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De novo motor learning creates structure in
neural activity that shapes adaptation

Joanna C. Chang1, Matthew G. Perich 2,3, Lee E. Miller 4,
Juan A. Gallego 1,5 & Claudia Clopath 1,5

Animals can quickly adapt learned movements to external perturbations, and
their existingmotor repertoire likely influences their ease of adaptation. Long-
term learning causes lasting changes in neural connectivity, which shapes the
activity patterns that can be produced during adaptation. Here, we examined
how a neural population’s existing activity patterns, acquired through de novo
learning, affect subsequent adaptation by modeling motor cortical neural
population dynamics with recurrent neural networks. We trained networks on
differentmotor repertoires comprising varyingnumbers ofmovements,which
they acquired following various learning experiences. Networks with multiple
movements had more constrained and robust dynamics, which were asso-
ciated with more defined neural ‘structure’—organization in the available
population activity patterns. This structure facilitated adaptation, but only
when the changes imposed by the perturbation were congruent with the
organization of the inputs and the structure in neural activity acquired during
de novo learning. These results highlight trade-offs in skill acquisition and
demonstrate how different learning experiences can shape the geometrical
properties of neural population activity and subsequent adaptation.

Fromwalking to grasping objects, movement enables us to interact
with theworld.Mastering a skill requiresmany hours of practice, be
it during development or in adulthood. In contrast to long-term
skill learning, adapting existing skills to environmental perturba-
tions is amuch faster process: after learning to ride a bike, adapting
to foggy weather or uneven roads is much easier. Existing motor
repertoires acquired through long-term learning likely form the
foundation for short-term motor adaptation, but it is unclear how
different repertoires can affect adaptation, even for common
experimental perturbations like visuomotor rotations (VR)1 or
force fields2. This lack of understanding stems from the experi-
mental challenge of characterizing an animal’s entire behavioral
repertoire learned throughout their lifetime, and implies that the
interplay between available neural activity patterns and rapid
adaptation remains largely unknown3.

Recent work has focused on the coordinated activity of neural
populations to begin to shed light on the neural basis of motor
adaptation4–6. In this neural population view, brain function is not built
upon the independent activity of single neurons, but rather on specific
patterns of neural co-variation (from now on, simply ‘activity
patterns’)7–10. In practice, these activity patterns can be examined by
building a neural state space (from here, referred to as ‘neural space’)
where each point denotes the state of the neural population. Numer-
ous studies11–16 have found that the activity of even hundreds of
simultaneously recorded motor cortical neurons is well captured by
relatively few population-wide activity patterns, an observation con-
sistent with neural population activity being constrained to a low-
dimensional surface—a ‘neural manifold’—that can be estimated by
applying a dimensionality reduction method17–21. Studies comparing
neural population activity patterns evoked by sensory stimuli and
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optogenetic stimulation provide direct evidence of neural manifolds
reflecting circuit connectivity constraints22,23. For example, optoge-
netic stimulation of a small subset of stimulus-selective neurons
evokes the same activity patterns in the manifold of a population of
simultaneously recorded neurons as those observed during ‘natural’
stimulus presentation22, indicating that neural manifolds are at least
partly shaped by the underlying connectivity of the network. This
presumed relationship between circuit constraints and neural mani-
fold geometry is further supported by the preservation of neural
manifolds in the anterior thalamus20,24 and medial entorhinal cortex19

between active behavior and sleep.
Previous work suggests that long-term learning causes changes in

circuit connectivity25–28, which may in turn change the geometrical
properties of an existing neuralmanifold aswell as the activity within it
—the so-called ‘latent dynamics’. In contrast, experimental and mod-
eling studies of motor adaptation suggest that this form of rapid
learning may be achieved without any changes in motor cortical con-
nectivity or, if present, these changes would be very small and low-
dimensional6,29. In good agreement with these findings, using a brain-
computer interface that mapped motor cortical activity onto compu-
ter cursormovements, Sadtler et al. showed that it is easier to adapt to
perturbations that require only neural states that liewithin the existing
neural manifold: while animals can learn to produce activity patterns
within the existing manifold in a matter of minutes or hours16, pro-
ducing activity patterns outside the existing manifold takes several
days30. To learn outside-manifold perturbations, new activity patterns
need to be used, which may necessitate changing the synaptic con-
nectivity of the circuit30,31. Combined, these results suggest that long-
term motor learning changes the circuit connectivity to create new
neural population latent dynamics, whereas short-term motor adap-
tation may reuse existing ones32.

Yet, studying the interplay between an animal’s existing motor
repertoire and its ability to adapt a known behavior remains challen-
ging due to the complex organization of existing motor skills within
neural space. Similar behaviors (e.g., various wrist manipulations or
grasping tasks) may share similarly oriented task-specific neural
manifolds13, while dissimilar behaviors (e.g., reaching and walking in
mice)may have almost orthogonalmanifolds even if they share similar
movements15. Furthermore, experimentally, it is impossible to quantify
the entire repertoire of motor skills that an animal has, which poses a
challenge to investigate how its behavioral repertoire influencesmotor
adaptation. Similarly, experimenters also often lack access to how
skills were acquired in the first place, which poses an additional chal-
lenge to understanding the neural basis of learning because the de
novo learning process influences future learning33,34, e.g., based on
whether the training examples are meaningfully organized with
respect to each other35. Finally, in virtually all motor adaptation stu-
dies, animalsmust adjust to perturbations on a specific laboratory task
they have already learned, and adaptation is only examined with
respect to a ‘baseline period’1,2,4–6,16,36,37; this approach ignores, for
practical reasons, the relationship between the adapted behavior and
all the other motor skills the animal has previously acquired, as well as
how these skills were initially learned.

To overcome the experimental challenges of assessing an animal’s
lifelong experience, here we examined how the existing motor reper-
toire can affect adaptation differently using recurrent neural networks
(RNNs). Similar networks have been able to reproduce motor output
and key features of latent dynamics from experimental recordings38–41,
including during adaptation29,31. We modeled the latent dynamics of
themotor cortex during de novo learning and subsequent adaptation.
We trained our networks on different repertoires with varying num-
bers of movements through a variety of learning experiences using
movement trajectories modified from experimental recordings of
monkey reaches6,42. We hypothesized that networks with larger motor
repertoires would adapt to perturbations more easily since they are

already able to produce a broader set of activity patterns, but only if
perturbations require changes that are ‘meaningful’ with respect to
their learning experience.

By systematically training networks in two stages comprising of
de novo learning and subsequent adaptation, we found that larger
repertoire networks could adapt to perturbations more quickly, but
only under certain circumstances. The way the latent dynamics of
multiple movements were organized in neural space shaped sub-
sequent adaptation: adaptation was facilitated when the latent
dynamicswereorganized in away thatwas congruentwith the changes
required by the perturbation, and when only small changes in motor
output were needed. This suggests that ease of adaptation is affected
not only by its relation to the existing manifold16,30, but also by the
organization of the latent dynamics within it. Crucially, this organiza-
tion is affected by past learning experiences. These observations
highlight an inherent trade-off in skill acquisition: mastery of more
movements better defines the structureof the neuralmanifold. This, in
turn, facilitates adaptation that requires small changes in behavior, but
harms adaptation that requires large changes or when the learning
experience is not directly relevant to the new behavior.

Results
Probing the impact of de novo learning on subsequent adapta-
tion with RNNs
To understand how a neural population’s existing activity patterns
affect its ability to change its activity, we used RNNs to model motor
cortical neural population dynamics following de novo learning and
subsequent adaptation (Fig. 1a).

To model de novo learning, we trained the networks to perform
different repertoires with different numbers of movement directions.
The movements were modified from experimentally recorded center-
out reaches from monkeys (data from ref. 6, Fig. 1b, Methods). For
each reach, monkeys were first presented with a visual target; after a

Fig. 1 | Probing de novo learning and adaptation with RNNs. a. RNNs were
trained to produce ‘hand positions’ during a standard center-out reaching task as
output. Theywere given a target signal that specifies the reachdirection, and a hold
signal that indicated movement initiation. The target signal indicated the angular
direction, unless otherwise specified. The input and recurrentweightswere learned
(plastic), while the output weights were fixed, unless otherwise specified. b RNNs
were trained on hand trajectories modified from experimental recordings of
monkeys performing a similar center-out reaching task (left). Subsequent adapta-
tion was studied using a classic visuomotor rotation paradigm (VR, right), in which
visual feedback is rotated by a fixed angle around the center of the workspace.
c Networks were trained on repertoires with different numbers of movements
(from one to four) to model de novo learning. All multi-movement networks (2
mov., 3 mov., and 4 mov.) covered the same angular range. d Networks were later
trained to counteract VR perturbations for only one common movement to
understand the influence of existing motor repertoires on adaptation.
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variable delay period, a ‘go’ cue indicated they could execute the
movement. To address our first hypothesis that having a larger motor
repertoirewould facilitate adaptation, we used repertoires of different
sizes, ranging from one to four movement directions (Fig. 1c). Single-
movement repertoires comprised a single reach to −10° while multi-
movement repertoires comprised movements in directions equally
spaced between −10° and −50°, unless otherwise specified. Note that
we intentionally limitedour networks to fourmovements for simplicity
tomake our simulation results interpretable. Importantly, all networks
learned to produce the −10° direction, allowing for comparisons
across networks trained on different repertoires. We further kept all
training parameters constant to simulate a common de novo learning
experience. Networks were given the angular direction of these
movements as inputs along with a go cue (occurring 0.5–1.5 s after the
direction cue) to mimic the instructed delay-reaching task performed
by the monkeys (Methods).

To model motor adaptation, we subsequently trained these net-
works to counteract a visuomotor rotation (VR) on the shared move-
ment direction they had all learned (Fig. 1d). VR is a commonly used
experimental paradigm to examine motor adaptation1,5,6,43–45 in which a
rotational transformation is applied to themotor output. In this case, we
applied a 10° rotation (counterclockwise), which the networks had to

counteract by producing output in the opposite direction. By probing
adaptation on only one commonmovement, we could assess howentire
motor repertoires contribute to the adaptation of a given movement,
and compare the adaptation performance across repertoires.

Multiple movements produce more constrained and robust
dynamics that are structured in neural space
We first trained networks to produce repertoires comprising one to
four different movements to understand resulting differences in
the underlying network activity. Following the initial de novo
learning phase, all the networks were able to learn each of the
repertoires (Fig. 2a) with comparable performance (Fig. 2b), as
quantified by the mean-squared error between target movement
trajectories and produced movement trajectories. This indicates
that any differences in their ability to adapt will not be due to how
accurately they can generate motor output, but rather to differ-
ences in the network dynamics that can be produced based on their
acquired motor repertoires.

To compare across different repertoires, we examined the
neural dynamics as the networks were producing the common −10°
movement. We focused on network activity during both prepara-
tion and execution of the same target motor output. We calculated

Fig. 2 | Networks that have acquired multiple movements produce more con-
strained and robust dynamics that are structured in neural space. a Motor
output of networks trained on different repertoires following de novo learning.
b Loss during initial de novo learning. Loss was calculated as themean-squared
error between the network output and target positions. Line and shaded sur-
faces, smoothed mean, and 95% confidence interval across networks of dif-
ferent seeds (n = 10 randomseeds). c–f,h Following de novo learning, networks
were tested on the one shared movement. c Variance in unit activity for net-
works trainedondifferent repertories. Variancewas calculated for each unit for
each time step across trials. Inset: Variance in the output-null subspace and
output-potent subspace of the unit activity with respect to the produced out-
put. Individual lines, different random seeds (n = 10); circles and error bars,
median and 95% confidence intervals with bootstrapping. *** denotes 0.001, **
0.01, * 0.05 for one-sided Wilcoxon signed-rank tests. d Same as panel (c), but

for the variance in latent dynamics. e Same as panel c but for variance in motor
output. Variance for single reaches formonkeys trainedon the center-out reach
task (data from ref. 6) is included for comparison. Note that the networks,
which only know a fewmovements, generally have less variance thanmonkeys.
fMean-squared error of output when noise of increasingmagnitude is added to
the neural activity. Line, shaded area, median, and 95% confidence interval.
g Motor output with (gray, pink gradient) and without (purple, green)
increased noise added (η = 1) for example networks with one- and two-
movement repertoires. Color gradient, time course of themovement execution
(legend). h Same as panels c–e but for velocity in the x direction for motor
output when noise (η = 1) was added as per panel (g). i Motor output for dif-
ferent target cues for a sample network with two-movement repertoire. Colors,
different target cues; circles and triangles, target endpoints for each move-
ment; pink background, range of known movements.
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the population latent dynamics by projecting the activity of all 300
units in our networks onto a lower-dimensional neural manifold
identified by performing principal component analysis7,17 (PCA)
(Methods). The main differences in the activity produced by net-
works with different repertoires was between single-movement and
multi-movement (two, three, or four movements) networks: multi-
movement networks had less variance across trials to the shared
target in both single unit activity (Fig. 2c left, P = 9.8 ⋅ 10−4, Wilcoxon
signed-rank test; Supplementary Fig. 1a–c; Methods) and latent
dynamics (Fig. 2d, P = 0.02, Wilcoxon signed-rank test; Supple-
mentary Fig. 1d–f) than single-movement networks, suggesting that
the network activity becomes more constrained when multiple
movements need to be embedded in the neural space. Intriguingly,
despite their lower variance in activity, multi-movement networks
had greater variance in motor output (Fig. 2e, P = 9.8 ⋅ 10−4, Wil-
coxon signed-rank test; Supplementary Figs. 1g–i, 2)—which was
more comparable to experimental reaches (Fig. 2e)—even though all
the networks were performing the same movement. How can these
apparently contradictory observations be reconciled? We hypo-
thesized that themore variable latent dynamics of single-movement
networks may lie in directions of activity space that do not affect
motor output, i.e., those defining the ‘output-null’ subspace46.
Separately computing the variance of the latent dynamics within the
output-null subspace and the ‘output-potent’ subspace (i.e., the
directions that affect the network output), confirmed this predic-
tion: the greater variability of the latent dynamics of single-
movement networks was largely confined to the output-null sub-
space, and thus did not lead to more variable motor output (Fig. 2c
right;Methods). These results also heldwhen networkswere trained
on synthetic reaches that were more stereotyped than actual
monkey reaches (Supplementary Fig. 3) and across different ways of
calculating inter-trial variability (Supplementary Fig. 3; Methods).
Thus, greater constraints in the network dynamics were character-
istic of multi-movement networks, but these more constrained
dynamics did not necessarily translate into more consistent beha-
vioral output.

How may these constraints affect the ability of multi-movement
networks to generate robust latent dynamics drivingmotor output?We
predicted that they may lead to greater robustness against noise47. We
examined this by changing the amount of simulated noise applied to
the unit activity, and saw that multi-movement networks were indeed
more robust against higher noise levels than single-movement net-
works (Fig. 2f and Supplementary Fig. 4g). To probe this further, we
increased the noise five-fold compared to pre-training and measured
how the output was affected (examples in Fig. 2g and Supplementary
Fig. 4a, b, d, e, with the two-movement network representative ofmulti-
movement networks). Intriguingly, while motor output for single-
movement networks circled back and became twisted, that for two-
movement networks shifted toward previously learned outputs at this
high noise level (Fig. 2g and Supplementary Fig. 4e). This systematic
shift indicates that learning multiple movements creates structure in
the neural space thatmaps to structure in themotor output; that is, the
trajectories described by the latent dynamics driving each movement
are organized in neural space in a way that is congruent with that of the
movements. With this underlying ‘structure’, noise in the activity space
caused two-movement networks to explore other activity states that led
to movements intermediate to those that had been previously learned
(Fig. 2g and Supplementary Fig. 4b, e). This led to mostly linear output
trajectories with greater forward movement, as quantified by the
velocity in the x direction during execution (Fig. 2h, P =9.8 ⋅ 10−4, Wil-
coxon signed-rank test), in contrast to the twisted and tangled move-
ments produced by single-movement networks—with these differences
in motor output being appropriately reflected in neural space (Sup-
plementary Fig. 4c, f). Moreover, with their underlying structure, two-
movement networks were able to generate intermediate movements

that they had not previously learnedwhen probedwith the appropriate
input signal (Fig. 2i and Supplementary Fig. 5b, c). Combined, these
results suggest that learning multiple movements creates structure in
the neural space that effectively makes more intermediate activity
patterns available. The availability of these additional activity patterns
may facilitate adaptation.

Networks with larger repertoires can adapt to a perturbation
more easily
To directly assess our first prediction that the additional structure in
the neural space of multi-movement networks may facilitate adapta-
tion, we applied the same small VR perturbation of 10° to networks
with different movement repertoires (Fig. 3a, b). In general, networks
that had learned larger repertoires were able to adapt more quickly
(Fig. 3b, c and Supplementary Fig. 5d, e), and without catastrophic
forgetting (Supplementary Fig. 6). Comparison of adaptation perfor-
mance across networks with different motor repertoires revealed two
trends. First, all three types of multi-movement networks adapted
much more rapidly than single-movement networks, as predicted.
Within 100 adaptation training trials, multi-movement networks con-
verged to a performance comparable to baseline. Single-movement
networks, in contrast, couldnot fully adapt andhadaverageerrors20%
larger than that of the multi-movement networks (Fig. 3b). Second,
within multi-movement networks, those with larger repertoires also
adapted more quickly than those with smaller repertoires (Fig. 3c).
Thus, having larger motor repertoires, which was associated with
greater structure in activity space following the initial de novo learning
process (Fig. 2), facilitated adaptation.

The initial de novo learning experience shapes the structure of
neural activity and influences subsequent adaptation
The previous simulations support our first hypothesis that having a
larger behavioral repertoire facilitates adaptation (Fig. 3), but is more
always necessarily better? Task performance is shaped by how beha-
vioral components are acquired33,34, including by whether the examples
presented during the initial learning process are meaningfully orga-
nized with respect to each other35. This led us to hypothesize that the
de novo learning experience in and of itself would shape adaptation.

To test this hypothesis directly, we trained a second series of
networks to perform the exact same reaching task following a differ-
ent learning experience. We modeled this different learning experi-
ence by altering the encoding of the input cues, predicting that this

Fig. 3 | Networks with larger repertoires can adapt to perturbations more
easily. a Motor output of networks trained on different repertories (legend) fol-
lowing adaptation to a counterclockwise VR perturbation. b Loss during adapta-
tion, calculated as the mean-squared error between the network output and target
positions. Line, shaded surfaces, smoothed mean, and 95% confidence interval
across networks of different seeds. c Decay constants for exponential curves fitted
to the loss curves in panel (b). Circles and error bars, means and 95% confidence
intervals with bootstrapping. *** denotes 0.001, ** 0.01, * 0.05 for two-sided paired
t-tests. Data includes n = 10 networks from ten random seeds for each repertoire.

Article https://doi.org/10.1038/s41467-024-48008-7

Nature Communications |         (2024) 15:4084 4



would alter the structure of the network activity. Thus far, we have
used continuous angular inputs that specified the direction of the
targets (Fig. 4a). This mimics the process of learning to reach to an
endpoint location based on a cue that indicates the take off angle of
the movement. An alternative way to perform the same task would be
to learn toproduceeach reach in response to anarbitrary cue, inwhich
case there is no meaningful relationship between target-specific cues.
We implemented this alternative learning experience by training net-
works to produce the same motor output using categorical, one-hot
encoded binary vectors that had no angular information (Fig. 4d,
Methods). Even after matching performance following de novo
learning (Fig. 4h, i top), the latent dynamics of these networks with
categorical inputs no longer had the same organization during pre-
paration as themotor output (Fig. 4e), aswas the case for the networks
with continuous angular inputs Fig. 4b). This confirms that we could
indeed enforce a different structure in neural space by changing the
initial learning experience.

To further characterize the structure in the activity space of
each network and compare it across networks with different
learning experiences (angular vs. categorical inputs), we measured
the Euclidean distances in the neural manifold between the latent
trajectories at corresponding time points for different movements
(Methods, Fig. 4c, f right). To allow for comparison between dif-
ferent networks that have different neural spaces, we normalized
these distances between movements by the distances between
adjacent time points along the same latent trajectory, which should
be comparable across networks. We first focused on the networks
with angular inputs. During both the preparation and execution
epochs, the latent trajectories of these networks were organized
similarly to the movements themselves, with movements reaching
adjacent targets also adjacent in neural space (Fig. 4a, b and Sup-
plementary Fig. 7). In contrast, for the networks with categorical
inputs, the latent dynamics during preparation for different move-
ments no longer had the same organization as the motor output
(Fig. 4d, e). Thus, the organization of the latent dynamics in both
classes of networks reflected the structure of the inputs—quantified
by calculating the cosine dissimilarity between pairs of input vec-
tors (Methods)—suggesting that the structure of the inputs imposes
a congruent structure in neural space (Fig. 4g, Methods). This was
the case even if the motor output was extremely similar across
network classes (Fig. 4h, i) after the initial de novo learning phase.

Having two classes of networks that perform the initial center-
out task equally well following different learning experiences
allowed us to directly test the influence of the de novo learning
experience in subsequent adaptation. For the angular input net-
works, the activity in neural space was congruently structured
(Fig. 4b), with the latent trajectories organized by the angular
direction of the movements. Since a VR perturbation requires
angular changes on themotor output, we predicted that the greater
congruence between the structure in the neural space of angular
input networks and the angular changes required by the perturba-
tion would facilitate adaptation. Indeed, while the performance for
networks with angular and categorical inputs was comparable fol-
lowing adaptation (Fig. 4h, i bottom), adaptation was, in general,
faster for networks with more congruence (angular input networks)
than networks with less congruence (categorical input networks)
(Fig. 4j), confirming that the experience during initial de novo
learning influences adaptation. Moreover, for the angular input
networks, adaptation was also faster for those with larger move-
ment repertoires (Fig. 4h), but this trend was absent for the cate-
gorical input networks (Fig. 4i). Single-movement networks lacking
structure in neural space were unaffected by the difference in input
encoding (Fig. 4h, i). These results support our second hypothesis
that it is not only the motor repertoire that shapes learning: how
movements are initially acquired determines the organization of

neural activity which also shapes further learning. In particular, the
congruence between the structure of the latent trajectories in
neural space and the structure in the perturbation is important to
facilitate adaptation. Interestingly, when we applied this measure of
congruence to experimental data of monkeys performing a center-
out reaching task (Methods), we could predict the rate of adapta-
tion to a VR perturbation based on the degree of congruence
(Supplementary Fig. 8f). This lends experimental support for a
potential role of congruence between the structure of latent tra-
jectories and that of the perturbation in adaptation.

Adaptation is facilitated by exploiting intermediate states
within structured activity
Having established that the motor repertoire and the learning experi-
ence jointly shape adaptation, we sought to understand what property
of the angular input networks allowed networks with greater reper-
toires to adapt faster. We had previously shown that the structure of
these multi-movement networks organizes the neural dynamics and
allows them to produce untrained, intermediate movements (Fig. 2g, i
and Supplementary Fig. 5b, c). Thus, a larger movement repertoire in
angular input networks may lead to a more defined neural structure
that allows the networks to produce more intermediate activity states.
These intermediate states may facilitate adaptation by reducing the
need to learn new activity patterns.Whenmodeling learning using RNN
models, connectivity must be altered in order to change the activity
patterns that can be produced3,29. This implies that if large repertoire
networks do exploit intermediate states provided by additional
movements, they would require smaller adaptive weight changes than
smaller repertoire networks. This was indeed the case, but, as antici-
pated from their differences in the time course of learning (Fig. 4h, i), it
only occurred in the more congruently structured networks with
angular inputs, not in the networks with categorical inputs (Fig. 4k).

How do intermediate states contribute to the faster adaptation
of networks with angular inputs and larger motor repertoires? To
explore the role of these intermediate states, we examined how the
network activity evolved during adaptation. If we assume that
intermediate states exist between the latent trajectories for each
movement, we would expect the latent trajectories to move along
these states during adaptation, in the direction of other existing
latent trajectories that are in the direction of the desired motor
output. To measure this, we defined a ‘deviation angle’ that quan-
tifies how changes in the trajectories during adaptation deviate
from the path afforded by the existing potential intermediate states
created during de novo learning (Fig. 4l). To validate this metric, we
calculated deviation angles for motor cortical recordings from
monkeys performing the same VR task6 and saw they were com-
parable to those calculated for our networks (Supplementary
Fig. 8). If the network is using existing intermediate states, wewould
expect these angles to be small. Indeed, networks with angular
inputs that had more congruent structure than the networks with
categorical inputs also had smaller deviation angles (Fig. 4m), with
the differences paralleling those seen in the rate of adaptation (loss
curve decay constants) and relative weight changes (Fig. 4j, k).
Thus, how latent activity is structured in neural space has a large
impact on motor adaptation. This structure is jointly shaped by the
motor repertoire and how the latent dynamics underlying these
movements are organized, which is determined by the learning
experience, here modeled as the type of cues. Adaptation may only
be facilitated if this structure is congruent to the changes on the
motor output that are required by the perturbation (Fig. 4h, i).
Without any structure to guide adaptation, single-movement net-
works with both types of inputs adapted the most slowly to our VR
perturbation. Without congruent structure, multi-movement net-
works with categorical inputs adapted more slowly than those with
angular inputs. Finally, with more movements to provide more
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Fig. 4 | The structure in neural space of multi-movement networks resulting
fromdenovo learning is responsible for their patterns in adaptation.Networks
were given either angular (a) or categorical (d) inputs to simulate different learning
experiences. After training on different repertoires, they had to adapt to a 10° VR
perturbation.b Latent activity, for example, networkwith angular inputs trainedon
four movements during preparation (500ms before go cue) and execution
(1000ms after go cue). Each trace corresponds to the trial-averaged activity for
each movement projected on the neural manifold computed before adaptation.
Solid lines, activity before adaptation; dotted lines, activity after adaptation. c Left:
Input structure, measured as the cosine dissimilarity between input vectors for
pairs ofmovements for the network inPanel b. Right: Neural structure,measured as
the normalized median Euclidean distances between latent trajectories during
preparation and execution for different movements for the same network. e, f.
Same as panels (b, c) but for a categorical input network. Inset in Panel e: zoomed
view. g Congruency between the input and neural structure, quantified as the

Pearson’s correlation between their dissimilarity matrices. Congruency for mis-
matched input-activity pairings shown as control. Circle and error bars, mean of
congruency values for each seed (n = 10) and 95% confidence intervals (CIs) with
bootstrapping. hMotor output following skill-learning for angular input networks.
Bottom: Loss during adaptation training. Traces, shaded surfaces, smoothedmean,
and 95% CIs across networks of different seeds (n = 10). i Same as panel h but for
categorical input networks. j Decay constants for exponential curves fitted to the
loss curves in panels (h, i). Circles, error bars, means, and 95% CIs with boot-
strapping. k Relative weight changes during adaptation. Circles and error bars,
means of the median changes across all weights for each seed, and 95% CIs with
bootstrapping. l Schematic for a ‘deviation angle’ between the ‘adjacentmovement
vector’ (red solid line in panel b, e) and the ‘adaptation vector’ (red dotted line in
panel b, e).m Deviation angles during adaptation. Circles and error bars, means of
the median deviation angles across all time steps for each seed and 95% CIs with
bootstrapping.
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intermediate states across the structure, networks with the largest
repertoires adapted the fastest.

Structure in neural space resulting from the learning experience
can facilitate or impede adaptation
Our previous results suggest that the structure across the inputs, the
neural space, and the changes in the output required by the pertur-
bation all need to be congruent for adaptation to be facilitated. To test
this directly, we examined hownetworks adapted to a different type of
perturbation that was congruent with the organization of categorical
inputs but not with that of angular inputs, as was the case for the VR
perturbation. In this ‘reassociation’ perturbation (Fig. 5a), the cues and
targets were rearranged such that the network needed to re-associate
learned reaches to different known target cues29. Since this perturba-
tion requires adaptation to categorical rather thanangular changes,we
predicted that multi-movement networks with categorical inputs
would adapt more easily than those with angular inputs.

Indeed, networks with categorical inputs adapted to the reasso-
ciation perturbation (Fig. 5e, f), whereas networks with angular inputs
were unable to adapt (Fig. 5b, c and Supplementary Fig. 9) despite
comparable performance following de novo learning (Fig. 4h, i top).
For both classes of networks, the latent trajectories maintained their
general structure (Fig. 5d, g), suggesting that the networks adapted by
reusing activity patterns in the existing intermediate states rather than
by exploring new ones. However, for networks with angular inputs,
neighboring latent trajectories interfered with one another during
adaptation such that the adapted motor output became overlapped
(Fig. 5c, d). Thus, the existing structure in neural space now harmed
adaptation instead of facilitating it. Together, these results further
support a fundamental relationship between the structure of neural
activity following de novo learning and the ability to adapt to a sub-
sequent perturbation: the underlying neural structure can facilitate
adaptation if it is congruent to the changes required by the pertur-
bation, but it can also hinder adaptation if the structure of the per-
turbation is incongruent. Having a well-defined structure in activity
space also hindered adaptation to other types of perturbations that
required greater changes in themotor output (Supplementary Fig. 10).
Thus, structure in the neural space can shape adaptation by facilitating

adaptation under small changes or interfering with adaptation under
larger changes. In conclusion, different de novo learning experiences
can lead todifferences in the organizationof neural activity,which can,
in turn, lead to dramatic differences in adaptation even across net-
works with the same motor repertoire.

Generalization to more complex motor repertoires
Our results so far have focused on networks producing reaching
movements. To examine the generalizability of our findings to a more
complicated task, we trained networks to produce up to four different
elliptical movements by generating cosinusoidal and sinusoidal out-
puts with various amplitudes indicating positions along the x and y
directions, respectively (Fig. 6a). We chose this task because the
oscillatory output requires more complicated timing and output
dynamics than a reaching task, and is reminiscent of past studies in
motor control48–50.

We manipulated this new task to test the generalizability of our
previous results. First, we previously showed that having a larger
motor repertoire can facilitate adaptation by creating intermediate
trajectories in activity space (Fig. 6a). To test this, we trained the net-
works on two sets of repertoireswith different numbers ofmovements
(Fig. 6b). In one set of repertoires, networks learned one to four
movements consisting of cosine waves of different amplitudes, but of
sine waves of the same amplitude, creating ellipses of different elon-
gations in the x direction. The other set of repertoires was similar, but
with sine waves of different amplitudes and cosine waves of the same
amplitude. Second, we previously showed that adaptation is not only
influenced by themotor repertoire but alsohow it was initially learned:
to facilitate adaptation, the structurebetween the inputs, neural space,
and the changes imposedby the perturbation all have to be congruent.
To test the effects of different learning experiences, we encoded the
target signal of the sine wave as a continuous input representing its
amplitude, and the target signal of the cosine wave as a categorical
one-hot encoded input that represented the same amplitude values
(Fig. 6a). To test the effects of different perturbations, we asked all
networks to adapt to: (1) a ‘sine wave perturbation’ where they had to
produce a movement with a larger sine wave amplitude, (2) a ‘cosine
wave perturbation’ where they had to produce a movement with a

Fig. 5 | The structure in neural space arising from de novo learning can facil-
itate or hinder adaptation. a Networks with angular or categorical inputs adapted
to a reassociation rather than a visuomotor rotation perturbation. b Loss during
adaptation training for networks with angular inputs with varyingmotor repertoires.
Traces and shaded surfaces, smoothed mean and 95% confidence intervals across
networks of different seeds (n= 10). The dashed line indicates a loss of 0.25 and is

included for easier comparison between the loss in networks with angular or cate-
gorical inputs. c Motor output following adaptation training. d Latent trajectories
during preparation (see Fig. 4a) for one example seed. e–g Same as panels (b–d) but
fornetworkswith categorical inputs. Note thatnetworkswith angular encoded inputs
could not adapt to the perturbation, whereas networks with categorical inputs did
since their structure was congruent with the changes required by the perturbation.
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Fig. 6 | The observed joint influence of motor repertoire and de novo learning
experience extends to amore complex sinusoidal task. a Networks were trained
toproduce ellipseswith up to fourdifferent geometries by generating cosine and sine
waves representing x and y positions, respectively. Networks were given a hold signal
that indicated movement initiation, a continuous sine wave target signal that indi-
cated theamplitudeof the sinewave, andacategorical ‘one-hot-encoded’ cosinewave
target signal. b Networks were trained on repertoires with different numbers of
movements (fromone to four) tomodel de novo learning.Within each repertoire, the
movements could consist of either different sine waves and a constant cosine wave
(‘varied sinewave’), or different cosinewaves and a constant sinewave (‘varied cosine
waves’). Following de novo learning, networks were separately trained to counteract
(1) a sine wave perturbation, (2) a cosine wave perturbation, and (3) a reassociation
perturbation where they had to produce different movements given learned target

cues. The schematic indicates our predictions of what perturbations would be easier
to counteract based on the center-out results. cCosine waves (x position), sine waves
(y position), and resultant elliptical output produced by an example network trained
to produce sinewaves with various amplitudes after de novo learning and each of the
perturbations. d Loss during de novo learning and adaptation to each of the pertur-
bations. Line and shaded surfaces smoothedmeanand95%confidence interval across
networks of different seeds (n = 10 random seeds). Dashed line, loss of 0.2 included
for easier comparisonbetween loss indifferentnetworks. e, fSameaspanels (c,d) but
for networks trained on repertoires with varied cosine waves. For the reassociation
perturbation, 45% of networks trained on either three- or four-movement repertoires
with varied sinewaveswere able to adapt (MSE<0.4), compared to 70% for thosewith
varied cosinewaves.gDecay constants for exponential curvesfitted to the loss curves
in panels (d, f) for the sine and cosine wave perturbations.
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larger cosine wave amplitude, or (3) a ‘reassociation perturbation’
where they had to re-associate target cues to different move-
ments (Fig. 6b).

We could make several predictions based on our previous results
(summarized in Fig. 6b). Regarding the networks that learned varied
sine waves, we first predicted that networks with larger repertoires
would adapt faster to the sine wave perturbation since the continuous
amplitude input encoding of the sine wave is congruent to the con-
tinuous amplitude change required by the perturbation. Second, these
networks would not adapt faster to the cosine wave perturbation since
they have not learned multiple cosine waves and thus do not
have the intermediate states necessary to facilitate adaptation. Third,
these networkswould not adapt well to the reassociation perturbation
since their continuous inputs are incongruent with the categorical
changes required by the perturbation. Regarding the networks that
learned varied cosine waves, we first predicted that they would not
adapt faster to the sine wave perturbation since they have not learned
multiple sine waves. Second, networks with multi-movement reper-
toires would adapt faster to the cosine wave perturbation than those
with single-movement repertoires since they have some structure.
However, largermulti-movement repertoirenetworkswould not adapt
faster since the categorical input encoding of the cosine wave is
incongruent with the continuous amplitude change required by the
cosine wave perturbation. Third, these networks would adapt well to
the reassociation perturbation since their categorical inputs are con-
gruent to the categorical changes required.

The results support all of our predictions (Fig. 6c–g), showing that
our findings on the center-out reaching task generalize to more com-
plicated movement settings. Specifically, different components of a
given movement—here, the x and y oscillatory components—can be
learned using different input cues, and the way in which these move-
ments are learned can lead to contrasting trends in adaptation to dif-
ferent perturbations. Therefore, our observation that the acquired
motor repertoire and the de novo learning process jointly shape the
structure of the neural activity to influence subsequent adaptation
holds for more complex tasks than center-out reaches.

Discussion
Adapting to an external perturbation may require the generation of
new activity patterns whose availability is likely shaped through long-
term motor skill learning. Motor repertoires from different learning
experiences thus provide different initial conditions for adaptive
activity to evolve. Here, we examined how the learned motor reper-
toire and how it is acquired jointly shape the underlying structure in
neural space and consequently impact motor adaptation using RNNs.
We hypothesized that having a larger repertoire of movements could
facilitate adaptation since more activity patterns would be readily
available, but only if this repertoire was learned in a way that was
‘meaningful’ for counteracting the perturbation. Indeed, networks
with larger repertoires could adapt to perturbations more quickly, but
only if the structure of the inputs, the neural space, and the changes
imposed by the perturbationwere all congruent. These results suggest
that adaptation is affected by both the set of existing activity patterns
and the organization of these patterns in neural space, which is
reflective of the initial de novo learning experience.

Previous work showed that, during a carefully designed BCI
adaptation experiment, short-term adaptation could be achieved by
re-associating existing neural activity patterns, such that the overall
set of neural activity patterns remains the same following
adaptation32. Other adaptation studies observed that neural activity
was shifted following motor adaptation4,6. Notably, however, this
shift only occurred under force field perturbation, and not under VR
perturbations4,6, suggesting that our modeling results may fall
under the former reassociation regime. Indeed, all our multi-
movement networks readily had the ability to produce the activity

patterns necessary for adaptation following de novo learning: they
were able to adapt to perturbations during adaptation training even
with frozen recurrent weights (Supplementary Fig. 9e, f), showing
that recurrent weight changes that produce new network dynamics
were not necessary. Within this regime, networks with more struc-
ture in activity space still adapted more easily, suggesting that the
underlying structure determines how easily activity patterns can be
deployed during adaptation. This adds an additional layer of com-
plexity to studies investigating adaptationwithin the existing neural
manifold16,30,37.

Furthermore, we could define a way by which the de novo
learning experience shapes subsequent adaptation by establishing a
relationship between input structure, neural space structure, and
perturbation structure. This relationship lends insight to previous
findings. Work on ‘structural learning’ showed that participants
adapted more easily to novel perturbations that have the same
structure as perturbations from prior experience44,51. They argued
based on behavioral data that knowing this structure helps learning
by facilitating exploration of a previously acquired low-dimensional
‘task-related’ space. Here, we showed that the initial de novo learning
phase creates structure in neural space by organizing the acquired
latent trajectories in a manner reflective of the learning experience,
imposing constraints on the trajectory and even the feasibility of
future learning (Figs. 4–6). Contextual information is another way by
which the learning experience can be shaped52, and generalization in
motor adaptation is highly dependent on the context53. In ourmodel,
different types of contexts were created via different types of inputs,
and these manipulations led to predictable differences in future
learning experiences based on the congruency between the inputs
and the changes required by a specific perturbation (Figs. 4–6). Thus,
our work suggests a potential common neural basis for various
behavioral observations spanning structural learning, generalization
of motor adaptation, and context inference.

We can make several experimental predictions based on our
results. First, while it is experimentally difficult to examine long-term
learning on the timescales we are interested in, wemay be able to test
our predictions in long training sessions that employ repeated
movements. Verstynen and Sabes54 showed that participants had
more varied reach angles towards a given target when a series of
recently performed reaches had more variance. These experience-
dependent changes in variance mirror those we saw in our simula-
tions (Supplementary Fig. 2), where networks that learned more
movements had greater variance and less precision in the motor
output (Fig. 2e). These similarities suggest that we could perhaps use
longer training sessions to study some effects of long-term learning
on short-term adaptation. Thus, our modeling results (Fig. 2e, f)
predict that there would be a trade-off between motor output pre-
cision and robustness to neural noise47 when more movements are
learned through repetition using a paradigm similar to that in the
study of Verstynen and Sabes54.

Second, while there were some differences between multi-
movement networks of different sizes, the greatest differences were
between single and multi-movement networks (Fig. 2). Multi-
movement networks with the same distribution of learned move-
ments had similar ease in adaptation (Fig. 3b, c and Supplementary
Fig. 5d, e), since networks were able to produce activity for inter-
mediate movements within the distribution. Thus, we predict that
participants would adapt more quickly if they learned a larger dis-
tribution of movements, and learning fine-tuned movements within
the distribution would provide smaller benefits (provided that these
were acquired through the same learning process).

Third, the de novo learning experience, which we modeled by
manipulating the structure of the inputs, shaped how the networks
adapted under different perturbations by changing the underlying
structure in neural space (Figs. 4–6). By comparing networks and
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monkeys trained on the center-out reaching task, we saw that the
deviation angles in the monkey neural activity were more similar to
those for networks with angular inputs (Supplementary Fig. 8e).
Classically, the center-out reaching task has been performed by
showing participants the position of the reach target6,55–57. This is
most similar to presenting angular inputs since the cues specify the
angular location of the target. Assuming angular inputs in data from
monkeys engaged in a VR adaptation task, the speed of within-
session adaptation was robustly correlated with the degree of con-
gruency between the structure across the inputs, neural activity
space, and the perturbation, giving further experimental support to
our modeling result that congruency facilitates learning (Supple-
mentary Fig. 8f). To further experimentally examine the potential
impact of the structure of the inputs on learning, categorical inputs
could be used instead by cuing targets with different shapes or colors
rather than the explicit target location. Our results suggest that
learning the center-out task based on these two different types of
cues would lead to analogously different patterns of adaptation
under different kinds of perturbations, such as a VR or the reasso-
ciation perturbation we have studied.

There are several limitations and ways to expand on our work.
To assess how different motor repertoires affect adaptation, we
trained the networks in two stages: de novo learning of multiple
movements followed by adaptation on a single movement. This set-
up makes the networks vulnerable to catastrophic forgetting, since
the networks may forget the other movements that are not being
trained on during adaptation. Training with FORCE learning58 was
especially susceptible to catastrophic forgetting: following adapta-
tion, networks were largely unable to produce output for the other
movements (Supplementary Fig. 6). In contrast, training with sto-
chastic gradient descent, a technique known to replicate various
experimental results in adaptation29,59, was largely able to overcome
catastrophic forgetting (Supplementary Fig. 6) without overwriting
the initial network (Supplementary Fig. 11). Consequently, we deci-
ded to use stochastic gradient descent throughout our simulations
since it was more behaviorally relevant.

By directly relating the network model activity to motor output,
we aimed to model population activity in the motor cortex, which in
primates is the main cortical area that projects to the spinal cord to
cause movement60. While the model has similarities to experimental
recordings in the monkey motor cortex (Supplementary Fig. 8), it has
not been explicitly fitted to neural data61–63. Thus, our model is largely
region-agnostic, and it is still unclear where these neural changes due
to motor learning and adaptationmay occur. Motor learning seems to
be associated with activity changes across cortical regions such as the
premotor cortex5,6,29,64, primarymotor cortex29,65,66, parietal cortex67,68,
aswell asother structures suchas the cerebellum69–71 andperhaps even
basal ganglia72–75. How these different regions interact to affect skill
learning and adaptation is an ongoing area of study, and future work
could use modular and area-specific networks that are constrained by
neural data to tease apart their contributions61–63.

Another potential direction of future research is to extend our
current results on the structure of the latent trajectories in neural
space to an investigation of the ‘dynamical motifs’ underpinning these
trajectories8,76. Since different dynamical motifs arise from learning
different tasks76, differentmotifsmay similarly arise based on different
learning processes. Given that the time-varying latent dynamics med-
iate the planning and execution of movement and exhibit changes
during adaptation6, these dynamicalmotifsmay thenpredict the result
of adaptation to different perturbations.

Future work can also examine more complex motor skills and
learning experiences. Here, we have primarily focused on simple
movements adapted from the center-out reaching task since it
allowed us to compare the motor output and latent dynamics to
experimental data—although we have reproduced our key results in a

more complex task that simulated tracking ellipses with various
geometries (Fig. 6). We can expand on this work to examine more
complex and realistic repertoires that include different behaviors
like grasping and manipulation, along with models that consider arm
kinematics77,78 and dynamics79. Different actions have been shown to
occupy different parts of neural space13,15, so different combinations
of behaviors are likely to require different underlying manifolds,
which would affect subsequent adaptation to perturbations on any
given behavior. In addition, we can examine how learning is affected
by different training processes. Here, we have specified that our
networks undergo de novo learning since they are trained to perform
reaches for the first time, but our results may not be specific to this
situation. Rather, our results may be more indicative of how prior
training affects further learning in general. To probe this further,
future work can examine how networks pretrained on many tasks
learn to perform a new skill, compared to networks that are trained
from scratch on the same new skill or networks that are trained on
different similar skills in sequence.

In conclusion, we have shown that de novomotor learning shapes
subsequent adaptation based on the structure it creates in neural
space. Most dramatically, two sets of networks that have different
neural structures can exhibit opposite trends when adapting to the
same perturbation, even if they know the same set of movements
equally well. The neural structure is defined by the specific de novo
learning process, which can be manipulated by providing cues that
either have or lack a meaningful relationship among them. Further-
more, knowing a larger repertoire of movements often facilitates
adaptation, but only when the changes required by the perturbation
are congruent with the structure of the underlying latent dynamics.
While we have examined the formation of structure in neural space in
the context of motor learning, similar structural constraints may arise
in other systems, shaping not onlymotor but also cognitive processes.

Methods
Reaching task
We trained recurrent neural networks to perform a standard center-
out reach task, which is commonly used in experimental settings to
examine motor control. We modified existing experimental data for
reaches using the task design of ref. 6. In the experiment, a monkey
controlled a cursor on a computer screen using a 2D manipulandum.
The cursor started in the center of a circle with a radius of 8 cm, and
monkeys had to reach one of eight possible targets spaced around
the circle. The monkeys were shown which target to move to at a
target cue, but they had to delay movement until a later go cue. To
understand how existing skill sets affect motor adaptation, we cre-
ated four motor repertoires of different sizes, ranging from one to
four reach movements to one to four targets, respectively. We
adapted the experimental reaches of one monkey, Monkey M, from
ref. 6 to create the target reaches for each movement by rotating the
experimental reaches to different targets that we defined. In our
case, the targets were equally spaced around an arc of the circle.
Unless specified otherwise, the arc spanned from −10° to −50°. Net-
works were trained on one of these four repertoires. By using dif-
ferent numbers of movements in each skill set, we were able to
examine how a network that knows more movements may adapt
differently than a network that knows less. Each trial lasted 4.0 s: the
target and go cues were randomly selected for each trial, with the
target cues being presented between 1.0–2.5 s after the beginning of
the trial, and the go cues between 2.5–3.0 s after the beginning of
the trial.

To examine network performance without trial-to-trial move-
ment variability, which was inherent in experimental reaches, we also
created repertoires with synthetic reaches. These synthetic reaches
had fixed target and go cues based on themean target and go cues in
the experimental data, and the target position profiles of each reach
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was the same across trials. Each synthetic reach lasted 1.0 s and the
position profile was defined by a sigmoid for each time t for the
length of the reach l = 8 cm:

l
1 + e�12t +6

ð1Þ

To assessmotor adaptation, we examined how networks adapted
to a visuomotor rotation (VR), a common perturbation used in
experimental settings. To simulate VR, we rotated the output position
of the network counterclockwise by θr during adaptation trials. We
used rotations with θr = 10°, 30°, or 60°. We also examined how net-
works adapted to visuomotor re-associations where the target cues
and targets are rearranged, such that the network must reach a dif-
ferent known target given a known target cue.

Sinusoidal task
To extend our results to a more complex task, we trained recurrent
neural networks to produce cosine and sine waves representing x and y
positions that trace out ellipses. The task followed a similar trial struc-
ture to that of the delayed reaching task: each trial lasted 4.0 s, and the
target cues were fixed at 800 ms while the go cues were fixed at
1300ms. We created synthetic movements that lasted 2.0 s after the go
cue. Each movement consisted of a triple sine wave and a triple cosine
wave, which traced out three cycles of an ellipse. To understand how
existing repertoires affect motor adaptation, we created two sets of
repertoires of different sizes, ranging from one to four movements
tracing out one to four ellipses, respectively. For the first set of reper-
toires, we varied the amplitude of the sine waves such that different
movements in each repertoire had sine wave amplitudes equally spaced
within a rangeof 1 to7 cm, anda constant cosinewavewith anamplitude
of 1 cm. The single-movement repertoire had a sine wave amplitude of
1 cm. For the second set of repertoires, we varied the amplitude of the
cosine waves instead, while keeping the sine wave amplitude constant.

To assessmotor adaptation, we examined how networks adapted
separately to three different perturbations. First, we asked networks to
adapt to a ‘sine wave perturbation’ on the onemovement shared by all
repertoires (the one with sine and cosine wave amplitudes of 1 cm) by
producing a sine wave with a larger amplitude of 2 cm. Second, we
asked networks to adapt to a ‘cosine wave perturbation’ on the one
sharedmovement by producing a cosine wave with a larger amplitude
of 2 cm. Third, we asked networks to adapt to a reassociation pertur-
bation where the target cues and target movements were rearranged,
such that the network must produce a different movement given a
known target movement cue.

Neural network model
Network architecture. The model dynamics were given by:

τ _xiðtÞ= � xiðtÞ+
XN

j = 1

JijrjðtÞ+
XI

k = 1

BikskðtÞ+ηiðtÞ ð2Þ

where xi is the hidden state of the ith unit and ri is the corresponding
firing rate following tanh activation of xi. The networks had N = 300
units and I inputs. The time constant τwas set to 0.05 s, the integration
time step dt to 0.01 s, and the noise ηwas randomly sampled from the
Gaussian distribution N ð0,0:2Þ for each time step. The initial states
xt=0 were sampled from the uniform distribution Uð�0:1,0:1Þ. The
networks were fully recurrently connected, with the recurrent weights
J initially sampled from the Gaussian distribution N ð0, gffiffiffi

N
p Þ, where

g = 1.2. The time-dependent stimulus inputs s (specified below) were
fed into the network, with input weights B initially sampled from the
uniform distribution Uð�1:0,1:0Þ.

For the networks trained on the reaching task, two types of sus-
tained inputs s were used. For the angular inputs, s was three-

dimensional and consisted of a one-dimensional hold signal and a two-
dimensional target signal (2 cosθtarget, 2 sinθtarget) that specified the
reaching direction θtarget of the target. For the categorical inputs, swas
five-dimensional and consisted of a one-dimensional hold signal and a
four-dimensional one-hot encoded target signal with the same mag-
nitude (e.g., (0, 0, 2, 0)) that did not provide information about the
target’s angular direction. For the networks trained on the sinusoidal
task, one type of sustained input s was used that included both con-
tinuous and categorical encoding of targetmovements. For this task, s
was six-dimensional and consisted of a one-dimensional hold signal, a
one-dimensional sinewave target signal (2A/Amax, where themaximum
amplitude Amax was 7) that specified the amplitude A of the sine wave,
and a four-dimensional one-hot encoded cosine wave target signal
with the same magnitude (e.g., (0,0,2,0)) that specified the cosine
wave target without providing information about its amplitude. For all
types of inputs, the hold signal started at 2 and goes to 0 at the go cue,
and the target signals remained at 0 until the task cue.

The networks were trained to produce 2D outputs p corre-
sponding to x and ypositions ofmotor trajectories, and theywere read
out via the linear mapping:

piðtÞ=
XN

k = 1

WikrkðtÞ ð3Þ

where the output weights W were sampled from the uniform dis-
tribution Uð�1:0,1:0Þ. During VR adaptation trials, p was rotated
counterclockwise according to a perturbation angle θr.

Training the model. For the reaching task, networks were optimized
to generate positions of reach trajectories modified from ref. 6. The
training and testing datasets were created by pooling successful trials
during baseline epochs across all experimental sessions for MonkeyM
(2208 trials: 90% training, 10% test). The experimental data was mod-
ified for each repertoire (see Reaching task), and equal numbers of
trials for each reach direction were included for each repertoire. For
the sinusoidal task, networks were optimized to generate synthetic
sine and cosine waves representing elliptical movements without trial-
to-trial variability for each movement.

Unless otherwise specified, networks had to learn their input
weights B and recurrent weights J while the output weights W
remained fixed. To model motor skill learning, we initially trained
the networks on repertoires with one to four movements, using the
Adam optimizer with an initial learning rate l = 10−4, first moment
estimates decay rate β1 = 0.9, second moment estimates decay rate
β2 = 0.999, and epsilon ϵ = 1e − 8. Then, to model motor adaptation,
we trained the pretrained networks to counteract a perturbation
(VR or reassociation for the reaching task; cosine wave, sine wave,
or reassociation for the sinuoidal task), using stochastic gradient
descent with a fixed learning rate l = 5−3, unless otherwise specified.
We used a faster learning rate during adaptation to model faster
short-term learning compared to long-term skill learning. To assess
how existing repertoires may shape adaptation on a given move-
ment, networks were only trained to counteract the VR, sine wave,
or cosine wave perturbation on the one target that all repertoires
shared (i.e., the −10° reach, or the ellipse consisting of cosine and
sine waves with an amplitude of 1), such that performance could be
compared across networks with different repertoires. Initial train-
ing was implemented with 750 training trials and a batch size B = 64.
For the reaching task, adaptation training was implemented with
either 100 training trials for VR perturbations or 300 training trials
for reassociation perturbations, and a batch size B = 64. For the
sinusoidal task, adaptation training was implemented with either
100 training trials for the cosine and sine wave perturbations or 400
training trials for reassociation perturbations, and a batch size
B = 64. All training configurations were performed on 10 different
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networks initialized from different random seeds. To examine
adaptation under an alternate learning algorithm, we also trained
the networks to counter the VR perturbation during the reaching
task using FORCE learning58 with a learning rate of 100.

The loss L was the mean-squared error between the two-
dimensional output and target positions over each time step t, with
the total number of time stepsT = 400. Thefirst 50 time stepswere not
included to allow network dynamics to relax:

L=
1

2BðT � 50Þ
XB

b= 1

XT

t = 50

X
d = 1,2

ptarget
d ðb,tÞ � poutput

d ðb,tÞ
� �2

: ð4Þ

To produce dynamics that aligned more closely to experimentally
measured neural dynamics38,39, we added L2 regularization terms for
the activity rates and network weights in the overall loss function LR
used for optimization:

LR = L+RW +RR ð5Þ

where

RR =
β

BTN

XB

b = 1

XT

t =0

XN

n= 1

rnðb,tÞ2 ð6Þ

and

RW =αðjj Jjj+ jjBjj+ jjWjjÞ ð7Þ

where β =0.5 and α = 0.001. Note that the loss recorded in the main
text was the loss L before regularization, and it was smoothed with a
backward moving average of five trials. We clipped the gradient norm
at 0.2 before applying the optimization step. While we used the spe-
cific parameters described above for training our neural network
models, we also trained the models with varied parameters and the
trends in our main results remain generally robust to these changes
(Supplementary Fig. 12).

Data analysis
Analyses on theneural activitywereexamined for both thepreparation
and execution epochs of the movement, taken as 500ms before and
1000ms after the go cue, respectively.

To assess how latent dynamics change during motor learning
and adaptation, we examined the neural space of the networks. In
the neural space of a population of n units, each axis corresponds to
the firing rate of a unit, and each point denotes the state of the
neural population at a certain time step. To obtain smooth firing
rates through time, we applied a Gaussian kernel (std = 50ms) to the
activity rates from the networks. We identified a lower m-dimen-
sional neural manifold in the activity space by applying PCA to the
smoothed firing rates of theunits. PCA finds n orthogonal basis
vectors (principal components or PCs) that maximally capture the
variance in the population activity, sorted by their corresponding
eigenvalues. We kept the k-leading PCs, or neural modes, that cap-
tured themajority of the variance: k = 10 capturedmore than 80% of
the variance in our network activity. We projected the original
smoothed firing rates onto the neural modes to get the latent
dynamics of the networks.

To measure the variability in activity and motor output, we
aligned trials by the go cue andmeasured the variance across trials for
the same reach at corresponding time points for each feature (i.e., for
each unit, latent dimension, or output dimension). To compare the
variance in latent dynamics across different neural spaces, we first
normalized the latent dynamics by themedian distances between trial-
averaged time points within the neural space before calculating the
variance. Variance in unit activity and latent dynamics was calculated

during both preparation and movement, while variance in output
position was calculated during movement. Reach angles were calcu-
lated based on the mean angle for the entire reach during movement,
and the variance was calculated across trials. To determine how pat-
terns in variance in the motor output differed from those in the
activity, we examined the variance in unit activity in the output-potent
and output-null subspaces46. Unit activity was directly related to the
motor output through the read-out weights W of the networks. The
output-potent dimensions were then the row space of W, while the
output-null dimensions were the null space of W. We projected the
unit activity onto these dimensions to obtain the activity in the
respective subspaces. For each measure, we calculated either the
median variance across all features and time points (Fig. 2) or the
median total variance summed over all features, across all time points
(Supplementary Fig. 3). Notably, the trends remained the same for the
different variance calculations.

To measure the precision of the latent and motor trajectories, we
calculated the ‘tangling’ in both the latent space (Qx) and output space
(Qp), adapted from the measure specified in ref. 80:

QxðtÞ=maxt0
jj _xt � _xt0 jj2

jjxt � xt 0 jj2 + ϵx
ð8Þ

QpðtÞ=maxt0
jj _pt � _pt0 jj2

jjpt � pt0 jj2 + ϵp
ð9Þ

wherext is the latent activity at time t, _xt is its temporal derivative,pt is
the position at time t, _pt is its temporal derivative, ∣∣ ⋅ ∣∣ is the Euclidean
norm, and ϵx and ϵp are small values equal to 0.1 times the average
squared magnitude of xt and pt, respectively, to prevent division by
zero. Tangling measures how dissimilar future states can arise from
similar current states, so it can be used to examine the precision of
different trajectories. Note that tangling is reported as the 90th-
percentile across all time steps in the main text.

To assess how activity changed during motor adaptation, we
visualized these changes by projecting both the unit activity before
and after adaptation onto the neural modes of the manifold calcu-
lated before adaptation (Fig. 4b, e). We further quantified the
manifold overlap before and after adaptation training as specified in
ref. 31, adapted from ref. 81. To find the manifold overlap between
the manifolds of two network activities A1 and A2, we first calculated
the covariance matrix C1 of A1 and projected it onto its neural
manifold identified through PCA. We then calculated the covariance
matrix C2 of A2 and projected it onto the neural manifold of A1. To
quantify the variance explained by these projections, we divided the
trace of these projections by the trace of the corresponding covar-
iance matrices:

β1 =
TrðV1 C1 V

T
1 Þ

TrðC1Þ
β2 =

TrðV1 C2 V
T
1 Þ

TrðC2Þ
ð10Þ

where V1 are the first ten principal components resulting from PCA on
A1. Here, β1 is the variance in A1 that can be explained by the neural
manifold for A1 while β2 is the variance in A2 that can be explained by
the neural manifold for A1. We then calculate the manifold overlap as
the ratio β2/β1.

Changes in the neural manifold were driven by changes in
synaptic connectivity, so we also measured the relative weight change
dJ for the recurrent weights before (Jbefore) and after (Jafter) adaptation
training:

relative dJ=
Jafter � Jbefore

Jbefore

����
����: ð11Þ
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where ∣ ⋅ ∣ is the absolute value and the division is element-wise. To
examine the direction of these changes in the manifold relative to the
initial shape of the manifold, we defined a metric called the ‘deviation
angle’. First, we defined ‘adjacent movement vectors’ vadj between
corresponding time points of the trial-averaged latent trajectories of
the first movement xm1

and its adjacent movement xm2
(the second

movement) before adaptation:

vadjðtÞ=xm2
ðtÞ � xm1

ðtÞ ð12Þ

These vectors quantified the general shift from one movement to the
next in neural space and approximated the shape of the manifold
between the adjacent movements. Then, we performed a similar
computation for the first movement before (xm1

) and after (~xm1
)

adaptation to get the ‘adaptation vector’ vadp that quantified the
general shift during adaptation:

vadpðtÞ= ~xm1
ðtÞ � xm1

ðtÞ: ð13Þ

Wedefined the ‘deviation angle’ as the anglebetween these two vectors,
which measures how changes in adaptation deviated from the path
afforded by the existing structure in neural space before adaptation.

To examine congruency between the structure of the inputs,
neural space, and the changes required by the perturbation, we
defined congruenceas the representational similarity between any two
structures. For the input structure, we constructed a representational
dissimilarity matrix (RDM)82 by calculating the cosine dissimilarity
between pairs of target signal input vectors associated with each
movement. For the neural space structure, we constructed an RDM by
calculating the distances between the latent trajectories associated
with eachmovement. Specifically, we quantified themedian distanceD
between the trial-averaged latent dynamics x1 and x2 for each pair of
movements over all corresponding time points t:

D=medðjjx1ðtÞ � x2ðtÞjjÞ: ð14Þ

To compare these distances between movements across different
neural spaces, we normalized by the median distances between time
points within each movement, pooled across all movements m:

D̂ =
D

medðjjxmðtÞ � xmðt � 1ÞjjÞ : ð15Þ

We could then measure the congruence between the input and
neural space structures by calculating Pearson’s correlation coefficient
between the upper triangular regions of their respective RDMs. The
structure of the changes required by the perturbation was harder to
define mathematically since the nature of the perturbation can vary
widely. Instead, we described the congruence qualitatively: an angular
perturbation like a VR perturbation is congruent to angular inputs, and
a categorical perturbation like a reassociation perturbation is con-
gruent to categorical inputs.

Experimental comparison
To verify that our networks produced realistic latent dynamics, we
trained an additional set of networks on the original 8-target center-out
reach task from ref. 6 (see Reaching task). The target trajectories for
training and testing were based on reach trajectories during successful
trials pooled from all sessions for Monkey C (see Training the model).
Following training, we compared the simulated activity to experimental
activity recorded from motor cortex during one baseline session for
Monkey C6.We pre-processed the experimental recordings by removing
units with trial-averaged firing rates less than 5Hz and applying a
Gaussian kernel (std = 50ms) to the binned square-root transformed
firings of each unit (bin size = 30ms). We then subtracted the cross-

conditionmean. To compare the latent dynamics (seeData Analysis), we
used Canonical Correlation Analysis (CCA), which finds new directions
in the neural manifold that maximize the pairwise correlations between
two datasets when they are projected on these directions83. Canonical
correlation values range from0 to 1, with 1 being a complete correlation.

To verify the ‘deviation angle’ metric, we trained the networks to
counteract a 30° VR perturbation on all eight targets and compared the
deviation angles to those found in monkeys performing the same
adaptation (3 sessions for Monkey C, 3 sessions for Monkey M, 10 ses-
sions forMonkeyM2;MonkeyM andM2 are the samemonkey, but they
are treated separately since the recordings are from different hemi-
spheres in motor cortex and were collected while the monkey per-
formed the task with the contralateral arm over two separate sets of
experiments). Deviation angles were found for the latent dynamics
corresponding to reaches for all 8 targets. We also calculated deviation
angles for shuffled targets and time points as a control for the networks.

To examine congruency between the structure of the inputs and
neural space, we assumed that monkeys were given angular inputs
during the center-out reach task since they were shown the location of
the target centered around a circle. We calculated the congruency
between the structure of angular inputs and the structure of their neural
spaces. To compare congruency with the extent of adaptation, we cal-
culated error curves for each session based on the angular error of
monkey reaches in the first 150ms and calculated decay constants for
exponential curves fitted to these error curves, as we did for the loss
curves during training for the networks. Note that sessions where the
monkeys did not adapt sufficiently (i.e., sessions where exponential
curves failed to fit the error curves) were excluded from all analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
We did not acquire new monkey datasets for experimental compar-
ison, and instead relied on existing datasets from ref. 6. Most of the
monkey datasets used have been previously analyzed6,42,84,85 andmade
publicly available on Dryad (https://doi.org/10.5061/dryad.
xd2547dkt). The remaining datasets will be made available on request.

Code availability
All analyseswere implementedusing custompythoncode (Python 3.6)
and open-source software. All the figures are reproducible by running
Jupyter notebooks. Code to reproduce all the results is openly avail-
able at https://github.com/JoannaChang/de_novo_learning_structure.
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