLPFC from the
CMC MSSM-Penn-Pitt cohort (Mann-Whitney U, p =0.07; Fig. S19A)
but not the GTEx frontal cortex (Fig. S20). Even so, the large RXE
variation across the 13 GTEx brain regions demonstrated region-
specific dosage compensation (Fig. S20).

As we found differences in the DLPFC between sexes, we next
asked if this might be due to individuals with schizophrenia. Interest-
ingly, we found decreased RXE in the hippocampus of male patients
(Mann-Whitney U, p =0.004; Fig. 2C) but not in the caudate nucleus,
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DLPFC, or CMC DLPFC (Fig. S19B). This significant decrease in RXE in
the hippocampus of male patients with schizophrenia was driven by
the reduction of expression from inactive XCI genes (Fig. S21). How-
ever, there was no significant interaction between sex and diagnosis
status for any brain region for RXE. These results demonstrate slight
differences between X-chromosome dosage in the hippocampus of
individuals with schizophrenia.

Interaction of schizophrenia and sex in the brain
After investigating sex differences in the brain without consideration
of diagnosis in 480 unique individuals (caudate nucleus [n = 393],
DLPFC [n = 359], and hippocampus [n = 375]), we next identified sta-
tistically significant differentially expressed features (adjusted
p <0.05) with respect to sex differences and diagnosis through an
interaction model. No genes, transcripts, or exons were significant by
this interaction model, similar to a previous study6. While overall
replication with CMC DLPFC was limited, we found significant corre-
lation of nominally significant (p <0.05) transcriptional signatures
between DLPFC and CMC DLPFC, NIMH HBCC cohort (π1 = 0.51;
Spearman, ρ =0.60, p <0.01; Fig. S22 and Table S5). In contrast, on the
junction level, 148 junctions demonstrated a significant (adjusted
p <0.05; Fig. S23A and Data S9) interaction between sex and diagnosis
across the caudate nucleus (nine unannotated junctions; Fig. S23B),
DLPFC (89 unannotated junctions; Fig. S23B), and hippocampus (47
unannotated junctions and three junctions associated with DDX11L1
[DEAD/H-Box Helicase 11 Like 1]; Fig. S23B).

We also examined differential expression for schizophrenic
female and male individuals separately across the caudate nucleus,
DLPFC, and hippocampus using RRHO analysis to increase our power
of detecting transcriptional changes. Here, we found schizophrenia-
related transcriptional signatures, while concordant direction of
effect varied dramatically depending on sex and brain region. Spe-
cifically, female schizophrenia transcriptional signatures showed the
strongest pattern of sharing between the caudate nucleus and the
DLPFC (Fig. 3A), while males showed the strongest pattern of sharing
between DLPFC and hippocampus (Fig. 3B). These patterns are
similar to those found in ours and others’ previous schizophrenia
analyses adjusted for sex12,13. Altogether, sex-adjusted schizophrenia
analysis largely reflects male transcriptional changes likely due to
larger male sample sizes.

Next, we examined female and male transcriptional changes for
schizophrenia within individual brain regions. Here, we found the
strongest shared signature within the caudate nucleus with very little
observable overlap for the DLPFC and hippocampus (Fig. 3C). Fur-
thermore, we examined DEGs (adjusted p <0.05) and found a large
overlap for the caudate nucleus but little overlap between females and
males for the DLPFC and hippocampus (Fig. 3D). For the DLPFC and
hippocampus, the limited observable overlap is apparent in the
opposing enrichment patterns between DLPFC and hippocampus in
females (Fig. 3A) and males (Fig. 3B); while female transcriptional
signatures associated with genes upregulated in schizophrenia, male
transcriptional signatures associated with genes downregulated.

Fig. 2 | X-linkedgene expressionanddosage compensationobservedacross the
caudate nucleus, DLPFC, and hippocampus. A Enrichment of significant sex-
biased genes relative to genes known to escape X-chromosome inactivation (XCI)
across the caudate nucleus (n = 393; 121 female and 272male), DLPFC (dorsolateral
prefrontal cortex; n = 359; 114 female and 245male), and hippocampus (n = 375; 121
female and 254 male). Dot plot of enrichment (two-sided, Fisher’s exact test) of
differentially expressed genes (DEGs) for XCI genes by brain region separated by
male bias (upregulated in male individuals), female bias (upregulated in female
individuals), and all DEGs. Size of dots denotes -log10 of Bonferroni corrected p
values. Color relates to log10odds ratio (OR)with depletion in blue and enrichment
in red. B Box plot showing relative X-chromosome expression (RXE) comparison

between female (red) and male (blue) individuals with two-sided, Mann-Whitney U
two-tailed, p values annotated across the caudate nucleus (n = 393; 121 female and
272male), DLPFC (dorsolateral prefrontal cortex;n = 359; 114 female and 245male),
and hippocampus (n = 375; 121 female and 254male).CBoxplot showing significant
differences between neurotypical control (CTL; gray) and schizophrenic (SZ; gold)
individuals in the caudate nucleus (n = 393; 121 female and 272 male), DLPFC
(n = 359; 113 female and 245 male), and hippocampus (n = 375; 121 female and 254
male) for female (left) and male (right) individuals with annotation of two-sided,
Mann-Whitney U p values. All box plots show the median and first and third
quartiles, and whiskers extend to 1.5× the interquartile range.
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Similar trends occurred for transcripts, exons, and junctions (Data S10
and Fig. S24).

Sex-specific schizophrenia expression in the brain
To further examine female- and male-specific schizophrenia DEGs,
we applied a more stringent filter to exclude: (1) genes shared
between female-only and male-only schizophrenia analyses and (2)
genes detected as significantly different (Mann-Whitney U, p < 0.05)
with residualized expression for opposite sex-only individuals. For
female-specific schizophrenia analysis, the single DLPFCDEG and 169
DEGs from the caudate nucleus were filtered out because they
showed significant residualized expression for male individuals with
schizophrenia (Mann-Whitney U, p < 0.05) resulting in a total of 194
female-specific schizophrenia DEGs in the caudate nucleus (Table S6
and Data S10). For male-specific schizophrenia analysis, we found
1130, 5, and 149 DEGs for the caudate nucleus, DLPFC, and hippo-
campus, respectively. Due to the small number of DLPFC-identified
DEGs, we found no DEGs shared across brain regions for male-
specific schizophrenia analysis (Table S7).We found twogenes (EDN3
and PLD4) shared between the caudate nucleus and DLPFC and 23
genes (Table S7) shared between the caudate nucleus and
hippocampus.

We hypothesized that the smaller sample size for female indivi-
duals might explain why we identified few if any female-specific schi-
zophrenia DEGs within the BrainSeq Consortium dataset. To test this
hypothesis, we performed 1000 random samplings of the male indi-
viduals at female sample sizes (n = 121, n = 114, and n = 121, for the

caudate nucleus, DLPFC, and hippocampus, respectively) and calcu-
lated DEGs for each brain region and permutation. On average, we
identified a drastically smaller number of schizophrenia DEGs (median
male-only schizophrenia DEGs of 347, 0, and 1 for the caudate nucleus,
DLPFC, and hippocampus, respectively; Fig. S28) in our subsampled
male samples that showed no significant difference (permutation
p =0.30, 0.80, and 0.69 for the caudate nucleus, DLPFC, and hippo-
campus, respectively) between the number of schizophrenia DEGs
identified from the female-only analysis. Altogether, the smaller female
sample size, at least partially, explains the lack of identification of
female-specific schizophrenia DEGs within the BrainSeq Consortium
datasets.

Given the role of estrogen in the treatment of schizophrenia37, we
next examined sex hormone expression in the context of schizo-
phrenia in the brain. Here, we did not observe any sex-specific or sex-
specific schizophrenia DEGs for sex hormone expression (AR [andro-
gen receptor], ESR1 [estrogen receptor 1], ESR2 [estrogen receptor 2],
and PGR [progesterone receptor]) across the brain. As sex hormone
levels vary with age, we next examined any potential interaction
between sex hormones and age. For female and male individuals, we
found no significant interactions of diagnosis status and age for the
caudate nucleus and DLPFC. For the hippocampus, we found a nom-
inally significant upregulation of ESR2 (linear regression, p =0.016
[FDR =0.098]; Fig. S25) in female individuals with schizophrenia
compared with neurotypical controls and PGR inmale individuals with
schizophrenia compared with neurotypical controls as a function of
age (linear regression, p = 0.013 [FDR =0.16]; Fig. S26). These results

Fig. 3 | Transcriptional changes for schizophrenia shared between sexeswithin
brain regions. RRHO (rank-rank hypergeometric overlap) maps comparing schi-
zophrenia transcriptional changes for all genes between brain region pairs strati-
fied by direction of effect in (A) females and (B) males. The panel presents the
overlapping relationship between two brain regions. The color bars represent the
degree of significance [-log10(p value)] of overlap between two brain regions.
Arrows show the direction of effect for schizophrenia (upregulated or down-
regulated in schizophrenia) by brain region. RRHOuses two-sided, hypergeometric
testing. C RRHO map comparing female and male schizophrenia transcriptional

changes within brain regions for all genes. The color bar represents the degree of
significance [-log10(p value)] of the overlap between the sexes. RRHO uses two-
sided, hypergeometric testing. D Venn diagram showing overlap within brain
regions for sex-stratified schizophrenia differentially expressed genes (DEGs;
female in red and male in blue; FDR <0.05). Female-specific schizophrenia DEGs in
red, male-specific schizophrenia DEGs in blue, and schizophrenia DEGs shared
between female- and male-specific schizophrenia analyses in purple. SZ
schizophrenia.

Article https://doi.org/10.1038/s41467-024-48048-z

Nature Communications |         (2024) 15:3980 6



suggest that sex hormones expression may potentially interact with
age and diagnosis status in the hippocampus.

We next examined functional and MAGMA enrichment of these
sex-specific, schizophrenia transcriptional changes. For MAGMA gene
set enrichment, we found significant enrichment of schizophrenia and
neutrophils—a white blood cell type—traits for male-specific DEGs
upregulated in individuals with schizophrenia for the caudate nucleus
and hippocampus (Data S2). We also found significant enrichment of
the schizophrenia trait for female-specific DEGs upregulated in indi-
viduals with schizophrenia for the caudate nucleus (Data S2). In con-
trast, we found significant enrichment of basophil and eosinophils for
male-specific DEGs downregulated in individuals with schizophrenia
for the DLPFC (Data S2). With these immune-related cell type enrich-
ment, we were not surprised to observed significant depletion (GSEA,
q <0.05) of immune-related pathways for both female- and male-only
schizophrenia analysis (Fig. S27A,B and Data S11). Interestingly, we
found the hippocampus showed the greatest degree of similarity
between female- and male-only schizophrenia functional enrichment
analysis (best-match average > 64%; Fig. S27C). In contrast, the caudate
nucleus showed the lowest degree of similarity between sex-specific
schizophrenia analysis with biological processes and molecule func-
tion showing 42% and 38% similarity in GO terms, respectively. This
seemingly contradictory analysis highlights the potential impact of the
larger number of sex-specific schizophrenia DEGs identified in
the caudate nucleus (Fig. 3D). In addition to this functional analysis, we
also investigated gene co-expression networks between female and
male individuals by diagnosis. While we observed complete preserva-
tion of modules for neurotypical control individuals across brain
regions, we found one module significantly not preserved (Z < 10) for
the DLPFC (94 genes [46% protein coding]; Data S5). While we did not
find any GO terms significantly enriched, this module included terms
related to DNA binding (i.e., HDDC3, MAZ, PCBP1, TOP3B, and zinc
finger proteins) and transposable and repetitive elements (i.e., LRRC24
and TIGD7).

We next compared our results with the recent meta-analysis for
sex-specific schizophrenia DEGs in the prefrontal cortex7. Of the 46
male-specific DEGs identified by Qin et al., we found a total of three
overlapping genes: one gene overlapping (PARD3) with the caudate
nucleus stringent female-specific DEGs and two overlapping genes
(USE1 and ABCG2) with the hippocampus stringentmale-specific DEGs,
which all shared direction of effect. When we compared the full set of
female andmale schizophreniaDEGs across brain regions, we found an
additional three overlapping genes (CD99, GABARAPL1, and LIN7B)
sharedwith the caudate nucleus. Of these three onlyGABARAPL1 had a
discordant direction of effect.

Sex-dependent eQTL in the brain
We asked whether genetic regulation of expressed features would
manifest differently in females compared to males for the caudate
nucleus,DLPFC, andhippocampus.We tested for statistical interaction
between genotype and sex in the brain by applying multivariate
adaptive shrinkage (mash) modeling in the 504 individuals (age > 13)
for the caudate nucleus (n = 399), DLPFC (n = 377), and hippocampus
(n = 394). We identified hundreds of sex-interacting variants (si-eQTL)
across brain regions for gene-, transcript-, exon-, and junction-level
analysis (Table 2 and Data S12). For example, we found 703, 545, and
546 gene-level si-eQTL (local false sign rate [lfsr] < 0.05) for the cau-
date nucleus, DLPFC, and hippocampus, respectively, accounting for
704 unique genes with si-eQTL (eGenes; Table 2 and Data S12) driven
by the caudate nucleus. Only 21 (3.0%) of these eGenes (si-eQTL
associatedwith unique genes) were located on the X chromosome; the
majority of eGenes were located on autosomes, similar to sex-specific
expression analysis. We found this proportion aligns with the ratio of
autosomes to allosomes and shows no significant shift in distribution

between eGenes and genes tested (Kolmogorov-Smirnov
test, p =0.89).

To understand the regional specificity of these si-eQTL, we
examined the proportion of si-eQTL detected across brain regions.
Here, we found the majority (544 [77%]) of eGenes were shared across
brain regions (Fig. 4A), which was also observed on the isoform level
(i.e., transcripts, exons, and junctions; Fig. S29). Remarkably, all of the
shared si-eQTL showed concordant directionality. Furthermore, the
DLPFC and hippocampus showed nearly identical si-eQTL effect sizes
(Fig. 4B), which was confirmed with the high level of replication across
brain regions (π1 > 0.996; Fig. S30). The few brain region-specific si-
eQTL showed small but significant sexual dimorphic genetic regula-
tion of expression (Fig. S31). Unsurprisingly, the exon- and junction-
level sharing showed a smaller proportion of shared si-eQTL across
brain regions at an effect size within a factor of 0.99 (Fig. S32), sug-
gesting alternative isoform usage drives differences in si-eQTL effect
size across brain regions.

To evaluate the functional relevance underlying si-eQTL in the
caudate nucleus, DLPFC, and hippocampus, we performed functional
gene termenrichment analysison the eGenes foreachbrain region.We
observed significant enrichment (hypergeometric, adjusted p < 0.05)
across brain regions (Data S13), including enrichment for neurogenesis
and cellular localization (Fig. 4C). Notably, we found that these enri-
chedGO terms showed high semantic similarity38 (best-match average,
62–100%) across brain regions (Fig. S33).Whilewedid not find these si-
eQTL associated eGenes significant enrichment for sex-specific DEGs
(Fisher’s exact test, p > 0.10), we did found significant enriched (Fish-
er’s exact test, FDR <0.05) for neurological disorders including
schizophrenia12–14,39, autism spectrum disorder39, and Alzheimer’s
disease40 (Fig. S34).

When we compared our si-eQTL with previous work in whole
blood and in lymphoblastoid cell lines, we found no overlapwith the 19
si-eQTL identified inwhole blood17,18 and two genes (ATG4C andCA2) of
the 21 si-eQTL identified in lymphoblastoid cell lines19 and also present
in the caudate nucleus si-eQTL (Data S14). We next compared our
results with the four si-eQTL (q <0.25) identified in GTEx brain regions
(amygdala and nucleus accumbens basal ganglia)8 and found no over-
laps. When we expanded to the 369 si-eQTL (q <0.25) from all 43 GTEx
tissues8, we found two overlapping genes encoding noncoding RNAs
(ENSG00000270605 and ENSG00000272977) between the caudate

Table 2 | Summary of sex-interacting eQTL (lfsr <0.05) across
brain regions for genes, transcripts, exons, and exon-exon
junctions associated with all si-eQTL

Brain Regions Caudate
Nucleus

DLPFC Hippocampus

Gene eQTL 3274 2464 2465

eFeature 703 545 546

eGenes 703 545 546

Transcript eQTL 10,186 8032 8207

eFeature 1700 1383 1394

eGenes 1577 1286 1296

Exon eQTL 10,439 7873 7824

eFeature 1737 1426 1420

eGenes 801 665 662

Junction eQTL 1740 1150 1145

eFeature 328 228 228

eGenes 7 5 5

eQTL: number of variant-feature pairs for each feature type: genes, transcripts, exons, and exon-
exon junctions. eFeature: number of unique features that have eQTL associations. eGene:
number of eQTL associations with unique genes. lfsr: local false sign rate45.
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nucleus and suprapubic skin and spleen GTEx tissues, respectively
(Data S14). Relatively low replication rate with GTEx brain regions can,
in part, be attributed to low sample sizes in the GTEx dataset41.

We next set out to determine if any of these si-eQTL had causal
associations with schizophrenia risk (PGC3 GWAS p < 5e–8)11. To for-
mally identify variants associated with schizophrenia risk, we per-
formed colocalization analysis on fine-mapped gene level si-eQTL
across brain regions (Data S15).We identified nine unique genes across
the three brain regions with significant colocalization (regional colo-
calization probability [RCP] > 0.5; Data S16): one genes
(ENSG00000287222; Fig. S35) in the caudate nucleus; seven genes in
the DLPFC (ACE, ELAC2, FURIN, MMD, ZSCAN29, LINC00320, and
ENSG00000289128; Fig. S36); andfive genes in the hippocampus (ACE,
ELAC2, MMD, STRC, and ENSG00000287222; Fig. S37). Interestingly,
the brain regionswith the largest detectionof schizophrenia risk genes
were the DLPFC and hippocampus; three of the nine colocalized genes
were shared between these two brain regions. Additionally, the colo-
calized gene identified in the caudate nucleus (ENSG00000287222)
was also significant in the hippocampus. Furthermore, we also identi-
fied this shared gene as a sex-specific schizophrenia DEG (male-spe-
cific, adjusted p =0.026) in the caudate nucleus. While we did not
observe any tissue-specific overlap between the other eight coloca-
lized genes and sex-specific schizophrenia DEGs—potentially due to
low number of identified DEGs—we did observe one additional colo-
calized gene (FURIN; male-specific, adjusted p =0.023) as a sex-specific
schizophreniaDEG in the caudate nucleus. Interestingly, we found ACE
to be downregulated in schizophrenia for both sexes in the caudate
nucleus. Altogether, this correlates with the high level of sharing of si-
eQTL across brain regions, suggesting that while sex-interacting
colocalized genes are highly recurrent across the brain, sex-specific
dysregulation of these si-eQTL may be brain-region specific.

Discussion
Sex has been associated with differential gene expression in the brain
and sex-specific effects in neuropsychiatric disorders like

schizophrenia. Here, we aimed to take a holistic exploratory analysis
approach to sex differences for schizophrenia in the caudate nucleus,
DLPFC, and hippocampus. We identified numerous genetic features
(genes, transcripts, exons, and exon-exon junctions) that (1) are asso-
ciated with sex, (2) demonstrate sex-specific expression in schizo-
phrenia, and (3) have expression that interacts with genotypes and sex
as si-eQTL. Furthermore,we identifiednine genes showing sex-variable
association with schizophrenia risk11 (PGC3 GWAS p < 5e-8) with colo-
calization and some overlap with sex-specific schizophrenia DEGs.
Additionally, we have demonstrated slight differences between
X-chromosome dosage in the hippocampus of male individuals with
schizophrenia—and further shown that the degree of dosage com-
pensation varies across the brain. To the best of our knowledge, this is
the largest multi-brain region analysis for sex differences in
schizophrenia.

In this study, we found 831 unique genes with sex-associated dif-
ferential expression in the caudate nucleus, DLFPC, and hippocampus.
While genes on sex chromosomes have the largest sex-specific effects,
we also found that autosomal genes significantly influenced sex dif-
ferences. Our results support previous findings of sex differences,
including differences that are brain-region specific32, are primarily
located on autosomes6,30,31, and have exhibited shared direction of
effect driven by allosomal DEGs32. Notably, the autosomal pseudogene
RPS10P3 emerged as a key driver of sex prediction across the brain.
Located in a gene-poor region, RPS10P3 is flanked by enhancers and
has prior links to diverse traits25–29, including sex-interacting cleft lip29

and psychosis-related lateral ventricle temporal horn volume28. A lar-
ger number of samples in our cohort allowed us to perform machine
learning and identify many more genes than previous analyses con-
ducted acrossmultiple regions, contributing to our knowledge on sex-
specific genomic features and sex differences in the brain.

To determine if sex differences observed across brain regions
were related to XCI, we further examined DEGs located on the X
chromosome. Here, our analysis aligned with previous work showing
an enrichment of genes known to escape XCI33,34, including male-bias

Fig. 4 | Sex-interacting eQTL (si-eQTL) are shared across brain regions. AUpSet
plot displaying overlap across brain regions for si-eQTL (local false sign rate
[lfsr] < 0.05). Blue is shared across the caudate nucleus (n = 399; 126 female and 273
male),DLPFC (dorsolateral prefrontal cortex;n = 377; 121 female and 256male), and
hippocampus (n = 394; 126 female and 268 male); orange, shared between two
brain regions; and black, unique to a specific brain region. B Heatmap of the

proportionof gene level si-eQTL sharingwith signmatch (left), within a factor of 0.5
effect size (middle), and within a factor 0.99 effect size (right). C Functional
enrichment plot of the ten most significant gene ontology-terms (biological pro-
cesses) of eGenes for the caudate nucleus (blue), DLPFC (yellow), and hippo-
campus (gray).
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enrichment for PAR genes35,36. Additionally, we found that across the
brain (i.e., GTEx and BrainSeq Consortium) X-chromosome dosage
showed brain region-specific dosage compensation levels.

The second aim of the study was to identify any sex-specific
schizophrenia genomic features across multiple brain regions. As one
of the most consistently implicated brain regions for the pathophy-
siology of schizophrenia, the DLPFC has been the primary focus of
postmortem analysis for schizophrenia42,43. However, we have recently
shown the importance of analyzing multiple brain regions, specifically
for the identification of additional therapeutic targets12. As such, we
aimed to identify (1) which brain region showed the most sex-specific
schizophrenia-associated transcriptional changes and (2) thedegreeof
sharing of these schizophrenia-associated transcriptional changes
across brain regions.

While our interactionmodel found only junctions (148 exon-exon
junctions) significantly dysregulated with a sex-specific interaction
across brain regions, comparing female to male expression in schizo-
phrenia allowed us to identify many more sex-specific schizophrenia
genomic features than previous studies—even after applying an addi-
tional, more stringent filter to our sex-specific schizophrenia DEG
results. This was unsurprising aswe have previously found the caudate
nucleus has substantially more schizophrenia DEGs compared to the
DLPFC and hippocampus12. While we expect the majority of the sex-
specific schizophrenia DEGs in the caudate nucleus to be associated
with antipsychotic treatment12,44, our results also provide a starting
point to examine differential antipsychotic effects by sex for
schizophrenia.

As we compared multiple brain regions for sex-specific schizo-
phrenia analysis, we also found that sex-specific schizophrenia differ-
entially expressed features were highly brain-region specific. This also
was not unexpected as schizophrenia DEGs, irrespective of sex, are
also highly brain-region specific12,13,15. However, the smaller number of
identified DE features for transcripts, exons, and junctions was sur-
prising. This might be due to our study being underpowered, as we
found twice asmany schizophrenia differentially expressed features in
male individuals as compared to females.

Given the role of estrogen in the treatment of schizophrenia, we
also examined sex hormone-related expression (AR, ESR1, ESR2, and
PGR) in the brain. Using expression data, we were unable to identify
any significant associations after correcting for multiple testing. We
found only a nominally significant interaction with diagnosis and age
of ESR2 in female individuals and PGR in male individuals in the hip-
pocampus. This may be due to: (1) conventional methods for hormone
measurements using serum, or (2) limited sample size for interaction
models. Altogether, these findings suggest a need for increased sam-
ples from female individuals to further advance our understanding of
potential sex differences for schizophrenia across multiple brain
regions.

The third aimof our studywas to identify si-eQTL across the brain.
We annotated hundreds of si-eQTL associated with 704 eGenes across
the caudate nucleus, DLPFC, andhippocampususingmashmodeling45.
With mash modeling, we were able to increase our power to detect si-
eQTL. With this study, we have provided annotations of si-eQTL in the
DLPFC and hippocampus and found that these sex-interacting eGenes
were enriched for neurogenesis as well as DEGs from neurological
studies (i.e., schizophrenia, autism spectrum disorder, and Alzhei-
mer’s). Our results demonstrate the power of tissue-specific si-eQTL
and its potential for identifying genes with sexually dimorphic
expression for neurological disorder.

In addition to annotating hundreds of si-eQTL, we have also
provided annotations of sex-interacting genes with causal variants
associatedwith schizophrenia risk. One limitation of this analysis is our
small female sample size. Even so, these results highlight the impor-
tance of examining genes associated with schizophrenia risk for

potential differences in expression for population covariates (e.g., sex,
age, and genetic ancestry).

In summary, we have provided a comprehensive genetic and
transcriptional analysis of sex differences in schizophrenia. We have
increased the number of annotated features exhibiting sex bias in the
brain adding to our current understanding of sex differences in the
brain, identified sex-specific schizophrenia genes with indications for
additional therapeutic targets, and provided annotations of si-eQTL
for the DLPFC and hippocampus. These results have the potential to
direct therapeutics and strategies that can address sex-biased
responses in the treatment of schizophrenia. Additionally, these
results highlight the need for more female samples for schizophrenia
analyses.

Methods
The research described herein complies with all relevant ethical reg-
ulations. All specimens used in this studywere obtainedwith informed
consent from the next of kin under protocols No. 12–24 from the
Department of Health and Mental Hygiene for the Office of the Chief
Medical Examiner for the State of Maryland and No. 20111080 for the
Western Institutional Review Board for the Offices of: (1) the Chief
Medical Examiner for Kalamazoo Michigan, (2) University of North
Dakota in Grand Forks North Dakota, and (3) Santa Clara County
California. Details of case selection, curation, diagnosis, and anatomi-
cal localization and dissection can be found in previous publications
from our research group12,13.

BrainSeq Consortium RNA-sequencing data processing
We surveyed data from the BrainSeq Consortium12,13 for caudate
nucleus, DLPFC, and hippocampus, specifically: phenotype informa-
tion, FASTQ files, region-specific covariates, and single nucleotide
polymorphism (SNP) array genotypes.

We re-mapped RNA-sequencing reads to the hg38/GRCh38
human reference genome (GENCODE release 41, GRCh38.p13) with the
splice-aware aligner HISAT246 (version 2.2.1). Following alignment, we
collected quality control and alignment metrics for each sample using
RNA-SeQC47 (version 2.4.2).

We performed quantification of major genomic features (genes,
transcripts, exons, and exon-exon junctions) for each sample sepa-
rately, as follows:

• We generated gene and exon read counts using featureCounts48

(version 2.0.3) with default parameters for paired-end, reverse-
stranded read counting.

• We estimated transcript expression (i.e., counts and transcripts
per million [TPM]) with kallisto49 (version 0.46.2) with default
parameters for reverse-stranded reads.

• We extracted exon-exon junction coverage data for all spliced
alignments found in the alignmentfiles producedbyHISAT2using
RegTools50 (version 0.5.3). Using this reference-free method, we
were able to include splicing patterns detected from the
aligned files.

Following this quality control and quantitation, we packaged
these data (i.e., counts, gene annotation, and quality control metrics)
into RangedSummarizedExperiment R objects51 using R code adapted
from the SPEAQeasy RNA-seq processing pipeline52.

BrainSeq Consortium imputation and genotype processing
We imputed genotypes as previously described12. Briefly, we first
converted genotype positions from hg19 to hg38 with liftOver53. The
Trans-Omics for Precision Medicine (TOPMed) imputation server54–56

was used for imputation of genotypes filtered for high quality
(removing low-quality and rare variants) using the genotype data
phased with the Haplotype Reference Consortium (HRC) reference
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panels (https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html).
Genotypes were phased per chromosome using Eagle57 (version 2.4).
We performed quality control with the McCarthy Tools (https://www.
well.ox.ac.uk/~wrayner/tools/HRC-1000G-check-bim-v4.3.0.zip): spe-
cifically, we removed variants and samples withminor allele frequency
(MAF) less than 0.01, missing call frequencies greater than 0.1, and
Hardy-Weinberg equilibrium below a p value of 1e-10 using PLINK
2.058–60 (version 2.00a3LM). This resulted in 11,474,007 common
variants.

For population stratification of samples, we performed multi-
dimensional scaling with PLINK version 1.958–60 on linkage dis-
equilibrium (LD)-independent variants. The first component separated
samples by ancestry as reported by the medical examiner’s offices.

Sample selection
We selected samples from the caudate nucleus, DLPFC, and hippo-
campus based on four inclusion criteria: (1) used RiboZero RNA-
sequencing library preparation, (2) features an age greater than 13
years, (3) has a self-reported ethnicity of either African American or
White American, and (4) has TOPMed imputed genotypes available.
This resulted in a total of 1,170 samples from 504 unique individuals
across the three brain regions for eQTL analysis. For expression-based
analysis, we excluded individuals with ages less than 17 years, resulting
in a total of 1127 samples from 480 unique individuals across the three
brain regions.

Subject details
Of all 1,170 samples used in the eQTL portion of this study, 399 were
from the caudate nucleus, 377 from the DLPFC, and 394 from the
hippocampus. Out of the 1,170 samples, 126, 121, and 126 were female,
and 273, 256, and 268weremale from the caudate nucleus, DLPFC, and
hippocampus, respectively (Table 1). For the 1,127 samples used in the
expression analyses of this study, 393, 359, and 375 samples were
located in the caudate nucleus, DLPFC, and hippocampus, respectively
(Table 3). More information can be found in Tables 1 and 3. Individual-
level, de-identified sample information is provided in Source Data.

Match gender phenotype to sex chromosomes
To match gender phenotype with sex chromosomes, we applied the
sex imputation function (--check-sex) from PLINK. This compares
sex assignments in the input dataset with those imputed from
X-chromosome inbreeding coefficients. We used a Jupyter Notebook
(version 6.0.2) with the R kernel to compare reported gender with
genotype-imputed sex (F estimates). Here, we found all gender phe-
notypes matched sex chromosomes with F estimates for females
below 0.22 and males above 0.9 (Fig. S1).

Quality control and covariate exploration for sex
Observed expression measurements can be affected by biological
and technical factors. To evaluate potential confounders for
expression or sex, we first correlated technical and RNA quality
variables (i.e., RIN,mitochondriamapping rate, overall mapping rate,
total gene assignment, mean 3’ bias, etc.) and removed highly cor-
related variables (Pearson, r > 0.95; Fig. S2) present in at least one
brain region. To examine potential confounders, we next correlated

these remaining variables and biological variables (i.e., diagnosis, age
at death, global genetic similarity, status of antipsychotics at time of
death, etc.) with gene expression as a function of sex (Fig. S3A). For
model covariates, we used variables that had a significant correlation
(Bonferroni corrected p < 0.05) with gene expression for either sex in
at least one brain region. To account for possible hidden effects on
gene expression not captured by the above covariates, we also
applied surrogate variable analysis61,62. When we regressed out bio-
logical, technical, and hidden effects, we found this reduced all
spurious correlations (Fig. S3B).

Expression normalization
For expression normalization, we constructed edgeR63,64 objects in R
(version 4.2) for each brain region by using raw counts and sample
phenotype information. Next, we filtered out low expression counts
usingfilterByExpr fromedgeR (version 3.40.2), which keeps features
above aminimumof 10 count-per-million (CPM) in 70% of the smallest
group sample size (i.e., female individuals). Following this, we nor-
malized library size using trimmed mean of M-values (TMM) before
applying voom normalization65 using limma66 (version 3.54.1) on four
different linear models that examine: (1) sex (Eqs. 1), (2) interaction of
brain region and sex (Eqs. 2), (3) interaction of sex and diagnosis
(Eqs. 3), (4) diagnosis subset by sex (Eq. 4). Example covariates for
these linear models are diagnosis, age, brain region, genetic similarity
(SNP PCs [principle components] 1–3), RNAquality (RIN,mitochondria
mapping rate, gene assignment rate, genome mapping rate, rRNA
mapping rate, and mean 3’ bias). For sex, interaction of sex and diag-
nosis, and diagnosis by sex analyses, we also corrected for any hidden
variance via surrogate variable analysis.

E Yð Þ=β0 +β1Sex +β2Diagnosis +β3Age+β4MitoRate+β5rRNArate

+β6TotalAssignedGenes +β7RIN +β8OverallMappingRate

+β9Mean3Bias +
X3

i = 1
ηisnpPCi +

Xk

j = 1
γjSV j

ð1Þ

E Yð Þ=β0 +β1Sex*β2Region+β3Diagnosis +β4Age+β5MitoRate

+β6rRNArate+β7TotalAssignedGenes +β8RIN

+β9OverallMappingRate+β10Mean3Bias +
X3

i = 1
ηisnpPCi

ð2Þ

E Yð Þ=β0 +β1Sex*β2Diagnosis +β3Age+β4MitoRate+β5rRNArate

+β6TotalAssignedGenes +β7RIN +β8OverallMappingRate

+β9Mean3Bias +
X3

i = 1
ηisnpPCi +

Xk

j = 1
γjSV j

ð3Þ

E Yð Þ=β0 +β1Diagnosis +β2Age+β3MitoRate+β4rRNArate

+β5TotalAssignedGenes +β6RIN +β7OverallMappingRate

+β8Mean3Bias +
X3

i = 1
ηisnpPCi +

Xk

j = 1
γjSV j

ð4Þ

Table 3 | A sample breakdown of expression analysis for adult (age > 17) postmortem caudate nucleus, DLPFC, and hippo-
campus from the BrainSeq Consortium

Brain Region Sample Size Diagnosis Sex Race Age (mean ± sd) RIN (mean ± sd)

Caudate Nucleus 393 239CTL/154SZ 121F/272M 205AA/188EA 49.6 ± 15.6 7.9 ± 0.9

DLPFC 359 211CTL/148SZ 114F/245M 200AA/159EA 47.4 ± 15.4 7.7 ± 0.9

Hippocampus 375 242CTL/133SZ 121F/254M 207AA/168EA 47.0 ± 15.3 7.6 ± 1.0

CTL neurotypical control, SZ schizophrenia, F female, M male, AA African American, EA European American, RIN RNA integrity number.
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As there was significant overlap of individuals among the three
brain regions examined, we used dream (differential expression for
repeatedmeasures) fromvariancePartition67 (version 1.28.7) to correct
for the random effect of duplicate individuals across brain regions to
assess potential significant interactions between brain region and sex
(Eq. (2)). As such, we applied voom via dream framework with
voomWithDreamWeights.

Expression residualization
For residualized expression,weused voom-normalized expression and
null models to regress out covariates as previously described12. After
regressing out covariates, we applied a z-score transformation. Null
models were created without variable(s) of interest to examine: (1) sex
(Eq. (4)), (2) interaction of brain region and sex (Eq. (5)), (3) interaction
of sex and diagnosis (Eq. (6)), (4) diagnosis (Eq. (6)).

E Yð Þ=β0 +β1Diagnosis +β2Age+β3MitoRate+β4rRNArate

+β5TotalAssignedGenes +β6RIN +β7OverallMappingRate

+β8Mean3Bias +
X3

i = 1
ηisnpPCi

ð5Þ

E Yð Þ=β0 +β1Age+β2MitoRate+β3rRNArate

+β4TotalAssignedGenes +β5RIN +β6OverallMappingRate

+β7Mean3Bias +
X3

i = 1
ηisnpPCi +

Xk

j = 1
γjSV j

ð6Þ

Differential expression analysis
Following voom normalization, we fit four linear models (Eqs. (1)–(4))
to examine: (1) sex, (2) interaction of sex and brain region, (3) inter-
action of sex and diagnosis, and (4) diagnosis subset by sex. With our
fitted model, we identified differentially expressed features using the
eBayes68 function from limma. Dream enabled us, in one step, to
complete linear model fitting and differential expression calculation
for interaction of sex and brain region.

Weighted correlation network analysis (WGCNA) analysis
Weperformed a signed networkWGCNA22 (version 1.72) analysis using
residualized expression (Eq. (4)) to generate the co-expression net-
work using all genes in a single block by brain region. First, we filtered
genes and outlier individuals with the WGCNA function good-
SamplesGenes. To remove any outlier individuals whose expression
substantially deviated from the norm, we also filtered individuals with
Z-normalized expression greater than 2.5. After evaluating power and
network connectivity for each brain region, we selected a soft-
thresholding power of eight for network constructions. We con-
structed networks using bicor correlation and set deepSplit to two
for the caudate nucleus and hippocampus and three for the DLPFC.
Additionally, we setmergeCutHeight to 0.15 andminModuleSize set
to 50 for all brain regions and gene networks. We made the co-
expression networks using Pearson correlation values with 381, 349,
364 samples and 23,488, 23,039, and 22,990 genes for the caudate
nucleus, DLPFC, and hippocampus, respectively. Significant associa-
tions with sex were determined using a linear model and Pearson
correlation between binary sex and module eigengenes.

For module preservation analysis23 between sex (female versus
male), we constructed networks across brain regions for all samples,
control-only samples, schizophrenia-only samples using the following
parameters: (1) soft-thresholding power of 15 and (2) nPermutations
set to 100. Similar to our signed network construction, we first filtered
genes and outlier individuals with goodSamplesGenes. As the DLPFC
failed to achieve a scale-free topology across networks (i.e., all sam-
ples, control-only samples, or schizophrenia-only samples), we also

removed outlier individuals after visual inspection of the sample
dendrogram generated with flashClust (Fig. S5). This resulted in the
removal of one female neurotypical control (17 years; DLPFC) indivi-
dual and two individuals with schizophrenia: one female (80 years;
DLPFC) and one male (66 years; DLPFC). For each brain region, we
used the male-generated networks as the reference group. For the
neurotypical control analysis, we generated networks with 240 (71
female; 169 male), 210 (66 female; 146 male), and 243 (74 female; 169
male) individuals for the caudate nucleus, DLPFC, and hippocampus,
respectively. For the schizophrenia analysis, we generated networks
with 153 (50 female; 103 male), 146 (48 female; 98 male), and 132 (47
female; 85 male) individuals for the caudate nucleus, DLPFC, and
hippocampus, respectively. For the combined analysis (control and
schizophrenia), we generated networks with 393 (121 female; 272
male), 356 (112 female; 244 male), and 375 (121 female; 254 male)
individuals for the caudate nucleus, DLPFC, and hippocampus,
respectively. We generated all networks with a total of 26,881, 26,627,
and 26,727 genes for the caudate nucleus, DLPFC, and hippocampus,
respectively. We considered a module to not be preserved if the
Z-summary score was less than or equal to ten.

Multi-marker analysis of genomic annotation (MAGMA) enrich-
ment analysis
For gene set enrichment analysis comparisons of DEGs and multiple
GWAS summary statistics, we applied MAGMA69 (version 1.10) on
GWAS SNP p values with European reference data downloaded from
MAGMA. As the GWAS summary statistics were on hg19, we mapped
our DEG gene locations from hg38 to hg19 using the GENCODE v41
GRCh37 lifted annotation file. Initially, we generated a SNP annotation
file with the annotate flag (--annotate). Following this,we performed
gene analysis on SNP p values using this SNP-level gene annotation file
with the following: (1) PLINK input files (--bfile), (2) genemodel set to
SNP-wise mean, and (3) expanded gene boundaries (35 kb upstream
and 10 kb downstream). We used default settings for all other para-
meters. Once completed, we performed gene-set enrichment analysis
inMAGMA (--gene-results) using default parameters. We analyzed
sex-specific DEGs by direction of effect (upregulated in females or
males) across the caudate nucleus, DLPFC, and hippocampus with 12
traits (seven neuropsychiatric; Table S1). We executed this MAGMA
pipeline using snakemake70 (version 6.4.1).

Random forest dynamic recursive feature elimination
For autosomal sex prediction, we used dRFEtools24 (version 0.1.17) in
Python (version 3.7) to apply dynamic recursive feature elimination
with random forest classification71. We set the elimination rate to 10%
and set 0.30 as the fraction of samples used for lowess smoothing. To
reduce overfitting, we generated 10 sex-stratified folds for cross-
validation with the StratifiedKFold function from scikit-learn (ver-
sion 1.0.2)72. Model performance was measured using normalized
mutual information, accuracy, and area under the receiver operating
characteristic (ROC) curve with out-of-bag samples.

X-chromosome inactivation (XCI) enrichment analysis
For XCI enrichment analysis, we downloaded the XCI status annotation
fromref. 33.Weaccessed the enrichmentof sexbias forXCI statususing
Fisher’s exact test with the known XCI categories, including 631 genes
definedas escape (n =99), variable escape (n = 101), or inactive (n =431).
We corrected for multiple testing with the Bonferroni procedure.

Dosage compensation
Relative X expression (RXE) was determined as previously described73

with slight modifications; specifically, we used transcripts per million
(TPM). We generated TPM using the mean of the read insert size for
effective length (Eq. 7). We extracted the average fragment length as
estimated by kallisto per brain region. We dropped any genes with
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effective lengths less than or equal to one. Following TPM calculation,
we performed a log2 transformation (Eq. (8)). Next, we filtered low-
expressing genes present in at least 20% of samples. To compute RXE,
we calculated the differences in themean chromosome-wide log2 TPM
expression with X-chromosome log2 TPM expression (Eq. (9)).

Effective Length = Length� ½Mean Fragment Length�+ 1 ð7Þ

TPM = 1e6*
Count=Ef f ectiveLengthP
Count=Ef f ectiveLength
� � ð8Þ

RXE = log 2ðmeanTPM of X -chromosomegenesÞ
� log 2ðmeanTPM of all autosomal genesÞ ð9Þ

Sex-specific differential expression analysis for schizophrenia
To determine more stringent sex-specific differential expression fea-
tures among the three brain regions using diagnosis subset by sex, we
applied additional selection criteria following differential expression
analysis. First, we removed any overlapping differentially expressed
features. Following removal, we tested features for significant differ-
ences in residualized expression (Eq. (6)) for the opposite sex using
Mann-Whitney U and removed significant features (p <0.05).

Subsampling male-only schizophrenia differential expression
For subsampling of the BrainSeq Consortium brain region analysis, we
randomly sampledmale individuals using the female sample sizes (121,
114, and 121 for the caudate nucleus, DLPFC, and hippocampus,
respectively) and performed differential expression analysis (Eq. (6))
for schizophrenia. We performed this 1,000 times.

Functional gene term enrichment analysis
Wedetermined significant enrichment for gene sets using the gene set
enrichment analysis (GSEA)74,75. Specifically, we performed GSEA with
gseGO (gene ontology [GO] gene set database) from the clusterProfiler
package76 (version 4.6.2) and gseDGN (DisGeNET gene set database77)
from the DOSE package78 (version 3.24.2). We defined the gene set
“universe” as all unique genes tested for differential expression. For
gseGO, we set minimal gene set size (minGSSize) to 10, maximum
gene set size (maxGSSize) to 500, and p value cutoff to 0.05. For
gseDGN, we set minGSSize to five and p value cutoff to 0.05. We used
the default settings for all other parameters.

For gene-term enrichment analysis for WGCNAmodules, we used
GOATOOLS Python package79 (version 1.2.3) with the GOdatabase and
hypergeometric tests for enrichment and depletion as previously
described12. Specifically, we converted GENCODE IDs to Entrez IDs
using pybiomart (https://github.com/jrderuiter/pybiomart; version
0.2.0). With Entrez IDs, we applied enrichment analysis for each
module. We performed multiple testing corrections using the
Benjamini-Hochberg FDR method.

To measure GO term elements semantic similarity across brain
regions, we used R package GOSemSim80 (version 2.24.0) with the
Wang method38 and best-match average strategy.

Sex interacting eQTL analysis in cis and region specificity
To identify sex-interacting cis-eQTL (si-eQTL) across the caudate
nucleus, DLPFC, and hippocampus, we first separated out female and
male individuals and, using PLINK 2.0, excluded variants withMAF less
than 0.05 and variants with less than one allele by sex. To generate a
common list, we overlapped these filtered variants, resulting in a total
of 6,816,103SNPs. Following SNPfiltering,weperformedeQTLanalysis
using tensorQTL81,82 (version 1.0.7) for a sex-interaction model. We
filtered low expression using the GTEx Python script, eqtl_prepar-
e_expression.py, with modification for processing transcripts,

exons, and junctions. This retained features with expression estimates
greater than 0.1 TPM in at least 20% of samples and aligned read count
of six or more per brain region. Following low expression filtering, we
performed TMM normalization on filtered counts using the GTEx
Python script, rnaseqnorm.py (https://github.com/broadinstitute/
gtex-pipeline/tree/master/qtl/src/rnaseqnorm.py). Following normal-
ization, we implemented tensorQTL using an interaction linear
regression model. To do this, we performed three major steps: (1) we
adjusted expression for covariates (i.e., diagnosis, population stratifi-
cation [SNP PCs 1–3], and expression PCs specific to brain region and
feature); (2) selected cis-SNP using amappingwindowof 0.5Mbwithin
the transcriptional start site of each feature; and (3)filtered SNPsbased
on an interaction MAF greater than or equal to 0.05 and the minor
allele present in at least 10 samples.

To assess sharing across brain regions and to increase our power
to detect si-eQTL effects, we usedmultivariate adaptive shrinkage in R
(mashr83; version 0.2.57) as previously described12. mashr uses an
empirical Bayes approach to learn patterns of similarity among con-
ditions (e.g., brain regions) and then leverage these prior patterns to
improve accuracyof effect size estimates.We obtained effect sizes and
standard errors for these effect sizes from the tensorQTL interaction
model results. To account for correlations among measurements
across brain regions (i.e., overlapping sample donors), we used the
estimate_null_correlation_simple function to specify a corre-
lation structure prior to fitting the mash model. The mash model
included both the canonical covariance matrices and data-driven
covariancematrices learned fromour data.We defined the data-driven
covariance matrices as the top three PCs from the principal compo-
nents analysis (PCA) performed on the significant signals (i.e., most
significant nominal p values by brain region). To learn the mixture
weights and scaling for the si-eQTL effects, we initially fit the mash
model with a random set (i.e., unbiased representation of the results)
of the tensorQTL interaction model results (i.e., 5% for gene-SNP pairs
and 1% for transcript-, exon-, and junction-SNP pairs). We next fitted
these mixture weights and scaling to all of the si-eQTL results in
chunks. We extracted posterior summaries and measures of sig-
nificance (i.e., local false sign rate [lfsr]). We considered si-eQTL sig-
nificant if the lfsr <0.05.

Schizophrenia risk GWAS association
We downloaded the latest schizophrenia GWAS summary statistics
with index and high-quality imputation SNPs as determined by Psy-
chiatric Genomics Consortium (PGC version 3 [PGC3])11. Following
download, we selected and converted PGC3 GWAS SNPs associated
with BrainSeq Consortium SNPs as previously described12; specifically,
we converted GWAS SNPs fromhg19 to hg38 using PyLiftover,merged
them with BrainSeq Consortium SNPs on hg38 coordinates, and mat-
ched alleles.

Fine mapping and colocalization
Weperformed finemapping and colocalizationwith gene level si-eQTL
for the caudate nucleus, DLPFC, and hippocampus as previously
described12,84 with slight modification for priors. Briefly, we estimated
priors from the tensorQTL nominal results with torus85. Following
estimation of priors, we implemented DAP-G86,87 (version 1.0.0) to
generate posterior inclusion probabilities (PIP) that provide an esti-
mate of the probability of a variant being causal for downstream
colocalization with fastENLOC88,89 (version 1.0).We applied fastENLOC
with schizophrenia GWAS (PGC3)11.

We visualized colocalization results using P-P plots and eQTL
results from sex-only analysis. Specifically, we used tensorQTL as
described above, to apply gene-level cis-eQTL analysis to female and
male individuals separately without modification for sex interaction.
We used a gene body window of 0.5Mb, MAF greater than or equal to
0.01, and confounders generated from the Sex-interacting eQTL
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analysis in cisand region specificity.Wedetermined significance for the
most highly associated variant per gene using empirical p values based
on beta-distribution fitted with an adaptive permutation
(1000–10,000). These p values were corrected for multiple testing
across genes using Storey’s q value. For each brain region, we gener-
ated P-P plots using sex-specific nominal and permutation results
provided in Source Data for each significant colocalized gene identi-
fied (regional colocalization probability [RCP] > 0.5).

General replication analysis
Datadownload.Wedownloadeddifferential expression results for sex
differences from the supplemental materials for refs. 30–32. For sex
differences in schizophrenia replication, we downloaded Qin et al.
results7. For si-eQTL, we downloaded results from refs. 17–19,30.

For CommonMind Consortium replication of differential expres-
sion analysis, we downloaded differential expression results for sex
differences from ref. 6, as well as normalized expression from Synapse
(syn18103849). These results included two cohorts: NIMH HBCC
(National Institute of Mental Health’s Human Brain Collection Core)
and MSSM-Penn-Pitt (MSSM: Mount Sinai NIH Brain Bank and Tissue
Repository, Penn: University of Pennsylvania Brain Bank of Psychiatric
Illnesses and Alzheimer’s Disease Core Center, and Pitt: University of
Pittsburgh NIH NeuroBioBank Brain and Tissue Repository) cohorts90.

Dosage compensation replication. For dosage compensation repli-
cation, we calculated TPM using a mean insert size of 200. We com-
puted the RXE as described above (Dosage compensation). We
downloaded gene TPM from the GTEx v8 portal (https://www.
gtexportal.org/home/datasets), as well as sample phenotype infor-
mation.We computedRXE as described above (Dosage compensation).

π1 replication analysis. For π1 analysis, we initially selected all sig-
nificant genes or eQTL (nominally significant, p <0.05) from our
results and compared them with results from an external dataset (i.e.,
CommonMind Consortium [CMC]). Using the p values from the
external dataset, we calculated π0with qvalue function fromqvalue91

(version 2.30.0). We calculated π1 with Eq. (10). The π1 statistic
represents the fraction of effects shared between the two datasets.

π1 = 1� π0 ð10Þ

Graphics
We generated venn diagrams with matplotlib_venn (version 0.11.5)
Python (version 3.8) package. We generated UpSet plots in R using
ComplexHeatmap92 (version 2.6.2). Unless otherwise stated, we gen-
erated boxplots and scatterplots inR using ggpubr (version 0.4.0).We
generated enrichment dot plots, enrichment heatmaps, and gene term
enrichment plots using ggplot293. To generate circos plots, we used
circlize94 (version 0.4.11) and ComplexHeatmap utilities in R. We used
plotnine (version 0.12.1), a Python implementation of ggplot2, to
generate enrichment heatmaps comparing public datasets with
BrainSeqConsortiumanalysis, RXE scatterplots, and si-eQTLboxplots.
To generate rank-rank hypergeometric overlap (RRHO), we used the
RRHO295,96 (version 1.0) and lattice packages in R.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The processed counts (GENCODE v25, hg38), linked de-identified
phenotype information, and RNA quality metrics used in this study are
publicly available from the BrainSeq Consortium Phase 2 and 3 data
releases as RangedSummarizedExperiment R objects. The Phase 2 data
(total RNA DLPFC and hippocampus) are available for download at

http://eqtl.brainseq.org/phase2/. The Phase 3 data (total RNA caudate
nucleus) are available for download at http://erwinpaquolalab.libd.
org/caudate_eqtl/. The reprocessed data (GENCODE v41, hg38) is also
available as an RangedSummarizedExperiment R object and is avail-
able as part of Source Data. Analysis-ready genotype data are available
under restricted access to protect research subjects, access can be
obtained through dbGaP accession phs000979.v3.p2. FASTQ files are
also available under restricted access to protect research subject. For
Phase 2 total RNA DLPFC and hippocampus, researchers can access to
FASTQ files via the Globus collections jhpce#bsp2-dlpfc and
jhpce#bsp2-hippo at https://research.libd.org/globus/. For Phase 3
caudate nucleus, researchers can obtain access to FASTQ files via
dbGaP accession phs003495.v1.p1. PGC3 GWAS summary statistics are
available at https://figshare.com/articles/dataset/scz2022/19426775.
The nominal eQTL, predictive analysis, network analysis, and differ-
ential expression analysis generated in this study are provided in the
Supplementary Information/Source Data file. They are also available at
https://doi.org/10.5281/zenodo.7125279 or http://erwinpaquolalab.
libd.org/3region_sex/. Source Data are provided at https://doi.org/10.
5281/zenodo.7125279. Source data are provided with this paper.

Code availability
All code and Jupyter Notebooks are available through GitHub at
https://github.com/LieberInstitute/sex_differences_sz97–104.
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