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Task-oriented machine learning surrogates
for tipping points of agent-based models

Gianluca Fabiani 1,2, Nikolaos Evangelou2, Tianqi Cui2, Juan M. Bello-Rivas3,
Cristina P. Martin-Linares4, Constantinos Siettos 5 &
Ioannis G. Kevrekidis 2,3,6

We present a machine learning framework bridging manifold learning, neural
networks, Gaussian processes, and Equation-Free multiscale approach, for the
construction of different types of effective reduced order models from
detailed agent-based simulators and the systematic multiscale numerical
analysis of their emergent dynamics. The specific tasks of interest here include
the detection of tipping points, and the uncertainty quantification of rare
events near them. Our illustrative examples are an event-driven, stochastic
financial market model describing the mimetic behavior of traders, and a
compartmental stochastic epidemic model on an Erdös-Rényi network. We
contrast the pros and cons of the different types of surrogate models and the
effort involved in learning them. Importantly, the proposed framework reveals
that, around the tipping points, the emergent dynamics of both benchmark
examples can be effectively described by a one-dimensional stochastic dif-
ferential equation, thus revealing the intrinsic dimensionality of the normal
form of the specific type of the tipping point. This allows a significant reduc-
tion in the computational cost of the tasks of interest.

Complex systemsare typically characterizedbymultiscale phenomena
giving rise to unexpected emergent behavior1,2 including catastrophic
shifts/major irreversible changes in the dominant mesoscopic/mac-
roscopic spatio-temporal behavioral pattern. Such sudden major
changes occur with higher probability near so-called tipping points3–6,
which are most often associated with bifurcation points in nonlinear
dynamics terminology. The computation of the frequency/probability
of occurrence of such transitions, and the detection of the corre-
sponding tipping points that underpin them, is of critical importance
in many real-world systems. Our need for understanding (and con-
trolling) such phenomena hasmade Agent-BasedModels (ABMs) a key
modeling tool for building digital twins in domains ranging from
ecology7–10 and epidemics11–16, to finance and economy17–20. Examples
include themodels of infectious disease agent study (MIDAS) research

network, initiated in 2004 by theUSNational Institutes of Health (NIH)
with themission to develop large-scale ABMs to understand infectious
disease dynamics and assist policymakers to detect, and respond to flu
pandemics; the Santa-Fe Artificial Stock Market; and, the Eurace ABM
of the European economy19,21. When such detailed high-fidelity ABMs
are available, systems-level analysis practice often involves performing
extensive, brute-force temporal simulations to estimate the frequency
distribution of abrupt transitions17,19,20,22,23. However, such an approach
confronts the “curse of dimensionality”: the computational cost rises
exponentiallywith the number of degrees of freedom17,20. Such a direct
simulation scenarios approach is therefore neither systematic nor
computationally efficient for high-dimensional ABMs. Furthermore, it
often does not provide physical insight regarding themechanisms that
drive the transitions. A systematic analysis of such mechanisms
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requires two essential tasks. First comes the discovery of an appro-
priate low-dimensional set of collective variables (observables) that
can be used to describe the evolution of the emergent dynamics24,25.
Such coarse-scale variables may, or may not, be a priori available,
depending on how much physical insight we have about the problem.
For this task, various manifold/machine learning methods have been
proposed, including diffusion maps (DMAPs)26–30, ISOMAP31,32, and
local linear embedding (LLE)33,34, but also autoencoders (AE)35–38.

Based on this initial analysis, the second task pertains to the
construction of appropriate reduced-ordermodels (ROMs), in order to
parsimoniouslyperformuseful numerical tasks and—hopefully—obtain
additional physical insight. Oneoption is the construction of ROMs “by
paper and pencil”, using the tools of statistical mechanics24,25. How-
ever, restrictive assumptions, that are made in order to obtain explicit
closures bias the estimation of the actual location of tipping points, as
well as the statistics and the uncertainty quantification (UQ) of the
associated catastrophic shifts24.

Another option is the direct, data-driven identification of surro-
gate models in the form of ordinary, stochastic, or partial differential
equations via machine learning. Such approaches include, to name a
few, sparse identification of nonlinear dynamical systems (SINDy)39,
Gaussian process regression (GPR)29,40,41, feedforward neural networks
(FNNs)29,30,38,42–46, random projection neural networks (RPNNs)30,47,
recursive neural networks (RvNN)37, reservoir computing (RC)48,
autoencoders37,38,49,50, as well as DeepOnet51. However, their approx-
imation accuracy clearly depends very strongly on the available
trainingdata, especially around the tippingpoints,where thedynamics
can even blow up in finite time.

If the coarse-variables are known, the Equation-free (EF)
approach1 offers an efficient alternative for learning “on demand” local
black-box coarse-grained maps for the emergent dynamics on an
embedded low-dimensional subspace; this bypasses the need to con-
struct (global, generalizable) surrogate models. This approach can be
particularly useful when conducting numerical bifurcation analysis, or
designing controllers for ABMs52. However, even with a knowledge of
good coarse-scale variables, constructing the necessary lifting operator
(going from coarse scale descriptions to consistent fine scale ones) is
far from trivial52,53.

Here, based on our previous efforts on the construction of latent
spaces52,54,55 and ROM surrogates via machine learning (ML)29,30,34,45,46

frommicroscopic detailed spatio-temporal simulations, we present an
integrated ML framework for the construction of two types of surro-
gate models: global as well as local. In particular, we learn (a) meso-
scopic Integro Partial Differential Equations (IPDEs), and (b)—guided
by the EF framework1,56—local embedded low-dimensional mean-field
Stochastic Differential Equations (SDEs), for the detection of tipping
points and the construction of the probability distribution of the cat-
astrophic transitions that occur in their neighborhood.

Our main methodological point is that, given a macroscopic task,
it is the task itself that determines the type of surrogate model
required to perform it. Here, the tasks are the identification of tipping
points as well as the uncertainty quantification of escape times in their
neighborhood. For such tasks, a first option—common in practice—is
the construction of a data-driven,ML-identified IPDEs formacroscopic
fields, such as the agent density. Suchequations provide somephysical
insight for the emergent dynamics, yet this insight does not come
without its problems: for example, collecting the training data and
designing the sampling process in the relatively high dimensional
parameter and state space is not aneasy task, especially in the unstable
regimes where the dynamics may blow up in finite time. The second
option, assuming an approximate knowledge of the tipping point
location, is to identify a less detailed, mean-field-level, effective SDE.
This offers the capability of more easily estimating escape time sta-
tistics through either: (a) brute-force bursts of SDE simulations, or

through (b) numerically solving a boundary-value problem given the
identified low-dimensional drift and diffusivity functions. For such
approach, a challenging issue is the discovery of a convenient/inter-
pretable low-dimensional latent-space.

Thus, in the spirit of theWykehamist “mannersmakythman”, and
of Rutherford Aris’ “manners makyth modellers”57, in our case, we
argue for a “tasks makyth models” consideration in selecting the right
approach for ML-assisted model selection57.

Our illustrative case studies are (i) an event-driven stochastic
agent-based model describing the interactions, under mimesis of tra-
ders in a simple financial market58. In other words, the traders in
this ABM tend to imitate the behavior of other traders, because of
social conformity or subtle psychological pressure to align their
behavior with that of other agents (their peers). This model exhibits a
tipping point, marking the onset of a financial “bubble”23,56; (ii) a sto-
chastic ABM of a host-host interaction epidemic evolving on an Erdös-
Rényi social network59. This ABM is characterized by a tipping point
marking the onset of outbreaks and regions of hysteresis, where
transitions between “endemic disease” and “global infection” states
can occur.

The proposedML framework reveals that the emergent dynamics
of both ABMs around the tipping points can be effectively described
on a one-dimensional manifold. In other words, it discovers the
intrinsic dimensionality of the normal form of the specific type of
tipping point, which for both problems is a saddle-node bifurcation.
This allows for a significant reduction of the computational cost
required for numerical analysis and simulations.

Results
Case study 1: Tipping points in a financial market with mimesis
ABMs enable the creation of digital twins for financial markets, thus
offering a valuable tool in our arsenal for explaining out-of-equilibrium
phenomena such as “bubbles” and crashes17 that emergemainly due to
positive feedback mechanisms of imitation and herding of investors
that lead to an escalating increase of the demand60 (see for example
the Santa Fe artificial stock market19,61, and the EURACE ABM for
modeling the European economy21). While the practical application of
ABMs for providing predictions about real-world financial instabilities
remains an ongoing area of research, they can be used to shed light on
the mechanisms that lead to such crises17,60. Towards to this aim, our
first illustrative example is an event-driven agent-based model
approximating the dynamics of a simple financial market withmimesis
proposed by Omurtag and Sirovich58. The ABM describes the interac-
tions of a large population of, say N, financial traders. Each agent is
described by a real-valued state variable Xi(t)∈ (−1, 1) associated to
their tendency to buy (positive values) or sell (negative values) stocks
in the financialmarket according to constantly updated financial news,
as well as to their interactions with the other traders58. The i-th agent
acts, i.e., buys or sells, onlywhen its state Xi crosses one of the decision
boundaries/thresholds X = ±1. As soon as an agent i buys or sells, the
agent’s state is forthwith reset to zero.

In the absence of any incoming good news I +
i or bad news I �i , the

preference state exponentially decays to zero with a constant rate γ.
Thus, each agent is governed by the following SDE:

dXiðtÞ= � γXiðtÞdt +dI +
i ðtÞ+dI �i ðtÞ, jXij< 1: ð1Þ

The effect of information arrivals I ±
i ðtÞ is represented by a series

of instantaneous positive/negative “discrete jumps” of size ϵ±,
arriving randomly at Poisson distributed times tk + , k + = 1,2, . . . and
tk� , k� = 1,2, . . . , with average rates of arrival ν+(t) and ν−(t), respec-
tively. Furthermore, the dynamics of each agent are driven by arrivals
of two types of information: exogenous (ex) (e.g., publicly available
financial news), as well as an endogenous (en) stream of information
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arising from the social connections of the agents, so that

ν ± = ν ±
ex + ν

±
en: ð2Þ

A tunable parameter g embodies the strength of mimesis: the extent to
which arriving information affects the willingness or apprehension of
the agent to buy or sell. For this model, the term ν ±

en is set to be the
same for all agents and is influenced by the perceived overall buying
R+(t) and selling R−(t) rates:

ν ± ðtÞ= ν ±
ex + gR

± ðtÞ, ð3Þ

where R±(t) are defined as the fraction of agents buying or selling per
unit of time Δt:

R± ðtÞ = number of agents buying=selling
Δt � total number of agents

=

=
1

NΔt

Z t +Δt

t
δðs � T ±

i Þds,
ð4Þ

where T ±
i are the instants at which the i-th agent crosses the decision

boundary ± 1.
In Fig. 1a, we depict the mean preference state for N = 50,000

agents for values of the mimesis strength g = 35, 40, 42, 45, 46, 47. In
Fig. 1b, c, we depict representative trajectories of the time evolution of
the agent probability density distribution (pdf) for g = 45 and g = 47,
respectively. We see that the simulations exhibit a tipping point that
arises at a parameter value g ≈ 45.5. At theneighborhoodof this tipping
point, due to the inherent stochasticity of themimetic trading process,
emanate “financial bubbles”, where all agents hurry to buy assets (see
Fig. 1a). The ABM model also predicts financial crashes in regimes of
the phase-space where the mean value of the mesoscopic density field
is negative, and the agents rush to sell (for more details see ref. 56).

A concise analytical mesoscopic description of the population
dynamics was derived by Omurtag and Sirovich in ref. 58. The model,
reported here, is a Fokker-Planck-type (FP) IPDE for the agent pdf

ρ(x, t), given by:

∂ρðt,xÞ
∂t = 1

2 σ
2ðtÞ ∂2ρðt,xÞ∂x2 + ∂ðμðt,xÞρðt,xÞÞ

∂x +

+ ðJ + + J�ÞδðxÞ:
ð5Þ

where μ and σ are drift and diffusivity time-dependent parameters,
respectively, δ is the Dirac delta and J± are integral operators
accounting for the agents crossing the decision boundaries.

Further details about the derivation of the FP equation (5) are
presented briefly in the section A of the Supplementary Informa-
tion (SI).

ML mesoscopic IPDE surrogate for the financial ABM
In ref. 56, we showed that the analytical ROM IPDE in Eq. (5) nontrivially
underestimates the location of the tipping point with respect to the
parameter g, defined in Eq. (3). Here we show how one can achieve a
better approximation through data-driven black-box surrogates.
Based on data generated as in section E1 of the Supplementary Infor-
mation (SI), for learning the right-hand-side operator of the IPDE, we
have considered the relevant features that we found with Automatic
Relevance Determination (see the section “Methods” and section E2 of
the Supplementary Information). We used the following (black-box)
mesoscopic model for the dynamic evolution of the density ρ:

∂ρðx,tÞ
∂t

= Fðx,ρðx, tÞ,I + , I�,∂ρðx,tÞ
∂x

,
∂2ρðx,tÞ
∂x2

; gÞ ð6Þ

where I+, I− are integrals in a small neighborhood of the boundaries (see
section A of the Supplementary information (SI)). Here, for learning the
RHSof the black-box IPDE (6), we implemented twodifferent structures,
namely (a) a feedforward neural network (FNN)62–64; and (b) a Random
Projection Neural Network47,65–68 in the form of Random Fourier Feature
network (RFF)69. The two network structures and their training
protocols are described in more detail in the sections D2 and D3 of
the Supplementary information (SI). The two alternative machine
learning schemes, on the test set, obtain similar performance in terms
of accuracy. In terms of the mean absolute error (MAE) the FNN got
1.10E−04 and the RFF got 1.09E−04. For mean squared error (MSE), the

Fig. 1 | Stochastic Agent-based model simulations of the two case studies.
a–c traders in a simple financial market. a Trajectories for different values of the
parameter g. b Probability density function (pdf) evolution for g = 45; c pdf evo-
lution for g = 47 (past the tipping point); Insets show the blow up of the pdf; the

blue curve depicts the pdf just a few time steps before the explosion and the red
curve depicts the pdf at the financial “bubble”. d–f Stochastic simulations of the
epidemic ABM. Trajectories of the densities [S] in (d), [I] in (e), and [R] in (f), for
different values of the parameter λ.
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FNN got 2.60E−08 and the RFF got 2.53E−08. For the Regression
Pearson correlation R, FNN got 0.9866 and RFF 0.9873. The main
notable difference between the two schemes is in the computational
time needed to perform the training, since remarkably, the training of
the RFF, which required 26.06 (s), turned out to be at least 50 times
faster than the one required for the deep-learning scheme, which
required 1488.33 (s).

Bifurcation analysis of the mesoscopic IPDE for the
financial ABM
To locate the tipping point, we have performed bifurcation analysis,
using both ML-identified IPDE surrogates, as discussed in section
“Methods”. Furthermore, we compared the derived bifurcation dia-
gram(s) and tipping point(s) with what was obtained in refs. 52,56
using the EF approach (see in the section C of the Supplementary
Information (SI) for a very brief description of the EF approach). As
shown in Fig. 2a, the two ML schemes approximate visually accurately
the location of the tipping point inparameter space. However, the FNN
scheme fails to trace accurately the actual coarse-scale unstable
branch, nearwhich simulations blowupextremely fast.Moreprecisely,
the analytical FP predicts the tipping point at g* = 41.90 with

corresponding steady-state �X
*
= 0:1607 and the EF at g* = 45.60 and

�X
*
= 0:1627; our FNN predictions are at g* = 45.77 and �X

*
= 0:1644, the

RFF ones at g* = 45.34 and �X
*
= 0:1684.

Macroscopic physical observables and latent data-driven
observables via DMAPs
An immediate physically meaningful candidate observable is the first
moment �X of the agent distribution function (as also shown in ref. 23).

As simulations of theABMshow (see the inset in Fig. 2b), themean
preference state �X , is one-to-one with another physically meaningful
observable, the buying rate R+. We also used the DMAPs algorithm, to
discover data-driven macroscopic observables. In our case, DMAPs
applied to collected data (see section F1 of the Supplementary Infor-
mation (SI) for a detailed description of how the data were collected),
discovers a 1D latent variable ψ1 that is itself one-to-one with �X , see
Fig. 2b. The local-linear regression algorithmproposed in70was applied
tomake sure that all the higher eigenvectors can be expressed as local-
linear combinations of ψ1 and thus they do not span independent
directions. Figure 2c illustrates that the normalized leave-one-out
error, denoted as rk, is small for ψ2,…,ψ10 suggesting they are all
dependent/harmonics of ψ1.

Fig. 2 | Numerical results for the financial ABM. a Reconstructed bifurcation
diagramw.r.t. gobtainedwith themesoscopic IPDE surrogate FNNandRFFmodels;
the one computed from the analytical Fokker-Planck (FP) IPDE, see Eq. (5), and the
one constructed with the Equation-free (EF) approach are also given52,56. Dashed
lines (open circles) represent the unstable branches. b, c ABM-based-simulation-
and Diffusion Maps- (DMAPs) driven observables. b The first DMAPs coordinate ψ1

is plotted against the mean preference state �X . In the inset, the buying rate R+

plotted against themean preference state (�X). c The estimated residual rk based on
the local linear regression algorithm70. d The effective bifurcation diagram based
on the drift component of the identified mean-field macrosocpic SDE in ψ1.
e, f Histograms of escape times obtained with simulations of 10,000 stochastic
trajectories for (e) the SDE model for g = 45.25 (blue histogram) and g = 43.75 (red
histogram) (f) the full ABM at g = 45.25.
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Therefore, any of the three macroscopic observables (two physi-
cal and one data-driven) can be interchangeably used to study the
collective behavior of the model.

Learning the mean-field SDE and performing bifurcation analy-
sis for the financial ABM
Here, for our illustrations, we learned parameter-dependent SDEs for
all of the three coarse variables we mentioned, namely the physically
meaningful variables �X , R+, and the DMAPs coordinate ψ1. In the main
text, we report the results for the identified SDEs in terms of the
DMAPs coordinate ψ1 and in section F3 of Supplementary Information
(SI) we report the results for the identified SDEs with respect to the �X
and R+ (see Supplementary Fig. 1) .

Given this trained macroscopic SDE surrogate, the drift term
(deterministic component) of the identified dynamics was used to
construct the bifurcation diagram with AUTO71 (see Fig. 2d). A saddle-
node bifurcation was identified for g* = 45.77 where ψ?

1 = 0:021. The
estimated critical parameter value from the SDE is in agreement with
our previous work (g ≈ 45.6056). Details pertaining to the neural net-
works’ architectures used to identify the SDE are provided in section F5
of Supplementary Information (SI).

Rare-event analysis/UQ of catastrophic shifts (financial “bub-
bles”) via the identified mean-field SDE
Given the identified steady states at a fixed value of g we performed
escape time computations. For g = 45.25, we estimated the average
escape time needed for a trajectory initiated at the stable steady
state to reach �X =0:3, i.e., sufficiently above the unstable branch. As
shown in Fig. 2b, ψ1 and R+ are effectively one-to-one with �X , and we
can easily find the corresponding critical values forψ1 = −0.01 (flipped)
and R+ = 0.16. We now report a comparison between the escape times
of an SDE identified based on the DMAPs coordinate ψ1 and those
of the full ABM. In section F3 of Supplementary Information (SI) we
also report the escape times of the SDE for �X and R+ observables.
To estimate these escape times we sampled a large number (10,000 in
our case) of trajectories. In section F4 of Supplementary Information
(SI) we also include the escape time computation by using the
closed-form formula for the 1D case. The computation there was per-
formed numerically by using quadrature and the milestoning
approach22.

In Fig. 2e, the histograms of the escape times for the identified
SDE trained on ψ1 for g = 45.25 and g = 43.75 are shown. In Fig. 2f, we
also illustrate the empirical histogram of escape times of the full ABM
for g = 45.25. The estimated values for the mean and standard devia-
tion, as computed with temporal simulations from the SDE trained on
the DMAPs variable ψ1 for g = 45.25, g = 43.75 and the full ABM at
g = 45.25 are here reported in Table 1.

As shown, the mean escape time of the full ABM is a factor of five
larger than that estimated by the simplified SDE model in ψ1 for
g = 45.25 (still within an order of magnitude!). The SDE model for
g = 43.75 gives an escape time comparable to the one of the ABM for
g = 45.25. Given that the escape times change exponentially with
respect to the parameter distance from the actual tipping point, a
small error in the identified tipping point easily leads to large (expo-
nential) discrepancies in the estimated escape times.

Computational cost for the financial ABM
We compared the computational cost required to estimate escape
times with many stochastic temporal simulations, through the full
ABM and the identified mean-field SDE. To fairly compare the com-
putational costs, we computed the escape times with the ABM for
g = 45.25, and that of the SDE for g = 43.75, since the two distributions
of the escape times aremore comparable. The estimation in both cases
was conducted on Rockfish (a community-shared cluster at Johns
Hopkins University) by using a single core with 4GB RAM. For the
10,000 sampled stochastic trajectories, the total computational for
the identified coarse SDE in ψ1 was 33:56min and the average time per
trajectory, 3:36 × 10�3 min. Themean time per function evaluationwas
approximated as the ratio of mean time per trajectory over mean
number of iterations.

For the ABM, the total computational time needed was 18.56 days
and the mean time per trajectory was 2:67min. Therefore, the total
computational time for computing the escape time with the SDE
model inψ1 was around 800 times faster than the ABM. This highlights
the computational benefits of using the reduced surrogate models in
lieu of the full ABM for escape time computations.

Case study 2: Tipping points in a compartmental epidemic
model on a complex network
In our second illustrative example, a compartmental epidemic ABMon
a social network59, individuals are characterized by three discrete
states: Susceptible (S), Infected (I) and Recovered (R). The model is
implemented through a "caricature of a social network" approximated
by an Erdos-Rényi network with N = 10,000 nodes. The probability of
having a connection between two nodes picked randomly is
p = 0.0008 (as proposed in59). The evolution rules are the following:

• Rule 1 (S→ I): Susceptible individuals may become infected upon
contact with infected individuals, with probability PS→I = λ. This
tunable parameter is “tracked” for studying the outcomes of
abrupt changes in the macroscopic behavior.

• Rule 2 (I→R): The transition between I and R happens with a
probability PI→R = μ([I]). The probability of recovery depends, at
each time step, on the overall density of infected individuals [I],
according to the function59):

μð½I�Þ=0:3 1� 1
1 + expð�9ð½I� � 0:5ÞÞ

� �
: ð7Þ

Such a nonlinear function for the probability of recovery has also
been used in other works to express the heterogeneity in the
“environment” around each individual (see also the discussion
in ref. 59).

• Rule 3 (I→ R): A recovered individual (R) loses its immunity and
becomes susceptible (S) with a fixed probability PR!S = ϵ=

1
5. This

condition expresses the case of temporal immunity.

For further details about the construction of the Erdös-Rényi
network, see section B of the Supplementary Information (SI).

The above rules establish a complex stochastic microscopic
model that change the state of each individual over time. In order to
describe themodel at amacroscopic (emergent) level, let us represent
the overall density of susceptible, infected, and recovered individuals
as [S], [I], and [R], respectively. In Fig. 1d–f, we depict the stochastic
trajectories of the overall densities [S], [I], [R] of theN = 10,000 agents
for values of the rate of infection λ = 0.27, 0.28, 0.29, 0.30, 0.31, 0.32.
For such macroscopic observables, a simple analytical closure can be
found assuming that a uniform and homogeneous network is a good
approximation. This means assuming that (a) the degree of each node

Table 1 | Escape time computations for the financial ABM

Models SDE at g = 45.25 SDE at g = 43.75 ABM

Mean Escape Time 84.07 480.92 434.00

Escape TimeStandard
deviation

68.91 454.83 363.64

Means and Standard deviations as computedwith temporal simulations from the SDE trained on
the DMAPs variable ψ1 for g = 45.25, g = 43.75 and the ABM at g = 45.25, respectively.
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practically coincides with themean degree of the network, denoted as
z =EðkÞ; (b) that the probabilities of two connected nodes being in a
susceptible and infected state, respectively, are independent of each
other. The resulting mean field model reads59:

d½S�
dt = � λz½S�½I�+ ϵ½R�,

d½I�
dt = λz½S�½I� � μð½I�Þ½I�,

½S�+ ½I�+ ½R�= 1:
ð8Þ

For other higher-order analytical macroscopic pairwise closures, such
as the Bethe Ansatz, the Kirkwood approximation and Ursell
expansion, the interested reader can consult59.

ML macroscopic mean-field surrogates for the epidemic ABM
It is well known that for dynamics evolving on complex networks, a
closed-form, analytically derivedmean-field approximation in Eq. (8) is
usually not accurate59. Here, we show how one can achieve a better
approximation through the construction of effective mean field-level
ML surrogate models. We will start with the identification, from data,
of ameanfield-level effective SIRmodel. Then, following the proposed
approach, we identify—again from data—an effective one-dimensional
SDE to model the stochastic dynamics close to the tipping point and
quantify the probability of occurrence of an outbreak where all the
population becomes infected.

Given the high-fidelity data collected from the epidemic ABM, as
described in sectionG1 of the Supplementary Information (SI), to learn
the ML mean field SIR surrogate we used two coupled feedforward
neural networks (FNN), labeled FS and FI, each with two hidden layers
with 10 neurons for each layer, for learning a black-box evolution for
the effective dynamics of the two macroscopic densities [S] and [I],
that reads:

d½S�
dt = FSð½S�,½I�,½R�; λÞ,
d½I�
dt = FI ð½S�,½I�,½R�; λÞ,

ð9Þ

with the constraint [S] + [I] + [R] = 1. We remind the reader that the
parameter λ, representing the probability of a susceptible individual to
get infected, is tracked for bifurcation analysis purposes. The training
process (see sections D2 and D3 of Supplementary Information (SI))
results to aMAE of 7.27e−04 and aMSE of 1.27e−06 on the test set. The
regression error for the two networks was R(FS) = 0.9996 and
R(FI) = 0.9992.

Bifurcation analysis of the ML mean-field SIR surrogates
To locate the tipping point, we have performed bifurcation analysis
using the ML mean-field SIR surrogates. For our illustration, we also
compare the derived bifurcation diagram(s) and tipping point(s) with
those obtained in59 using the EF approach and the analytically derived
mean-field SIRmodel given by Eq. (8). As shown in Fig. 3a, the ML SIRS
surrogate approximates adequately the location of the tipping point in
parameter space, as well as the entire bifurcation diagram as con-
structed with the EF approach. Additionally, it outperforms the
statistical-mechanics-derived mean-field approximation given by Eq.
(8). More precisely, the statistical-mechanics-derived mean-field SIRS
model predicts the tipping point at λ* ≈0.166 with corresponding
steady-state ([S]*, [I]*) = (0.138, 0.449) and the EF at λ* = 0.289 with
corresponding steady-states ([S]*, [I]*) = (0.138, 0.451); our ML mean-
field SIR surrogate predictions are at λ* = 0.304 with corresponding
steady-states ([S]*, [I]*) = (0.135, 0.456).

Macroscopic physical observables and data-driven observables
via DMAPs for the epidemic ABM
Two immediate physically meaningful candidate observables are the
densities [S], [I]. However, close to the saddle node bifurcation the

system is effectively one-dimensional and [S] and [I] are effectively
one-to-one with each other in the long-term dynamics, eventually
taking place on the slow eigenvector of the stable steady state.

We also demonstrate this via the DMAPs algorithm. In our case,
DMAPs applied to the collected data (see section G2 of the Supple-
mentary Information (SI) for more details), discovers a one-
dimensional latent variable parameterized by ϕ1 that is also one-to-
one with [I] (see Fig. 3b). The local-linear regression algorithm pro-
posed in ref. 70 was also applied to confirm that the remaining
eigenvectors are harmonics of ϕ1 and thus they do not span inde-
pendent directions, see Fig. 3c. This confirms that the emergent ABM
dynamics close to the tipping point lie on one-dimensional manifold.

Learning the effective mean-field-level SDE and performing
bifurcation analysis for the epidemic ABM
Here, for our illustration, we learned a one-dimensional parameter-
dependent SDE for the DMAPs coordinate ϕ1.

Given this trained macroscopic SDE surrogate, the drift term
(deterministic component) of the identified dynamics was used to
construct the bifurcation diagram with AUTO (see Fig. 3d). A saddle-
node bifurcation was identified for λ* = 0.294 where ϕ?

1 = 0:006. The
estimated critical parameter value from the SDE is in agreement with
our previous work (λ ≈0.28959).

Rare-event analysis/UQ of catastrophic shifts via the
identified SDE
Given the identified steady states at a fixed value of λ we performed
escape time computations. For λ =0.29, we estimated the average
escape time needed for a trajectory initiated at the stable steady state
to reach [I] = 0.662, a value sufficiently above the unstable branch. The
corresponding value for the DMAPs coordinate was ϕ1 = −0.007. We
now report a comparison between the escape times of the SDE iden-
tified based on the DMAPs coordinate ϕ1 and those of the epidemic
ABM. For this model we also sampled 10,000 stochastic trajectories.

In Fig. 3e, the histograms of the escape times for the SDE trained
onϕ1 are shown for λ =0.29 and λ =0.285. For the full epidemic ABM in
Fig. 3f, we depict the histogram of escape times for λ =0.29.

The estimated values for the mean and standard deviation, as
computed with temporal simulations from the SDE trained on the
Diffusion Map variable ϕ1 for λ = 0.29, are reported in Table 2.

As shown, the mean escape time of the full ABM is four times
larger than that estimatedby the simplifiedSDEmodel for λ =0.29 (still
within an order of magnitude). The SDE model for λ =0.285 gives an
escape time comparable to the one of the ABM for λ =0.29.

As we mentioned earlier, the escape times change exponentially
depending on the parameter value. Therefore, a small error in the
estimated location of the tipping point can lead to large discrepancies
in the estimated escape times.

Computational cost for the epidemic ABM
We compared the computational time required to estimate escape times
with the full ABM and the identified mean-field SDE. To compare the
computational times, we computed the escape times with the ABM for
λ=0.29, and that of the SDE for λ=0.285, since the mean escape times
there aremore similar. The estimationof the computational cost for both
models (SDE and ABM) was conducted in Matlab. For the 10,000 sto-
chastic trajectories, the total computational time for the identified coarse
SDE was ~1 min and the one for the full epidemic ABM was ~16 h.

Discussion
Performing uncertainty quantification of catastrophic shifts, designing
control policies for them52,56 and thus eventually preventing them, is
one of the biggest challenges of our times. Climate change and
extinction of ecosystems, outbreak of pandemics, economical crises,
all can be attributed to both systematic changes and stochastic
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perturbations that, close to tipping points, can drive the system
abruptly towards another regime that might be catastrophic. Such
tipping points are most often associated with underlying bifurcations.
Hence, the systematic identification of the mechanisms—types of
bifurcations—that govern such shifts, and the quantification of their
occurrence probability, is of utmost importance. Towards this aim, as
real experiments in the large scale can be difficult, or impossible to
perform (not least due to ethical reasons) mathematical models and
especially high-fidelity large-scale agent-based models are a powerful
tool in our arsenal to build informative “digital twins” (see also the
discussion in refs. 3,4). However, due to the “curse of dimensionality”
that pertains to the dynamics of such large-scale “digital twins”, the
above task remains computationally demanding and challenging.

Here, we proposed a machine-learning-based framework to infer
tipping points in the emergent dynamics of large-scale agent-based
simulators. In particular, we proposed and critically discussed
the construction of mesoscopic and coarser/mean-field-level ML
surrogates from high-fidelity spatio-temporal data for: (a) the location
of bifurcation points and their type, and (b) the quantification of
the probability distribution of the occurrence of the catastrophic
shifts. As our illustration, we used two large-scale ABMS: (1) an event-
driven stochastic agent-based model describing the mimetic behavior
of traders in a simple financial market, and (2) an epidemic ABM on a
complex social network. In both ABMs tipping points arise, which give
rise to financial bubbles and epidemic outbreaks, respectively. While
analytical surrogates may provide some physical insight for the
emergent dynamics, they introduce biases in the accurate numerical
bifurcation analysis, and thus also in the accurate detection of tipping
points, especially when dealing with IPDEs. On the other hand, dis-
covering sets of variables that span the low-dimensional latent space
on which the emergent dynamics emerge—via manifold learning—and
then learning surrogatemean-field-level SDEs in these variables, offers
an attractive and computationally “cheap” alternative. Such an
approach for the construction of tipping point-targeted ROMs can
provide an accurate approximation of the tipping point. However, this

Table 2 | Escape time computations for the epidemic ABM

Models SDE at λ =0.29 SDE at λ =0.285 ABM

Mean Escape Time 348.24 1164.65 1308.65

Escape Time Standard
deviation

310.16 1117.56 1247.70

Means and standard deviations as computedwith temporal simulations from the SDE trained on
the Diffusion Map variable ϕ1 for λ = 0.29, λ = 0.285 and the ABM at λ = 0.29, respectively.

Fig. 3 | Numerical results for the epidemic ABM. a Reconstructed bifurcation
diagram w.r.t. the probability of infection, λ, with the ML mean-field surrogate
model; the one computed from the analytical mean-field Eq. (8), and the one
constructed with the Equation-free (EF) approach are also given59. Dashed lines
represent the unstable branches. b, c ABM-based simulations- and Diffusion Maps-
(DMAPs) driven observables. b The density of infected [I] vs. the first DMAPs

coordinate ϕ1. c The estimated residual rk based on the local linear regression
algorithm70. d The effective bifurcation diagram based on the drift component of
the identified mean-field macrosocpic SDE based on ϕ1. e, f Histograms of escape
times obtained with simulations of 10,000 stochastic trajectories using: e the
constructed SDE for λ =0.29 (blue histogram), λ =0.285 (red histogram), and f the
full ABM at λ =0.29.
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physics-agnostic approach, may result in macroscopic observables
that are not, at least not explicitly, physically interpretable.

Clearly, different modeling tasks are best served by different
coarse-scale surrogates. This underpins the importance of selecting
the rightMLmodeling approach for different system-level tasks, being
conscious of the pros and cons of the different scale surrogates.

Further extensions of our frameworkmay include the learningof a
more general class of SDEs (e.g., basedon Lévy process)72; and possibly
moving towards learning effective SPDEs or even fractional evolution
operators that could lead to more informative surrogate models25.

There is a point in noting that our work here does not focus on
constructing (or validating) early warning systems based on real-world
data. It is, however, conceivable that some of our data-driven, DMAPs
identified collective variables may serve as candidate coordinates for
such early-warning systems73. Our main target has been to show how
one can systematically construct reduced-order models via machine
learning for understanding, analyzing the mechanisms governing the
emergence of tipping points, and quantifying the probability of
occurrence of rare events around them, from detailed ABM simula-
tions—a problem that can suffer from the curse of dimensionality.

Methods
Given high dimensional spatio-temporal trajectory data acquired
through ABM simulations, the main steps of the framework are sum-
marized as follows (see also Fig. 4, for a schematic):
a. Discover low-dimensional latent spaces, on which the emergent

dynamics can be described at the mesoscopic or the
macroscopic scale.

b. Identify, via machine-learning, black-box mesoscopic IPDEs,
ODEs, or (after further dimensional reduction), macroscopic
mean-field SDEs.

c. Locate tipping points by exploiting numerical bifurcation analysis
of the different surrogate models.

d. Use the identified (NN-based) surrogate mean-field SDEs to
perform rare-event analysis (uncertainty quantification) for the
catastrophic transitions. This is done here in two ways: (i)
performing repeated brute-force simulations around the tipping
points, (ii) for this effectively 1D problem, using explicit statistical
mechanical (Feynman-Kac) formulas for escape time
distributions.
In what follows, we present the elements of themethodology. For

further details about the methodology and implementation, see in
the Supplementary information (SI).

Discovering low-dimensional latent spaces
The computational modeling of complex systems featuring a multi-
tude of interacting agents poses a significant challenge due to the
enormous number of potential states that such systems can have.
Thus, a fundamental step, for the development of ROMs that are
capable of effectively capturing the collective behavior of ensembles
of agents is the discovery of an embedded, in the high-dimensional
space, low-dimensional manifold and an appropriate set of variables
that can usefully parametrize it.

Let’s denote, by Xk 2 RD, k = 1, 2,… the high-dimensional state of
the ABM at time t. The goal is then to project/map the high-
dimensional data onto lower-dimensional latent manifolds M � RD,
that can bedefined by a set of coarse-scale variables. The hypothesis of
the existence of this manifold is related to the existence of useful
ROMs and vice versa.

Here, to discover such a set of coarse-grained coordinates for the
latent space, we used DMAPs26,28,54 (see section D1 of the Supplemen-
tary Information (SI) for a brief description of the DMAPs algorithm).

For both ABMs, we have some a priori physical insight for the
mesoscopic description. For the financial ABM, one can for example
use the probability density function (pdf) ρðX Þdx =PðX ðtÞ 2 ½x,x +dx�Þ
across the possible states Xk in space. Thus, the continuum pdf con-
stitutes a spatially dependentmesoscopic field that can be modeled by
a FP IPDE as explained above. For the epidemic ABM, there is a physical
insight on the macroscopic mean-field description, which is the well-
known mean-field SIRS model. Multiscale macroscopic descriptions
can also be constructed including higher-order closures59. Alter-
natively, one can also collect “enough” statistical moments of the
underlying distribution such as the expected value, variance, skew-
ness, kurtosis, etc. Nevertheless, the collected statistics may not
automatically provide insight into their relevance in the effective
dynamics and a further feature selection/sensitivity analysis may be
needed.

Focusing on a reduced set of coarse-scale variable is particularly
relevant when there exists a significant separation of time scales in the
system’s dynamics. By selecting only a fewdominant statistics, one can
effectively summarize the behavior of the system at a coarser level.

The choice of the scale and details of coarse-grained description,
leads to different modeling approaches. For example, focusing at the
mesoscale for the population density dynamics, we aim at constructing
a FP-level IPDE for thefinancialABM, and amean-field SIR surrogate for
the epidemic ABM. At an even coarser scale, e.g., for the first moment
of the distribution, and taking into account the underlying

Fig. 4 | Schematic of the machine learning-based approach for the multiscale
modeling and analysis of tipping points. At the first step, and depending on the
scale of interest, we discover via Diffusion Maps latent spaces using, mesoscopic
fields (probability density functions (pdf) and corresponding spatial derivatives)
with the aid of Automatic Relevance Determination (ARD); or macroscopic mean-
field quantities, such as statistical moments of the probability density function. At
the second step, on the constructed latent spaces, we solve the inverse problem of

identifying the evolutionary laws, as IPDEs for the mesosopic field scale, or mean-
field SDEs for the macroscopic scale. Finally, at the third step, based on the con-
structed surrogate models, we perform system level analysis, such as numerical
integration at a lower computational cost, numerical bifurcation analysis for the
detection and characterization of tipping points, and rare event analysis (uncer-
tainty quantification) for the catastrophic transitions occurring in the neighbor-
hood of the tipping points.
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stochasticity, a natural first choice is the construction of a mean-field
macroscopic SDE. Here, we construct surrogate models via machine
learning at both these distinct coarse-grained scales.

Learning mesoscopic IPDEs via neural networks
As we have discussed in the introduction, the identification of evolu-
tion operators of spatio-temporal dynamics using machine learning
tools, including deep learning and Gaussian processes, represents a
well-established field of research. Themain assumption here is that the
emergent dynamics of the complex system under study on a domain
Ω× ½t0,tend � � Rd ×R can be modeled by a system of say m IPDEs in
the form of:

∂uðiÞðx,tÞ
∂t

� uðiÞ
t = F ðiÞ x,u,Du,D2u, . . . ,

�
. . . ,Dνu,IðiÞ1 ðuÞ,IðiÞ2 ðuÞ, . . . ,ε

�
,

ðx,tÞ 2 Ω× ½t0,tend �, i= 1,2, . . . ,m,

ð10Þ

where F(i), i = 1, 2,…m are m nonlinear integro-differential operators;
u(x, t) = [u(1)(x, t),…, u(m)(x, t)] is the vector containing the spatio-
temporal fields, Dνuðx,tÞ is the generic multi-index ν-th order spatial
derivative at time t:

Dνuðx, tÞ : = ∂jνjuðx,tÞ
∂x

ν1
1 ���∂xνd

d

,ν1, . . . ,νd ≥0
� �

,

where jνj= ν1 + ν2 + � � � + νd ,
ð11Þ

IðiÞ1 ,IðiÞ2 , . . . are a collection of integral features on subdomains
ΩðiÞ

1 ,ΩðiÞ
2 , � � � � Ω:

IðiÞj ðuÞ=
Z

ΩðiÞ
j

K ðiÞ
j ðx,uðx, tÞÞdΩ, j = 1,2, . . . ; ð12Þ

K ðiÞ
j : Rd ×Rm 7!Rd are nonlinear maps and ε 2 Rp denotes the

(bifurcation) parameters of the system. The right-hand-side of the i-th
IPDE depends on say, a number of γ(i) variables and on bifurcation
parameters from the set of features:

SðiÞ = x,uðx, tÞ,Duðx, tÞ,D2uðx, tÞ, . . . ,�
Dνuðx, tÞ,IðiÞ1 ,IðiÞ2 , . . . ,ε

o
:

ð13Þ

At each spatial point xq, q = 1, 2,…,M and time instant ts, s = 1, 2,…,N, a
single sample point (an observation) in the set SðiÞ for the i-th IPDE can
be described by a vector Z ðiÞ

j � Z ðiÞ
ðq,sÞ 2 RγðiÞ , with j = q + (s − 1)M. Here,

we assume that such mesoscopic IPDEs in principle exist, but they are
not available in closed-form. Henceforth, we aim to learn the
macroscopic laws by employing a Feedforward Neural Network
(FNN), in which the effective input layer is constructed by a finite
stencil (sliding over the computational domain), mimicking convolu-
tional operations where the applied “filter” involves values of our field
variable(s) u(i) on the stencil, and returns features Z ðiÞ

j 2 SðiÞ of these
variables at the stencil center-point, i.e., spatial derivatives as well as
(local or global) integrals (see Fig. 5a for a schematic).

Fig. 5 | Schematic of the neural networks used for constructive machine
learning assisted surrogates. a Feedforward Neural Network (FNN). the input is
constructed by convolution operations, i.e., a combination of sliding Finite Dif-
ference (FD) stencils, and, integral operators, for learning mesoscopic models in

the formof IPDEs (Eq. (10)); the inputs to the RHSof the IPDE are the features in Eq.
(13). b A schematic of the neural network architecture, inspired by numerical sto-
chastic integrators, used to construct macroscopic models in the form of mean-
field SDEs.
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The FNN is fed with the sample points Z ðiÞ
j 2 RγðiÞ and its output is

an approximation of the time derivative ut. In sections D2 and D3 of
the Supplementary Information (SI) we describe two different
approaches (gradient descent and random projections) to train such a
FNN. For alternative operator-learning approximation methods, see
e.g., ref. 74 and ref. 51.

Remark on learning mean-field ODEs
The proposed framework can be also applied for the simpler task of
learning a system of m ODEs in terms of the m variables
u = (u(1), u(2),…, u(m)), thus learning i = 1,…,m functions:

duðiÞðtÞ
dt

= F ðiÞðu,pÞ, t 2 ½t0,tend �, ð14Þ

where p 2 Rk denotes the parameter vector.

Feature selection with automatic relevance determination
Training the FNN with the “full” set of inputs SðiÞ � RγðiÞ , described in
Eq. (13), consisting of all local mean field values as well as all their
coarse-scale spatial derivatives (up to some order ν) is prohibitive
due to the curse of dimensionality. Therefore, one important task
for the training of the FNN is to extract a few “relevant”/dominant
variable combinations. Towards this aim, we used Automatic Rele-
vance Determination (ARD) in the framework of Gaussian processes
regression (GPR)29. The approach assumes that the collection of all
observations ZðiÞ = ðZ ðiÞ

1 ,Z ðiÞ
2 , . . . ,Z ðiÞ

MNÞ, of the features zl 2 SðiÞ, are a set
of random variables whose finite collections have a multivariate
Gaussian distribution with an unknown mean (usually set to zero) and
an unknown covariancematrix K. This covariance matrix is commonly
formulated by a Euclidean distance-based kernel function k in the
input space, whose hyperparameters are optimized based on the
training data. Here, we employ a radial basis kernel function (RBF),
which is the default kernel function in Gaussian process regression,
with ARD:

K ðiÞ
jh = kðZ ðiÞ

j ,Z ðiÞ
h ,θðiÞÞ=θðiÞ

0 exp � 1
2

XγðiÞ
l = 1

zl,j � zl,h
θðiÞ
l

 !
; ð15Þ

θðiÞ = ½θðiÞ
0 ,θðiÞ

1 , . . . ,θðiÞ
γðiÞ � are a (γ(i) + 1)-dimensional vector of hyper-

parameters. The optimal hyperparameter set ~θ
ðiÞ

can be obtained by
minimizing a negative log marginal likelihood over the training data
set (Z(i),Y(i)), with inputs the observation Z(i) of the set SðiÞ and
corresponding desired output given by the observation Y(i) of the time
derivative uðiÞ

t :

~θ
ðiÞ
= argminθðiÞ � logpðYðiÞjZðiÞ,θðiÞÞ: ð16Þ

As can be seen in Eq. (15), a large value of θl nullifies the difference
between target function values along the l-th dimension, allowing us to
designate the corresponding zl feature as “insignificant”. Practically, in
order to build a reduced input data domain, we define the normalized
effective relevance weights W ðiÞ

r ð�Þ of each feature input zl 2 SðiÞ, by
taking:

�W
ðiÞ
r ðzlÞ= expð�~θ

ðiÞ
l Þ,W ðiÞ

r ðzlÞ=
�W

ðiÞ
r ðzlÞP

l
�W

ðiÞ
r ðzlÞ

: ð17Þ

Thus, we define a small tolerance tol in order to disregard the com-
ponents such that W ðiÞ

r ðzlÞ< tol. The remaining selected features
(W ðiÞ

r ðzlÞ≥ tol) can still successfully (for all practical purposes) para-
metrize the approximation of the right-hand-side of the
underlying IPDE.

Macroscopic mean-field SDEs via neural networks
Here, we present our approach for the construction of embedded
surrogate models in the form of mean-field SDEs. Under the assump-
tion that we are close (in phase- and parameter space) to a
previously located tipping point, we can reasonably assume that
the effective dimensionality of the dynamics can be reduced to the
corresponding normal form. We already have some qualitative
insight on the type of the tipping point, based for example on
the numerical bifurcation calculations that located it (e.g., for the
financial ABM from the analytical FP IPDE, from our surrogate IPDE, or
from the EF analysis52,56), while for the epidemic ABM from the EF
analysis in ref. 59. For both these two particular problem, we have
found that the tipping point corresponds to a saddle-node bifurcation.

Given the nature of the bifurcation (and the single variable cor-
respondingnormal form)we identify a one-dimensional SDE, drivenby
a Wiener process, from data. We note that learning higher-order such
SDEs, or SDEs based on the more general Lévy process and the
Ornstein-Uhlenbeck process75, is straightforward.

For a diffusion process with drift, say Xt = {xt, t > 0}, the drift, μ(xt)
and diffusivity σ2(xt) coefficients over an infinitesimally small-time
interval dt, are given by:

μðxtÞ= lim
δt!0

1
δtEðδxt jXt = xtÞ,

σ2ðxtÞ= lim
δt!0

1
δtEðδx2

t jXt = xtÞ,
ð18Þ

where, δxt = xt+δt − xt.
The 1D SDE driven by a Wiener process Wt reads:

dxt =μðxt ; εÞdt + σðxt ; εÞdWt : ð19Þ

Here, for simplicity, we assume that the one-dimensional parameter ε,
enters into the dynamics, via the drift and diffusivity coefficients. Note
that the parameter ε canbe either the parameter g introduced in Eq. (3)
or the parameter λ for the epidemic ABM (representing the probability
that a susceptible individual may get infected). Our goal is to identify
the functional form of the drift μ(x, ε) and the diffusivity σ(x, ε) given
noisy data close to the tipping point via machine learning. For the
training, the datamight be collected from either long-time trajectories
or short bursts initialized at scattered snapshots, as in the EF
framework. These trajectories form our data set of input-output pairs
of discrete-time maps. A data point in the collected data set can be
written as ðxðkÞ

0 ,hðkÞ,xðkÞ
1 εðkÞÞ, where xðkÞ

0 and xðkÞ
1 measures two

consecutive states at tðkÞ0 and tðkÞ1 with (small enough) time step
hðkÞ = tðkÞ1 � tðkÞ0 and ε(k) is the parameter value for this pair. Based on the
above formulation, going to xðkÞ1 from xðkÞ

0 by:

xðkÞ
1 = xðkÞ

0 +
Z tðkÞ1

tðkÞ0

μðxt ; εðkÞÞdt +
Z tðkÞ1

tðkÞ0

σðxt ; ε
ðkÞÞdWt : ð20Þ

Here, for the numerical integration of the above equation to get sto-
chastic realizations of xðkÞ1 , we assume that the Euler-Maruyama
numerical scheme can be used, reading:

xðkÞ
1 ≈ xðkÞ0 +hðkÞμðxðkÞ

0 ; εðkÞÞ+ σðxðkÞ0 ; εðkÞÞΔW ðkÞ, ð21Þ

where ΔW ðkÞ =WtðkÞ1
�WtðkÞ0

2 R is a one-dimensional random variable,

normally distributed with expected value zero and variance h(k).

Considering the point xðkÞ
1 as a realization of a random variable X1,

conditioned on xðkÞ0 and h(k), drawn by a Gaussian distribution of the
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form:

pX 1
ðxðkÞ

1 Þ=P X 1 = x
ðkÞ
1 jX0 = x

ðkÞ
0 ,hðkÞ

	 �
∼

∼N xðkÞ
0 +hðkÞμðxðkÞ

0 ; εðkÞÞ,hðkÞσðxðkÞ0 ; εðkÞÞ2
� �

,
ð22Þ

we approximate the drift μðxðkÞ
0 ; εðkÞÞ and diffusivity σðxðkÞ

0 ; εðkÞÞ func-
tions by simultaneously training two neural networks, denoted as μθ
and σθ, respectively. This training process involvesminimizing the loss
function:

LðθjxðkÞ
0 ,xðkÞ

1 ,hðkÞÞ : =

=
P
k

ðxðkÞ1 �xðkÞ0 �hðkÞμθðxðkÞ0 ;εðkÞ ÞÞ2

hðkÞσθðxðkÞ0 ;εðkÞ Þ2 +

+ logjhðkÞσθðxðkÞ0 ; εðkÞÞ2j:

ð23Þ

which is derived in order to maximize the log-likelihood of the data
andwhere θ denotes the trainable parameters (e.g., weights and biases
of the neural networks μθ and σθ). A schematic of the Neural Network,
based on Euler-Maruyama, is shown in Fig. 5b.

Locating tipping points via our surrogate models
In order to locate the tipping point, based on either the mesoscopic
IPDE or the embedded mean-field 1D SDE model, we construct the
corresponding bifurcationdiagram in its neighborhood, using pseudo-
arc-length continuation as implemented in numerical bifurcation
packages. For the identified SDE,weused its deterministicpart, i.e., the
drift term, to perform continuation. The required Jacobian of the
activation functions of the neural network is computed by symbolic
differentiation. Note that this is just a validation step (we already know
the location and nature of the tipping point).

Rare-event analysis/UQ of catastrophic shifts
Given a sample spaceΩ, an index set of times T = {0, 1, 2,… } and a state
space S, the first passage time, also known as mean exit time or mean
escape time, of a stochastic process xt:Ω × T↦ Son ameasurable subset
A⊆ S is a random variable which can be defined as

τðωÞ : = infft 2 T jxtðωÞ 2 S n Ag, ð24Þ

where ω is a sample out of the space Ω. One can define the mean
escape time from A, which works as the expectation of τ(ω):

hτi : =E½τðωÞ�: ð25Þ

For a n-dimensional stochastic process, as it is the ABM under study, S
is typically set to beRn, andA is usually a bounded subset ofRn. In the
case of our local 1D SDE model, the subset A reduces to an open
interval (a, b), with the initial condition of this stochastic process x0
also chosen in this interval.

We discuss two ways for quantifying the uncertainty of the
occurrence of those rare-events. The first, presented in the main text,
involves direct computational “cheap” temporal simulations of the 1D
SDE, where one gets an empirical probability distribution; the second,
presented only in section F4 of the Supplementary Information (SI), is
a closed-form expression, based on statistical mechanics76, for the
mean escape time (assuming an exponential distribution of
escape times).

Computation of escape times based on temporal simulations of
the 1D SDE
We perform numerical integration of multiple stochastic trajectories
of the SDE to obtain an estimation of the desired mean escape time.

The algorithm for estimating the escape times of a one-dimensional
stochastic process with initial condition x0 on the interval (a, b) can be
described as follows:
1. Given a fixed time step h >0, we perform i + 1 numerical integra-

tion steps of the SDE until a stopping condition, i.e., xt exits, for
the first time ti+1, the interval at a or b.

2. Record the time τ = ti, which corresponds to a realization of the
escape time.

3. Repeat the above steps 1–2 for K iterations, and each time collect
the observed escape time.

4. Compute the statistical mean value of the collected escape times
that corresponds to an approximation of the mean escape time.

In our case, the initial condition x0 was set equal to the stable
steady state, and the termination condition aor b atwhichwe consider
the dynamics escaped/exploded.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data used in this work are publicly available in the GitLab repository
https://gitlab.com/nicolasevangelou/agent_based.

Code availability
The code used to produce the findings of this study are publicly
available in theGitLab repository https://gitlab.com/nicolasevangelou/
agent_based.
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