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Identifying regions of importance in wall-
bounded turbulence through explainable
deep learning

Andrés Cremades 1,2 , Sergio Hoyas 3, Rahul Deshpande 4,
Pedro Quintero2, Martin Lellep5, Will Junghoon Lee4, Jason P. Monty4,
NicholasHutchins4,Moritz Linkmann 6, IvanMarusic 4&RicardoVinuesa 1

Despite its great scientific and technological importance, wall-bounded tur-
bulence is an unresolved problem in classical physics that requires new per-
spectives to be tackled. One of the key strategies has been to study
interactions among the energy-containing coherent structures in the flow.
Such interactions are explored in this study using an explainable deep-learning
method. The instantaneous velocity field obtained from a turbulent channel
flow simulation is used to predict the velocity field in time through a U-net
architecture. Based on the predicted flow, we assess the importance of each
structure for this prediction using the game-theoretic algorithm of SHapley
Additive exPlanations (SHAP). This work provides results in agreement with
previous observations in the literature and extends them by revealing that the
most important structures in the flow are not necessarily the ones with the
highest contribution to theReynolds shear stress.We also apply themethod to
an experimental database, where we can identify structures based on their
importance score. This framework has the potential to shed light on numerous
fundamental phenomena of wall-bounded turbulence, including novel stra-
tegies for flow control.

Approximately 140 years ago, Osborne Reynolds published the first
and most influential scientific article on turbulent flows1. One of the
main conclusions of this study was the fact that the Navier–Stokes
equations, which describe the behavior of any flow, can only be solved
analytically for elementary flow configurations. For nearly a century,
the study of turbulence has relied on experimental measurements2–4

and theoretical considerations5. Almost all flows of practical interest
are turbulent, except those relevant to lubrication6. In fact, one of the
most crucial challenges nowadays, namely the current climate emer-
gency, is closely connected with turbulence and a better under-
standing of the dynamics of turbulent flows is necessary to reduce

greenhouse-gas emissions. Approximately 30% of the energy con-
sumption worldwide is used for transportation7, which, due to the
increase in drag caused by turbulent flow, is a problem very closely
connected with wall-bounded turbulence. Furthermore, turbulence is
critical in combustion processes8,9 and aerodynamics10,11. It is also
essential in energy generation12,13 or urban pollution14,15, to name just a
few. Indeed, some estimations indicate that 15% of the energy con-
sumed worldwide is spent near the boundaries of vehicles and is
therefore related to turbulent effects16.

The main challenge is the fact that turbulence is a multi-scale
phenomenon in both time and space. The energy is mainly transferred
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from the largest to the smallest scales of the flow, where it is
dissipated5, although there is also an energy path in the opposite
direction17. There are several orders of magnitude between these
scales for anyflow in engineering, and this scale separation increases at
progressively higher Reynolds numbers. In the presence of a wall, this
energy cascade is even more complicated due to the energy and
momentum transfer from the wall to the outer flow18. This multi-scale
behavior implies that integrating numerically the Navier–Stokes
equations requires fine computationalmeshes, leading to a prohibitive
computational effort for practical applications.

In the 1980s, supercomputers became powerful enough to inte-
grate these equations numerically in some canonical geometries. Kim
et al.19 simulated the simplest complete example of a wall-bounded
flow, i.e., a turbulent channel. They performed a direct numerical
simulation (DNS), where all the spatial and temporal scales of the flow
are resolved. Note that in DNS there are no additional hypotheses
beyond the fact that the flow is governed by the Navier–Stokes equa-
tions. This numerical technique provides a complete flow character-
ization, and almost any imaginable quantity can be computed. Thus,
DNS can provide a large amount of high-quality data, and simulations
in the Petabyte scale arebecomingprogressivelymorecommon20. This
enables fully characterizing the kinematics of wall-bounded turbulent
flows. However, describing the dynamics of these flows is still an open
challenge. It is then essential to develop novel methods to solve the
questions posed 140 years ago.

One of the most successful ideas for studying turbulent flows
focuses on the relationship among the different scales and coherent
structures of the flow17,18. Note that different definitions of coherent
structure have been proposed in the literature. The first examples of
coherent structure are the streamwise streaks3 and theReynolds-stress
events21, which were first observed experimentally. The latter, also
called Q events, are the object of our work. Coherent Q structures are
flow regions associatedwithmomentum transfer and turbulent kinetic
energy production. Two particular Q events defined below, ejections
and sweeps, are the main contributors to the exchange of streamwise
momentum. This process is the main energy source for all the struc-
tures present in turbulent flows21,22. Note that the Q events are also
responsible for the generation of turbulent drag. Even with extensive
studies on the contribution of the various coherent structures to the
dynamics of turbulent flows, a clear understanding of their actual role
still needs to be provided18.

This study proposes a technique for the study of wall-bounded
turbulence. We have developed a methodology based on explainable
artificial intelligence (XAI) to gain a more profound knowledge of the
flow physics and to evaluate the contributions of the Q events to flow-
field prediction. Themethodology is basedonaparticular type of deep
convolutional neural network (CNN)23, namely the U-net24, and the
Shapley additive explanation (SHAP) values25–27. CNNs can effectively
extract the spatial information in the flow data28, both in two and three
dimensions. The SHAP algorithm is a game-theoretic method that
calculates the importance of each input feature on the U-net predic-
tion. SHAP has been shown to correctly identify key aspects of the
near-wall cycle that sustain turbulence close to onset29. Thus, themain
novelty of this work is the explainability of fully developed turbulence
through artificial intelligence. We calculate the relative importance of
each Q event for the U-net prediction through SHAP. In doing so, we
identify, in a purely data-drivenmethod (without any hypothesis about
the physics of the flow), relevant physical processes governing the
dynamics of wall-bounded turbulence.

To accomplish this objective, we will first show how U-nets can
predict the evolution of turbulent channel flow, extending our earlier
work30. We start with a database of 6000 instantaneous realizations
obtained from turbulent channel flow simulations, see the “Methods”
section for additional details on the data generation. For every field,
the domain is segmented into Q events (see the “Results” section), and

eachoneof these structures is considered an input feature to the SHAP
algorithm. SHAP ranks the importance of each structure for predicting
the following flow field, as shown schematically in Fig. 1. This workflow
consists of three main stages: prediction of the flow through a U-net,
determination of the structure evolution (advance a time step in the
simulation), and quantification of the importance of each coherent
turbulent structure using SHAP values (and SHAP values per unit of
volume) comparing the predicted solution with the simulated flow
field in the next time step. By analyzing the characteristics of the
highest-ranked structures, we can shed light on the dynamics of wall-
bounded turbulence, with direct implications on the questions
described above. We find coherent structures representing ejections,
where flow regions with low streamwise velocity move from the near-
wall towards the outer region; and sweeps,where the flow regionswith
high streamwise velocitymove from the outer region towards the wall.
Our study confirms and extends the results obtained by other
authors18,31, introducing the usage of XAI to define an objective metric
to identify the most important coherent structures in the flow. This is
not a new question in the study of turbulence: Encinar and Jiménez32

studied homogeneous isotropic turbulence by introducing perturba-
tions in the flow and integrating numerically the governing equations
to assess their evolution in time. By doing so, they could assess
the importance of various types of perturbations, concluding that the
strain-dominated vortex clusters are themost important regions of the
flow. Their method relies on actively modifying the flow through
the introduction of the perturbations and re-simulating it using DNS.
An alternative approach to answer this question was proposed by
Lozano-Durán et al.33,34, who utilize information theory to identify the
regions of the flowwith the highest impact on future flow states. Their
method relies on time series (which can be obtained for instance via
modal decomposition) and analyzes the error of one variable when
information fromanother one is removed. Thismethoddoes not affect
the original flow, therefore it is non-intrusive and relies on large
amounts of temporal data.The approachadopted in thiswork relies on
deep learning, and is intrusive on the surrogatemodel, rather than the
original governing equations. The advantage of the present approach
is the fact that it can provide a good surrogate of the governing
equations even in environments where full access to DNS data is not
possible, i.e., in experiments. This enables assessing the most impor-
tant regions of the flow at higher Reynolds numbers, where there is a
broader hierarchy of dynamically significant scales35, in environments
where less data is available. The importance of identifying the most
important regions of theflow ismanifested e.g. inflowprediction28 and
flow control36.

Results
The geometry of the turbulent channel flow comprises two parallel
planes at a distance of 2h, and a pressure gradient drives the flow in
the streamwise direction. The spatial coordinates are x, y, and z in the
streamwise, wall-normal, and spanwise directions, respectively. The
length and width of the channel are Lx = 2πh, and Lz =πh, with
streamwise and spanwise periodicity. This computational box is large
enough to adequately represent the one-point statistics of the flow37,38.

The velocity vector isU(x, y, z, t) = (U, V,W), where t denotes time.
As the flow is fully developed, its statistical information only depends
on y6. Statistically-averaged quantities in x, z, and t are denoted by an
overbar, whereas fluctuating quantities are denoted by lowercase let-
ters, i.e., U =U + u. Primes are reserved for root-mean-squared (rms)
quantities: u0 =

ffiffiffiffiffi
u2

p
, which constitute a measure of the standard

deviation from the mean flow.
The simulation was carried out at a friction Reynolds number

Reτ =uτh=ν = 125. Note that ν is the fluid kinematic viscosity and
uτ =

ffiffiffiffiffiffiffiffiffiffiffi
τw=ρ

p
is the friction velocity (τw is the wall-shear stress and ρ the

fluid density)6, while Reτ is the main control parameter. The value of
Reτ attainable in numerical simulations has been increasing steadily in
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the last 35 years due to the advances in computational power and
numerical methods19,20,39–44. Quantities nondimensionalized with the
viscous scales uτ and ν are denoted with a + superscript. Finally, as the
channel is statistically symmetric, the upper half-channel statistics are
projected symmetrically onto the coordinates of the lower half.

TheQevents are coherent regions of instantaneous highReynolds
stress, defined by:

juðx,y,z,tÞ v ðx,y,z,tÞj>Hu0ðyÞv0ðyÞ: ð1Þ

In this equation, H is the so-called hyperbolic hole, set to a value of
1.7531. Intuitively, Eq. (1) identifies the region where the instantaneous
value of the Reynolds stress (the left-hand-side) is considerably larger
than the product of the standard deviations of u and v. Q events
identify regions that have statistically large magnitudes of Reynolds
stress. Based on the classical quadrant analysis21,31, four types of events
can be defined: outward interactions (u > 0, v >0), structures with a
high streamwise velocity thatmove from thewall to the bulk; ejections
(u <0, v >0), structures with a low streamwise velocity which move
from the wall to the bulk; inward interactions (u <0, v <0), structures
with low streamwise velocity moving from the bulk to the wall; and
sweeps (u > 0, v <0), structures with high streamwise velocity moving
from the bulk to the wall, see Figs. 1 and 2.

Prediction of the velocity field
As discussed in the “Methods” section, a U-net is trained to predict the
intantaneous velocity field 5 viscous times into the future, including
the three velocity-fluctuation components. The predictive capabilities
of the U-net are assessed through the test database, which was not
seen by the neural network during training, and we obtain a relative
error of 2% when predicting the three velocity-fluctuation compo-
nents. The quality of the prediction can beobserved in Fig. 3, wherewe
show a slice of the instantaneous streamwise velocity fluctuation at

y+ = 12 (on both walls) and compare it with the U-net prediction. The
results show that theU-net architecture constitutes a valid surrogate of
the originalflow,with a low relative error. Also, note that the employed
resolution is sufficient in this study29.

Explainability of the U-net predictions
The U-net is used for calculating the contribution, based on the
SHAP values25,45,46, of the different turbulent structures to the pre-
diction. A deeper explanation of how the SHAP values are used for
assessing the importance of each Q event is discussed in the
“Methods” section. The total importance of each typology of Q
event, Φe, is calculated by summing up the value of every structure
belonging to this class of event, ϕe

i , where i indicates a single
coherent structure. The total contribution of all events, i.e., the
summation of all the SHAP values, is denoted byΦT. Particularizing
to a single class e (ejections, sweeps, outward or inward interac-
tions), we can define the percentual importance of this class as Φe/
ΦT. When interpreting SHAP values, the larger its absolute value,
the more critical the structure is to reconstruct the field. In the
context of this study, we will use the term importance to refer to
this impact and we will represent the absolute values of the SHAP
scores. The quantification of ϕe

i for every structure can be used to
evaluate their contribution to the turbulent flow, and this magni-
tude may be evaluated per unit volume. The percentual importance
per unit of volume is defined as:

Φv
e =

XIe
i = 1

ϕi

V +
i

� �e

,Φv
T =

X4
e= 1

Φv
e, ð2Þ

where Ie is the number of structures of type e and ϕi=V
+
i

� �e
is the SHAP

value per unit of volume of the structures type e. To avoid spurious
results, we filtered out all volumes lower than V+ = 30331, which corre-
sponds to 0.77% of the total volume of the channel.

Fig. 1 | Conceptual map of the workflow employed in this study. (Top-left)
Instantaneous Reynolds stress (Q) events identified in a turbulent channel. Four
different kinds of structures exist based on the quadrant analysis37: outward
interactions (purple), ejections (blue), inward interactions (green), and sweeps
(yellow). (Top-right) Total contribution,Φe/ΦT, (left column) and total contribution
per unit volume,Φv

e=Φ
v
T , (right column) of each event type to the U-net prediction.

Their definition and implications are discussed in the “Results” section. (Bottom)
Workflow comprising three steps: 1 A U-net is used to predict the next instanta-
neous flow field (time ti+1) based on the current one (ti); 2 The structures evolve, so
some may dissipate in the next field (yellow), others may be convected (rest of

colors), and some may even merge into larger ones (not shown); 3 Calculation of
the contribution of each structure (gray shade) to the prediction of the next field.
The error on the prediction of the flow field of the U-net in ti with respect to the
simulated flow in ti+1 is used to determine the importance of every single structure.
In this way, it is possible to rank the various structures in terms of their relative
importance to predict the next instantaneous field. The importance of each
structure is obtained using the Shappley additive explanation (SHAP) values. The
workflow is performed on the full three-dimensional data but shown on a vertical
slice of the turbulent channel here for simplicity.

Article https://doi.org/10.1038/s41467-024-47954-6

Nature Communications |         (2024) 15:3864 3



In Fig. 2 we can see an example of the flow and the relative
importance of each structure. A wide variety of structures are present
in the flow (top row, subfigures A). Turbulence is transported in self-
contained bursts composed of sweep/ejection pairs, which generate
streaks as a result18,31,47. This idea, which was previously proposed by
Wallace et al.22 and Lu andWillmarth21, was further analyzedby Lozano-
Durán et al.31 using probability density functions of the intense
Reynolds-stress structures. Using ϕe

i , we can quantitatively measure
the importance of every single structure. Complementing this, we can

quantify the importance of every Q class. The total SHAP is presented
in the top-right bar plot of Fig. 1. In absolute terms, ejections are the
most important events, as they represent 75% of the total SHAP score.
They are followed by sweeps, with 22%. Inward and outward interac-
tions account for the rest, as expected18,48. To put these percentages in
perspective, ~60% of the total number of structures in a turbulent
channel are either sweeps or ejections, but only 25% of them are
attached to thewall18. The SHAP analysis associates the total number of
sweeps and ejections with 97% of the total SHAP, supporting the idea

Fig. 2 | Instantaneous visualization of the turbulent structures. This figure
shows (views A) the type of turbulent structure, (views B) the SHAP (Shappley
additive explanation) values (∣ϕi∣), and (views C) the SHAP values divided by the
volume (∣ϕi/V+∣) of the corresponding structures. The three-dimensional perspec-
tive is presented in images A3, B3, and C3. The side view of the turbulent channel
(left) highlights the more influential structures (views A2 and B2). The most

important structures per unit of volume are highlighted in views A1 and C1. Note
that the highest SHAP values are obtained for large wall-attached ejections, while
themoderate-size wall-attached ejections and sweeps exhibit the highest influence
per unit of volume. The dashed line marks y+ = 20, which was used in previous
studies31 to separate wall-attached and wall-detached structures. The visualization
is presented for half of the channel in all the subfigures.

Fig. 3 | Comparison of ground truth and prediction for streamwise velocity
fluctuations.We show a representative horizontal slice, being the streamwise and
spanwise directions represented by x+ and z+, at a wall-normal distance y+ = 12 for a
single instantaneous field, where left and right columns represent the lower and

upper channel walls. (Top) simulated u velocity field, (middle) predicted velocity
field, and (bottom) relative error between the two previous fields. The subscripts s
and p correspond to the fields in the reference simulation and the prediction,
respectively.
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that the momentum transport relies on the self-contained bursts or
ejection/sweep pairs. Moreover, the summation of the wall-attached
sweeps and ejections corresponds to a volumeof ~6.9%of the total and
a contribution of around 37.3% of the Reynolds shear stress profile.
These numbers are similar, although lower than the ones reported by
Lozano-Durán et al.31, 8% and 60%, respectively, a fact that may be
explained by the Reynolds number considered here, which is an order
of magnitude lower than those in ref. 31. For example, Deshpande and
Marusic49 analyzed experimental datasets across a decade of Reτ and
found that the relative contribution from sweeps to the total Reynolds
shear stresses increases at a much faster rate than from ejections with
increasing Reynolds number. Note that, while in the work by Lozano-
Durán et al.31 themetric used to assess the importance of the various Q
events is their respective contribution to the Reynolds shear-stress
profile, in this study we consider the SHAP value instead. Interestingly,
based on the SHAPmetric the importance ofwall-attached sweeps and
ejections is 95.7% despite their low combined volume (19.1% of the
total), a fact that suggests that it may be a robust and objective metric
to evaluate the importanceof various coherent structures. As shown in
Fig. 1, ejections are the largest structures. The size of ejections can also
be appreciated in the slices (A2) and (B2) of Fig. 2. Using the SHAP per
unit volume defined in Eq. (2), the contribution of each type of struc-
ture is modified, and sweeps (44%) become the most influential
structures per unit volume, while ejections (42%) are the second most
important ones. Due to their small volume, the inward and outward
interactions have a larger impact than in absolute terms, with ~14% of
the total SHAP score. However, this is still small compared with the
impacts of ejections and sweeps.

Two different families of structures are observed50: wall attached,
in which the lowest point is located at y+ < 20 (Fig. 2A2), and wall
detached, in which the lowest point is located at y+≥ 20 (Fig. 2, small
structures in A1). As stated by Lozano-Durán et al.31 and Jiménez18, the
most important structures are the large ejections attached to the wall
as they transport most of the Reynolds stress. To further analyze this
situation, the SHAP value of the structures has been represented as a
function of their volume, see Fig. 4 (left). Wall-attached ejections are
confirmed as the most important structures, and sweeps have an
undoubtedly smaller value. This asymmetry between sweeps and
ejections has been known since the work of Nakagawa and Nezu51 and
has also been discussed by many authors, see ref. 18. Lozano-Durán
et al.31 estimated that the Reynolds stress associatedwith the sweeps is
weaker than that of the ejections. In Fig. 4 it is shown that the wall-
attached ejections are also the most influential structures per unit
volume, a conclusion in agreement with the work of Jiménez47. Note
that wall-attached structures are associated with energy production

while the wall-detached ones are related to dissipation, and the work
by Jiménez47 focused on the former. However, this figure evidences the
presenceof importantwall-detached ejections per unit of volume. This
can be visualized in Fig. 2A1, where the most influential structures per
volume are shown with solid colors, and in Fig. 4 (right). Additionally,
note the presence of high-importance-per-volume inward interactions.
These structures are of reduced volume and carry a low Reynolds-
stress magnitude. It is important to note that the relevance of these
small structures was not identified by the traditional methodologies
focused on the contribution to the Reynolds stress18,31. Finally, note
that the large ejections located along the streamwise direction are not
the most important per unit of volume, being the moderate-size wall-
attached ejections, small-size ejections, and some inward interactions
the most relevant, see Fig. 2C1 and Fig. 4 (right).

Asmentioned above, in this workwe use the SHAP score to assess
the importance of the various Q events in the flow, as opposed to
calculating their contribution to the total Reynolds shear-stress profile
uvtot as previously done in the literature52. Here we study the differ-
ences between both methods by computing the total Reynolds stress
associated with each structure uve, defined as:

uve =
Z
e
u ðx,y,zÞ v ðx,y,zÞdV , ð3Þ

where the integration is done for every structure e and V is the volume
of the structure. Without taking into account the volume, see Fig. 5
(left), there exists a clear correlation between uve=uvtot and the SHAP
values. The larger a structure is, themoreReynolds stress the structure
carries and the larger its SHAP is. However, when scaling the SHAP and
uve=uvtot distributions by the volume, the results are very different as
shown in Fig. 5 (right): the correlation between these two quantities
essentially disappears. Most of the structures are located in region A,
which exhibits a broad range of SHAP values for the sameuve=uvtot per
unit volume. Interestingly, the most important structures (located in
region C) are not necessarily the ones with the maximum Reynolds
stress per volume (found in region B). Note that the structureswith the
maximum specific shear stress are of low volume, while the large
structures are associated with a medium specific shear stress. This
illustrates the fact that the SHAP value is an objective quantity to
measure the importance of the various coherent structures, regardless
of their physical connection with the Reynolds shear stress. In fact, the
SHAP score can effectively detect relatively small structures with the
highest impact on the momentum transport per unit volume.

We further analyze the characteristics of the coherent structures
related to their SHAP values in Supplementary Fig. 3, where we study

Fig. 4 | Magnitude of the SHAP (Shappley additive explanation) values, ∣ϕi∣
(left) and SHAP values per unit of volume, ∣ϕi∣/V+ (right) of the structures for
different turbulent events as a function of their volume V+, expressed in
inner units. The SHAP values determine the importance of the various turbulent
structures, i.e., themost relevant structures exhibit a highermagnitudeof the SHAP
value.High-volumeejections are themost important structures for the predictions,

while wall-detached structures, mainly medium-size ejections, exhibit a high
importance per volume. These structures are often associated with a low Reynolds
stress and therefore their importance is typically not identified by the methods
based on contribution to the Reynolds-stress profile. Note that the distinction
between wall-attached and wall-detached structures is presented in the Supple-
mentary Fig. 1.
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the geometrical properties of the most important structures. Our
results show that the streamwise-elongated wall-attached ejections,
which satisfy 3 <Δx/Δy < 6, exhibit the highest importance for the
predictions. Note that Δx and Δy are the streamwise and wall-normal
lengths of the box circumscribing the structure. The second most
relevant structures are streamwise-elongated wall-attached sweeps.

To summarize, the explainable AI methodology provides an
objective measure of importance for the various coherent structures
identified in the channel. Leveraging the potential of this method, we
find that the low-volume wall-attached ejections are the most influ-
ential ones per unit volume, followed by low-volume wall-detached
ejections and some outlier low-volume inward and outward
interactions.

Application to an experimental dataset at higher
Reynolds number
As mentioned in the Introduction, one of the advantages of this fra-
mework is the fact that it can be applied to environments where not so
much data is available but the hierarchy of energy-containing scales is
broader, for instance in the context of experiments. This is a crucial
point, because the structures identified as most important in the DNS
at lower Reynolds numbermay not be the same as themost important
ones in a high Reynolds-number experiment, and also it might not be
possible tomeasure themwith sufficient fidelity in a real experimental
setup. Therefore, we applied the SHAP framework to a real experi-
mental database obtained by Lee et al.53. In this database, a turbulent
boundary layer develops on a flat plate which is towed through awater
tank, and measurements are carried out on a two-dimensional (2D)
vertical plane using time-resolved particle-image velocimetry (PIV)54. A

total of 5978 2D instantaneous flow fields of u and v with a spacing
Δt +f = 1:5 are analyzed, at a friction Reynolds number of Reτ = 1377.
Note that although this Reynolds number is within the reach of what is
possible with DNS, we want to illustrate the differences observed at
various Reynolds numbers and using datasets with limited data avail-
ability (i.e., in experiments). We train a U-net similar to that described
in the “Methods” section but adapted to 2D data, and we obtain rela-
tive errors of around 2% in u and v, which again leads to a very good
representation of the original flow. We conduct a percolation analysis
leading to a value of H =0.54 maximizing the number of structures,
which differs from the value used in the DNS due to the 2D nature of
the identified structures.

Computing the SHAP values leads to a distribution similar to that
of Fig. 1, although with a somewhat larger importance of sweep events
compared with ejections (which are still the most important ones).
This increase in the importance of sweeps at higher Re has also been
reported in the literature49. In Fig. 6 (left) we show the magnitude of
the SHAP values from all the identified structures as a function of the
inner-scaled structure surface S+, which shows a correlation between
the structures with the highest SHAP and structure surface. Note that,
since the experimental data does not contain well-resolved data below
y+≃ 40, we do not differentiate between wall-attached and detached
structures, but the trend is consistentwith that of the simulations, with
the large ejections being themost important ones. In fact,when scaling
the SHAP value by the structure surface, as shown in Fig. 6 (right), we
obtain essentially the same behavior as that identified in the DNS, with
the largest structures reducing their SHAP per unit surface, and the
medium-size ejections (and some sweeps) having the highest impor-
tance per unit surface. Also in the experimental case, we identify some

Fig. 6 | Magnitude of the SHAP (Shappley additive explanation) values, ∣ϕi∣
(left) and SHAP values per unit of surface, ∣ϕi/S

+∣ (right) of the structures in the
experimental dataset53 as a function of their surface S+, expressed in

inner units.Note the similarity with the numerical results in Fig. 4, where the larger
presence of sweeps is due to the higher Reynolds number.

Fig. 5 |Magnitude of the SHAP (Shappley additive explanation) values, ∣ϕi∣, as a
function of the fractional contribution to the total Reynolds shear stress,
uve=ðuvtotÞ (left) and same quantities scaled with the structure volume, V+

(right). The left figure shows a clear relationship between the SHAP values and the
contribution to the Reynolds stress; this correlation is connectedwith the structure
size. The right panel shows some differences since the highest SHAP values are
obtained for structures, which do not have the highest fractional contribution to

the total Reynolds shear stress. In this panel, we highlight different regions: region
A (yellow) is a band containing most of the structures, region B (purple) contains
the structures with the highest fractional contribution to the total Reynolds shear
stress, and region C (blue) contains the structures with the highest SHAP per
volume. Note that the distinction between wall-attached and wall-detached struc-
tures is presented in the Supplementary Fig. 2.
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small inward/outward interactions that become very important when
scaled with their surface. In addition, similarly to the computational
results, the geometrical characteristics of the Reynolds stress struc-
tures of the experimentalfloware analyzed in Supplementary Fig. 4. As
in theprevious case, those structures exhibiting aspect ratiosΔx/Δy ≈ 3
exhibit the highest relevancy.

The comparison between SHAP values and contribution to the
Reynolds shear stress is also performed for the experimental data, and
is shown in Fig. 7. In Fig. 7 (left) we show that in the experiment there is
also a good correlation between themagnitude of the SHAP value and
the contribution to the Reynolds shear stress. Interestingly, Fig. 7
(right), where we divide both by the structure surface, also shows the 3
regions detected in theDNSdata. In regionA, there is a broadspreadof
Reynolds shear stress contributions for the sameSHAP value; in region
B we identify the structures with the highest Reynolds shear stress,
whichare not necessarily theoneswith the highest SHAP; andfinally, in
region Cwe find the structures with the highest SHAP per unit surface,
which again exhibit a quite broad range of values of theReynolds shear
stress. Note that themean spanwise size of the structures in the DNS is
about 11.6 viscous units; thus, if one would calculate a surrogate of the
structure volume in the experiment using this value, a good qualitative
agreement between Figs. 7 (right) and 5 (right) would be obtained,
which is reassuring. Thisfigure shows, also for an experimental dataset
at a higher Reynolds number, that the present XAI framework can
identify the most important structures in the flow in a more objective
way than the calculation of their contribution to the Reynolds shear
stress, a fact that can have important implications in experimental
campaigns at very high Reynolds numbers beyond the reach of DNS.

To further illustrate the potential of the present methodology to
identify regions of importance of the flow, we carry out an additional

SHAP analysis on the experimental dataset, although this time the
input features are not the Q events, but rather each individual point of
the measured fields. Doing so, instead of classifying the Q events by
importance we effectively define structures based on their SHAP
values and assess how different they are from the Q events. The
increased number of input features motivated the usage of a slightly
different SHAP algorithm, namely gradient SHAP25, which is compu-
tationally more efficient. The main difference with respect to the
kernel-SHAP technique discussed in the “Methods” section is the fact
that it yields different SHAP values for each of the velocity-fluctuation
components, i.e., u and v, whichwewill denote as qu and qv. In order to
define the 2D structures b ased on the SHAP criterion, we consider the
following equation:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2
uðx,y,tÞ+q2

vðx,y,tÞ
q

>Hq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q02
u ðx,yÞ+q02v ðx,yÞ

q
, ð4Þ

where q0
u and q0

v are the rms of the SHAP values corresponding to the u
and vfluctuations calculated based on thewhole experimental dataset.
Note that here we use the norm of the SHAP score to account for the
contributions in both directions. A percolation analysis is carried out
on Eq. (4), revealing that the value Hq =0.55 maximizes the number of
identified coherent structures. A comparison between the structures
identified bymeans of the SHAPmethod and theQ events for a sample
instantaneous snapshot is shown in Fig. 8. This figure suggests that,
despite the fact that both types of structures share some similarities,
they are indeed different, a result in agreement with the previous
discussions (namely that the most important structures are not
necessarily the ones with the highest contribution to the Reynolds
shear stress). In fact, analyzing the overlap between both types of
structures for the entire database, we obtain that they only overlap by

Fig. 7 |Magnitude of the SHAP (Shappley additive explanation) values, ∣ϕi∣, as a
function of the fractional contribution to the total Reynolds shear stress
uve=ðuvtotÞ (left) and same quantities scaled with the structure surface, S+

(right) in the experimental dataset53. In the right panel, we highlight different
regions: region A (yellow) is a band containing most of the structures, region B

(purple) contains the structureswith the highest fractional contribution to the total
Reynolds shear stress, and region C (blue) contains the structures with the highest
SHAP per volume. Note the similarity with the numerical results in Fig. 5, where the
larger presence of sweeps is due to the higher Reynolds number.

Fig. 8 | Instantaneous flow field from the experimental dataset53, showing the
difference between Q events and structures identified by means of SHAP
(Shappley additive explanation). In thisfigure, the green color denotes structures
identifiedbymeans of the SHAPmethod,whereas the black contours indicate theQ
events, both identified in terms of their corresponding criteria applied to each

point in the domain and percolation analysis. The difference between both types of
structures is around 30%, measured as the fraction of points belonging to Q events
and not to SHAP structures and vice versa. The figure represents the experimental
flow field in the streamwise x+ and wall-normal y+ directions.
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around 70%, and therefore there are important differences between
both types of structures which will be analyzed in further detail in
future work.

Discussion
This article uses XAI to quantify the importance of the various types of
intense Reynolds-stress structures. Ejections and sweeps are shown to
be the most relevant structures for fully developed turbulence in a
channel. A similar conclusion was reported by Lozano-Durán et al.31 by
considering the contribution of the Q events to the Reynolds shear
stress profile as the metric indicating structure importance. However,
when studying the importanceof the variousQevents per unit volume,
we find that the structures with the largest contribution to the Rey-
nolds shear stress are not the ones with the largest importance score.
The SHAP value considered here relies on the contribution of the
structures to predict an instantaneous flow field several viscous units
in the future, a fact that leads to a more objective assessment of
structure importance. The structures were first extracted from the
simulation of a turbulent channel and used to segment the computa-
tional domain. Then, their importance on the flow was calculated by
measuring their contribution to the U-net prediction. An experimental
dataset consisting of time-resolved 2D PIV measurements was also
used to test the present framework.

Ejections and sweeps are highly important in generating turbulent
self-contained bursts18,47 and are associated with turbulence produc-
tion. The higher-volume structures are the most influential when
assessing the global prediction, and they correspond to wall-attached
ejections extending throughout the channel, transporting a substantial
fraction of the total Reynolds stress37. These ejections exhibit the lar-
gest modulus of the SHAP value, meaning that their presence is
essential for the correct prediction by the U-net. However, different
trends are obtained when analyzing structure influence relative to the
volume. In this case, themost influential structures per unit volumeare
relatively smaller wall-attached ejections, although this methodology
evidences the local importance of small-size wall-detached structures
as well. In low-Reynolds-number flows, these structures are mainly
ejections, although some inward interactions have shown local
importance; the relative importance of sweeps is found to increase at
higher Reynolds number, which is consistent with the trends noted in
previous experimental observations49. These results support the idea
of using SHAP values for analyzing turbulent structures, thus enabling
the extraction of deeper knowledge on the turbulent flow.

Relative to the shape of the structures, the most influential
structures per unit volume exhibit larger aspect ratios in the stream-
wise direction than in the spanwise direction. In addition, the wall-
normal length is 3–6 times smaller for the structures with the highest
SHAP and SHAP per unit volume. Furthermore, the structures with
higher specific importance are contained in the xy plane, being the
aspect ratio in the z direction lower.

The framework presented here has enabled, in a purely data-driven
manner, to confirm and expand some of the basic knowledge of wall-
bounded turbulence available in the literature18,31. Furthermore, when
applying the SHAP framework to each point in the domain individually,
we found that there is around 30%mismatch between the Q events and
the structures with the highest importance score. This conclusion will
be further investigated in futurework, with the aimof shedding light on
the fundamental phenomena of wall-bounded turbulence. In terms of
turbulence modeling, a similar approach may be taken to first quantify
and subsequently understand the significance of coherent structures
and of dynamical processes such as vortex stretching and strain
amplification in data-driven subgrid-scale representations, for instance,
when based on invariants of the velocity-gradient tensor.

Furthermore, the present methodology may help to gain tre-
mendous insight into the basic mechanisms of wall-bounded turbu-
lence. As indicated above, turbulent flows are ubiquitous in a wide

range of problems of great industrial and environmental interest, such
as combustion, aerodynamics, energy generation, transportation, and
the current climate emergency. Obtaining detailed knowledge on the
building blocks of turbulencewill be instrumental to be able to control
these flows, thus obtaining great gains in all these important applica-
tions. Note however that, in order to use the SHAP framework pre-
sented here, it is important to obtain a detailed representation of the
coherent structures in the flow. One approach is to perform DNS,
which is progressively enabling detailed simulations of complex flows,
such as turbulent wings, where coherent structures can be identified55.
Nevertheless, the very high computational cost of DNS56 precludes the
application of this method for full-scale applications, at least at the
moment. However, rapid development of computational facilities,
particularly in the context of graphics-processing-unit-accelerated
architectures, may enable very detailed simulations at very high Rey-
nolds numbers in the next years. Furthermore, experimental work in
fluid mechanics is progressively benefiting more from machine
learning57, and it might be possible to obtain high-fidelity flow repre-
sentations at much higher Reynolds numbers, thus enabling the usage
of SHAP frameworks in more practical flow cases. Note that, based on
this work, the structures identified by means of SHAP in a high-fidelity
simulation at lower Reynolds number might not be easy to measure in
an experiment at high Reynolds number with lower resolution.
Therefore, one advantage of the present framework is its applicability
directly to the experimental data, thus enabling a more direct way to
detect (and control) the most important structures. Flow control by
deep reinforcement learning (DRL) is already leading to impressive
drag-reduction rates in turbulent flows36, and being able to leverage
DRL to control the most important flow structures identified via SHAP
may constitute a novel paradigm in terms of flow control, increasing
the potential for reducing energy consumption in transportation.

Methods
Numerical simulations and flow case under study
The U-net was trained using 6000 instantaneous velocity fields
obtained through DNS, with a spacing of Δt +f = 5. Note that analyses
carried out with Δt +f = 1 and 2 led to results consistent with those with
Δt +f = 5. The simulations are calculated in a box with periodic bound-
aries confined between two parallel plates and driven by an imposed
pressure gradient. The employed code is LISO58, which has been used
to run some of the largest simulations of wall-bounded turbulence20.
The convergence of the turbulence statistics was assessed based on
the criterion of linear total shear59. The data obtained with LISO has
been extensively validated against experimental and other numerical
studies41,60 and is broadly used61–63.

Deep-neural-network architecture and prediction
A U-net architecture24 is used for predicting the velocity field. This
architecture efficiently exploits spatial correlations in the data, and
further develops the work by Schmekel et al.30. Note that U-nets and
other computer-vision architectures have been successfully used in
the context of turbulent-flow predictions28,64–67. The convolution
operation is described by Eq. (5), where fi is the input three-
dimensional (3D) tensor, h the filter, G the output, and m, n, and p
the indices of the output tensor:

Gðm,n,pÞ = ð fi*hÞðm,n,pÞ=
X
i

X
j

X
k

hði, j,kÞfiðm� i,n� j,p� kÞ:

ð5Þ

TheU-Net comprises 20 layers of 3D CNNblocks, 2max poolings, 2
transposed 3DCNNblocks, and 2 concatenations in the layers68. Padding
is added to the boundaries in the spanwise and streamwise directions
of the channel reproducing the periodic information of the flow field.
As a consequence of the padding, the original size of the volume,
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192 × 201 × 96 points (in x, y, and z, respectively), is increased to
222 × 201 × 126 points. Each convolution comprises 32 filters for the
initial size of the field. The number of filters is increased to 64 and 96
after the first and secondmax pooling, a fact that reduces the size of the
fields to 74 ×67×42 and 24× 22× 14, respectively. In addition, each filter
has a size of 3 × 3× 3. Rectified-linear-unit activation functions are used
to avoid the vanishing-gradients problem69. The network setup is
selected to obtain an adequate accuracy with a reasonable computa-
tional cost. The network, which is shown in Fig. 9, uses a total of ~2
million parameters (where 99.9% of themare trainable). Here, 67%of the
flow fields are used for the training-and-validation process (out of which
80% are used for training and 20% for validation). For this process, an
RMSprop optimizer is used70. The remaining 33% of fields are reserved
for testing and explainability analysis, and are not seen by the network
during training. The training process is concluded when the mean-
square-error-based loss function is lower than 5 × 10−4, corresponding to
1.5 × 104 epochs, where all training data is used once in a single epoch.

Explainability of the neural network
Despite the excellent results achieved with deep learning, the relation-
ships between inputs and outputs are complex, and it is, in general,
challenging to explain the predictions based on a particular input field.
It is common to use linearmodels, based on additive feature-attribution
methods, such as the one shown in Eq. (6), for interpretation.

gðq0Þ=ϕ0 +
XjQj
j = 1

ϕjq
0
j ð6Þ

In Eq. (6), gðq0Þ is an approximation of the error between the U-net and
the ground truth, q0j are binary variables representing the presence or
absence of each feature (the coherent structures in our case), and ϕj

are the SHAP values. Note thatϕ0 would be themodel output when all
the features are removed. This work uses the kernel-SHAP algorithm25

in order to calculate the importance of each turbulent structure in the
model prediction. Kernel-SHAP is an additive feature-attribution
method which calculates gðq0Þ as a sum of the SHAP values associated
with all the input features. This algorithm is based on the combination
of two different techniques: LIME71 and Shapley values72.

LIME71 interprets the individual predictions of the model by
approximating them locally, as in Eq. (7). This local explanation adheres
to the additive feature-attribution method defined in Eq. (6). The

contribution of each feature is calculated by minimizing a loss function,
L, which depends on the explanation model, g, the error between the
original model and the ground truth, f, and a local kernel, πx. Addition-
ally, the complexity of themodel is penalized by including the termΩ(g).

ξ = argming2GLðf ,g,πxÞ+ΩðgÞ: ð7Þ

In order to produce a unique solution, the LIMEmethodology requires
to satisfy the local accuracy,missingness, and consistencyproperties25.
However, Eq. (7) cannot ensure the previous properties for a heuristic
definition of its parameters. These properties are satisfied by the
classical Shapley-value estimationmethods72. These values are derived
from an axiomatic approach, ensuring that they satisfy the unique
solution requirements. In the present context, the Shapley values
quantify the marginal contribution of a particular structure i (this will
be denoted as feature) to the error in the model f when included in a
particular group of structures s (which will be denoted as coalition).
These values are calculated as follows:

ϕiðQ, f Þ=
X

s�Qnfig

jsj!ðjQj � jsj � 1Þ!
jQj! f ðs∪ figÞ � f ðsÞð Þ, ð8Þ

whereQ is the set containing all the structures in a particular field, ∣Q∣ is
the total number of structures, and ∣s∣ is the total number of possible
coalitions not containing structure i. The expression ∣s∣!(∣Q∣− ∣s∣− 1)!
represents all the possible combinations of structures where s is the
coalition before evaluating i and ∣s∣!(∣Q∣− ∣s∣− 1)!/∣Q∣! the probability that
the structure i is included in themodel after the coalitionof structures s.

Although the Shapley values can quantify the marginal contribu-
tion of each structure, their exact computation is challenging. This
problem is solved by approximating their solution using the so-called
kernel-SHAP methodology25 mentioned above. As previously stated,
the methodology combines the solution of LIME71 with Shapley
values72. Equations (9)–(11) show the values of the regularization term,
the loss function, and the weighting kernel that recover the definition
of the Shapley values.

ΩðgÞ=0, ð9Þ

Lðf , g,πxÞ=
X
q02Q

f ðhxðq0ÞÞ � gðq0Þ� �2
πxðq0Þ, ð10Þ

Fig. 9 | Schematic representation of the U-net architecture. In this representa-
tion, xac denotes each layer, where a indicates the level, c the number of layer, and
the letterb is associatedwith layers after the bottleneck (located at the bottom, i.e.,
level 3). The number above each layer is the number of filters, and the size of the

field in grid points is also indicated for each of the 3 levels. Note that the pooling
and upsampling operations reduce and increase the size of the fields, respectively,
and BN stands for batch normalization.
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πxðq0Þ= jQj � 1
jQj
jq0j

� �
jq0j jQj � jq0jð Þ

: ð11Þ

Here jq0j is the number of nonzero structures and hx a mask function
that converts the binary space of q0 into the space of the input of the
model. Then, the LIME equation is solved using linear regression, with
very low errors of the order of ðf � gÞ2 =Oð10�7Þ.

In the context of wall-bounded turbulence, the importance of the
Reynolds-stress structures is the focus of our analysis. Thus, a mask
function is defined tomap from the original space into the space of the
structures. For each instantaneous field, a total of 2∣Q∣ + 2048 different
coalitions is used in the kernel-SHAP method, where ∣Q∣ is typically
around 150 in the channel case. Note that these coalitions are selected
randomly, as a representative sample of all the possible coalitions
(which would be a computationally intractable problem). Then, the
importance of each structure is calculated as its influence on the pre-
dictions, where the absent structure of each coalition is substituted by a
region of zero fluctuations. Besides this, we also considered two addi-
tional cases: one where, instead of replacing the structure with a region
of zero fluctuations, we scaled down the u and v fluctuations such that
they are 5% below the threshold to be considered a Q event, while
making w =0. In the second case, we scaled u and v as in the previous
case but left w unchanged. In both cases, the results and trends were
qualitatively the same as when all the fluctuations are set to zero, and
the main conclusions of this work were confirmed. The final SHAP of
each structure is calculated as an averageof the importance scores from
all the coalitions where it was considered. To calculate the importance,
the mean-squared error of the prediction is used as the output of the
model f. The employed workflow is summarized in Fig. 10.

The SHAP values represent, in a unique and quantitative manner,
the contribution that a single coherent structure has on the mean-
squared error of the prediction. Themost relevant structures are those
with a higher absolute value, while a low absolute value is related to the
less relevant structures. It is important to note that, as stated above, to
calculate the SHAP value of a particular structure many different
coalitions are considered, where different combinations of structures
are present in the field. This enables taking into account a wide range

of interactions among structures, emulating a number of inter-
structure interactions present in wall-bounded turbulent flows.

Data availability
The minimum representative data used in this study are available at:
https://github.com/KTH-FlowAI/Identifying-regions-of-importance-in-
wall-bounded-turbulence-through-explainable-deep-learning. For the
complete database, please contact the authors.

Code availability
The codes used for this work are available at: https://github.com/KTH-
FlowAI/Identifying-regions-of-importance-in-wall-bounded-
turbulence-through-explainable-deep-learning.
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