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MAPP unravels frequent co-regulation of
splicing and polyadenylation by RNA-
binding proteins and their dysregulation
in cancer

Maciej Bak1,2, Erik vanNimwegen 1,2, IanU. Kouzel3, TamerGur3, Ralf Schmidt1,2,
Mihaela Zavolan 1,2 & Andreas J. Gruber 3

Maturation of eukaryotic pre-mRNAs via splicing and polyadenylation is
modulated across cell types and conditions by a variety of RNA-binding pro-
teins (RBPs). Although there exist over 1,500RBPs in human cells, their binding
motifs and functions still remain to be elucidated, especially in the complex
environment of tissues and in the context of diseases. To overcome the lack of
methods for the systematic and automated detection of sequence motif-
guidedpre-mRNAprocessing regulation fromRNA sequencing (RNA-Seq) data
we have developed MAPP (Motif Activity on Pre-mRNA Processing). Applying
MAPP to RBP knock-down experiments reveals that many RBPs regulate both
splicing and polyadenylation of nascent transcripts by acting on similar
sequence motifs. MAPP not only infers these sequence motifs, but also unra-
vels the position-dependent impact of the RBPs on pre-mRNA processing.
Interestingly, all investigated RBPs that act on both splicing and 3’ end pro-
cessing exhibit a consistently repressive or activating effect onbothprocesses,
providing a first glimpse on the underlying mechanism. Applying MAPP to
normal and malignant brain tissue samples unveils that the motifs bound by
the PTBP1 andRBFOXRBPs coordinately drive the oncogenic splicing program
active in glioblastomas demonstrating that MAPP paves the way for char-
acterizing pre-mRNA processing regulators under physiological and patholo-
gical conditions.

Splicing and 3′ end processing of nascent RNAs are crucial steps in the
maturation of eukaryotic precursor messenger RNA (pre-mRNA), also
responsible for transcriptome diversification through the generation
of transcript isoforms. Both processes are modulated by various RNA-
binding proteins (RBPs), whose expression varies across tissues. To
date, a few dozen regulators have been described to modulate
splicing1,2, whereas only a handful were reported to impact both spli-
cing and 3′ endprocessing. The Poly(rC) Binding Protein 1 (PCBP1) RBP

is a known splicing regulator3, whichhas also been reported to regulate
the cleavage and polyadenylation (poly(A)) of transcript 3′ ends by
binding to C-rich sequences that are located in close proximity to
poly(A) sites4. Further, in previous studieswe have shown that thewell-
known splicing factors HNRNPC (Heterogeneous Nuclear Ribonu-
cleoprotein C)5 and PTBP1 (Polypyrimidine Tract Binding Protein 1)6

regulate alternative cleavage and polyadenylation (APA) by binding to
sequence motifs that are located within −200 to +100 and −25 to +75
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nucleotides (nt), respectively, relative to the regulated poly(A) sites.
ELAVL1 (ELAV Like RNA-binding Protein 1) is another RBP that was
reported to impact splicing7 and polyadenylation8. Also the TAR DNA
Binding Protein (TARDBP) is known to act as a regulator of alternative
splicing (AS)9 and APA10. While these examples indicate that RBPs
coordinately regulate splicing and 3′ end processing, the sparse char-
acterization of binding specificities for the more than 1500 RBPs
encoded in the human genome11 has limited these studies. To cir-
cumvent this problemwehave developedMAPP (Motif Activity on Pre-
mRNA Processing). MAPP enables the identification of RBP-specific
sequence motifs that can explain global patterns of both alternative
splicing and alternative polyadenylation events quantified from stan-
dard RNA sequencing (RNA-Seq) experiments. MAPP further unravels
the type of regulation (repressive or activating) as well as the binding
site position dependency and, by charting RBP impact maps, MAPP
provides a panoramic view of the regulation of alternative splicing and
polyadenylation by specific RBPs. We have benchmarked MAPP using
datasets in which RBPswithwell-characterized impact on splicing and/
or 3′ end processing have been overexpressed or depleted by siRNA-
mediated knock-down, showing that MAPP identifies not only the
correct sequence motif, but also the binding site position-dependent
impact of the RBP on mRNA processing. Applying MAPP to >400 RBP
knock-down experiments from the ENCODE project, we have identi-
fied multiple pyrimidine motif-binding RBPs that seemingly explain
changes in both exon inclusion and poly(A) site choice. Finally, to
demonstrate the ability of MAPP to capture meaningful signals from
tissues, we have applied MAPP to glioblastoma (also called GBM), a
cancer type in which large numbers of pre-mRNA processing changes
were reported previously12,13. MAPP reveals that the PTBP1 and
RBFOX (RNA Binding Fox-1 Homolog) RBPs co-regulate the splicing of
hundreds of cassette exons, someofwhich have already been reported
to drive GBMdevelopment and progression. In summary, in this study,
we have developedMAPP and demonstrated that “MAPPing” RNA-Seq
experiments enables the identification of key pre-mRNA regulators,
their binding motifs and functions, as well as their role in healthy and
diseased cellular states.

Results
MAPP infers impact maps for pre-mRNA processing regulators
Whereas RBPs have long been known to orchestrate pre-mRNA spli-
cing (e.g., ref. 14), their impact on 3′ end processing has only recently
started to become apparent4,5,15,16, giving rise to the question of whe-
ther RBP regulators act in a coordinated manner on both splicing and
3′ end processing6,16. A bottleneck in addressing this question is that
compared to other types of regulators, such as transcription or epi-
genetic factors, the fraction of RBPs with well-characterized binding
specificities is relatively minor. In addition, even for those RBPs for
which binding specificities have recently been characterizedwith high-
throughput experiments, the impact andmode of action on pre-mRNA
processing remain speculative. To address such questions, we have
developed MAPP (Fig. 1).

MAPP makes use of a powerful functional concept that we have
previously exploited in our KAPAC tool6, namely explaining relative
expression levels of transcript isoforms across samples with sequence
motifs located in nascent transcripts. In contrast to KAPAC, which
implemented only the final step of inference of RBP impact on poly-
adenylation, MAPP provides an end-to-end solution to the inference of
motifs, known or not to bind specific RBPs, that impact splicing, 3′ end
cleavage or both processes.

MAPP includes a computational model, MAEI (Motif Activity on
Exon Inclusion), designed to infer the position-dependent activity of
sequence elements on cassette exon inclusion, along the KAPACv2.0
model that infers the activity of motifs on poly(A) site processing
which builds upon our previously described KAPAC approach6. While
similarly to KAPAC MAPP considers the entire space of sequence

motifs, modeled as k-mers, that could impact pre-mRNA processing,
its functionality is more general, as it can also work with position-
dependent weight matrix (PWMs, see Methods) representations of
known RBP binding specificities. The two modules model changes in
exon inclusion and poly(A) site usage across genes as functions of the
motif counts within regions located at various distances from the
processed sites. More specifically, given RNA-Seq data from a cellular
system of interest (Fig. 1a, b), MAPP first infers the level of inclusion of
alternatively spliced exons and the usage of distinct poly(A) sites. For
the latter, it makes use of our previously developed PAQR tool6 (Sup-
plementary Figs. S1, 2, 26). Then, the MAEI and KAPACv2.0 models are
fitted to the corresponding pre-mRNA processing event data to iden-
tify sequence motifs that can explain global splicing and poly(A) site
usage patterns, respectively (Fig. 1c). By applying the models to
sequence windows located at specific distances relative to pre-mRNA
processing sites (50 nts sliding by 25 for all our analyses unless spe-
cified otherwise), position-dependent activity z-scores are inferred for
each motif. MAPP ranks the sequence elements based on their sig-
nificance and reports the position-dependent z-scores in the form of
impactmaps6 (Fig. 1d), which provide detailed insights into the activity
(activating or repressive) aswell as the position dependency of specific
RBPs. Importantly, asMAPP can infer impactmaps formotifs known to
correspond to specific regulators, aswell as formotifs thathavenot yet
been linked to a specific RBP, it is able to detect sequence-specific
regulatory activities that point to previously unknown regulators.

Both the binding specificity and the position-specific impact of
known regulators are uncovered de novo by MAPP
To validate MAPP, we applied it to datasets from experiments where
proteins with a known effect on splicing/polyadenylation were per-
turbed. We started with the well-characterized HNRNPC RBP and
found that the sequence motif most significantly associated with both
themeasured changes in exon inclusion as well as poly(A) site usage is
penta-U, the motif that was previously confirmed by multiple studies
to be the primary bindingmotif ofHNRNPC17–19 (Fig. 2a, top panel). The
PWM representing this motif had the largest combined z-score out of
the 344 PWMs that we curated from the ATtRACT database (see
Methods). Also, the impact map inferred by MAPP is highly consistent
with prior reports. That is, in control (CTRL) samples, where the
expression ofHNRNPC is high,MAPP infers a repressive effect (marked
as blue squares) on 3′ splice site (3′SS), 5′ splice site (5’SS) and poly-
adenylation site (PAS) processing. Conversely, these sites are pro-
cessed, and thus, the activity of the penta-U motif is positive in the
knock-down cells, where the expression of HNRNPC is low. These
results are supported by a multitude of studies (e.g., refs. 5,19,20). To
determinewhether the differentially processed sites are indeed bound
by the suggested RBPs, we further analyzed data from enhanced
crosslinking and immunoprecipitation (eCLIP) experiments from the
ENCODEproject21,22. Towards this,wehave selected the top2003′SS, 5′
SS, and PAS whose usage changes most in the expected direction,
uponHNRNPC knock-down, aswell as the 1000 sites that change least.
For these sites, we have constructed position-dependent coverage
profiles for HNRNPC eCLIP data. The resulting profiles indicate that
HNRNPC is indeed regulating splicing and polyadenylation via direct
interaction with the RNAs at the regions inferred by MAPP (Fig. 2a and
Supplementary Fig. S3a).

We next turned to a well-characterized splicing regulator, the
RBFOX1 RBP. Analyzing data from an experiment where the RBFOX1-
dependency of exons was determined in RBFOX2-deficient HEK293
cells in which RBFOX1 was inducibly expressed from a Flp-in locus23,
MAPP ranks the previously described RBFOX1-binding sequence,
UGCAUG, as the most significant in explaining exon inclusion, further
inferring that it has an activating activity when located downstream of
5′SS24 (Fig. 2b and Supplementary Fig. S3b). MAPP also highlights the
opposite activity near the 3′SS, where RBFOX1-binding motifs are
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associated with reduced exon inclusion. While this repressive effect
appears to bemuchweaker compared to the activating effect ofmotifs
located downstream of 5′SS, it is interesting to infer simply from the
RNA-Seq data that RBFOX1, like other RBPs25, can have opposing
impacts depending on the location of binding sites. These results
demonstrate that by making use of standard RNA-Seq experiments
only, MAPP enables fine-grained insights into the binding-specificity
and position-dependent impact of RBPs on splicing and 3′ end
processing.

MAPP impact maps unveil the regulation code of multiple RBPs
Next, we used the large array of RBP knock-down datasets available
from the ENCODE project to comprehensively infer the sequence
specificity, binding site position-dependent impact, and activating or
repressive mode of action of human RBPs on pre-mRNA processing.
Applying MAPP to 456 RBP knock-down experiments available in
ENCODE, we found that the tool is also here able to identify the motif
known from the ATtRACT database to correspond to the protein
whose expression was altered in the experiment. Figure 3a shows
summary results for samples for which the ATtRACT-provided PWM
for the targeted RBP was ranked among the top five most significant
motifs. As the ATtRACT-provided PWMs corresponding to the

perturbed proteins were not always the most significant motifs in
explaining the RNA processing alterations, we also ran MAPP in the
k-mer mode, to determine which sequence elements explain best the
observed changes. For some RBPs, such as PCBP1 and HNRNPK, the k-
mer-based results aremore significant and consistent compared to the
PWM-based results, indicating that the inferred k-mer better repre-
sents the RBPs binding specificity than the PWM available in public
databases. Interestingly, MAPP uncovers that the general splicing
factor SRSF1 and the PCBP1 RBP promote splice site processing, while
other RBPs (e.g., HNRNPC, PTBP1, and HNRNPK) appear to have a
repressive role. Half of the RBPs (HNRNPC, PTBP1, PCBP1, and
HNRNPK) regulate both splicing and polyadenylation by acting on
similar sequence motifs. Moreover, the RBPs generally have the same
type of activity—activating or repressive—on both splicing and poly-
adenylation. Thus, RBPs inferred by MAPP to have a dual role, in spli-
cing and polyadenylation, appear to predominantly act as either
activators or repressors in both pre-mRNA processing steps. This may
also hint at a concerted regulation of alternative terminal exons by
individual regulators, but itmust go beyond the regulation of terminal
exons, because, in many cases, the motifs have similar activity around
the 5′SS, which does not occur in terminal exons. To investigate whe-
ther 3′ end processing factorsmight also impact cassette exon splicing

Fig. 1 | Inferring maps of RBP impact on splicing and 3’ end processing
withMAPP. aSketch illustrating how regulators (Reg)bindpre-mRNAs to influence
the usage of splice sites (SS) and/or poly(A) sites (PAS). b RNA sequencing (RNA-
seq) libraries are available or can be created for most cellular systems of interest.
c MAPP analyzes the splicing and 3′ end processing patterns apparent in the RNA-
Seq data with the MAEI (Motif Activity on Exon Inclusion) and KAPACv2.0 (K-mer

Activity on PolyAdenylation site Choice version 2.0) models, respectively. d MAPP
infers regulatory motifs for RBPs and reports detailed maps of their position-
dependent impact on cassette exon inclusion and poly(A) site usage, respectively,
by applying themodels to genomicwindows located at specificdistances relative to
the RNA processing sites (dashed gray vertical bars).
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Fig. 2 | MAPP infers the known regulatory impact of the HNRNPC and RBFOX
RBPs on splicing and 3′ end processing from RBP expression perturbation
datasets. a Toppanel: z-scores of activity changes in the vicinity of 3′ splice sites (3′
SS), 5′ splice sites (5′SS), and poly(A) sites (PAS) inferred from an HNRNPC knock-
down dataset18. The PWM with the highest inferred combined z-score of all PWMs
has the penta-U motif as consensus. By fitting the splicing and 3′ end processing
models of MAPP to overlapping windows (horizontal gray bars) located at specific
distances relative to splice and poly(A) sites, position-dependent activity z-scores
are inferred. Statistically significant z-scores are marked with an asterisk. Bottom
panel: Smoothened (±5 nt) HNRNPCeCLIP-based coverageprofiles in the vicinity of

the top 200 3′SS, 5′SS, and PAS, whose usage is most upregulated (orange) or does
change least (gray) upon HNRNPC knock-down. Least-changing targets are pre-
sented as an average of mean per-position coverage calculated over non-targets
sampled 100 timeswith repetition ±1 standarddeviation.bToppanel:MAPP results
as described in a, but here applied to a RBFOX2-deficient HEK293 cell line with
induced expression of RBFOX1 which is known to regulate splicing at 5′SS by
binding to UGCAUG sequences24. Bottom panel: eCLIP profiles as in a, but for the
RBFOX2 RBP in the vicinity of the top 200 3′SS, 5′SS, and PAS, whose usage is most
upregulated (green) or does change least (gray) upon RBFOX1 overexpression.

Article https://doi.org/10.1038/s41467-024-48046-1

Nature Communications |         (2024) 15:4110 4



Fig. 3 | MAPP reveals the concerted impact of pre-mRNA processing regulators
onsplicing andpolyadenylation. a For eachRBP,wedetermined thefirstmotif (in
the order of MAPP-provided significance) that is assigned in the ATtRACTdb to the
RBP thatwas depleted ineach experiment. Column3 shows the rankof thatmotif as
inferred by MAPP. The table contains RBPs where the known binding motif was
among the top five reported by MAPP. The activity profiles are shown similarly to
those in Fig. 2, with the top two rows indicating the knock-down and the bottom
two the control conditions. Windows within regions around 3′SS, 5′SS, and PAS are
set to the same ranges as done in Fig. 2. The central window sliding through a given

RNA processing site (−25nt,+25nt) was marked as a black square in the legend
(bottom right). Furthermore, in addition to the PWM-based MAPP runs, we have
carried out a similar analysis exploring all possible k-mers of length 3 to 5. The top-
ranked k-mer is reported for each experiment alongside the corresponding PWM
result. b MAPP impact maps of selected HNRNPK (ENCSR853ZJS) and PCBP1
(ENCSR635FRH) RBP knock-down and control experiments. Colored bars indicate
regions in which exclusively HNRNPK (green), exclusively PCBP1 (yellow), or both
RBPs (red) regulate pre-mRNA processing by binding the “CCC” k-mer.
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we further applied MAPP to CFIm68 and CFIm25 perturbation
experiments. As expected, MAPP infers that the well-known CFIm
binding sequence UGUA has a strong activating effect on 3′ end pro-
cessing, but we observed no significant impact on alternative splicing
(Supplementary Fig. S4). Finally, MAPP also infers that RBPs with
similar sequence specificity can exert their regulatory roles by binding
to the pre-mRNA in different positions relative to the pre-mRNA pro-
cessing sites (Supplementary Fig. S5). For instance, both PCBP1 and
HNRNPK bind a ‘CCC’ sequence element to regulate splicing and
polyadenylation. However, while the repressive impact of HNRNPK on
cassette exon splicing seems to be focused on the immediate vicinity
of the processing sites and exonic regions, PCBP1 appears to activate
splicing from a broader intronic region (Fig. 3b).

While the proteins with known PWMs shown in Fig. 3a have been
implicated in splicing before, we also investigated cases where MAPP
identified a significant k-mer able to explain the pre-mRNA processing
changes, but not one of the considered PWMs. One interesting
example is the Poly(U) Binding Splicing Factor 60 (PUF60) RBP.
ENCODE provides knock-down experiments for this protein in two cell
lines: K5643 (ENCSR558XNA) and HepG2 (ENCSR648BSC). The two
experiments that yield the most significant MAPP results consistently
infer highly similar U-rich sequence elements (Supplementary Fig. S6),
corresponding to the motif inferred to be bound by PUF60 in vitro, in
RNA Bind’n-seq experiments21,22. As PUF60 exhibited a narrow window
of activity upstream of 3′ splice sites, we have rerun MAPP at a higher
resolution, using windows of 20 nts sliding by only 10 nts. The
resulting MAPP impact maps show that the PUF60 RBP is only active
when binding to U-rich regions located within a very narrow window
(30 to 10 nt) upstream of the 3′ splice site (Supplementary Fig. S6).
While this is consistent with a previous report of PUF60 activating
exon inclusion by binding to U-rich regions upstream of 3′ splice
sites26, MAPP reveals the very narrow window of PUF60 activity, the
intronic region of ~30–10 nts upstream of the 3′ splice site, thus
being much more position-specific compared to other regulators
mentioned above (Fig. 3). These results illustrate the utility ofMAPP in
elucidating the position- and sequence-dependent regulation of pre-
mRNA processing by RBPs.

MAPP infers RBPs that drive the oncogenic splicing program
active in glioblastomas
As key factors in the post-transcriptional regulation of gene expres-
sion, RBPs have been reported to play an important role in numerous
diseases, including cancer27. In a previous study we have uncovered
that the PTBP1 RBP best explains the global remodeling of 3′ UTR
length in glioblastoma6. Importantly, PTBP1 was previously mainly
studied in the context of splicing, and the results from our ENCODE
screening recapitulate these results (Fig. 3a). To follow this further, we
applied MAPP to a high-quality PTBP1 knock-down dataset without
PTBP2 background28 confirming that PTBP1 does act as global splicing
and 3′ end processing regulator (Fig. 4a, bottom panel). Specifically, in
addition to its repressive activity on poly(A) site usage, PTBP1 repres-
ses the processing of 3′SS and, to some extent, 5′SS. Moreover, from
the MAPP impact maps, we can conclude that PTBP1-binding motifs
located within the cassette exon itself or the first ~75 intronic nt
upstream of the 3′SS are associated with reduced exon inclusion when
the expression levels of PTBP1 are high, i.e., in control conditions.
These inferences are also supported by PTBP1 eCLIP data (Fig. 4a and
Supplementary Fig. S7).

To uncover which regulators can best explain splicing in glio-
blastomas, we next applied MAPP to cancer samples29, where it infer-
red that the PTBP-binding motif has the most significant activity on
pre-mRNA processing (Supplementary Data 4, 5) with a motif ranking
and position-dependent activity that matches the profile obtained
from the PTBP1/2 knock-down data (Fig. 4a, b and Supplementary
Data 6). The additional activity of PTBP1 on splicing further

strengthens the case for PTBP1 as a main regulator of pre-mRNA pro-
cessing in glioblastomas, where PTBP1 is highly expressed30. Also, as
expected for a regulator that acts as a repressor of pre-mRNA pro-
cessing, the expression of PTBP1 anti-correlates with its motif activity
(Fig. 4c). Interestingly, besides the PTBP1 motif, the RBFOX-associated
motif was also identified byMAPP as being differentially active in GBM
compared to normal brain samples (Fig. 4b). Moreover, a k-mer-based
MAPP run confirmed that in addition to PTBP1-associated CU-rich k-
mers, the GCAUG sequence bound by the RBFOX RBPs is also among
the significant 5′SS-proximal k-mers that regulate exon inclusion
(Supplementary Data 4). Consistently with the known role of RBFOX
RBPs as activators of splice site usage, the MAPP-inferred activity
correlates remarkably well with RBFOX expression, which is low in
GBM and high in healthy brain (Fig. 4c). Applying MAPP to GBM
samples from two additional RNA-Seq cohorts31,32 recapitulated both
the PTBP1 and RBFOX expression patterns and the CU-repeat and
GCAUG k-mer activities (Supplementary Figs. S8, S9), thereby con-
firming the PTBP1 and RBFOX RBPs as global regulators of the onco-
genic splicing program acting in glioblastomas30,33.

Multiple oncogenic splicing events take place downstream of
the PTBP1 and the RBFOX RBPs in glioblastomas
Investigating the inclusion level (measured as percent-spliced-in (PSI)
across transcripts covering the respective genomic regions) of exons
having predicted binding sites for the PTBP1, the RBFOX RBPs, or for
both RBPs within the MAPP-inferred regions, we found that cassette
exons that are coregulated by bothRBPs exhibit the largest differences
in PSI when comparing glioblastoma to normal brain tissue (Fig. 5a).
Importantly, the average change in exon inclusion increased with the
motif-binding score for PTBP1 and RBFOX (Supplementary Fig. S10).
Thegeneswithdifferentially included cassette exons having PTBP1 and
RBFOX binding sites in the MAPP-inferred impact regions are highly
enriched in the synaptic signaling Gene Ontology (GO) category
(Fig. 5b). This suggests that cassette exons that are spliced-in as a result
of low PTBP1 and high RBFOX splicing activities in normal brain tissue
are largely involved in neuron-specific functions. Importantly, both
RBPs were previously reported to regulate brain-specific micro-exon
inclusion in healthy brain tissue34, suggesting that the dysregulation of
these two factors in glioblastomas leads to a pattern of exon inclusion
that corresponds to less differentiated and specialized cells.

Interestingly, there are multiple splicing events previously
reported to be oncogenic among the cassette exons that are differ-
entially spliced-in in normal versus malignant brain tissue and contain
binding sites for the PTBP1 RBP, the RBFOX RBPs or both (Fig. 5c and
Supplementary Data 7), thereby providing connections between the
dysregulation of the PTBP1 and RBFOX RBPs in GBM and the down-
stream effects on malignant cellular behavior.

Exon 6 of the ANXA7 gene (Supplementary Data 7), skipped in
GBM (Fig. 5c), provides an interesting positive control for our analysis.
Inclusion of this exon was previously shown to be regulated by PTBP1,
and skipping of ANXA7 exon 6 promotes the progression of GBM by
fostering angiogenesis35. Thus it provides an interesting link between
the MAPP-inferred activities and the molecular properties of GBM.
ANXA7 exon 6 has binding sites for the PTBP1 RBP in the regions that
MAPP infers to be regulated by the PTBP1 RBP (Supplementary Data 7).
Another interesting example is exon 16 of the NF2 gene, whose inclu-
sion level is reduced in GBM (Fig. 5c). This exon has binding sites for
RBFOX, but not PTBP1 (Supplementary Data 7). Previous studies have
shown that there exist two major NF2 isoforms, isoform 1, which does
not contain exon 16, and isoform 2, which does. Even though the exact
role of these isoforms is still a matter of debate, both of them have
been implicated in cancer development36,37.

Besides these two examples of differentially included cassette
exons, having binding sites for the PTBP1 or the RBFOX RBPs,
respectively, there exist also hundreds of exons that are skipped in
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GBM and that have binding sites for both RBPs within the MAPP-
inferred regions (Fig. 5a and Supplementary Fig. S10–12). Of these, one
interesting candidate is exon 3 of the RTN4 gene (Supplementary
Data 7). Consistent with our observations in GBM (Fig. 5c), a previous
study has shown that high levels of PTBP1 cause RTN4 exon 3 skipping.
In contrast, PTBP1 knock-down results in enhanced inclusion of RTN4
exon 3. Importantly, the overexpression of the exon 3-including
RTN4 splice isoformwas shown to decrease the proliferation of glioma
cell lines, whereas skipping of RTN4 exon 3, as observed in GBM
(Fig. 5c), contributes significantly to their rapid growth
characteristics38.

Importantly, in contrast to the high PTBP1 and low RBFOX RBP
levels that we observe in malignant brain tissue (Fig. 4c and Supple-
mentary Figs. S8b, 9b), low levels of PTBP1 and high levels of RBFOX
contribute to the splicing program of healthy neurons34. Consistently,
MAPP infers PTBP1 and RBFOX both having a high motif activity in
brain tissue relative tomost other tissues (Supplementary Fig. S13).We
also found a reversal of PBX Homeobox 1 (PBX1) exon 7 inclusion in
GBM compared to healthy neurons39 (Fig. 5c). This exon too contains
binding sites for both RBPs within the regions inferred by MAPP

(Supplementary Data 7). Interestingly, in mouse embryonic stem cells
(ESCs) induced expression of the PBX1 isoform containing exon 7
activates the transcription of neuronal genes39.

Another interesting exon having binding sites in the MAPP-
inferred regions for both RBPs is exon 10 of PTBP2. It is known that
PTBP1, abundantly expressed in undifferentiated neural stem cells
(NSCs), is downregulated during neuronal differentiation, while its
PTBP2 paralog is upregulated, leading to the increased inclusion of
neuron-specific exons40,41. High expression of PTBP1 in NSCs and
undifferentiated precursors promotes skipping of the PTBP2 exon 10
and indeed, this is what we observe in the GBM samples relative to
normal brain tissues (Fig. 5c). Interestingly, skipping of PTBP2 exon 10
has been linked to the binding of RBFOX and results in transcript
isoforms with a premature stop codon that are subject to degradation
by nonsense-mediated mRNA decay33. Consistently, we observe
reduced PTBP2 mRNA expression in GBM relative to the normal brain
tissue samples (Fig. 4c and Supplementary Figs. S8b, 9b).

Thus, the high expression of PTBP1 in glioblastomas relative to
normal brain tissue might contribute to a less differentiated state,
whichwas suggested to be the origin of glioblastoma42, and is also one

Fig. 4 | MAPP unravels the joint effect of the PTBP1 and RBFOX RBPs on pre-
mRNA processing in glioblastoma. a PTBP1 eCLIP densities around pre-mRNA
processing sites calculated and presented as in Fig. 2 (top panel) and impact maps
for the PTBP-bound CUCU motif as inferred by MAPP (bottom left panel) from
control cells (CTRL; n = 2) and cells depleted of both PTBP1 and PTBP2 by siRNA-
mediated knock-down (KD; n = 2). Bottom right panel: PTBP1/2/3 expression versus
the activity of the CUCU motif within 50 nt upstream of 3′ splice sites (3′SS).
R indicates the Pearson correlation coefficient and p the corresponding two-tailed
p value. The dashed gray line shows the linear regression. b MAPP results for

glioblastoma (GBM; n = 5) and normal brain (NORMAL; n = 5) samples for the PTBP-
bound CUCU motif (top panel) as well as for the RBFOX-bound UGCAUG motif
(bottom panel). Regions with statistically significant CUCU motif activity (purple)
or UGCAUGmotif activity (green), respectively, are highlighted in the cartoon (mid
panel). MAPP was run without a minimum exon length constraint in order to also
account formicro-exons prevalent in neurons. c Scatter plots as outlined in (a), but
for the samples described in (b) showing the mRNA expression levels of the PTBP
and RBFOX RBPs, respectively, versus the MAPP-inferred activities for the RBP-
corresponding motifs within the indicated region windows.
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of the general hallmarks of cancer43. The cell type at the origin of GBM
that acquires the initial oncogenicmutations is still unknown, although
recent research suggests that this cell type might be NSCs, which
reside in the ventricles of the brain during development44. To investi-
gate this further from a splicing perspective, we used MAPP, com-
paring cells from the ventricular zone (VZ) to cells from the cortical
plate (CP)45. Interestingly, MAPP revealed similar splicing and expres-
sion patterns as observed in GBM versus healthy brain tissue. This
suggests that the PTBP1 and RBFOX-dependent splicing program

active in glioblastomas relative to healthy brain tissues is indeed
similar to the one active in cells from the VZ relative to the further
differentiated cells residing in the CP (Fig. 6a–c). Further we applied
MAPP to a human neural stem cell model (hTERT immortalized NSCs)
carrying only one of the alterations thought to contribute to GBM
(IDH1 R132H)46. As expected, the NSC model showed splicing patterns
that are comparable to GBM and undifferentiated cells residing in the
VZ (Fig. 6d–f), further hinting towards GBM cells representing a less
differentiated cellular state in terms of their global splicing pattern,

Fig. 5 | Concerted effects of the PTBP1 and RBFOX RBPs regulate cassette exon
skipping in glioblastomas. aDistribution of differences between percent-spliced-
in averages (ΔPSI) observed in glioblastoma (GBM; n = 5) versus normal brain
(NORMAL;n = 5) for cassette exons regulated by PTBP1 and/or RBFOX according to
their binding probabilities within the regions inferred by MAPP to be significantly
regulated, using increasing binding probability (c≥) cutoffs. Thenumber of cases in
each group is indicated. b Top ten enriched gene ontology (GO) terms in the
category Biological Processes as inferred for genes with cassette exons that have
binding sites for both RBPs (with binding probability ≥0.6) and that are differen-
tially included in glioblastoma compared to normal brain samples. The list of dif-
ferentially included exons was obtained by running a two-sided Welch t-test.

P values for both differentially included exons and enriched GO terms were
adjusted for multiple comparisons using the Benjamini-Hochberg method.
A detailed description of theGO analysis is provided in Supplementary Information
(2.12). c Percent-spliced-in (PSI) for five cassette exons that have been associated
with cancer-related isoforms previously. p indicates the p value of comparing
normal (NORMAL; n = 5) and glioblastoma (GBM; n = 5) samples using a two-tailed
t-test, not assuming equal variances. The text color represents RBP regulation as
defined in (a). Boxes indicate the interquartile range (IQR), with the black line
corresponding to the median and whiskers extending to the most extreme values.
Individual data points are shown as black dots.
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which appears to be broadly driven by the PTBP1 and RBFOX RBPs
(Figs. 5a and 6g). In summary, the similarities of the MAPP-inferred
splicing regulation (Fig. 6h) further strengthens the current view that
GBM represents cells in a more stem-like state compared to healthy
neurons43,47 (Fig. 6i).

Discussion
By binding to sequence elements in (pre)mRNAs, RBPs regulate gene
expression at co-transcriptional and post-transcriptional levels. In
particular, they can affect both splicing and 3′ end processing, key
steps in mRNA maturation. Additionally, the interaction of RBPs with

Fig. 6 | Regulation of cassette exons in neuronal differentiation and glio-
blastomas. a Scatter plots of the PTBP RBPs mRNA expression levels versus the
activities of the PTBP-associated CUCU motif for the indicated region window as
inferred by MAPP for cells from the ventricular zone (n = 6) and cortical plate
(n = 6). R indicates the Pearson correlationcoefficient andp the corresponding two-
tailed p value. The dashed gray line shows the linear regression. b MAPP-inferred
impact maps of the PTBP-associated motif at 3′ splice sites (3′SS) and the RBFOX-
associated UGCAUG motif at 5′ splice sites (5′SS) for the two cell populations
described in (a). c Scatter plots as in (a) but for the RBFOX RBPs mRNA expression
levels versus the activities of the RBFOX-associated motif for the indicated region
window as inferred by MAPP for the cell populations described in (a). d Scatter
plots as in (a) but for a neural stem cell model (n = 9) and normal brain samples
(n = 9). e MAPP-inferred impact maps as in (b) but for the cells described in (d).
fScatter plots as in (c) but for the cells described in (d).gDistributionof differences

between percent-spliced-in averages (ΔPSI) observed in the cells described in (a)
(left panel) and for the cells described in (d) (right panel) for cassette exons
regulatedbyPTBP1and/orRBFOXaccording tohaving abindingprobability of≥0.9
within the regions inferred by MAPP to be significantly regulated. The number of
cases in each group is indicated. h Comparison of motif activities (in the windows
indicated in a, c, d, f) and expression levels of PTBP1 and the RBFOX RBPs (sum of
RBFOX1/2/3) in cells residing in the ventricular zone (VZ; n = 6) and the cortical
plate (CP; n = 6) (top panel) to those observed in glioblastoma (GBM; n = 5) and
normal brain (NORMAL; n = 5) (bottom panel). Wide boxes in the violin plots
indicate the interquartile range (IQR), with the white dot inside corresponding to
the median and whiskers indicating 1.5 times the IQR from the hinge. Data points
are shown as colored dots. i Graphical summary of cassette exon coregulation by
the PTBP1 and RBFOX RBPs in the indicated cell systems.
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mature mRNAs can regulate their transport, localization, and
translation48. Understanding the global and concerted effect of various
RBPs on the cellular transcriptome is undoubtedly key to uncovering
mechanisms of gene expression dysregulation in various pathological
conditions, including cancer49,50. In this study, we presented a com-
putational approach for inferring the regulatory impact of various
RBPs on splicing and 3′ end processing.

We have validated ourmethod ondata pertaining to proteinswith
well-established roles in splicing and/or polyadenylation. Specifically,
the MAPP-inferred activities of the HNRNPC RBP are in line with its
previously reported role in preventing the exonization of cryptic Alu
elements20,51. Many Alu elements have evolved to become cassette
exons, and the potentially deleterious inclusion of these exons into
mature mRNAs needs to be tightly regulated. The impact maps con-
structed by MAPP are fully consistent with this role of HNRNPC
(Fig. 2a). MAPP also recovers the previously-noted position-specific
regulation of exon inclusion by RBFOX (Fig. 2b), whereby binding of
RBFOX upstream of cassette exons results in their exclusion, while
binding downstream of such exons promotes their inclusion52. While
consistent with this model, our results provide higher resolution for
the binding site position-dependent effects of RBFOX. Specifically,
they indicate a larger impact on the downstream, inclusion-promoting
sites. Furthermore, MAPP indicates that binding sites that are located
further upstream in the introns also have an overall inclusion-
promoting effect, consistent with an earlier report24. Thus, MAPP
provides direct and broad insight into the activity of RBP binding sites
from RNA-Seq datasets, without a need for stratifying the data or
determining the binding sites with methods such as crosslinking and
immunoprecipitation. MAPP’s position-dependent impact maps thus
enable an efficient and improved understanding of how RBPs impact
their targets.

After benchmarking MAPP on RBPs with known impact on pre-
mRNA processing, we turned to the >400 RBP knock-down datasets
available from the ENCODE project and revealed that multiple reg-
ulators affect exon inclusion and 3′ endprocessing (Fig. 3). Once again,
thanks to the sliding window approach ofMAPPwe found that distinct
regulators differ not only in their role (which for all investigated RBPs
seem to be the same in the two processes, i.e., to either enhance or
repress) but also in their position specificity. For example, MAPP not
only highlighted the opposite effect of two proteins, HNRNPK and
PCBP1, which bind the same “CCC” sequence, on cassette exon inclu-
sion, but also that the distance range of their impact differs: PCBP1 acts
more broadly in the introns flanking the cassette exon, while HNRNPK
acts in a more focused manner, at the exon-intron boundaries. This
could reflect structural constraints on RBP-RNA interactions, given the
step of RNA processing where an individual RBP acts and the com-
plexes that it may be part of. Interestingly, many of the investigated
RBPs act as repressors of pre-mRNA processing. Given that the
sequence elements that are involved in the processing are typically
short, our results could indicate that many repressors are needed to
mask the many decoy processing sites across the genome53.

While the knock-down experiments are very informative in
revealing the specificity and mechanism of an RBP, the pattern of
regulation within the context of a tissue, where multiple RBPs likely
vary in concentration in a concerted manner, are more challenging to
interpret54. Nevertheless, applying MAPP to normal brain and glio-
blastoma samples, we uncovered many exons that appear to be cor-
egulated by the PTBP1 and RBFOX RBPs (Fig. 5 and Supplementary
Figs. S11, S12), two regulators that were reported previously to act in
concert22,34.MAPP analysis of glioblastomasamples yields impactmaps
that strikingly resemble those obtained from RBP perturbation
experiments for the individual RBPs (Figs. 2b, 4a, b). In glioblastomas,
the splicing-activating RBFOX RBPs are downregulated, whereas the
PTBP1 splicing repressor is highly expressed compared tonormal brain
tissue (Fig. 4c). Interestingly, compared to GBM samples, the

analyzedoligodendroglioma samples showed similarbutmuchweaker
splicing patterns for the PTBP1 and RBFOX RBPs, whereas the inves-
tigated astrocytoma showed patterns that are comparable to normal
brain (Supplementary Fig. S9). The usage of many cassette exons
alternatively spliced in glioblastomas are repressed at their 5′SS by the
highly abundant PTBP1 RBP, whereas the usage of their 3′SS lacks
splicing due to the lack of RBFOX RBPs (Fig. 4b and Supplementary
Figs. S8, S9). Thus, the oncogenic splicing program of glioblastomas is
a result of both overexpression of PTBP1 and the downregulation of
RBFOX RBPs compared to healthy brain tissues (Fig. 6i), in which the
splicing activities of these RBPs are correspondingly high and low
relative to many other tissues55 (Supplementary Fig. S13). Notably,
multiple of the cassette exons predicted to depend on PTBP1 and
RBFOX for their splicing inGBMwerepreviously shownexperimentally
to drive cells into a more malignant state (Fig. 5c). Examples are PBX1
exon 7 and PTBP2 exon 10, whose skipping was reported to contribute
to lessdifferentiated cellular states39–41,43. Further, skipping of theRTN4
exon 3 was demonstrated to increase cell proliferation of glioma
cells38, and reduced inclusion of exon 6 of the ANXA7 gene was
reported to promote glioblastoma progression35. Besides the already
experimentally validated oncogenic splicing events, among the large
number of cassette exon skipping events that we detected in glio-
blastomas (Fig. 5a and Supplementary Figs. S10–12), there are most
probably further candidates that remain to be characterized towards
their involvement in brain tumor development and progression.
Importantly, the identification of RBPs that broadly impact mRNA
processing in specific conditions, such as cancers, can provide
potential entry points for the development of therapies. For instance, a
recent study has demonstrated that knocking down PTBP1 in glio-
blastoma cells promotes their neural differentiation into a non-
proliferating cellular state56. Thus, downregulation of the PTBP1 RBP
provides a promising approach for glioblastoma treatment in the
future, which might be further developed and optimized, e.g. by par-
allel overexpression of RBFOX RBPs, as reintroducing RBFOX1 in GBM
cell lines was shown to inhibit tumorigenesis and its knock-down was
demonstrated to compromise neuronal lineage differentiation of
premalignant neural stem cells57. Targeting of mRNAs and mRNA-RBP
interactions with antisense oligonucleotides58,59 or small molecules60

holds much promise for medical applications. As MAPP is a fully
automated workflow, the task of identifying regulators of pre-mRNA
processing from RNA-Seq datasets is considerably facilitated.

Other groups have investigated binding site location-dependent
effects of RBPs, specifically proposing the concept of “RNA maps”61,
which summarize the density of RBP binding sites in the vicinity of
various types of landmarks (exon and transcript boundaries), where
RBPs exert regulatory roles. For instance, binding of the Nova RBP
upstream of a cassette exon is associated with the skipping of that
exon, while the binding downstream of the cassette exon is associated
with the exon inclusion. The impact maps that MAPP constructs pro-
vide complementary information. They do not rely on direct infor-
mation about the location of the binding site of the RBP (usually
obtained with CLIP) nor on specific thresholds for defining regulated
events such as exon inclusions. Rather, MAPP makes use of the quan-
titative information in the inclusion level of each exon or PAS aswell as
in the number of predicted binding sites in the vicinity of these exons.
As a result, MAPP provides quantitative information about the impact
of motifs on RNA processing, circumventing issues regarding the
coverage of the binding sites by CLIP in targets with different levels of
expression. Also interesting to note is the increasing use of massively
parallel assays for exploring the dependence of RNA processing on
specific motifs62. These provide information more analogous to
MAPP’s impactmaps, but are limited to a small number of conditions, a
small number of targets, and regions within these targets, and have
been so far used to characterize general principles of RNA processing.
In contrast, MAPP’s utility comes primarily in exploring a broad range
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of conditions and identifying condition/tissue-specific regulators.
Thus, MAPP extends the RNA biologist’s toolbox to enable the func-
tional characterization of RBP-RNA interactions and their con-
sequences at a high level of detail.

In conclusion, we developed a powerful computational approach
to identify regulators of splicing and 3′ end processing, which are
frequently coordinated. MAPP has been developed using modern
principles of high-quality scientific software engineering, facilitating
further development by a broad community of developers.

Methods
Datasets
We validated our method on publicly available RNA-Seq data with
perturbed levels of RBPs with known impact on splicing, and, to some
extent, polyadenylation. We have also applied MAPP to other publicly
available datasets related to brain malignancies, normal brain tissue
samples, a neural stem cell model, human fetal neurocortical tissue,
CFIm knock-down and overexpression, and a microRNA mimic trans-
fection. The full list of samples’ and records’ IDs is included in Sup-
plementary Data 1. Similarly, Supplementary Data 2 lists all RNA-Seq
datasets related to RBP knock-downs we have obtained from the
ENCODE project. To apply MAPP we require that samples meet mini-
mal criteria of quality. For example, we require a sufficiently high
Transcript Integrity Number (>50, typically >70)63, high proportion of
uniquely mapped reads (>0.95), high proportion of high-quality
mapped reads (>0.85), low level of rRNA contamination (<0.05) and
low proportion of reads mapped to intergenic regions (<0.1), as
reported by RNA-SeQC64. BAM files with mapped RNA-Seq reads of
normal and tumor sample pairs from TCGA were obtained from the
Genomic Data Commons (GDC) data portal65. The selection of normal-
tumor pairs from glioblastoma data was done as described previously
(Supplementary Data 3)6. Additional transcriptomic alignments were
generated by first unmapping and then re-aligning RNA-Seq reads,
utilizing Samtools and STAR with proper command line options.

MAPP
MAPP, standing for motif activity on pre-mRNA processing, is imple-
mented as a modular snakemake workflow66 with distinct standalone
sub-workflows dedicated to separate functionalities. These are RNA-
Seq data preprocessing, selection of cassette exons, selection of tan-
dem poly(A) sites, quantification of exon inclusion, quantification of
poly(A) site usage, generation of motif count matrices (PWMs/k-mers)
in each window around each site, the MAEI model (splicing), the
KAPACv2.0model (polyadenylation), and the summaryof results. Each
of thesemodules is described in detail in the SupplementaryMethods.
MAPP supports two distinct software technologies: Conda
environments67 and Singularity containers68.

MAEI
MAEI, which stands for motif activity on exon inclusion, is a model
designed to infer the impact of short sequence motifs on the differ-
ential inclusion of cassette exons. In order to prevent the confounding
effect of sites located within intronic regions, by default, MAPP fits
activities for windows of 50 nt length and considering only exons that
are at least 50 nt in length. As input, the MAEI model uses, for each
exon e, the expression levels of transcripts including and excluding the
exon across a set of samples s, together with a matrix N whose entries
Ne,m correspond to the motif counts of each motif m in a window
around themRNAprocessing sites of interest, i.e., 5′SSor 3′SS, for each
exon e. The motifs can either be specified as PWMs or k-mers. We
model the inclusion fractions fe,s (i.e., the fraction of transcripts
including the cassette exon e among transcripts for which e was
included in the pre-mRNA, see SupplementaryMethods) of every exon
e in every sample s using a logistic function: Θe,s =

eXe,s
1 + eXe,s

, where
Xe,s =bs + ce +Ne,m �Am,s is a linear function of the model parameters:

bs—the baseline inclusion rate of all exons in sample s, ce—the baseline
inclusion rate of exon e in all samples and Am,s—the “activity” of amotif
m in a sample s.Ne,m denotes the number of binding sites ofmotif m in
the proximity of exon e, which is either given by the sum of site
probabilities predicted with the PWM or the raw k-mer counts). We fit
this logistic regression model using a Bayesian approach resulting in
inferred motif activities Am,s with corresponding error bars σm,s and
finally obtain for each motif m in sample s a z-score Zm,s =

Am,s
σm,s

.
The activity z-scores are then presented visually on the impact

maps. See the Supplementary Methods for more details on all
calculations.

In order to distinguishmotifs with statistically significant z-scores
from those with z-scores from a Gaussian background distribution we
use a Gaussian mixture model to renormalize the z-scores and trans-
form them into p values from a standard normal distribution. Statis-
tical significance is then finally assessed upon Bonferroni-correction of
these p values. Again, we refer the reader to the Supplementary
Methods for more details on the procedure.

KAPACv2.0
KAPACv2.0, standing for K-mer Activity on PolyAdenylation site
Choice version 2.0, implements a more general version of our pre-
viously published KAPAC tool6. KAPACv2.0 models genome-scale
changes in3′ endusage to infer sequencemotifs that can explain 3′ end
site usage across samples. In contrast to KAPAC, KAPACv2.0 can use
both binding sites predicted with position-dependent weight matrices
(PWMs) as well as k-mer counts. Also, while the first version of KAPAC
was designed to run on sample contrasts, such as knock-down versus
control samples, KAPACv2.0 does not require contrasts but can be
applied to any set of samples, such as different tissues or a time series.
First, we define the relative usage of poly(A) site p in sample s as up,s.
KAPACv2.0 then models the relative usage up,s with respect to the
mean of all samples as a linear function of the occurrence of PWM
binding sites or k-mer counts and the unknown “activity” of these
PWMs/k-mers: log2 up,s

� �
=Np,k � Ak,s + cp + cs,e + ε, where Np,k is the

number of binding sites (predicted with the PWM or by k-mer count-
ing) around poly(A) site p, cp is themean log2 relative usage of poly(A)
site p across all samples, cs,e is the mean log2 relative usage of the
poly(A) site from exon e in sample s and ε is the residual error. Finally,
Ak,s is the activity of the PWM/k-mer k in sample s, which determines
how much the PWM/k-mer contributes to the relative usage of the
poly(A) site. KAPACv2.0 calculates for each sample s andevery PWMor
k-mer k, respectively, a z-score Zk,s =Ak,s=σk,s, whereas σk,s are the
fitting errors of the activities Ak,s. Background correction and ranking
of PWMs/k-mers is done as described for the MAEI approach above
(see Supplementary Methods and ref. 6 for further information).

Curation of PWMs of RBPs binding motifs
ATtRACT is a publicly available database of RNA-binding proteins and
associated motifs69. On 20 August 2021 we downloaded the zip file
containing all availableRBPmotifs in the formatof position-dependent
weight matrices (giving the probability of observing any of the four
bases at each position of the binding site) as well as their corre-
sponding metadata (ATtRACT_db.txt). From the ATtRACT_db.txt we
first selected motifs annotated with the species Homo sapiens (3256
records) and from these only those that corresponded to wild-type
proteins (“Mutated” field having the value “no”, 3178 records). We next
selected only one of the records that had the same gene ID, PWM ID
and experiment description (where for experiment description,
records that contained theword ‘SELEX’were considered as having the
same description). This procedure resulted in 1120 records. Next, we
clustered records for which the entries in the PWMs (position-depen-
dent frequencies of nucleotide occurrence) were identical. If the
cluster with identical PWM entries contained multiple RBPs, we dis-
carded them all, as we could not unambiguously assign the PWM to
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oneRBP. If the cluster containedmultiple records for the sameRBP,we
kept only one of them. This step left 523 records. We further deter-
mined the length of the core motif for each PWM, that is, the longest
motif, such that the first and last positions had a non-zero information
content and discarded those recordswhere coremotifs were not in the
range of 4 to 7 nucleotides. This step left 346 records. Finally, for each
PWM, we calculated the total motif entropy and discarded those that
were too degenerate (with an entropy higher than 10) using functions
adapted from the SMEAGOL toolbox70. This procedure yielded 344
PWMs for the MAPP analyses.

Coverage profiles of RNA-binding proteins
To gain additional confidence in MAPP’s inferences, we constructed
coverage profiles for distinct RNA-binding proteins based on eCLIP
data in HepG2 and K562 cells, publicly available as a part of the
ENCODE project (experiment IDs: ENCSR550DVK, ENCSR987FTF,
ENCSR384KAN, ENCSR249ROI, ENCSR756CKJ, and ENCSR981WKN).
For Figs. 2a, b, 4a we have used the experiments conducted in HepG2
cells (similar plots for K562 cells can be found in Supplementary
Figs. S3, S7) we selected the group of the top 200 targets with the
highest change in alternative splicing as well as alternative poly-
adenylation into the expected direction based on the average
quantified exon inclusion fraction and poly(A) site usage, respec-
tively. We have extended the margins around these sites so that the
eCLIP analysis matches the regions covered by our MAPP sliding
windows. For every RNA processing site separately, we have calcu-
lated foreground/background ratios of library-size-normalized
position-wise eCLIP read coverages (foreground being eCLIP reads
from the RBP pulldown experiment and background being the cor-
responding control pulldown experiment). We have plotted the
position-wise mean ratio over all sites (smoothened by the −5/+5 nt
of each position). Additionally to the target set we selected a group
of 1,000 sites with the least change in RNA processing and treated
them as background to estimate coverage profiles for non-targets.
From this set, there were randomly sampled 200 non-targets for 100
times, each time following the same procedure as described above
for the non-random sites in order to obtain 100 background cover-
age profiles. These random profiles were used to plot the (smooth-
ened) per-position mean of means together with a confidence
boundary which reflects the per-position standard deviation of the
means. The data processing notebook is available in the supple-
mentary data (see Data availability section).

Selection of ENCODE experiments, reported motifs, and k-mers
We have downloaded and analyzed RNA-Seq samples linked to 472
knock-down experiments of RBPs, publicly available as a part of the
ENCODE project; 16 of these did not pass the quality-control step as
defined in the “Datasets” section. We used the remaining 456 datasets
for the analysis shown in Fig. 3. Briefly, each ENCODE experiment has
been analyzed with MAPP in both PWM-based and k-mer-based
approaches. For each of the knock-down experiments, we selected
the lowest rank of any ATtRACT PWM associated with the perturbed
RBP for which MAPP found a statistically significant impact on any of
the signals (statistical significance annotated with the “abs” strategy,
please see Supplementary Methods). Such obtained “PWM rank” is the
key bywhich the results table is sorted indescending order. For only 12
ENCODE experiments, we found that the PWM associated with the
perturbed RBP had a rank of a maximum of 5 (out of 344 curated
PWMs). For these, we report the PWM ranks and their impact maps, as
inferred by MAPP. We then checked whether the appropriate motif is
also recovered in the k-mer mode. For this, we selected the k-mer with
the highest overall statistically significant activity z-score, averaged
over all of the processing sites (labeled as “1st ranked k-mer”) from
each experiment. Alongside the previously described PWM-based
results, we report the 1st ranked k-mer and its impact map. Data

processing scripts are available in the supplementary data (see Data
availability section).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The results generated in this study have been deposited in the Zenodo
database under accession code 578998671. The raw RNA-Seq data are
accessible at ENCODE21 and the following records: GSE56010,
GSE69656, GSE71468, GSE179630, PRJNA798408, GSE204705,
GSE185861, GSE147352, GSE38805, PRJEB4337, All accession numbers
and sample ids are available from Supplementary Data 1, 2, and 3.

Code availability
The MAPP code is available on GitHub (https://github.com/gruber-
sciencelab/MAPP) and in the Zenodo database under accession code
1084550172.
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