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Revealing trends and persistent cycles of
non-autonomous systems with autonomous
operator-theoretic techniques

Gary Froyland 1 , Dimitrios Giannakis 2,3, Edoardo Luna 4 &
Joanna Slawinska 2

An important problem in modern applied science is to characterize the
behavior of systems with complex internal dynamics subjected to external
forcings. Many existing approaches rely on ensembles to generate infor-
mation from the external forcings, making them unsuitable to study natural
systems where only a single realization is observed. A prominent example is
climate dynamics, where an objective identification of signals in the obser-
vational record attributable to natural variability and climate change is
crucial for making climate projections for the coming decades. Here, we
show that operator-theoretic techniques previously developed to identify
slowly decorrelating observables of autonomous dynamical systems
provide a powerful means for identifying nonlinear trends and persistent
cycles of non-autonomous systems using data from a single trajectory of
the system. We apply our framework to real-world examples from climate
dynamics: Variability of sea surface temperature over the industrial era and
the mid-Pleistocene transition of Quaternary glaciation cycles.

Operator-theoretic techniques have proven to be highly successful at
analyzing dynamical systems1–3. These techniques were primarily
developed for autonomous dynamics, where the governing rules do
not change over time. However, many important phenomena are
influenced by changing external factors, resulting in time-dependent
governing rules. Examples include collective motion of particles and
organisms in response to changes in their environment4,5, neuronal
dynamics under stimuli6,7, mixing and coherent structure formation
under a time-dependent fluid flow8,9, and the variability of the Earth’s
climate under natural and anthropogenic forcings10,11. In response, at
the beginning of the previous decade, extensions of operator-
theoretic techniques for non-autonomous time-asymptotic
dynamics12,13 were developed through transfer operator cocycles.
Shortly after, techniques for handling non-autonomous finite-time
dynamics were developed through singular vectors of transfer
operators14,15 and eigenvectors of the dynamic Laplacian16,17. These

mathematically rigorous methods enable the analysis of a much
wider class of systems and only need a single forcing history, but like
all truly non-autonomous methods of analysis, multiple trajectories
ormultiple observations along the single forcing history are used. On
the Koopman operator side, two-parameter families of Koopman
operators (estimated frommultiple observations) have been studied
for systems with periodic or quasiperiodic time-dependence18. Other
approaches have developed extensions of the dynamic mode
decomposition (DMD) technique19,20 for autonomous systems that
utilize time-dependent spectral computations on moving stencils21,
or external control inputs in the DMD operator estimation
problem22–24. In control applications, one invariably has access to
multiple known forcing histories for training.

In recent work25, the authors developed a framework based on
autonomous techniques for complex eigenvalues of transfer26–28 and
Koopman2 operators and their corresponding complex eigenvectors
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that successfully extracted slowly decaying (slowly decorrelating)
cycles from a single time series. Specifically, the El-Niño Southern
Oscillation (ENSO)29 was extracted as a complex eigenvector of the
transfer or Koopman operators built from monthly SST images over
the past 50 years. Over this time, there is noticeable warming of the
ocean, and one could argue that time-dependent techniques should be
applied. Nevertheless, the extracted ENSO cycle was in excellent
agreement with independent climate observations and displayed
greater cyclicity (i.e., a well-defined characteristic frequency and
slowly decaying correlation amplitude) than the corresponding ENSO
cycle defined using a standard Niño 3.4 index.

We will show in this present work that an estimate of the (non-
stationary) Indo-Pacific warming trend, as well as the modulation of
the seasonal cycle by the trend, can be obtained through eigenvectors
of transfer or Koopman operators when a small amount of diffusion is
added. Here, by “trend” we mean a statistical trend arising from
computations involving observations. A conceptual model of secular
SST increase, combined with oscillatory behavior such as the seasonal
cycle or ENSO, is simple harmonic motion with a drift in the mean. We
also consider simple harmonic motion with a drift in the amplitude,
and simple harmonic motion with a change in the frequency. We will
use the latter as a toy model for the Mid-Pleistocene Transition (MPT)
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Fig. 1 | Models of frequency switching (Model F) and co-existing frequencies
(Model F0). Center Left: The phase space [0, 1] × S1 of Model F (see (2)) is identified
with the surface of a cylinder. The (cyclic rainbow) colors represent the scalar
output of the observation function hðθÞ= cosðθÞ. The black line represents a tra-
jectory that begins on the left half of the cylinder: the underlying frequency regime
parameter x∈ [0, 1] chaotically evolves on the left of the cylinder (corresponding to
x∈ [0, 1/2]), while the oscillation phase θ rotates around the cylinder with a fixed
period of 40 time units. At some point, the frequency regime parameter x switches
to the right half of the cylinder (corresponding to x∈ [1/2, 1]) and the trajectory
thereafter proceeds with a constant rotation rate around the cylinder with a period
of 97.35 time units. This switching models the change in glaciation cycle frequency
from faster to slower, as observed after the MPT transition period (see section on
Quaternary glaciation cycles). Upper: The real part of one of the complex eigen-
functions from the first complex-conjugate pair for Model F. The faster oscillation
prior to theMPT is captured,while the amplitudeof the slowerpost-MPToscillation

is suppressed. Lower: The real part of one of the complex eigenfunctions in the
second complex-conjugate pair for Model F. The slower post-MPT oscillation is
captured, while the amplitude of the faster pre-MPT oscillation is suppressed.
Center Right: The domain [0, 1] × S1 × S1 ofmodel F0 (see (6)) is identifiedwith a solid
torus, where x =0 corresponds to the outer toral shell and x = 1 corresponds to the
inner toral shell. The (cyclic rainbow) colors represent the scalar output of the
observation functionh in (7) on these shells. Theblack curve represents a trajectory
of the system (6) with angular frequencies α1 = 2π/40 and α2 = 2π/97.35. The tra-
jectory begins on the outer toral shell, where the recorded oscillation of color by
the trajectory is relatively rapid. The trajectory then switches the the inner toral
shell where the recorded oscillation of color is slower (by a factor α1/α2). This
switching also models the change in glaciation cycle frequency from faster to
slower, and additionally allows for superposition of two frequencies when the
trajectory lies between the two toral shells (see equation (7)).
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of Quaternary glaciation cycles30, where we will show that transfer/
Koopman operators successfully recover the pre- and post-transition
cycles from field measurements of benthic δ18O oxygen isotope ratio31

(a paleo-proxy for ambient seawater temperature) as distinct
eigenfunctions.

Each of the idealized models studied in this work is non-
autonomous. Through these models, we provide theoretical explana-
tions for why autonomous techniques can provide useful information
fromnonautonomous systems—see Fig. 1 for a schematic illustrationof
our approach applied to idealized frequency-switching models of the
MPT. Our real-world results include reconstructions of surface air
temperature (SAT) and precipitation fields using transfer/Koopman
eigenfunctions computed from Indo-Pacific SST. These reconstruc-
tions reveal regions in South America that have undergone qualitative
changes in the phasing and amplitude of the seasonal precipitation
cycle over the industrial era. Furthermore, the eigenfunctions com-
puted from δ18O data identify the fundamental 40 kyr and 100 kyr
Northern Hemisphere (NH) glaciation cycles over the past 3 Myr and
the associated MPT. We find that the 40 kyr cycle and its harmonics
persist after the MPT in a low-amplitude state, and the resulting
interference with the 100 kyr mode helps explain variations in the
amplitude and duration of post-MPT glaciation cycles.

Results
Model classes
Our two main real-world examples are drawn from two single time
series: Indo-Pacific SST fields over the industrial era and benthic δ18O

records over the past 3 My. The SST time series incorporates many
persistent co-existing cycles of differing frequencies in the sub-
seasonal to interannual band, studied in25, and a climate change trend,
which we address in the present work. The δ18O data has two main
frequencies associated with Quaternary glaciation cycles that co-exist
for some, but not all, of the time, as well as a nonstationary trend.

We develop idealized models that have these basic types of
behavior, namely (i) oscillation with a drift in the mean of the oscilla-
tion; (ii) oscillation with a drift in the amplitude of the oscillation; and
(iii) a switching between two different oscillations, possibly with co-
existence. In each of our real-world examples, it is the underlying
dynamics that is undergoing change (e.g., in response to changes in
greenhouse gas forcings or orbital forcings of the climate), rather than
the measuring device that records the time series. Therefore, we push
the time-dependence of the time series into the dynamical system and
keep the observation function time-independent.

Model M: oscillation with a drift in the mean
A simple dynamical system that incorporates a cycle with a drift
transverse to the cycle is helical dynamics around the curved surfaceof
a cylinder. More precisely, we consider the (infinite) cylinder R× S1,
where S1 is the circle with unit radius. We consider time-dependent
dynamics represented by a discrete-time transformation
T : R+ ×R× S1 ! R+ ×R× S1

Tðt,x,θÞ= ðt + 1,x +dðtÞ,θ+αÞ, ð1Þ
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Fig. 2 | Trajectories and embeddings for Models M and A. Upper Left: A typical
trajectory of the (x, θ) coordinates derived from iteration of T in (1), with linear drift
d(t) = t/10 and α = 1/10, and τ = 100. Upper Center: Graph of hðx,θÞ= x + cosðθÞ vs.
time, illustrating the creation of an oscillatory signal with a linear drift in the mean
of the signal. Upper Right: Graph of hðx,θÞ= ð1 + xÞ cosðθÞ vs. time, illustrating the
creation of an oscillatory signal with a linear drift in the amplitude of the signal.

Lower Left: Two-dimensional time-delay embedding of the time series h(xt) shown
in Fig. 2 (upper center), using a lagof ℓ = 1/4of the cycle period. LowerCenter: Same
as Left, but embedded in three dimensions. Lower Right: Two-dimensional time-
delay embedding of the time series h(xt) shown in Fig. 2 (upper right), using a lag of
ℓ = 1/4 of the cycle period.
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where d(t) is a time-dependent drift along the central axis of the
cylinder and α is the rate of rotation around the circular base of the
cylinder. In this model the coordinate t, representing time, is the
driving coordinate. Iterating T for τ iterations, and plotting trajectories
of the (x, θ) coordinates on the cylinder embedded inR3, we obtain a
picture such as in Fig. 2 (upper left).

A continuous-time representation of this dynamics is given by the
vector field F : R+ ×R× S1 ! R3 defined by F(t, x, θ) = (1, d(t),α). To
create a scalar time series of oscillation with drift, we observe with the
time-independent function hðx,θÞ= x + cosθ, which additively com-
bines the phase of the oscillation θ with the current drift state x to
create an oscillation with a drift; see Fig. 2 (upper center).

Model A: oscillation with a drift in the amplitude
The same dynamical model T as in (1) can be used with the altered
observation function hðx,θÞ= ða+ xÞ cosθ, to create an oscillatory time
series with an amplitude that varies from a according to the current
drift state x. See Fig. 2 (upper right).

Model F: switching between two different oscillation
frequencies
We create a simple class of time-dependent dynamics that can model
switching between two distinct oscillations. The state variable x that
previously represented the state of the drift will now represent a fre-
quency “regime”. This frequency-regime coordinate x is the driving
coordinate and evolves according to metastable dynamics, for exam-
ple according to fδ: [0, 1]→ [0, 1], for small δ > 0, where

f δðxÞ=
2x, 0 ≤ x < 1=4,

δ + 2ðx � 1=4Þ ðmod 1Þ, 1=4 ≤ x <3=4,

1=2 + 2ðx � 3=4Þ, 3=4 ≤ x ≤ 1:

8><
>:

Themap fδ is a chaoticmap that preserves Lebesguemeasure on [0, 1].
Each of the intervals [0, 1/2] and [1/2, 1] is almost-invariant, and the
average probability to switch between these intervals at each iteration
is δ. The two intervals will represent two distinct frequency regimes in
the angular coordinate introduced below. We consider discrete-time
dynamics T: [0, 1] × S1→ [0, 1] × S1 defined by

Tðx,θÞ= ðf ðxÞ, θ+wðxÞα1 + ð1�wðxÞÞα2Þ, ð2Þ

where w: [0, 1]→ [0, 1] is a switching function defined by
wðxÞ= ð1 + tanhðc � ðx � 1=2ÞÞÞ=2, and c > 0 is a parameter. For c large
(we set c = 40 in all of our experiments) w(x) takes values

approximately equal to zero on the interval ([0, 1/2), and w(x) takes
values approximately to 1 on the interval (1/2, 1]). Thus, the angular
coordinate θ in (2) advances by either α1 or α2, depending on the
underlying frequency regime controlled by x. Figure 1 (left) illustrates
an orbit on the cylinder for the map T; one sees faster rotation around
one half of the cylinder in comparison to the other half. To create a
time series that switches between the two frequencies, we simply use
the (driving-independent) observation function hðθÞ= cosθ, which
records the current phase of the oscillation; see Fig. 6 (upper left).

Why are the outputs of these models idealizations of our data?
Indo-Pacific SST over the industrial era. For Models A and M we
imagine that t is time, that x is a proxy variable for the degrees of
freedom of the climate system affected by greenhouse gas forcings,
and that θ is the phase of an oscillatory process such as the seasonal
cycle or ENSO. The observation function h is an aggregate quantity
(e.g., globally averaged SAT or SST).

Benthic δ18O records over the Pleistocene. For Model F we imagine
that x is a proxy variable for drivers of global mean temperature, and
that θ is the phase of glaciation cycles. Later on we will develop Model
F0 (seeMethods) as analternative toModel F that is basedon twophase
angles: θ1 is the phase of the axial tilt cycle and θ2 is the phase of the
orbital procession/inclination. For both Models F and F0 the observa-
tion function h outputs the δ18O isotope ratio (which correlates with
global mean temperature).

Time-delay embedding
In practice we imagine that we only have access to a single time series,
and that this time series is generated by nonautonomous dynamics
with a fixed observation function. A classical approach to such a
time series might be to embed it in a higher-dimensional space
using Takens’ method of delays32–34. In this approach, observations
ht with values in Rd are boosted in dimension through
temporal concatenation to produce a new time series
ht :¼ ðht ,ht�‘,ht�2‘, . . . ,ht�ðQ�1Þ�‘Þ 2 RdQ, where ℓ is a lag and Q is the
number of lags. By various types of delay-embedding theorems valid
for autonomous35–37 or nonautonomous38,39 dynamics, the delay-
embedded data can, under appropriate assumptions, faithfully repre-
sent the underlying system state even if the observation map h giving
the time series data is non-injective.

Yet, even though the original dynamics can be theoretically
recovered from observational data, identification of drifts remains
notoriously difficult in practice. In this work, we demonstrate
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Fig. 3 | Embedding multiple frequencies. Left: Area of the embedded ellipse
ðcosðθÞ, cosðθ+βÞ, cosðθ+ 2βÞÞ as a function of β. Right: Embedding of the time
series from Model F in Fig. 6 (right) with a lag ℓ of 10 time steps. One obtains two

disjoint ellipses of large area that are well separated. The trace joining the ellipses
occurs in the short regime where the time series switches between frequencies.
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that autonomous operator-theoretic methods coupled with delay-
embedding can yield useful analyses of nonstationary dynamics. We
proceed through the threemodel classeswe have set up in the previous
section.

Delay embedding with a drift in the mean and amplitude – Models
M & A. Our underlying dynamics (1) is occurring on a helix embedded
inR3 (Fig. 2 (upper left)). Thus, using an embedding lag ℓ of 1/4 of the
oscillation period, we expect to require at least two embedding
dimensions for the scalar signal of h to accurately reconstruct the two-
dimensional phase space. Figure 2 (lower left) shows that when the
observation h incorporates a drift in the mean, two dimensions are
insufficient to uniquely recover the system state; three dimensions
(lower center) are sufficient. When the observation function only has
drift in the amplitude, two embedding dimensions are sufficient to
recover a two-dimensional surface; see Fig. 2 (lower right). Note that
the annulus shown in Fig. 2 (lower right) is diffeomorphic to a cylinder.

Delay embedding with oscillation frequency switch –Model F. The
switching dynamics given by (2) take place on a cylinder; see Fig. 1
(left). To correctly recover the dynamics we require three embedding
dimensions. In the previous subsection, we chose an embedding lag ℓ
of 1/4 of the oscillation period. In Model F we have two distinct fre-
quencies, which appear in bursts. Below we will use an abstract result
(Lemma 1) to show that with a fixed lag, bursts of any number of fre-
quencies may be successfully embedded in three dimensions. This
result will also indicate how to best choose a single lag.

Consider a unit circle in the plane, centered at the origin; it has a
parametric representation ðx,yÞ= ðcosðθÞ, sinðθÞÞ 2 R2. We embed this
circle with lagged observation cosðθÞ; i.e., we consider the parametric
curve ðcosðθÞ, cosðθ+βÞ, cosðθ+2βÞÞ in R3 for some lag β and with
θ∈ (0, 2π). We then have:

Lemma 1. For each β 2 R, the parametric curve

γβðθÞ := ðcosðθÞ, cosðθ+βÞ, cosðθ+2βÞÞ, θ 2 ½0,2πÞ, ð3Þ

is an ellipse embedded in R3. These ellipses are disjoint for distinct
β∈ (0,π/2). When β =π/3 the curves are embedded circles, and the
area inside the curves is maximized.

The proof of Lemma 1 is in Methods. Here, we show that the set
{γβ(θ): 0 ≤ θ < 2π} is an ellipse for each β. Note that the coordinates of
γβ(θ) can be written as

ðcosðθÞ, cosðθ+βÞ, cosðθ+2βÞÞ
= ðcosðθÞ, cosðβÞ cosðθÞ � sinðβÞ sinðθÞ,
cosð2βÞ cosðθÞ � sinð2βÞ sinðθÞÞ

= ðx, cosðβÞx � sinðβÞy, cosð2βÞx � sinð2βÞyÞ,

where x = cos θ and y= sinθ. Thus, our delay embedding can be con-
sidered as mapping the unit circle linearly via Φβ : R2 ! R3, where

Φβðx,yÞ= ðx, cosðβÞx � sinðβÞy, cosð2βÞx � sinð2βÞyÞ:

By linearity ofΦβ, the unit circle inR2 will be transformed to an ellipse
embedded in R3. Figure 3 (left) displays the area of the embedded
ellipse as a function of β. The region between β =π/4 and β =π/2 is a
relative “sweet spot”.

We now apply Lemma 1 to our time series with frequency
switching generated by Model F. We have two rates of rotation α1 and
α2, and we therefore generate bursts of samples of single frequencies
that look like θ = jα1 and θ = jα2, where j = 0, 1, 2,…. Suppose that
we embedded these bursts with the same lag ℓ in three dimensions;
then we obtain chunks of embedding coordinates of the form:
ðcosðjα1Þ, cosððj + ‘Þα1Þ, cosððj +2‘Þα1ÞÞ and ðcosðjα2Þ, cosððj + ‘Þα2Þ,
cosððj + 2‘Þα2ÞÞ: We may apply Lemma 1 with β1 = ℓα1 and β2 = ℓα2, to
immediately see that these discretely sampled simple harmonic
motions with differing frequencies embed in R3 as disjoint ellipses,
provided that 0 < β1 ≠ β2 ≤π/2. In our example we have α1 = 2π/
40 > α2 = 2π/97.35, so we set ℓ = 10 ≈ (π/2)/(2π/40) in order that the
larger angle β1 hits the outer range of the interval (0,π/2). With ℓ = 10,
we then have β2 = ℓα2 ≈0.645, which yields a large area for the

Fig. 4 | Trend in the mean the signal from Model M is identified by the first
nontrivial real eigenvector of the approximate transfer operator P. Upper:
Linear drift. The left panel shows the raw time series vs. time, colored according to
the first nontrivial real eigenvector (second in the global ordering v2); center panel

shows the second eigenvector value vs. time; right panel shows the embeddeddata
colored according to v2. Lower: Non-monotonic quadratic drift. The left, center,
and right panels show analogous objects as for linear drift.
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embedded ellipse, as seen in Fig. 3 (left). Figure 3 (right) shows this
embedding.

Transfer and Koopman operator computation
Given a dynamical system T:Ω→Ω on a domain Ω and a complex-
valued function f : Ω ! C, the transfer operator L is defined by
Lf = f � T�1, where T−1 may be multivalued if T is non-injective. The
transfer operator is the natural pushforward action on functions. The
Koopmanoperator is defined asKf = f � T , and is the natural pullback
on functions. We now describe the construction of transfer operators
directly from the embedded time series data. While the approach to
numerically constructing the transfer operator is a slight modification
of the methodology in25, we provide a new interpretation of this
numerical approximation to explain the form of the eigenfunctions in
ModelsMandA. The time-delay embedding ofModelsM, A, and F uses
scalar outputs hðx,θÞ 2 R. Later we will discuss time series observa-
tions of SST and δ18O. In the former situation our observations h are
vector valued and lie in Rd . As in the case of scalar-valued observa-
tions, we time-delay embed these vector-valued observations by con-
catenation. We obtain a time series of embedded data:
ht := ðht ,ht�‘,ht�2‘, . . . ,ht�ðQ�1Þ�‘Þ 2 RdQ for t = 1,…,N. For models M, A,
and F, we have d = 1 and Q = 3 and so ht : = ðht ,ht�‘,ht�2‘Þ 2 R3. We
select a forward-step time s >0 (typically corresponding to a single
sampling index) and construct a square array

Sij = exp �k hi � hj + sk2
didj + s

 !
, i,j = 1, . . . ,N � s, ð4Þ

wheredi is the distance fromhi to itsKth nearest neighbor formodestK.
Selecting K ≈ 7 usually suffices unless it is numerically challenging to
compute eigenvectors, in which case K could be increased. We then
row-normalize the matrix S to obtain a row-stochastic Markov matrix

Pij = Sij=
X
j

Sij , i= 1, . . . ,N � s: ð5Þ

Note that the diffusionmentioned in the Introduction has been added
through the use of the kernel S on finite data. If we think of a vector
f 2 RN�s as values of a function f : Ω ! C along our trajectory then
the vector Pf corresponds to pushing f forward s steps byLsf . We will
compute eigenvectors v such that Pv= λv; in particular, multiplication
on the right corresponds to forward evolution in time.We note that by
construction P1 = 1 (where 1 is the ðN-sÞ -vector with all entries equal to
1) and thus the leading eigenvalue is 1 and the corresponding eigen-
vector is constant. We will typically be concerned with the second and
lower eigenvalues and eigenvectors. If we wish to instead approximate
the Koopman operator, we can choose a backward-step time s <0.

Note that the matrix S in (4) can be viewed as a non-symmetric
discrete heat kernel or non-symmetric diffusionmatrix, and thematrix
P as the corresponding Markov process. This non-symmetry will be
small provided that the step length s is small relative to the lengthN of
the time series. If the bandwidths di in (4) are chosen so that the
resulting diffusion is commensurate with the advection in embedding
space due to the time step swe can expect leading real eigenvalues of P
(due primarily to diffusion) to be mixed with leading complex eigen-
values of P (due to periodicities arising from the advective compo-
nents). The diffusive aspects of the matrix P will be important for the
following theoretical explanations of the forms of the operator
eigenfunctions for our idealized models.

Eigenfunctions for Model M
Figure 2 (upper center) showed an oscillatory time series with a linear
drift in the mean of the oscillation. Figure 2 (lower center) showed a
three-dimensional embedding of these observations, reproducing a
diffeomorphic copy of the original dynamical system shown in Fig. 2

(upper left). We now build a transfer operator approximation on the
embedded time series data in Fig. 2 (lower center), according to
equations (4) and (5) with s = 1 and K = 7. Figure 4 (upper row) displays
different views of the second eigenvector v2 with eigenvalue
λ2 = 0.9943. On the left is the original time series, colored by the value
of v2. In the center is the value of v2,t plotted against time index t. The
key point is that we see qualitative agreement in the behavior of the
eigenvector value versus time (center) and the mean value of the drift
(left). At the right is the embedded time series, colored by the value
of v2.

We remarked above that the matrix P can be seen as an approx-
imation of a slightly biased Markov diffusion process on the spiral
structure. The slight bias is due to the the forward-step time s = 1 rather
than s =0, whichwould be unbiased. The second eigenvector of such a
diffusion process is consistent with the upper-right panel of Fig. 4.
Thus the underlying reason why Fig. 4 is colored from one end of the
helix to the other is that P represents a slightly biased random walk
along the one-dimensional spiral.

Focusing now on the lower row of Fig. 4, in the left panel we
construct an asymmetric quadratic drift in the mean of the oscillation.
We compute v2 (with eigenvalue λ2 = 0.9984) using the corresponding
three-dimensional embedding shown in the lower-right panel as the
basis for constructing thematrix P. In the center panel of the lower row
of Fig. 4 we see that the eigenvector value versus time qualitatively
reflects the drift in the mean of the oscillatory signal in the left panel.
The reason for this correspondence is the same as for the linear drift,
but slightlymore complicated because of the non-monotonicity of the
drift. In the embedded space in the lower-right panel of Fig. 4 we see
that the embedded signal doubles back over itself. We may again
consider P as approximating a slightly biasedMarkovdiffusionprocess
on the structure in the lower-right panel of Fig. 4. The eigenvector
values appear as they do because of the geometric proximity of dif-
ferent parts of the embedded time series.

We recall that the choice of (forward) time step s = 1 corresponds
to P approximating a transfer operator, but we could also have chosen
s = − 1 so that P approximates a Koopman operator and the above
results would be similar. This is also the case for the following
experiments with Models A and F.

Eigenfunctions for Model A
In the upper row of Fig. 5 we show (left to right): (i) a time series with
linear drift in the amplitude; (ii) the values of the leading nontrivial real
eigenvector (v4) versus time; and (iii) the two-dimensional embedded
time series colored according to the values of v4. All computations
were made with s = 1 and K = 7. The second and third eigenvalues are a
complex-conjugate pair 0.9891 ± 0.0991i corresponding to a rotation
of 0.0998 radians per time step, which is almost exactly the rotation
rate of α = 1/10 noted in Fig. 2. We are interested in extracting the drift
in the amplitude andwemove on to the first nontrivial real eigenvalue,
which appears in position 4: λ4 = 0.9825. This eigenvalue is real
because there is no oscillation associated with the drift in the ampli-
tude. The embedded points in the upper-right panel of Fig. 5 are
colored from “inside to out” because we may again interpret P as a
slightly biased approximate Markov diffusion process. In particular,
the upper-center panel qualitatively extracts the increasing amplitude.

The lower-left panel of Fig. 5 shows a more complicated non-
monotonic quadratic amplitude variation. This variation is captured in
the lower-center panel from the leading nontrivial real eigenvector v6,
for the same reasons as those given above, namely the geometry of the
embedding drives the form of the eigenvector.

Eigenfunctions for Model F
We return to the time series in the upper-left panel of Fig. 6. This time
series is embedded as in Fig. 3 (right), leading to two ellipses that are
disconnected, apart from the short trajectory joining them. We
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construct the matrix P as above with s = 1, but we increase K to 25 in
order to achieve a robust numerical solution for the eigenvectors. We
find that eigenvalues 2 and 3 are a complex-conjugate pair with
λ2 = 0.9866 + 0.1547i and eigenvalues 4 and 5 are another complex-
conjugate pair with λ4 = 0.9954+ 0.0660i. The arguments of these
complex eigenvalues correspond to rotation periods of 40.39 and
94.95 timeunits,which compare to exact values of 40 and97.3537. The
corresponding eigenvectors are shown in Fig. 6.

In the left panels of Fig. 6 we see the original time series (upper),
the real parts of one of the eigenvectors from the leading complex pair
versus time (center), and the real parts of one of the eigenvectors from
the second complex pair versus time (lower). The embedded time
series data colored according to the real parts of the two complex
eigenvectors is shown in the right panels. In particular,wenote that the
oscillation period in the first half of the center left panel is identical to
the oscillation period in the first half of the upper-left panel (the ori-
ginal time series), while the amplitude in the second half of the time
series is suppressed in the eigenvector values (center left). In this
sense, the leading complex eigenvector pair has extracted the cycle that
is supported on the first half of the time series.

Similarly, in the lower-left panel of Fig. 6 we see that the large
amplitude is concentrated in the second half of the time span and that
the oscillation period is nearly identical to the oscillation period of the
corresponding second half of the original time series (upper left). This
second half of the eigenvector corresponds to one of the two colored
ellipses in the right-most panel. Thus, the second complex eigenvector
pair has extracted the second frequency in the time series. Overall, the
two leading complex eigenvector pairs have identified and filtered the
distinct frequencies of the original signal.

The reason why the eigenvectors of P behave in this way is ana-
logous to our discussion with the drift in themean and amplitude. The
geometry of the embedded time series again plays a key role. In this
case, we have two ellipses that – apart from some small regions – are
disconnected from one another. If we had two completely dis-
connected ellipses we should obtain two complex-conjugate eigen-
value pairs describing the rotation frequency for each ellipse; see25 for

details. In the present setting, the embedded time series is slightly
perturbed from this idealized situation, and we therefore obtain
eigenvectors that are a slight perturbation of the eigenvectors in the
idealized situation.

A frequency-switching model has been analysed using DMD with
moving time windows, which are chosen so as to not overlap a
switching time21. We note that our theory and numerical approach
recovers the eigenvalues and eigenfunctions associated with the two
frequency regimes of Model F by eigendecomposition of a single
matrix P, without making use of moving windows or windowing to
subdivide the time series into distinct frequency regimes.

Climate variability and trends over the industrial era
One of the key challenges in advancing our scientific understanding of
climate dynamics and improving the skill of climate forecasts and
projections is to objectively identify the fundamentalmodes of climate
variability, operating on timescales spanning months (seasonal cycle)
to decades (low-frequency oceanic variability) under the influence of
time-dependent natural and anthropogenic external forcings40–42.
When analyzing observational data, we sample a single dynamical
trajectory through observational networks with time-dependent bia-
ses, making the task of delineating natural variability from forced
response particularly challenging43,44.

As noted in the Introduction, previous work25 has shown that
operator-theoretic techniques can successfully extract fundamental
cycles of climate dynamics such as ENSO, the seasonal cycle, and
combination modes between ENSO and the seasonal cycle45 from
monthly-averaged SST snapshots, despite the presence of a nonsta-
tionary climate-change trend in the data and the fact that the analysis
techniques were originally designed for autonomous dynamics. In
addition, the transfer/Koopman operator spectral decompositions
yield eigenfunctions with nonstationary associated time series that are
broadly consistent with accepted climate change signals over the
satellite era46. The spectra also contain “trend combination modes”
corresponding to products between the trend and seasonal cycle
eigenfunctions. Building upon the idealized models described in the

Fig. 5 | Trend in the amplitude of the signal from Model A is identified by the
first nontrivial real eigenvector of the approximate transfer operatorP.Upper:
Linear drift. The left panel shows the raw time series vs. time, colored according to
the first nontrivial real eigenvector (fourth in the global ordering v4); center panel

shows the second eigenvector value vs. time; right panel shows the embedded data
colored according to v4. Lower: Non-monotonic quadratic drift. The left, center,
and right panels show analogous objects as for linear drift. The vector shown is
again the first nontrivial real eigenvector (sixth in the global ordering v6).
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preceding sections, in this section we extend the analysis of ref. 25 to
an interval spanning the past ~ 130 years of the industrial era.

Regarding prior work, a great variety of mathematical and
numerical techniques have been developed for analysis and modeling
of climate dynamics47,48. Some approaches49,50 employ state-space
techniques for non-autonomous dynamical systems, such as the the-
oryofpullback attractors, to characterize changes to natural variability
under time-dependent climate forcings. On the data analysis side,
Singular Spectrum Analysis34,51 (SSA) and its equivalent Extended
Empirical Orthogonal Function (EEOF) analysis52, combine aspects of
state-space reconstruction using delay-embedding maps with eigen-
decomposition of covariance operators to extract oscillatory compo-
nents and trends from climatic time series with higher fidelity than

standard EOF techniques. While SSA targets high-variance modes, the
transfer/Koopman operator approach targets eigenfunctions with
slow correlation decay. Another difference is that transfer/Koopman
operator spectra provide direct estimates of characteristic oscillatory
timescales, whereas in SSA the assignment of characteristic timescales
requires post-processing of the eigenfunctions such as Fourier analy-
sis. In the asymptotic limit of infinite delays, the SSA eigenspaces
corresponding to nonzero eigenvalues (i.e., nonzero explained var-
iance) are finite orthogonal direct sums of Koopman eigenspaces53,54.
This provides an approximate interpretation of the cyclicity of the
dominant modes extracted by SSA using many delays. Besides diag-
nostic applications such as the study presented here, operator-
theoretic methods have been successfully employed in parametric
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Fig. 6 | Separation of the two distinct frequencies in Model F by two complex
eigenvectors from distinct complex-conjugate pairs of the approximate
transfer operator P.Model F is defined in (2) with δ = 7.5 × 10−4, α1 = 1/40, and
α2 = 1/97.3537 ≈ 1/100. Upper Left: Graph of observation function hðx,θÞ= cosð2πθÞ
vs. time, illustrating the creation of an oscillatory signal switching between two

frequencies. Center Left: The real part of an eigenvector from the first complex pair
vs. time. Lower Left: The real part of an eigenvector from the second complex pair
vs. time. UpperRight: The three-dimensional embedding of the time series, colored
by the real part of aneigenvector from the first complexpair. Lower right: As for the
upper right, but with the second complex eigenvector pair.

Fig. 7 | Reconstruction of SST and SAT trends over the industrial era using
eigenfunction v6 of the generator. Panels (a, d) show time series of globally
averaged SST and SAT anomalies, respectively, along with time series of v6. Panels

(b, c) show global spatial maps of SST anomalies for January 1919 and 2019,
respectively. Panels (e, f) show global SAT anomalies for the same dates.
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and non-parametric prediction models of climate phenomena,
including ENSO55,56, Pacific SST variability57, tropical intraseasonal
oscillations58,59, and sea ice cover60,61.

We analyze monthly-averaged SST fields with a 2° resolution
from the ERSSTv4 reanalysis product62 on the Indo-Pacific domain
28°E–70°W, 60°S–20°N. In addition, we analyze monthly-averaged,
5° global SAT anomaly data from the NOAA Global Surface Tem-
perature Dataset (NOAAGlobalTemp), Version 5.063, and monthly-
averaged, 1° global precipitation data from the NOAA/CIRES/DOE
20th Century Reanalysis version 3 (20CRv3)64. This analysis interval
is longer than the 1970–2019 interval studied in ref. 25 as the focus of
this paper is on long-term climate change trends which are more
significant over our analysis period that covers a significant portion
of the industrial era.

We extract eigenfunctions νj from the Indo-Pacific SST data
using the kernel-based approach for approximating the generator of
the Koopman/transfer operator groups described in ref. 25. Note
that the SAT and precipitation fields, as well as SST fields outside our
Indo-Pacific domain, are not employed in eigenfunction computa-
tions—we use these fields instead as target variables for recon-
struction based on our eigenfunctions. Additional details on the
operator and reconstruction calculations are provided in Methods.
Supplementary Fig. 1 displays the spectrum of the generator, where
the real and imaginary parts of the eigenvalues represent growth
rate and oscillatory frequency, respectively. The eigenvalues can be
grouped into families associated with the seasonal cycle, ENSO,
trends, and decadal variability, similarly to ref. 25. In this paper, we
will focus on the trend and seasonal-cycle modes. Note that each

Fig. 8 | Spatial maps of reconstructed 20CRv3 precipitation rate over South
America using eigenfunctions representing the global climatology, seasonal
cycle, trend, andproducts between seasonal cycle and trend. Panels (a, b) show
reconstructions of precipitation (in kgm−2 s−1) for January 1900 and 2010, respec-
tively. Panels (d, e) show reconstructions for July of the same years, respectively.

Panel (c) shows the difference between (b) and (a), and Panel (f) the difference
between (e) and (d). The reconstructions in Panels (c, f) provide an estimate of the
change in the seasonal cycle of precipitation over the industrial era. Markers in the
shapes of triangles, diamonds, squares, and circles indicate the spatial locations
sampled in Fig. 9a–d, respectively.
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complex eigenfunction vj has a corresponding eigenfrequency ωj 2
R and an eigenperiod Tj = 2π/ωj.

Revealing climate change trends through eigenfunctions
Figure 7a, d displays the time series of eigenfunction v6 of the gen-
erator along with globally averaged SST (Fig. 7a) and SAT (Fig. 7b)
anomalies computed relative to a 1971–2000monthly climatology. It is
evident that v6 represents a nonstationary pattern that correlates
positively and significantly with the evolution of globally-averaged SST
and SAT on decadal timescales. Notable features of the v6 evolution
include a modest amount of cooling over the first decade of the 20th
century, followed by awarming episode from themid-1930s to the late
1940s and a period of more sustained warming starting in the 1950s
and lasting through the end of the analysis interval. This latter period is
marked by episodes of rapid warming such as 1975–1980 and
2013–2018, but also contains intervals of warming slowdown, includ-
ing the apparent warming “hiatus” that took place in the first decade of
the 21st century. An analogous set of computations were made by
estimating the transfer operator L of six-monthly evolution of SST
anomaly fields. The second eigenvector (the leading nontrivial eigen-
vector) extracts the warming trend; see Supplementary Note 1 and
Supplementary Fig. 2 for details. The features mentioned above are
broadly consistent with accepted climate change trends over the
industrial era42–44, and demonstrate the capability of autonomous
operator-theoretic techniques to provide nonparametric representa-
tions of nonstationary signals generated by non-autonomous dyna-
mical systems.

Next, we consider spatial visualizations of the SST and SAT trends
associated with v6 obtained from the reconstruction procedure

described in Methods. This procedure is closely related to the recon-
structionmethods employed in EEOF analysis andSSA51, and inessence
involves projecting a target observable of interest to the cyclic sub-
space generated by a collection of one or more approximate Koop-
man/transfer operator eigenfunctions. In Fig. 7b, c we show snapshots
of reconstructed global SST anomalies obtained from v6 for January
1919 and 2019, respectively; Fig. 7e, f shows the corresponding pat-
terns of global SAT anomalies. These patterns capture the climate
warming that has taken place over industrial era, particularly over
Arctic land masses (see Fig. 7f). Finer-grained features, such as atmo-
spheric cooling in the Northeast Atlantic and Antarctic Peninsula are
also clearly visible. Analogous industrial-era trend reconstructions to
Fig. 7 were performed in earlier studies65,66 using SSA with decadal
embedding windows. In particular, ref. 65 raised the possibility of
interdecadal oscillations, leading to warming hiatuses that hinder
unequivocal detection of climate warming. Figure 3a of ref. 65 and Fig.
4a of ref. 66 depict SSA-derived trend time series that are generally
more nuanced than the eigenfunction time series in Fig. 7a and Sup-
plementary Fig. 2a (possibly due to the use of decadal vs. interannual
embedding windows), but exhibit similar qualitative behavior in time
intervals common to both studies.

Response of seasonal cycle of precipitation to climate change
The seasonal cycle of the Earth’s climate is driven by periodic varia-
tions of solar insolation between the northern and southern hemi-
spheres over each year. The response of climatic variables to this
driving depends on many factors and varies significantly between
regions, even at the same latitude. In subtropical regions, monsoons
are important examples of dynamical complexity67, driven by land–sea
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Fig. 9 | Evolution of reconstructed precipitation over the years 1900 and 2010
for four regions in South America display distinctive change due to trends.
Eachpanel displays reconstructed precipitation time series for two locationswithin
a region (plottedwith adashed linemarkedwith “ + ''), or a solid linemarkedwith “*”

as follows: (a) Salta province in northwest Argentina; (b) equatorial Amazon River
basin; (c) Cordoba and Mendoza region, west Argentina; and (d) Patagonia. Blue
and red lines depict precipitation reconstructed by the collection of periodic and
trend eigenfunctions for year 1900 and 2010, respectively.
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contrasts and complex orography, and are the primary source of
precipitation. Meanwhile, mid-latitude weather is dominated by sea-
sonally modulated fronts and the jet stream, the properties of which
depend strongly on meridional temperature gradients. As a result,
even minor changes of the large-scale spatiotemporal structure of the
seasonal cycle can lead to considerable impacts on a regional level,
particularly with respect to changes in precipitation.

In this section, we use the eigenfunctions extracted from Indo-
Pacific SST to characterize changes in seasonal precipitation in South
America over the industrial era. As this region is strongly influenced by
ENSO, this trend-driven signal can be possibly concealed in the raw
data and hard to extract with traditional data analysis techniques.
Here, our strategy is to project historical precipitation fields onto
eigenfunctions associated with seasonality and inferred long-term
trend in order to isolate the desired signal from ENSO and other
nonperiodic modes of variability. In interpreting these results, the
reader should keep in mind that, as with any precipitation reanalysis
product, 20CR3v3 is subject to uncertainties and systematic biases.
See ref. 68 for a comparison of precipitation fields from 20CRv3 and
other popular reanalysis products.

Figures 8, 9 show reconstructions of precipitation fields over
South America based on a collection of eigenfunctions that represent
the seasonal climatology and the nonstationary trend—see the corre-
sponding spectrum in Supplementary Fig. 1 and Supplementary
Table 1. In more detail, in Fig. 8, we show 2D snapshots of recon-
structed precipitation fields over South America based on (i) the
constant eigenfunction v1 representing the time-independent clima-
tology; (ii) the complex-conjugate pair {v2, v3} of annual periodic
eigenfunctions (eigenperiod Tj = 1 yr) and their semiannual and tri-
annual harmonics, {v4, v5} and {v9, v10} with eigenperiods Tj = 1/2 yr and
Tj = 1/3 yr, respectively; and (iii) the trend eigenfunction v6 from Fig. 7

and the complex-conjugate pairs {v7, v8} and {v11, v12} representing
products between v6 and the annual and semiannual pairs. These latter
pairs behave analogously to a family of product modes between ENSO
and the seasonal cycle called “combination modes”69. In the case of
{v7, v8} and {v11, v12}, the combination is between the trend represented
by v6 and the seasonal cycle, so it is natural to interpret them as “trend
combinationmodes”. These patterns explain a relatively small amount
of variance of the raw Indo-Pacific SST data (about two orders of
magnitude smaller than the seasonal cycle pair {v1, v2}) and, as we have
verified in separate calculations, are not captured in the SSA/EEOF
spectrum (possibly since standard SSA/EEOFs optimize for explained
variance rather than slow correlation decay captured in the transfer/
Koopman operator spectra; see the end of Supplementary Note 3 for
further discussion). Nonetheless, as we explain below, the trend
combination modes {v7, v8} and {v11, v12} play a major role in recon-
structing the change of seasonal variability in response to the trend.

We interpret the reconstructions based on the union of eigen-
functions from (i), (ii), and (iii) as a time-dependent seasonal cycle
associated with the trend represented by eigenfunction v6. The snap-
shots in Fig. 8a, b are taken in January 1900 and January 2010,
respectively; those in Fig. 8d, e are taken in July of the sameyears. Thus,
differences between Fig. 8b, a, shown in Fig. 8c, provide a repre-
sentation of how South American seasonal precipitation patterns in
austral winter have changed over the past century, and differences
between Fig. 8e, d, shown in Fig. 8f, represent the corresponding
changes in austral summer. The latter, is the active period of the South
American Monsoon System (SAMS). Note that the trend combination
modes play a dominant role in the spatial patterns shown in Fig. 8c, f.
This is because the contributions of the periodic eigenfunctions
v2, v3, v4, v5, v9, v10 cancel out when computing the differenced fields
from 1900 and 2010 at the same calendar month (January and July,

Fig. 10 | Operator-theoretic analysis of δ18O data from the LR04 stack over the
past 3 Myr. a Raw δ18O time series over the past 4 Myr. b Time series of eigen-
function v2 of the generator representing trend. c–e Time series of real parts of
oscillatory eigenfunctions v4, v6, and v9, respectively. fModuli aj of the projection

coefficients of the first 40 nonconstant eigenfunctions onto the δ18O time series.
g–i Two-dimensional phase space plots of v4, v6, and v9 in the complex plane,
respectively, colored by time. CWT spectra of the δ18O time series (j) and the time
series of eigenfunctions v2, v4, v6, and v9 (k–n).
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respectively). In Fig. 9, we show monthly time series of reconstructed
precipitation fields sampled in representative locations in South
America in 1900 (blue lines) and 2010 (red lines). For the remainder of
this section, the terms summer andwinter will refer to austral summer
and winter, respectively.

The reconstructed spatial maps and time series show significant
changes of the seasonal precipitation cycle in certain regions. First, as
can be seen in the region 70°S–10°N and east of 70°W in Fig. 8c, the
northeast parts of South America are characterized by increase of
precipitation in the active SAMS season. In contrast, the Amazon river
basin is drier during winter, as shown in Fig. 8f. Further south, desert
regions east of the Andes, such as the Salta province shown in Fig. 9a,
are characterized by absence of precipitation in winter and strong
precipitation in summer—the latter, diminishes significantly between
1900 and 2010. Figure 9(c) shows precipitation time series at repre-
sentative locations encompassing the wine regions of Cordoba and
Mendozaprovince,where drying hasbeen impacting thewine industry
in recent years70. Our analysis also shows significant drying of the
southern Andes and Patagonia (see Fig. 8), which is in agreement with
the recent observational record71. Possible explanations for the chan-
ges in precipitation seen in Fig. 8 include intensification of the
ascending branchof theHadley Cell in the tropics72, shifts in the spatial
patterns of the Intratropical Convergence Zone (ITCZ) (and thus
changes in SAMS), and changes of the Pacific South American (PSA)
pattern73–75 impacting the midlatitudes (in particular, the South
Atlantic Convergence Zone).

Quaternary glaciation cycles
The Quaternary geologic period, extending from ~ 2.6 million years
ago (Ma) to the present, is characterized by the presence of
glacial–interglacial cycles marked by the growth and decay of con-
tinental ice sheets in the northern hemisphere (NH). From the onset of
the Quaternary to ~ 1 Ma, these cycles occurred with a fairly regular
periodicity of approximately 41 thousand years (kyr). However, fol-
lowing a transition period known as the mid-Pleistocene transition
(MPT), the NH glaciation cycles switched to a predominantly 100 kyr
periodicity and became significantly more asymmetric and temporally
irregular76. While details of the physicalmechanisms underpinning the
Quaternary glaciation cycles, including the MPT, remain elusive, they
are generally thought to be the outcome of different types of orbital
forcings of the Earth’s climate system in conjunctionwith the prevalent
atmospheric and geologic conditions such as CO2 concentration and
regolith distribution77.

More specifically, the dominant orbital forcings of the Earth’s
climate include (i) orbital precession, with amain period of ~ 23 kyr; (ii)
axial tilt (obliquity), with a main period of ~ 41 kyr; and (iii) orbital
eccentricity, with a main period of ~ 100 kyr. The response of NH gla-
cial sheets to these forcings over the Quaternary is thought to have
been affected by two major factors, namely (i) reduced CO2 con-
centration, possibly due to reduced outgassing from volcanoes; and
(ii) reduction in NH regolith cover, possibly due to removal by erosion
and/or glaciation. In particular, regolith makes ice sheets more mobile
and thus more susceptible to orbital forcing. Recent studies77 have
posited that high CO2 concentration and NH regolith thickness
occurring in the early part of the Quaternary are more susceptible to a
linear response to the 41 kyr axial tilt forcing, whereas lower CO2

concentration and NH regolith thickness occurring in the post-MPT
period resulted in higher susceptibility to 100 kyr orbital forcings with
an associated nonlinear/asymmetric response of NH glacial sheets.

We analyze a scalar time series of δ18O oxygen isotope ratio
derived from the “LR04” stack of globally distributed benthic δ18O
records of Lisiecki and Raymo31. The LR04 dataset spans the past 5.3
Myr and is sampled non-uniformly in time with sampling intervals
ranging from 1 kyr over the past 600 kyr to 2 kyr or longer further out
in the past. Here, we analyze the past 3 Myr of the LR04 stack. For the

purposes of delay embedding, we interpolate the data to a fixed 1 kyr
sampling interval using linear interpolation, leading to a δ18O time
series of 3001 samples for analysis depicted in Fig. 10a. It is clear that
the time series exhibits oscillations with a drift in the mean and
amplitude, as well as a frequency change around 1 Ma corresponding
to theMPT. To examine these features inmore detail, Fig. 10j displays a
continuous wavelet transform (CWT) spectrum of the δ18O time series
where the ~ 40 kyr and ~ 100 kyr glaciation cycles are clearly evident.
Note that while the 100 kyr cycle is predominantly active in the post-
MPT portion of the time series (i.e., after ~ 1 Ma), the 40 kyr cycle
exhibits activity throughout the analysis interval and there is coex-
istence of the two cycles in the post-MPT record. Our idealized model
representing this behavior is Model F0 described in Methods and
depicted in Fig. 1.

Glaciation cycles from eigenfunctions
We compute approximate eigenfunctions vj of the generator by
applying the same kernel-based approach as in the SST analysis to the
δ18O time series from the LR04 dataset, shown in Fig. 10a. Figure 10b–e
shows time series of the real parts of representative generator eigen-
functions vj. These eigenfunctions were chosen on the basis of (i) the
amplitudes aj = ∣Yj∣ of the projection coefficients Y j = hv0j,hi onto the
observations h, where v0j 2 CN is the dual (biorthonormal) eigenvector
to vj (see “Methods”); and (ii) their frequency content in relation to
known orbital-forcing frequencies. The amplitudes aj are displayed in
Fig. 10f. In more detail, eigenfunction v2 in Fig. 10b is a real eigen-
function (of zero corresponding eigenfrequency ω2) that has the lar-
gest projection amplitude among all non-constant eigenfunctions of
the generator. The eigenfunctions in Fig. 10c–e are members of the
complex-conjugate pairs that have the second to fourth largest pro-
jection amplitudes, respectively. Figure 10(g–i) shows trace plots of
these eigenfunctions in the complex plane. Figure 10(k–n) shows CWT
spectra of the eigenfunction time series in Fig. 10b–e, respectively.

It is clear from Fig. 10b that eigenvector v2 represents a secular
trend that is consistent with the trend in the mean of the δ18O con-
centration signal. Meanwhile, eigenfunctions v4 (Fig. 10c, g, l) and v6
(Fig. 10d, h, m) feature narrowband oscillatory signals which are con-
centrated in the pre- and post-MPT periods and capture the 40 kyr and
100 kyr glaciation cycles, respectively. The corresponding eigenper-
iods, T4 ≈ 41 kyr and T6 ≈ 98 kyr, are also consistent with the dominant
pre- and post-MPT periodicities.

We also carried out an analogous experiment using an approx-
imation of the transfer operatorL froman embedded δ18O time series;
see Supplementary Fig. 3. The leading eigenfunctions of the estimated
L extract a secular trend shown in Supplementary Fig. 3b and distinct
cycles – with eigenperiods of T4 ≈ 99 kyr and T6 ≈ 41 kyr – shown in
Supplementary Figs. 3(c–d). Analogous trace plots of the complex
eigenfunctions in the complex plane are illustrated in Supplementary
Figs. 3(e–f). CWT spectra are given in Supplementary Figs. 3(g–j).

Besides v3, v4, and v6 (and the complex conjugates of the latter
two eigenfunctions, v5 and v7, respectively), there are other complex-
conjugate pairs in the generator spectrum that project strongly onto
the δ18O time series. The first of these pairs, {v9, v10} has an eigenperiod
T9 ≈ 41 kyr which is close to the pre-MPT periodicity identified from
{v3, v4}, but the amplitude of {v9, v10} is more evenly distributed over
the analysis interval, and in particular extends into the post-MPT per-
iod (see Fig. 10e, i, n). Further down in the spectrum of the generator
there are eigenfunctions that oscillate at the ~ 23 kyr orbital precession
periodicity, as well as eigenfunctions oscillating at intermediate time-
scales to the 40 kyr and 100 kyr cycles. These eigenfunctions are
predominantly active in the post-MPT period, but they capture less
variance than the eigenfunctions shown in Fig. 10 sowe do not discuss
them further here.

Overall, we find a qualitative difference in the pre- and post-MPT
behavior of the dominant oscillatory eigenfunctions: The dominant
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eigenfunctions exhibiting strong activity in the pre-MPTperiod, i.e., v4,
v5, v9, and v10, have a narrowband frequency spectrum concentrated at
approximately (40 kyr)−1. On the other hand, the eigenfunctions v6, v7,
v9, and v10 (as well as eigenfunctions further down the spectrum),
which are active in the post-MPT period exhibit a significantly more
diverse range of frequencies, approximately (100 kyr)−1 to (30 kyr)−1.
This behavior is consistent with the higher irregularity of NHglaciation
cycles known to occur since the MPT.

Established statistical techniques used to study Quaternary gla-
ciation cycles (e.g. SSA34, CWTs77,78, moving Fourier spectral analysis76,
and Bayesian inference79) have been applied to data sources ranging
from observational data such as the LR04 stack to output from con-
ceptual models80 and comprehensive paleo-climate models77. The
nature of glaciation cycles has also been studied via a plethora of state-
space dynamical systems techniques78,81. Among these statistical and
dynamical methods, perhaps the most closely related to our Koop-
man/transfer operator approach is SSA. See Supplementary Note 3 for
a comparison between SSA results applied to δ18O data (depicted in
Supplementary Fig. 4) and the Koopman/transfer operator eigen-
functions in Fig. 10 and Supplementary Fig. 3.

In Supplementary Note 4 and Supplementary Fig. 5, we recon-
struct the δ18O time series using the approach described in methods
for various combinations of eigenfunctions from Fig. 10. These
reconstructions demonstrate the efficacy of the eigenfunctions to
recover important features of the δ18O evolution, including secular
trend, frequency transition, and post-MPT irregularity.

Discussion
Operator-theoretic techniques designed for analysis of data gener-
ated by autonomous dynamical systems have proven to be highly
successful in diverse science and engineering applications. Using
geometrical arguments, idealized models, and present and past cli-
mate data, we have shown that these methods can remain powerful
analytical tools even when dealing with systems influenced by time-
dependent exogenous factors. In particular, our computations are
derived from a single observed time series, which is advantageous
for the analysis of natural systems such as the Earth’s climate system.
In such systems there is only one observed history and it is chal-
lenging to well-sample ensembles of multiple likely driving
conditions.

Central to our approach has been a combination of ideas from
time-series delay-embedding geometry, Markov diffusion processes,
spectral theory of transfer/Koopman operators, and kernel-based
approaches for regularization of dynamical operators of autonomous
deterministic systems.Weuse timedelays to embed the observed time
series in a higher-dimensional space where changes in the underlying
dynamics carry distinct geometrical features (see Fig. 3 (right), Fig. 4
(right), and Fig. 5 (right)). By judiciously applying diffusive regular-
ization to transfer and Koopman operators in the delay-embedding
space, we compute eigenfunctions that separately encode nonsta-
tionary trends and long-lived cycles, and which are associated with the
diffusion and drift components, respectively, of the regularized
operators. In addition, spectral decomposition of the regularized
operators yields product eigenfunctions (trend combination modes)
that capture themodulation of the system’s fundamental cycles by the
nonstationary trends.

We illustrated the above ideas through idealized models that
were chosen as surrogates of nonautonomous dynamics in two
challenging real-world problems: Climate change occurring over the
industrial era and the mid-Pleistocene transition (MPT) of Qua-
ternary glaciation cycles. We demonstrated that eigenfunctions of
transfer operators can successfully recover trends in systems
undergoing drifts in the mean and amplitude of their oscillatory
dynamics; (Models M and A, respectively). One of our main theore-
tical results (Lemma 1) shows that low-dimensional delay embedding

successfully delineates non-autonomous frequency switching in
systems with oscillatory dynamics; (Model F; see Figs. 1, 6).

We thendemonstrated theutility of ourmethods directly on Indo-
Pacific SST and δ18O radioisotope concentration data. The Indo-Pacific
SST analysis yielded eigenfunctions that provide a nonparametric
representation of climate change trends. In addition, these eigen-
functions have associated families of product modes capturing the
response of the seasonal cycle to the trend. Using these eigenfunction
families, we reconstructed spatiotemporal patterns revealing sig-
nificant regional changes in South American seasonal precipitation
which may be explained by meridional shifts of the ITCZ and PSA
pattern. Meanwhile, the δ18O analysis yielded eigenfunctions repre-
senting the long-term trend of benthic δ18O over the past 3 million
years, as well as the fundamental 40 kyr and 100 kyr glaciation cycles
occurring before and after the MPT, respectively. One of the key
findings of this analysis was the presence of multiple coexisting cycles
in the post-MPT period ( ~ 1 Ma to the present), which could help
explain the irregularity of glaciation cycles in that period.

In conclusion, the theory and results described in this paper
demonstrate the ability of autonomous operator-theoretic techniques
to extract trends and cycles from certain classes of non-autonomous
systems. Importantly, these autonomous methods use information
from a single time series, enabling them to be applied in many natural
science domains such as climate dynamics where repeated experi-
ments are impossible.

Methods
Model F0: switching between two coexisting oscillation
frequencies
Model F described dynamics switching between two rotation fre-
quencies on two halves of a cylinder, where the phase around the
cylinder was read off by a fixed observation function. One could
alternatively move the nonstationarity out of the dynamics and into
the observation function; we call this alternative “Model F0”. The
dynamics T: [0, 1] × S1 × S1→ [0, 1] × S1 × S1 of Model F0 occur on an
enlarged phase space – a solid 2-torus [0, 1] × S1 × S1, see Fig. 1 (center
right) –to allow for two frequencies to always exist, while the obser-
vation function h : ½0,1�× S1 × S1 ! R predominantly records one fre-
quency or the other. Explicitly, we have

Tðx,θÞ= ðf ðxÞ,θ1 +α1,θ2 +α2Þ, ð6Þ

and

hðx,θ1,θ2Þ=wðxÞ cosð2πθ1Þ+ ð1�wðxÞÞ cosð2πθ2Þ: ð7Þ

Proof of Lemma1. For0 < β ≤π/2 the elliptical images eβ � R3 of a unit
circle under Φβ lie in the plane pβ spanned by ½1, cosðβÞ, cosð2βÞ� and
½0,� sinðβÞ,� sinð2βÞ�. As β varies, this family of planes always contain
the fixed vector [1, 0, − 1]. One may compute that the vector
½sinð2βÞ,2 sinðβÞ, sinð2βÞ� is orthogonal to [1, 0, − 1], and that together
they span pβ. Note that the vectors ½sinð2βÞ,2 sinðβÞ, sinð2βÞ� aredistinct
for distinct 0 < β ≤π/2. This means that for β≠β0 2 ð0,π=2� the only
intersection of pβ and pβ0 (and therefore the only possible intersection
of eβ and eβ0 ) is along the vector [1, 0, − 1].

The behavior of the eβ is as follows. For β =0, one obtains a
degenerate ellipse (a line segment) passing through the origin in the
direction [1, 1, 1] (this is the β→0 limiting direction of
½sinð2βÞ,2 sinðβÞ, sinð2βÞ�). For 0 < β ≤π/2 one obtains an ellipse with
one axis in the direction ½sinð2βÞ,2 sinðβÞ, sinð2βÞ� of lengthffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 + cosð2βÞ
p

and the other axis in the direction [1, 0, − 1] of lengthffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cosð2βÞ

p
. These two lengths are the singular values of the trans-

formationΦβ. As the planes pβ (and the ellipses eβ contained in them)
pivot about the fixed vector [1, 0, − 1], the length of their axis in this
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direction increases monotonically from β =0 to β =π/2. This axis
length increase combined with the pivoting about a common axis
direction implies that they are disjoint for 0<β≠β0 ≤π=2.

One canverify that theproduct of the above twosingular values of
Φβ has a unique maximum in the range β∈ [0,π/2] at β =π/3, where
this product has the value 1.5. The angle β =π/3 is also the unique angle
in [0,π/2] where the singular values coincide, and therefore also the
unique angle for which the ellipse eβ is a circle. □

Reconstruction of observables by projection onto
eigenfunctions
Let vi 2 CN denote an eigenvector onto which we wish to project, and

let v0i 2 CN denote the corresponding eigenvector of the adjoint
transfer operator P⊤ (or the adjoint generator), where we normalize so

that v0yi vi = 1. Here, † is the complex-conjugate transpose. Because

v0yi vj =0 for i ≠ j, the standard rank-1 projection matrix Πi : = viv
0y
i has

range span{vi} and nullspace spanfvjgj≠i. We may now project an arbi-

trary scalar-valued time series fyngNn= 1 represented by the N-vector y
onto vi by acting on y with matrix multiplication by Πi according to

ðΠiyÞm =
PN

n= 1 Πmnyn = vi,m � ðPN
n= 1 v

0
i,nynÞ. To project vector-valued

time series (e.g., SST images) fYngNn = 1 where each Yn 2 Rd , we act on

Y 2 RN ×d in an analogous way, applying the projection Πi compo-

nentwise inRd : ðΠnðY ÞÞm := vi,m � ðPN
n= 1 v

0
n,iY nÞ 2 Cd . In addition, given

a collection fvi1 , . . . ,vir g of distinct eigenvectors, we may project onto

the r-dimensional subspace spanfvi1 , . . . vir g by forming the rank-r

projectionmatrixΠ=
Pr

j = 1 Πij
and acting with it on Y componentwise:

ðΠðY ÞÞm =
Pr

j = 1 ðΠij
ðY ÞÞ

m
=
Pr

j = 1 vij ,m � ðPN
n= 1 v

0
ij ,n

YnÞ. If the collection

fvi1 , . . . ,vir g consists of real eigenvectors and/or complex-conjugate

pairs, then Π(Y) is real. If we employ Takens embedding on the time
series {Yn} in order to improve state estimation, the above action ofΠ is
again applied componentwise to the delay vectors formed from con-
catenations of various Yn. See Methods in ref. 25, or ref. 51, for further
details.

Indo-pacific SST calculations
We analyze a time series h1, . . . ,h~N of monthly-averaged Indo-Pacific
SST, where h1 is the snapshot for January 1891 and h~N with ~N = 1548 is
the snapshot for December 2019. Each analyzed SST snapshot ht con-
tains d = 4868 grid points, i.e., it is considered as a point inR4868. Using
this data, we compute data-driven approximations of the transfer
operator and the generator of the Koopman/transfer operator groups
using the methods described in ref. 25. Results from the generator
calculations are discussed in the main text. The transfer operator
results are broadly consistent with those from the generator and are
described in the Supplementary Information. A full listing of the para-
meters used in our experiments is included in Supplementary Table 1.

Generator approximation. For computationof the eigenvectors of the
generator we apply Takens delay embedding to the snapshots with
Q − 1 = 47 lags of duration ℓ = 1 month. We thus obtain an embedding
window length of 4 yr and corresponding SST “videos” of dimension
dQ = 233,664. This choice of embedding parameters was previously
found25 to provide adequate representation of annual and interannual
processes such as the seasonal cycle and ENSO, respectively, as well as
longer-term processes such as climate change trends and Pacific dec-
adal variability. We use the delay-embedded data to build a kernel
matrix of size N ×N, N = ~N � Q+ 1 = 1501, whose top L = 401 eigenvec-
tors provide a data-driven basis of observables for representing the
generator as an L × L matrix with respect to this basis. The result is a
collection of eigenvectors v1,v2, . . . ,vL 2 CN and corresponding
eigenvalues γ1,γ2, . . . ,γL 2 C, where �Reγi represents decay rate and

Imγi represents oscillatory frequency. The spectral mapping theorem
connects the rates represented by the eigenvalues γi of the generator
with the eigenvalues of the time-t transfer operator Lt through
λi = e

�iγi t . In our computations, we order the eigenpairs (γi, vi) in order
of increasing decay rate (i.e., decreasing Reγi). We note that our
numerical results are not particularly sensitive on the choice of Q and
L, and qualitatively similar results can be obtained for Q in the range
24–120 and L in the range 200–500.

Transfer operator approximation. For the construction of the tran-
sitionmatrix Pweusea single lag, settingQ = 2 tominimize the sparsity
of the data, producing embedded data points in R9736. We use a lag
duration of ℓ = 12 months, which is about one quarter of the average
period of the ENSO cycle. To reduce the effect of noise, we step for-
ward s = 6 months, and we slightly reduce the neighborhood size to
K = 5 to obtain more accurate estimates of the ENSO cycle. Supple-
mentary Fig. 2 displays the leading nontrivial real eigenvector (corre-
sponding to eigenvalue λ2 = 0.4135). This second eigenvalue is
relatively far from unity because of the sparsity of the high-
dimensional data; nevertheless the corresponding eigenvector is
consistent with a qualitative description of the warming trend over the
last 150 years, as illustrated in Supplementary Fig. 2 through compar-
isons with global SST and global SAT.

Benthic δ18O calculations
The time series of δ18O concentration derived by interpolation of the
LR04 stack is scalar-valued (d = 1), and consists of ~N =3001 samples
taken every 1 kyr over the last 3 Myr. We compute approximate
eigenfunctions of the transfer operator and the generator using the
same methods as in the Indo-Pacific SST experiments. A full listing of
the parameters is provided in Supplementary Table 3.

Generator approximation. We use a delay embedding window span-
ning 150 kyr (i.e., Q = 150 and ℓ = 1 kyr). This embedding window was
chosen on the basis of being comparable to the ~ 100 kyr characteristic
timescale of the post-MPT glaciation cycles, though our results are not
too sensitive on this choice. After embedding, the number of samples
available for analysis is N = ~N � Q+ 1 = 2851. We use the leading L = 81
eigenvectors of the associated N ×N kernel matrix to approximate the
generator as in the Indo-Pacific SST analysis.

Transfer operator approximation. We embed the relatively noisy
scalar signal ht in five dimensions so as to reduce false neighbors. We
use a fixed lag ℓ = 10 kyr (10 sampling intervals) chosen approximately
according to the considerations following Lemma 1. To further reduce
the effect of noise we step forward 7000 years at a time (s = 7 sampling
intervals) when constructing the transition matrix P; K = 7 nearest
neighbors are used to set the variable bandwidth. The eigenfunction
corresponding to the second eigenvalue extracts the δ18O trend in the
meanof the signal; see Supplementary Fig. 3 for a comparisonbetween
the original signal and the mean trend. The two leading complex
eigenvector pairs extract and separate the two dominant frequency
regimes in the δ18O signal; see Supplementary Note 2 and Supple-
mentary Fig. 3. The corresponding complex eigenvalues estimate cycle
lengths of 98,640 and 40,775 yr, which match well with the accepted
periods either side of the MPT. Thus the eigenvectors of the transfer
operator have separated the trend in the mean of the δ18O time series
from the oscillatory components. Further, the complex eigenvectors
have separated and identified the twodominant frequencies, including
indicating when each frequency is present through the amplitude of
the eigenvectors.

Data availability
The ERSSTv4, NCEP, and 20CRv3 reanalysis data are available at the
National Centers for Environmental Information repositories, under
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accession codes https://www.ncdc.noaa.gov/data-access/marineocean-
data/extended-reconstructed-sea-surface-temperature-ersst-v4 and
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html, https://
www.psl.noaa.gov/data/gridded/data.20thC_ReanV3.html, respectively.
The δ18O concentration data from the LR04 stack are available at the
URLs https://lorraine-lisiecki.com/stack.html. The processed data can be
generated by running the code in the repositories listed in the Code
Availability statement. Processed data is also available from the corre-
sponding author on request.

Code availability
MATLAB code implementing transfer operator calculations forModels
M, A, and F, as well as the ENSO and ice-core data is available at https://
github.com/gfroyland/Trends. MATLAB code implementing the
numerical approximation of the generator employed in the paper is
available at https://dg227.github.io/NLSA/.
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